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Abstract

Theoretical and practical aspects of the verification of infinite-state systems have at-
tracted a lot of interest in the verification community throughout the last 30 years.
One goal is to identify classes of infinite-state systems that admit decidable deci-
sion problems on the one hand, and which are sufficiently general to model systems,
programs or protocols with unbounded data or recursion depth on the other hand.

The first part of this thesis is concerned with the computational complexity of
verifying counter automata, which are a fundamental and widely studied class of
infinite-state systems. Counter automata consist of a finite-state controller manip-
ulating a finite number of counters ranging over the naturals. A classic result by
Minsky states that reachability in counter automata is undecidable already for two
counters. One restriction that makes reachability decidable and that this thesis pri-
marily focuses on is the restriction to one counter. A main result of this thesis is
to show that reachability in one-counter automata with counter updates encoded in
binary is NP-complete, which solves a problem left open by Rosier and Yen in 1986.
We also consider parametric one-counter automata, in which counter updates can be
parameters ranging over the naturals. Reachability for this class asks whether there
are values of the parameters such that a target configuration can be reached from an
initial configuration. This problem is also shown to be NP-complete. Subsequently,
we establish decidability and complexity results of model checking problems for one-
counter automata with and without parameters for specifications written in EF, CTL
and LTL.

The second part of this thesis is about the verification of programs with pointers
and linked lists in the framework of separation logic. We consider the fragment
of separation logic introduced by Berdine, Calcagno and O’Hearn in 2004 and the
problem of deciding entailment between formulae of this fragment. We improve the
known coNP upper bound and show that this problem can actually be solved in
polynomial time. This result is based on a novel approach in which we represent
separation logic formulae as graphs and decide entailment between them by checking
for the existence of a graph homomorphism. We complement this result by considering
various natural extensions of this fragment which make entailment coNP-hard.
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Chapter 1

Introduction

1.1 Background

One of the greatest achievements in human culture in the 20th century may be the
formalisation, mechanisation and study of the nature of computation. Although there
had been prior attempts to mechanise computation, for example by Leibnitz, who
invented a mechanical calculator called the “Stepped Reckoner”, or by Babbage’s
difference engine, no significant insights into the nature of computation had been
made until the 20th century. The International Congress of Mathematicians at the
Sorbonne in Paris in 1900 can be seen as the starting point of modern developments
in the field of computation theory. At the congress, David Hilbert presented ten of
his famous 23 problems [59] that were unsolved by the time and that he considered
to have a positive influence on the developments of mathematics in the 20th century.
The range of the problems considered was broad and, amongst others, concerned with
problems in number theory and the foundations of mathematics. Two of Hilbert’s
problems played a key role in the development of computation theory. Hilbert’s
second problem deals with the fundamental nature of mathematics as a science and
asks to “set up a system of axioms which contains an exact and complete description
of the relations subsisting between the elementary ideas of that science [..] [and] to
prove that they are not contradictory, that is, that a finite number of logical steps

based upon them can never lead to contradictory results.” Much to the surprise and



disappointment of Hilbert, Gédel showed in 1931 that no such system can exist [47].
Hilbert’s tenth problem concerned the solvability of polynomial equations. He asked
“to devise a process according to which it can be determined by a finite number of
operations whether the equation is solvable in rational integers.” Implicitly, Hilbert
asked for an algorithm to solve polynomial equations in the integers, although the
concept of an algorithm did not exist by the time. It was in 1970 when Matiyasevich
showed [77] that no such algorithm can exist, a solution that Hilbert probably did
not consider possible at the time he posed the question.

In the spirit of Hilbert’s second problem, researchers in mathematical logic began
investigating the consistency of natural logical theories. Notable progress was for
example made by Tarski, who showed the consistency of the first-order theory of
the reals, and by his student Presburger who proved the consistency of a fragment of
number theory, which is known today as Presburger arithmetic [90]. Another result of
this type was given by Godel, who showed the consistency of full first-order logic [46]
in 1930 before proving his famous incompleteness theorem [47], which gave an answer
to Hilbert’s second problem. In this environment, a different branch of research was
independently established by Alan Turing and Alonzo Church who independently
proposed formal models of computation. Turing’s “automatic machine” [104], which
is known today as “Turing machine”, is an abstract machine that consists of a finite-
state controller acting on a tape consisting of infinitely many cells and that has a
head which can point to a position on the tape. The contents of the cells of the tape
are symbols from a finite alphabet. The behaviour of a Turing machine is specified
by a finite list of instructions. When the head reads at the current position of the
tape an alphabet symbol in a control state, an instruction determines which symbol
to write on the tape and in which direction to move the head by one cell. Some
of the control states of a Turing machine are designated accepting control states.
Once an accepting control state is entered the machine stops and the computation
is finished. Turing claimed that if a function f can naturally be computed, then it
can be computed by a Turing machine, i.e., for any such function one can construct

a Turing machine such that for any argument to f that is encoded into the tape of a



Turing machine computing f, the Turing machine reaches an accepting control state
after a finite number of steps with the value of f encoded into the tape. This claim is
known today as the Church-Turing thesis. One can also rephrase this claim and say
that any problem that can algorithmically be computed can also be computed by a
Turing machine. Turing also showed in [104] that there are functions which are not
computable by a Turing machine. In particular, he showed that there does not exist
a Turing machine that decides, i.e., answers yes or no, the problem of determining
whether a given Turing machine is eventually going to stop for a given input. This
problem is known as the halting problem. Problems that cannot be decided by a
Turing machine are called undecidable. Another such problem is to decide the truth
of statements in arithmetic [27]. Finally, Matiyasevich, building upon the work of
Davis, Putnam and Robinson, showed that Hilbert’s tenth problem also belongs to
the class of undecidable problems [77]. With the advent of physical computers in the
1950s, a further line of research started in the 1960s that investigates the complexity
of algorithms. Knowing that a problem can algorithmically be solved does not provide
good information about the actual feasibility of an algorithm solving it. The field of
computational complexity classifies problems according to their inherent requirements
in terms of space and time needed to solve them algorithmically.

The halting problem asks a meta question about computation: given an arbitrary
algorithm encoded in a Turing machine, is this algorithm always going to terminate on
any input? Nowadays, where computers do not only exist as a theoretical construct
but are omnipresent, this is a question of much practical relevance. The question gen-
eralises to deciding arbitrary properties of arbitrary algorithms that are implemented
as programs. Will the autopilot software of this airplane never get stuck? Is it im-
possible that the controller of those traffic lights will switch all traffic lights to green
at some point? Does the controller of this rocket perform unit conversion correctly?
If the answer to any of those questions is “no” lives of humans can be at risk, or huge
financial losses may occur as a consequence. Unfortunately, there is no general way
of answering those questions for arbitrary programs in an automated fashion: Rice’s

theorem [93] states that no algorithm can exist that can algorithmically prove any



non-trivial specification of an arbitrary program. There are a number of ways out
of this dilemma that can help answering questions similar to those above for arbi-
trary programs, or at least increase the confidence into them. One way is penetrative
testing. Setting up and running a number of test cases for a program can reveal
errors and thus help to improve the correctness of software. As a downside, it can
almost never show the absence of errors and thus its benefit is limited when it comes
to software used in safety-critical areas. Nevertheless, testing is the technology that
is most commonly used in industry to ensure the functional correctness of software.
Another way to overcome Rice’s theorem is semi-automated theorem proving. In this
approach, a program is translated into a logical language of a theorem prover, and a
logic such as Hoare logic [60] is used to reason about the program. A theorem prover
is a program that allows the user to write computer-assisted proofs in some general
purpose logic. Once a program has been translated into the language of a theorem
prover, the user can manually prove the program correct, where the prover assists
the user by providing heuristics that can automate some simple proofs. There exist
a number of sophisticated theorem provers such as PVS [85], ISABELLE/HOL [82] or
CoQ [42] that have been used to verify programs. A notable recent achievement has
been a formal correctness proof of an L4 micro kernel [70] in ISABELLE/HOL. Beyond
that, proofs of classical mathematical theorems such as Godels incompleteness the-
orem or the four-color theorem have been re-proved inside theorem provers [83, 52].
For the verification of programs, the biggest advantage of theorem provers is that
any arbitrary program can be proven correct with respect to a specification with less
effort than what is needed for paper proofs, if there is a human being capable of doing
so. The latter fact is also its biggest disadvantage. Theorem proving requires a high
level of expertise and a lot of time. Moreover, if software changes, many proofs have
to be reproved. As one of the main properties of software is that it changes, this is
one of the reasons why theorem proving has not yet found its way into a mainstream
industrial context.

An approach to the verification of programs that lies in between testing and

theorem proving, and that this thesis is about, is model checking. Model checking was



independently proposed by Clarke and Emerson [31], and by Queille and Sifakis [91].
For an account of the history of model checking, see e.g. [30, 3]. Model checking is
not exclusively limited to the verification of programs, but can also be used to prove
properties of hardware, protocols or other abstract systems. In model checking, in
order to prove a program correct with respect to a specification, an abstract model of
the program is constructed and the specification is translated into some specification
logic. A model checking algorithm can then automatically check if the abstracted
program fulfills the specification, i.e., if it is a model of the specification. If this is the
case, the algorithm returns “yes”, otherwise it provides a counter example that shows
how erroneous behaviour of the program occurs. The abstraction step translates
a program into a weaker formalism in which Rice’s theorem does not apply, which
makes automatic verification possible. The biggest advantages of model checking
are that it is fully automatic and that it can actually prove the correctness of the
abstracted model. On the downside, the abstraction step can abstract away errors
that might exist in the original program. Furthermore, the size or state space of
the abstracted model can be too big to allow model checking algorithms to be of
practical use. Another limitation of the practical application of model checking is
that, as in the case of theorem proving, some level of expertise is needed to formulate
specifications in a specification logic. A lot of research has been devoted throughout
the last 30 years to attenuate those problems. Many techniques and heuristics have
been developed that have enabled model checking to find its way from theory into
praxis. One application that highlighted the power of model checking occurred in
1996, when Clarke, Khaira and Zhao showed that the floating point division bug of
the Intel® Pentium® processor could have been discovered with the technology that
was available by the time, and that the correction of the bug provably corrected the
bug [29]. Today, a number of plain, general purpose model checking tools exist, but
there are also tools devoted to software verification. They have successfully been used
in the verification of hard and software in academia and industry. Examples of plain
model checkers include SMV, NUSMV [28] or SPIN [62]. Examples of tools devoted
to software model checking include BLAST [57], CBMC [32] and SLAM [4]. Over



the last 30 years, model checking has evolved as a field of its own inside computer
science and has attracted a broad range of research on its theoretical and practical
aspects. The importance of the field and the contribution made by Clarke, Emerson
and Sifakis has been acknowledged by awarding the 2007 ACM Turing award to the
three researchers.

Model checking as proposed by Clarke and Emerson restricts systems to have
a finite state space. Moreover, its specification language mainly allows for proving
qualitative properties about systems. There are applications domains where this ap-
proach is too coarse. Examples include real-time systems, where it is desirable to
prove quantitative properties of such systems, for example that a certain action is
always performed within a certain amount of time. In order to model such systems,
various formalisms have been developed and the model checking approach has been
applied to them. One such formalism are timed automata, defined by Alur and Dill
in [1]. Starting as a purely theoretical construct, timed automata are nowadays the
standard way to model real-time systems. Tools such as the UPPALL model checker [9]
have been developed and successfully been applied to verifying time-critical proper-
ties of real-world systems. Other formalisms that allow for modeling systems in a
more fine-grained way and for reasoning about quantitative properties of systems
include probabilistic, pushdown or counter automata. One of the main challenges
in automatically verifying systems modelled in any of those formalisms is that their
state space is infinite, which can quickly lead to undecidability of model checking
problems. Even when model checking problems are decidable, a high computational
complexity of the model checking algorithms can mean that model checking is prac-
tically infeasible. Research on the theoretical side of model checking infinite-state
systems focuses on determining the decidability status of such problems and their

computational complexity.



1.2 Scope and Contribution of this Thesis

The two main topics of this thesis are theoretical aspects of algorithms for the verifi-
cation of counter automata and programs with pointers and linked lists. This thesis
deals with the two subjects separately in two separated parts. We are going to discuss
their relationship at the end of this section.

A counter automaton consist of a finite-state controller which manipulates a finite
number of counters ranging over the naturals. At a transition between two control
locations, a counter automaton can add and subtract a natural number to and from
a counter, respectively, and test a counter for zero. Since the counter values are
unbounded, the state space of a counter automaton is infinite. Counter automata
were introduced by Minsky [80] as a formal model of computation. They are also
known as Minsky machines, counter machines, or counter nets. Minsky showed that
two counters are already sufficient for counter automata to be computationally as
powerful as Turing machines. Hence, almost all decision problems about counter
machines are undecidable. In particular, the most basic verification problem, reach-
ability, is undecidable. Given two configurations of a counter automaton consisting
of a control location and values of the counters, reachability asks whether there is a
path between the two configurations in the transition system induced by the counter
automaton. Research has identified several ways of restricting counter automata in
order to retain decidability of the reachability problem. Amongst others, this can be
achieved by restricting the kinds of allowable tests on the counters (e.g. Petri nets [88]
which do not allow for zero tests), the types of computations considered (such as re-
versal boundedness, see e.g. [65, 56]), restrictions on the underlying structure of the
counter automaton (e.g. flatness [34, 73]) and the restriction to only one counter.
Decidable classes of counter automata have found applications in a number of areas
in verification, for example in modelling resource-bounded processes, numeric data
types, programs with lists, recursive or multi-threaded programs, XML query valida-
tion, and parameterised hardware verification, see e.g. [15,25,56,/65, 103]. Moreover,

tools such as FLATA [14] exist for manipulating and reasoning about restricted classes
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Figure 1.1: An example of a counter automaton and a parametric one-counter au-

tomaton.

of counter automata.

This thesis is primarily going to focus on the computational complexity of the
verification of one-counter automata, i.e., counter automata with the restriction to
only one counter. Such counter automata can for example be used to model programs
with one variable, protocols with an unbounded integer storage space, or systems
where a transition consumes a resource such as time or money as discussed in [108].
A graphical example of a one-counter automaton is presented on the left-hand side in
Figure The one-counter automaton consists of three control locations, ¢, ¢ and
one unnamed location depicted as a bullet, which are labelled with the symbols v and
«. Starting in location ¢, the one-counter automaton has a transition to the unnamed
location, which adds 6 to the counter. Next, it can loop an indefinite number of times
subtracting 2 from the counter as long as the counter stays above or equal to 0. Once
the counter reaches counter value 0, a transition to the control location ¢’ is enabled.
Starting in ¢, the control location ¢ with counter value 0 is reachable from ¢ if, and
only if, we start with a counter value which is divisible by two. From a complexity
perspective, it is important to emphasize that we use the natural binary encoding of
numbers, unlike a lot of work from the literature, which assumes unary encoding of
numbers. One main contribution of this thesis is to show that deciding reachability is
an NP-complete problem. A generalisation of one-counter automata are parametric
one-counter automata, which are one-counter automata that are equipped with a
finite set of parameters. At any transition, a parametric one-counter automaton can
add or subtract the value of a parameter. An example of a parametric one-counter

automaton is given on the right-hand side of Figure/1.1, which is essentially the same



one-counter automaton as on the left-hand side, but in which the loop subtracts
the value of the parameter y instead of 2 from the counter. The reachability problem
generalises to asking for two given configurations whether there exists an instantiation
of the parameters with natural numbers such that one configuration can be reached
from another. For example, ¢’ with counter value 0 is reachable from ¢’ with counter
value 0 for y € {1,2,3,6}. Another result of this thesis is that deciding reachability
in parametric one-counter automata is also NP-complete.

Reachability enables us to verify safety properties of systems as it allows for check-
ing whether a designated good or bad state of a system can be reached. In order to
verify more complex properties of systems, temporal specification logics are being
used in model checking. In this thesis, we deal with the most prominent temporal
logics used in verification, the branching-time logics EF and CTL, and the linear-time
logic LTL. Those logics allow for specifying properties about the relative order of
events on traces in the transition system induced by a one-counter automaton. A
trace is the projection onto the labels occurring on a path in the transition system
induced by a one-counter automaton. For example, yyyyyvy« is the trace of the path
that reaches the control location ¢’ with counter value 0 from ¢ with counter value 0
in the one-counter automaton in Figure/1.1. A specification in CTL could for example
state that there exists a path whose trace ends in a location labelled with o along

which the label v occurs before. This property is expressed in CTL as follows:
E(vUa)

Here, the E-operator can be read as “there exists a path” and the part in the brackets
uses the until operator U and can be read as “y holds until o holds”. This prop-
erty holds, for example, in the control location ¢ with counter value 0, but not with
any counter value that is not divisible by two, as ¢’ cannot be reached from such
configurations. From an algorithmic perspective, the decidability of model checking
one-counter automata is not trivial. For example, CTL allows to quantify over all
paths leaving a configuration in the transition system induced by a one-counter au-

tomaton, and there can be infinitely many of them. Nevertheless, it has been shown



in the literature that model checking EF, CTL and LTL on transition systems gener-
ated by one-counter automata is decidable [98, 39]. The contribution of this thesis is
to exhaustively determine the computational complexity of those problems.

The model checking problem generalises to parametric one-counter automata.
Given a parametric one-counter automaton together with a configuration and a spec-
ification in a temporal logic, we aim for determining whether the formula holds in
that configuration in all one-counter automata obtained from all valuations of the
parameters. We are going to show that this problem becomes undecidable for EF and
CTL, but is decidable for LTL.

As a further application of counter automata, the first part of this thesis addition-
ally shows their relationship to the verification of timed systems modeled by timed
automata. Timed automata comprise a finite-state controller with a finite number of
clocks ranging over the positive reals. One main decision problem for timed automata
is reachability. As timed automata are not the main focus of this thesis, we do not give
additional details on them here and refer the interested reader to [1,3]. What we are
going to show in this thesis is that reachability problems in timed automata are nat-
urally inter-reducible with reachability problems in bounded counter automata. The
latter are counter automata with multiple counters, but each counter is restricted to
have some maximum value. The reductions we provide give some interesting insight
into the connection between the two formalisms. In particular, we are going to show
that reachability in timed automata with two clocks is inter-reducible with reacha-
bility in a counter automaton with precisely one bounded counter. The complexity
of reachability in two-clock timed automata is one of the major open problems in
the theory of timed automata. Although the complexity of reachability in counter
automata with exactly one bounded counter remains an open problem of this thesis,
it provides a much more simplified formalism that might prove helpful in the future
to give an answer to the complexity of reachability in two-clock timed automata.

The second part of this thesis deals with the verification of programs with pointers
and linked lists in the framework of separation logic. Separation logic, proposed by

Reynolds, O’Hearn, Ishtiaq and Yang [66, 92, 84], is an extension of Hoare logic that
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allows for reasoning about pointer manipulating programs in an elegant and concise
way. It extends the syntax of assertions with predicates describing shapes of memory,
which allow for concisely expressing aliasing and disjointness. Full separation logic is
very expressive, and most reasoning tasks in this logic are undecidable, which limits
its usage for the automatic verification of programs. For that reason, fragments of
separation logic with decidable decision problems have been investigated. One such
fragment is the one described by Berdine, Calcagno and O’Hearn in [11]. It can be
used to reason about structural integrity properties of programs with linked lists and
is, for example, the basis of tools like SMALLFOOT [12]. The fragment described in

[11] allows for two predicates for describing the shape of memory:
Ty ls(y, 2)

The assertion x — y can be read as “the memory cell of the stack variable z is allo-
cated on the heap and points to the memory cell of the stack variable y.” Moreover,
the predicate ¢s(y, z) asserts that there is a possibly empty linked list of arbitrary
length from the memory cell of the stack variable y to the memory cell of the stack
variable z. The two predicates can then be combined with the star operator in order
to describe complex memory shapes. For example, x — y*s(y, z) describes memory
models, which can be decomposed into disjoint parts, one part in which the memory
cell of the stack variable x points to ¥ and one in which there is a linked list from y
to z. In the part of the heap where x — y holds, y is not required to be allocated and
becomes dangling, which is, informally speaking, the reason why the two parts can
“mention” the stack variable y. Additionally, the fragment also allows for asserting
conjunctions of equality and inequalities of stack variables, e.g., © # y asserts that
the stack variables z and y are not equivalent. Since lists have finite but unbounded
length, an assertion of the fragment of separation logic that we consider can describe
an infinite family of memory models.

The decision problem we investigate in this thesis is entailment between assertions.
Given two assertions « and o/, entailment is to decide whether o’ holds in every

memory model in which the assertion « holds. Decidability of this problem was
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shown in [11] and the authors established a coNP upper bound for this problem. In
this thesis, we are going to show that the problem can be solved in polynomial time
under a slightly different semantics than the one used in [11]. However, we are going to
sketch how this result can be altered in order to give a polynomial-time algorithm for
entailment in the semantic model considered in [11]. Our approach is fundamentally
different from the one used in [11] and based on graph-theoretic concepts. Moreover,
we additionally show that slight adjustments to the syntax of the fragment make
entailment coNP-hard.

Although counter automata and separation logic are treated as separate entities
in this thesis, they have been shown to be closely related in the literature. Bouajjani
et al. show in [15] how to verify programs with linked lists with a specification logic
similar to the separation logic fragment that we consider via a reduction to verification
problems in counter automata. Moreover, Boszga, losif and Perarnau have considered
in [19] a quantitative version of the separation logic fragment from [11] for which
decidability of entailment is shown via a translation into bisimilar counter automata.
Both [15] and [11] do not give any complexity bounds of their approaches, and there
is no compelling way to obtain any bounds close to those that are provided in this
thesis since their constructions lead to an exponential blowup.

In summary, this thesis makes the following novel contributions:

e [t shows that reachability in one-counter automata with updates encoded in
binary is NP-complete. This solves a problem left open in [95] about the com-

plexity of boundedness in Petri nets with one place and zero tests.
e [t shows that reachability in parametric one-counter automata is NP-complete.

e [t shows that reachability problems in timed and bounded counter automata
are inter-reducible and establishes a dichotomy of those reductions with respect

to the resources of the timed and bounded counter automata.

o [t exhaustively determines the computational complexity of model checking one-
counter automata with updates encoded in binary and parametric one-counter

automata with specifications given in the specification logics EF, CTL and LTL.
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e [t shows that entailment in a fragment of separation logic with pointers and
linked lists can be computed in polynomial time, answering a question left open

in [11].

1.3 Structure and Style of this Thesis

The organisation of this thesis is as follows. Chapter [2 introduces basic notation
and concepts that this thesis builds upon. The aim of this chapter is to give all
definitions and results from the literature relevant to this thesis and covers areas
such as computational complexity, automata theory, logic and arithmetic theories.
Definitions relevant to a specific chapter are introduced in the respective chapter.
After Chapter 2, the thesis is broken into two independent parts.

The first part deals with counter automata. Chapter 3 establishes a natural con-
nection between reachability problems in bounded counter automata and timed au-
tomata and shows that both problems are inter-reducible. Chapter 4/ then deals with
the computational complexity of reachability problems in counter automata with and
without parameters. Finally, Chapter 5 is devoted to the computational complexity
of model checking one-counter and parametric one-counter automata.

The second part, Chapter 6 of this thesis, is about the verification of programs
with pointers and linked lists in the framework of separation logic. It is shown there
that entailment in the separation logic fragment described in [11] is computable in
polynomial time, and this result is complemented by showing that entailment in
natural extensions of this fragment becomes intractable.

Each chapter closes with a discussion about the results obtained, how they fit
into the literature and possible future work. Since the two parts of this thesis and
the chapters therein are all separate entities, we omit a chapter concluding the whole
thesis as it would just consist of a repetition of this introductory chapter and the
conclusions of the other chapters.

As discussed previously in this chapter, model checking is an established field and

has produced a rich body of literature. Although this thesis is self contained, giving

13



a full account on the history, motivation and intuitive meaning of all concepts, defi-
nitions and results used from the literature would go beyond the scope of this thesis.
The reader of this thesis is expected to have some level of familiarity with concepts and
standard results from theoretical computer science. In particular, this thesis requires
some knowledge of standard definitions and results in computational complexity, au-
tomata theory, infinite-state system verification, model checking, graph theory and
arithmetic theories, in particular Presburger arithmetic. Additionally, Chapter 6 re-
quires some level of familiarity with separation logic. The papers by Reynolds [92]
and Berdine et al. [11] give a good introduction to the fragment considered in this
thesis. However, no knowledge of separation logic is required for any of the other
chapters.

Literature used by the author which inspired some of the definitions used in this
thesis amongst others include Sipser’s book on computational complexity [100]; the
books by Clarke et al. [33] and Baier and Katoen on model checking [3]; Schnoebelen’s
paper on the complexity of temporal model checking [97]; and Smorynski’s book on

logical number theory [102].

1.4 Related Work

This section discusses some work from the literature that is related to the main topics

of this thesis. Additional related work will be discussed in the respective chapters.

The relationship between timed automata and counter automata.

The classical undecidability proof of universality of timed automata by Alur and
Dill [1] proceeds via a reduction from the reachability problem of two-counter au-
tomata, which shows a connection between the two formalisms. Recent work [44]
by Figueira, Hofman and Lasota establishes a relationship between timed automata
and register automata. The latter are somewhat similar to counter automata, but
still of a different nature, which means that their result is incomparable to the result

provided in this thesis. Register automata include registers that can store data values

14



for later comparison. The paper [44] provides an exponential-time algorithm which
computes a register automaton corresponding to a timed automaton and wvice versa.
Runs in the timed automaton can then be simulated by the corresponding register

automaton and wvice versa.

Reachability in one-counter automata.

Reachability in counter automata was first investigated by Minsky [80] who showed
that this problem is undecidable in the presence of at least two counters. As discussed
in Section [1.2, there is a large body of work on various restrictions on counter au-
tomata for which reachability becomes decidable. The problem of the complexity of
reachability in one-counter automata with updates encoded in binary has first been
mentioned by Rosier and Yen in a paper on the complexity of the boundedness prob-
lems for Petri nets, where this problem is left open [95]. Related work on reachability
in one-counter automata has also been conducted by Lafourcade et al. [71] who show
that reachability in one-counter automata with updates encoded in unary is decidable
in NL. Based on their work, Demri and Gascon show in [39] that Biichi reachability in
such counter automata with additional sign tests on the counter is NL-complete. As
in this thesis, deep inspection of the structure of runs in one-counter automata is also
the basis of work on the complexity of bisimulation between one-counter automata

with updates encoded in unary [13].

Reachability in parametric one-counter automata.

Work closely related to reachability in parametric one-counter automata is that of
Ibarra et al. [65], which shows decidability of reachability for a subset of the class of
deterministic parametric one-counter automata with sign tests. The decidability of
reachability over the whole class of such automata is stated as an open problem in
[65]. Note that although in this thesis parametric one-counter automata do not allow
negative counter values and sign tests, they allow non-determinism. Thus, the results
of this thesis are incomparable to those from [65]. Bozga, losif and Lakhnech [18]

show decidability of the reachability problem for flat parametric counter automata
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with a single loop, by a reduction to a decidable problem concerning quadratic Dio-
phantine equations. Such systems of equations also feature in the work of Ibarra and
Dang [64]. They exhibit a connection between a decidable class of quadratic Dio-

phantine equations and a class of counter automata with reversal-bounded counters.

Model Checking One-Counter Automata

The literature contains a wide range of work on model checking problems of one-
counter automata with updates in unary. Serre [98] establishes a PSPACE upper
bound for model checking the modal p-calculus on transition systems generated by
such counter automata. A PSPACE lower bound was later established by Goéller and
Lohrey [50], who showed that model checking CTL on one-counter automata with
updates encoded in unary is PSPACE-complete. The proof of the lower bound of CTL
model checking on one-counter automata with updates in binary given in this thesis
is inspired by the proof of the lower bound in [50]. Model checking EF on one-counter
automata with updates in unary was first considered by Jancar et al. [68], who showed
that this problem is DP-hard. The precise complexity was later settled by Goller,
Mayr and To in [51], where it is shown that the problem is PN-complete. Model
checking LTL on one-counter automata with updates in unary has been investigated
by Demri and Gascon in [39] and shown to be PSPACE-complete. Also related is the
work by Walukiewicz, who studied in [107] model checking EF and CTL on transition
systems generated by pushdown automata and showed that the problem is PSPACE-
respectively EXPTIME-complete. A topic slightly more remotely related to this thesis
is model checking Freeze LTL on one-counter automata, which has been investigated
by Demri et al. [40, 41]. Freeze LTL extends LTL by the ability to store a counter

value and to later test it against the current counter value.

Programs with linked lists in the framework of separation logic.

The fragment of separation logic this thesis deals with has been introduced by Berdine,
Calcagno and O’Hearn in [11], where it was shown that entailment in this fragment

is decidable and in coNP. Bozga, losif and Perarnau considered in [19] a quantita-
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tive version of this logic, which additionally allows for reasoning about properties of
lengths of lists. Their decidability result also yields a decision procedure for the frag-
ment considered in [11]. However, there are no complexity bounds given in [19] on
the algorithm, which is of at least exponential running time. Bansal, Brochenin and
Lozes also consider in [5] an extension of the fragment of separation logic that this
thesis deals with, which additionally allows for comparing consecutive data in a list.
Finally, Navarro Pérez and Rybalchenko developed in [81] a decision procedure for
an extension of the fragment from [11] based on superposition. However, the authors

do not give complexity bounds of their approach.

1.5 Joint Work

The results presented in this thesis are partly based on peer-reviewed publications
that have been co-authored with a number of collaborators. The content of those
publications is a result of a number of discussions between the author and his collab-
orators, in person or via email. Some of the results in Chapter |4/ have been published
in the proceedings of CONCUR’09 [54]. The paper was co-authored by Stephan
Kreutzer, Joél Ouaknine and James Worrell. Results from Chapter 5 have been pub-
lished in the proceedings of ICALP’10 [48] and FoSSaCS’12 [49]. Both papers have
been co-authored by Stefan Goller, Joél Ouaknine and James Worrell. The results
from Chapter [6 have been published in the proceedings of CONCUR’11 [35], the pa-
per was co-authored by Byron Cook, Joél Ouaknine, Matthew Parkinson and James

Worrell.
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Chapter 2

Preliminaries

In this chapter, we are going to introduce general notation and concepts and recall
some results from the literature that this thesis builds upon. The first section provides
general notation on integers and language theory and gives a brief account on some
results from number theory. The next section then introduces transition systems.
Section 2.3 deals with formal languages. In particular, we are going to define regular
languages and complexity classes. Subsequently, we are going to introduce formal
models of finite and infinite state systems, namely finite-state machines, counter au-
tomata and timed automata. The last section deals with theories of integer arithmetic

with a particular focus on Presburger arithmetic.

2.1 General Notation

By R we denote the set of reals, by Q the set of rationals, by Z the set of integers, and

def

by N = {n > 0:n € Z} the set of naturals. We denote by R>q & {reR:r >0}

the set of positive reals and by Nog & N \ {0} the set of naturals strictly greater than
zero. For any z € Z, |z| is the absolute value of z. Given a set M, we denote by 2M
the power set of M. For a given a set M C 7Z with a maximum or minimum element,
we denote by max M the mazximum element of M and by min M the minimal element
of M. The size of a finite set M is denoted by #M. Given a relation R C M x N and

m e M, R(m) & {n € N :(m,n) € R}. We write M Cg, N to say that the set M is
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a finite subset of N. Moreover, we write f : M —g, N to indicate that f is a partial
function from M to N with a finite domain. For M C R, ¢ € Q and r € R, we define
qu:ef{qm :m € M} and M+7“d:ef{m+r :m € M}. For each 1,5 € Z, we define
[, j] o {z€Z:i<2z<j}and [f] & [1,7]. Given r € R, we define the floor function
7] oof max{z € Z : z < r} and the ceiling function [r] &of min{z € Z : z > r}. For
any n € N, we define lgn o min{i € N : 2¢ > n}. Throughout this thesis, if not
stated otherwise, we assume binary encoding of numbers, i.e., the size of any z € Z is
lg |z]. Given functions f,g: N — N, we write f = O(g) if there exist m,ng € N such
that f(n) < mg(n) for all n > ng. Given a function f : M — N, we write f[mg > ng|

to denote the function

def no it m =my
flmo — ngl = m —
f(m) otherwise.

Let > be a set of letters forming an alphabet. A finite word w over ¥ of length
n € N is a function w : [n] — 3, where the empty function is called the empty
word and denoted by e. We write |w| to denote the length of w. Alternatively, we
represent finite words as finite sequences of letters from X, i.e., write w = o105 ... 07,.
An infinite word w over ¥ is a function w : N5y — 3, and its length is |w| =
Given a word w, for any i € [0, |w|] we denote by w® : [Jw| —i] — ¥ the suffiz of w
starting at position i, which is defined as w (§) o w(i+j) for all j € [|w|—1i]. Given
a finite word w; and a possibly infinite word ws over X, the concatenation w; - wo of
wy and ws is the word w : [|wy| + |we|] — X, where w(7) &f wy (1) for all 4 € [w;] and

w(y) of wa(j —|wq]) for all j € [Jwy|+1, |wi|+|we|]. For any finite word w over ¥ and

0

. . def ;o def .
n € N, we inductively define w™ as w® = € and w* = w*~!-w for all i > 0. Moreover,

we inductively define $0 & {e} and X! o {w-o:we X" oe X} The set X* of

all finite words over ¥ is defined as ¥* o Uen &% The set of all infinite words is

denoted by ¢ def {w : wis a function Nyy — X}. A subset L C ¥* or L C X¢ is
called a language. Given languages L,, Ly C ¥*, we denote by Lq - Lo dof {wy - wy :
w; € L;yi € {1,2}} the concatenation of Ly with L,. For languages consisting of a
single word w, we abuse notation and sometimes write w - L instead of {w} - L.

Given z,y € Z, integer division is defined as z divy &f |x/y|. We write x|y
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if x divides y, i.e., if there exists a k € Z such that y = kx. Let z € Z and
n € Nyg, the congruence class of z modulo n is the set z, oo {z+in : i € Z}.
Each n € Ny yields n congruence classes Z/Z,, o {0p,...,n—1,}. For z,y € Z,
we write = y mod n if z, = ¥,,. The greatest common divisor of x,y € 7Z is
defined as ged(z, y) of max{n € N : n|z and nly} and the least common divisor
is lem(z, y) o xy/ ged(z,y). Given a non-empty finite set M = {z1,...,2,} C Z,
ged M o ged(z1, ged(za, .. .)). Likewise, lem(M) o lem(zy,lem(zs, .. .)). A natural
number p > 1 is a prime number if n fp for all n € [2,p — 1]. Let m(n) be the
prime-counting function that counts the number of primes less or equal to n € N.
It follows from the prime number theorem that for all n € N, w(n) ~ n/(lgn), i.e.,
lim,,—,oo(m(n)lgn/n) = 1. The prime number theorem guarantees that the set of all
natural numbers up to a fixed size asymptotically contains an exponential number of
prime numbers, a fact expolited when proving lower bounds in Chapter 5. In order
to obtain a fixed bound on 7(n), one can, for example, use a result by Rosser [96],
which states that for all n > 55, n/(lnn +2) < 7(n) < n/(lnn —4).

Given i,n € N, bit;(n) € {0,1} denotes the i-th least significant bit of the binary
representation of n, i.e., n = Y, 2" bit;(n). Moreover, we also represent natural
numbers as bit strings over the alphabet {0,1}. The binary representation of n
aligned to m > lgn is the word w € {0,1}™ such that n = 3,2 'w(i) and
denoted by bin,,(n). Note that we use little-endian representation when representing
numbers in binary as bit strings over {0,1}. Giveni < j € Nand n € N, we denote by
n[i, j] the bit string bit;(n) bit;1(n)...bit;_1(n). Given a bit string w € {0, 1}*, we

denote by (w), the natural number n oo > 271w (7). When working in different

i€f|wl]
bases, given a basis m > 1 and ¢ € N, dig,;(n) denotes the i-th digit of n in base m.
For example, in base 2 we have dig,(01001) = 1, in base 10 we have dig,(1312) = 1,

and in base 16 we have dig,(BFOD) = 0.
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2.2 Transition Systems

As stated in the introduction in the first chapter, one main aspect of this thesis is
to study the computational complexity of model checking problems for transition

systems generated by certain classes of automata.

Definition 1 A transition system is a tuple T' = (S, —), where S is the set of states
and —C S x S is the transition relation. A labeled transition system T = (S, —, A, )
additionally comprises of a finite set A of labels and a labelling function X : S — 24

that assigns a set of labels to each state.

We prefer to use infix notation and write s — s’ whenever (s,s') € —. By —* we
denote the reflexive transitive closure of —. A finite run o in T of length n is a
finite word ¢ = s;... 8,41 such that s; — s;11 for i € [n]. We write o : s —* ¢ if
s1 = s and S,41 = 8. An infinite run in T is an infinite word o : N5y — S such that
0(i) — o(i+1) for all i > 0. Given a finite run p; of length n and a run g, such that
01(n 4+ 1) = 02(1), the composition of 01 and g, is the run p o o1 - 0o, i.e., the run
obtained from concatenating p; and g, without the duplicate first state of gs. For
any subset S’ C S, an infinite run g is a Bichi run in S" if for any ¢ € N there is j > i
such that o(j) € ', i.e., states from S’ occur infinitely often along . In a labeled
transition system, the trace 7 of a run o of length n is the word 7 : [n + 1] — 24
which maps every state along o to its label, i.e., 7(7) o Ao(7)) for all i € [n+ 1].
One central question that we consider in this thesis is to decide reachability in

transition systems.

REACHABILITY IN TRANSITION SYSTEMS

INPUT: A transition system 7' = (S, —) and s,5" € S.
QUESTION: Does s —* s'?

Given two labelled transition systems T; = (S;, —;, A, ), € {1,2}, the product
T =Ty x Ty of T} and Ty is the transition system T = (S, —, A, \), where

o gt {(s1,52) € S1 x S5 : Ai(s1) = Aa(s2)};

21



hd _>(1:Ef{((31752)7 (8,178/2)) : (51782)7 (5/178,2) S S? Si =7 Séai € {172}}; and
o )\ d:ef (Sl, 82) — /\1(51).

Observe that for any trace 7, we have that 7 is the trace of a run ¢ in 7T if, and only

if, 7 is a trace of runs p; and gy in T} respectively T5.

2.3 Formal Languages and Computational Com-
plexity

In this section we recall some definitions and results from formal language and com-

plexity theory. Sipser’s book [100] provides the basis for most of our definitions.

2.3.1 Regular Languages

Regular languages are languages consisting of finite words that can be accepted by a

finite automaton.

Definition 2 Let ¥ be a finite alphabet. A deterministic finite automaton (DFA) is
a tuple A = (Q, %, qv, F,0), where @ is a finite set of control locations , gy € @ is the
wnitial state, F C @ is the set of final states, and ¢ : Q X ¥ — (@ is the transition

function.

Let w = o1...0, be a finite word over X. Then A accepts w if there exists a word

r=rg...r, over () such that
® 7o = qo
e 0(r;,0i41) = 1ipq for i € [0,n — 1]; and
o, €l
The language L(A) accepted by A is the set of all words accepted by A, i.e.,

L(A) & {w e ¥*: A accepts w}.

22



The class REG of regular languages over ¥ is defined as

REG & {L C ¥*: L is accepted by some DFA A}.

2.3.2 Turing Machines

Turing machines (TM) provide a formal model of a computer. The literature contains
a large body of different, though equivalent, definitions of Turing machines. Mainly
for the purpose of technical convenience, in this thesis a Turing machine operates
on one input and one working tape over the alphabet X dof {0,1,>,<}. Here, > and
< are special symbols serving as delimiters to mark the beginning of the input and
working tape and the end of the input tape, respectively. The area to the right of
the > delimiter of the working tape is assumed to be initially filled with zeros. Let
T {—1,0,+1} denote the set of head directions, where —1 indicates that a head

moves to the left, 0 that it stays at its current position, and +1 that it moves to the

right.

Definition 3 Let ¥ & {0,1,>,<} be an alphabet. A Turing machine is a tuple

M =(Q,%,q,A, R,A), where @ is a finite set of control locations, qo is the initial
location, A C S is the set of accepting locations, R C S\ A is the set of rejecting

locations, and A C Q x X2 x Q x ¥ x Y2 is the transition relation.

In order to capture the intuitive meaning of the delimiters and that of the accepting
and rejecting locations, we impose the following restrictions on the transition relation:

for any (s, 0y, 00,5, 00, di,dy) € A
e if o; = then d; # —1, and if o; = < then d; # +1;
e if g, = > then o, = and d,, # —1; and

e s¢ AUR.

The first constraint ensures that the input head does not move beyond the delim-

iters, the second that the working head does neither move beyond nor overwrite the
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left delimiter, and the third that the Turing machine stops whenever it reaches an
accepting or rejecting location. Moreover, we require that for any ¢ € @\ (AU R) and
oi, 0w € X, there exists one tuple (¢, 0, 0w,¢,0,,d;,dy,) € A for some ¢, o). d;,d,.
We call M deterministic if there is exactly one such tuple, otherwise M is called
non-deterministic. A configuration C of M is a tuple (q, hi, hy, w;, wy,), where ¢ € Q
is the current state of M; w; € >- {0,1}* - <, w,, € > - {0,1}* are the contents of the
input respectively working tape; and h; € [|wil], hw € [|wy|] are the current positions
of the heads on the input respectively working tape. Denote by C(M) the set of all
configurations of M. Then M induces the transition system 7'(M) = (C(M), —m)
where for C' = (q, hi, by, wi, wy,) and C" = (¢, hi, b, w!,w.,), we have C' — g C" if,

and only if, there exists (q, oy, 0w, ¢, 0L, di, dw) € A such that

° wi<hi> = 0j, ww(hw) = Ow

o h{:hi—i-di,h‘/,V:hw—Fdw

[} wi’:wi

o w), = wylhy — o] if hy + dw < |wy|, and w], = wy[hy — o] - 0 otherwise.

The latter condition implies that the working tape can be seen to be initially filled
with zeros. Also notice that the above restrictions on A ensure that T'(M) is well-
defined.

Let ¥ & {0,1} be the input alphabet and w € ¥ an input word to M. The
configuration C' = (g, hi, hw, w;, wy,) is called the initial configuration if ¢ = qo, w; =
>ew-<, wy =0>-0, and h; = h, = 2. We call C' an accepting configuration if ¢ € A,
and a rejecting configuration if ¢ € R. A configuration is terminating if it is accepting
or rejecting. Given an input w, a run r : C' =%, C' is a computation of M on w if
C' is the initial configuration and C’ is a terminating configuration. The length of a
computation r of M is |r|. We say M accepts w if there exists a computation ending

in an accepting configuration. The language accepted by M is
LM) = {w € X : M accepts w}.
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Note that in general the input alphabet may contain an arbitrary number of symbols,
since an arbitrary input alphabet can be encoded into »; by using standard construc-
tions. The characteristic function xp @ X5 — {0, 1} of M is defined as yu(w) e gf
w € L(M), and xm(w) 210 otherwise. We call M a decider if for any w € YF there

is no infinite run in 7'(M) starting in the initial configuration.

2.4 Computability and Computational Complex-
ity

Let X be an alphabet. The set of recursively enumerable languages, also known as

the set of languages in the first level of the arithmetic hierarchy, is defined as

def

YWE{LCY*: L= L(M) for some TM M}.

A language L C X* is decidable if L € X{ and ¥*\ L € XY, or alternatively if
L = L(M) for some decider M. A language is called undecidable if it is not decidable.

We now define time and space complexity classes. In what follows, all Turing
machines we consider are deciders. The running time of a Turing machine M is
a function f : N — N such that for any input word w € X", the length of any
computation of M on w is at most f(n). We call such a Turing machine an f(n)-time
Turing machine. In particular, we call M a deterministic polynomial-time Turing
machine if M is a deterministic f(n)-time Turing machine for some polynomial f.
The space complexity of M is the function f : N — N such that for any input word
w € X", the position of the working head on any computation of M on w is at most
f(n). We call such a Turing machine a f(n)-space Turing machine.

The classes of languages decided by time- and space-bounded Turing machines
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P < | DTIME (n) NP <[ JNTIME (n')

i>0 i>0
EXPTIME | JDTIME (2"> NEXPTIME % | JNTIME (2”>
i>0 i>0
L &' DSPACE (Ign) NL < NSPACE (Ig n)
PSPACE % | J DSPACE (n') EXPSPACE | J DSPACE (2)
i>0 i>0

Table 2.1: Time and space complexity classes relevant for this thesis.

are defined as follows. Let f: N — N|

DTIME(f(n)) & {L C £* : L = L(M) for a deterministic O(f(n))-time TM M}

NTIME(f(n)) € {L C £*: L = L(M) for a non-deterministic O(f(n))-time TM M}
DSPACE(f(n)) & {L C & : L = L(M) for a deterministic O(f(n))-space TM M}
NSPACE(f(n)) & {L € ©* : L = L(M) for a non-deterministic O(f(n))-space TM M}.

Building upon those definitions, Table 2.1 defines the time and space complexity
classes relevant for this thesis. We do not explicitly define NPSPACE and NEXPSPACE
since by Savitch’s theorem they are equivalent to PSPACE respectively NEXPSPACE.
For a given complexity class C, we denote by coC & {¥*\ L : L € C} the complement
class of C, e.g., coNP and coNEXPTIME are the complement classes of NP respectively
NEXPTIME. The complement class of % is TI9.

Non-deterministic Turing machines give rise to non-deterministic algorithms. Such
algorithms can at any point during their execution branch into a finite number of child
processes. A non-deterministic algorithm accepts an input if at any branching one
child process accepts. When providing pseudo algorithms in thesis, we are going
to use the additional primitive operation existential move in order to indicate the
invocation of such a branching.

We close this section with the definition of reducibility between languages and
languages that are complete for a complexity class. A function f : ¥* — ¥* is a

polynomial-time computable function if there exists a deterministic polynomial-time
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Turing machine M such that on any input w € ¥*, M accepts w and the content of
the working tape of the accepting configuration is > - f(w). We say that a language
L C ¥* is polynomial-time reducible to L' C ¥* if there exists a polynomial-time
computable function f : ¥* — ¥* such that for any w € ¥*, w € L if, and only if,
f(w) € L'. Given a language L and a complexity class C, we say L is complete for C
with respect to polynomial-time reductions if, and only if, L € C and every L' € C is

polynomial-time reducible to L.

2.4.1 Results from Structural Complexity Theory

In this section, we briefly introduce and recall results on alternative characterisa-
tions of PSPACE and EXPSPACE in terms of alternating Turing machines (ATM) and

serialisability.

Alternation

A generalisation of non-deterministic Turing machines are alternating Turing ma-
chines, which were independently defined by Kozen and Chandra and Stockmeyer [24].
They give rise to alternating algorithms. Such algorithms can at any point during
their execution branch into a finite number of child processes. There are two possible
branching modes, existential and universal branching. Just as in the case of non-
deterministic algorithms, in existential branching it is required that one of the child
processes accepts, whereas in the universal mode the requirement is that all child
processes accept. When providing pseudo-algorithms in this thesis, we are going to
use the additional primitive operations existential move and universal move in order
to indicate the invocation of branching of the respective type.

We do not give a formal definition of alternating Turing machines here as their
precise definition does not have any direct relevance for this thesis. Informally speak-
ing, an alternating Turing machine M is a non-deterministic Turing machine whose
set of control locations is partitioned into a set (v of universal and a set QY5 of ex-

istential control locations. A configuration C' = (q, hi, hw, w;, wy) is accepting if q is
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from the set of accepting configurations, or

e if ¢ € Q5 then C is accepting if there is C” such that C —, C’ and C" is

accepting; or
e if ¢ € Qy then C' is accepting if C” is accepting for all C’ such that C' —, C".

Given the initial configuration C' of M for an input word w € ¥*, we say M
accepts w if C' is accepting. The complexity classes alternating time and alternating

polynomial time are defined as follows:

ATIME(f(n)) € {L € ©* : L = L(M) for an O(f(n))-time ATM M}

AP = | J ATIME(n').

i>0
The following theorem shows that the languages in PSPACE coincide with lan-
guages in AP.

Theorem 2.4.1 ([24]) AP = PSPACE.

Serialisability

In this section, we provide an alternative characterisation of EXPSPACE in terms of
serialisability. Let us begin with a generic notion of serialisability that is tailored to

the needs of this thesis.

Definition 4 Let C be a complexity class and R C {0,1}*. A language L C ¥* is
exponentially C-serialisable via R if there exists a polynomial p and a language U € C

such that for all w € X" and m = exp(p(n)),
w € L < xy(w - bin,,(0)) - xp(w - bin, (1)) - - - xu(w - bin,, (exp*(p(n)) — 1)) € R.
O

Informally speaking, a language L is exponentially C-serialisable via R if deciding
whether w € L can be reduced to a doubly exponential number of queries to a

language U € C with the requirement that the string of results of those queries,
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also known as the leaf language, is a word of some language R. This definition of
serialisability is adopted from [50] and differs slightly from the standard notion that
is used in [109, 58, 106].

The following theorem is due to Goller and provides a serialisability result for
EXPSPACE. The proof of the theorem relies on results from [50] and has only been
published in an informal technical report accompanying [48]. In order to keep this

thesis self-contained, we repeat the proof in the appendix.

Theorem 2.4.2 (Goéller) For every L € EXPSPACE there is a reqular language R

such that L is exponentially L-serialisable via R.

2.5 Models of Finite and Infinite-State Systems

This section introduces finite-state machines, counter automata and timed automata

as mathematical models of finite and infinite state systems.

2.5.1 Finite-State Machines

Finite-state machines are a prominent mathematical model used for describing the

behaviour of systems in the area of formal verification.

Definition 5 A finite-state machine (FSM) is a tuple A = (Q, A, qo, F, A, \), where
Q) is a finite set of control locations, A is a finite set of labels, ¢y € @ is the initial
location, F' C @ is the set of final locations, A C Q) x Q) is the transition relation, and

A Q — 20 is the locating labelling function.

The definition of a finite-state machine is very similar to the finite automaton in-
troduced in Section The main difference is that we are not interested in
a language accepted by a finite-state machine but rather in the words generated
by traces of the labelled transition system that it induces. A finite-state machine
A= (Q, A, q, F,A, \) induces the labelled transition system T4 = (S, —.4, A, A4),

where S 4 def Q, —>Ad:efA and A4 LA
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2.5.2 Counter Automata

Counter automata (CA) extend finite-state machines with a finite number of counters
ranging over the naturals. At any transition, a counter automaton can increment a
counter, decrement a counter provided that the resulting counter value is at least

zero, or test if the value of a counter is zero.

Definition 6 Let k € N.g and Op & {add;(z) : i € [k],z € Z} U{zero; : i € [k]} be a
set of operations. A k-counter automaton is a tuple A = (Q, A, qo, F, A, )\, §), where
all components are the same as in Definition |5, except for £ : A — Op, which is an

additional transition labelling function.

A k-counter automaton is called zero-test free if £(q,q") # zero; for all (¢,q') € A

dof Q x N* the set of all configurations of A. The

and i € [k]. We denote by C(A) =
transition system generated by a k-counter automaton A is T' = (S4, — 4, A, A4),
where S 4 o C(A), Malg, 1) o Aq), and for @ = (nq,...,n) and o/ = (0}, ..., n}),
(¢, 1) —a (¢,7) if, and only if, (¢,¢') € A and there exists an i € [k] such that

e 1 =n; for all j € [k]\ {i}; and

e £(¢,¢') = add;(2) and n} = n; + z; or

e £(q,q") = zero; and n; = n}, = 0.
One of the earliest results about counter automata was obtained by Minsky who

showed that reachability in counter automata is undecidable even when restricted to

two counters only.

COUNTER-AUTOMATA REACHABILITY

INPUT: A counter automaton A and C,C" € C(A).
QUESTION: Does C' —% C"?

Proposition 2.5.1 ([80]) Reachability in k-counter automata is X%-complete for
k> 2.
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Note that for any counter automaton A, it is easily seen that an arbitrary instance
(q,1) =% (¢',7') of a reachability problem can be reduced in polynomial time to a
reachability instance (q,0) —%, (¢/,0) in some counter automaton A’. Reachability
becomes decidable when we deal with zero-test free counter automata. This class of

systems is also known as vector addition systems with states or Petri nets.

Proposition 2.5.2 ([78]) Reachability in zero-test free counter automata is decid-

able.

Another problem about counter automata that we consider in this thesis is the
existence of a Biichi run or Biichi path. Given an infinite run o : (¢1,71)(g2, M2) . . . of
a counter automaton A in T'(A), let inf(p) o {q € Q : for all i € N such that ¢; = ¢
there is a j > 7 such that ¢; = ¢}. A run p is a Biichi run in T'(A) if inf (o) N F # 0.

BUcHI RUN OF A COUNTER AUTOMATON

INPUT: A counter automaton A and C' € C(A).
QUESTION: Does there exist a Biichi run p in T'(A) such that o(1) = C?

A more constrained class of counter automata are bounded counter automata in

which an upper bound on the maximum value of each counter is imposed.

Definition 7 A bounded k-counter automaton is a tuple A = (Q, A, qo, F, A, 5, X €),
where all components are the same as in Definition |6/ except for b € N¥ which is a

vector of bounds.

The set C(A) of configurations of a bounded k-counter automaton with bounds
b= (by,...,bp)is C(A) = Q x [0,by] x ... x [0,by]. Apart from that, the definition
of the transition system induced by a bounded counter automaton is the same as
for counter automata without bounds. Note that we can without loss of generality
assume that no zero;-labelled transitions occur in a bounded one-counter automaton,
since any such transition can be replaced by two consecutive transitions that first add

to and then subtract from the counter ¢ the upper bound imposed on counter 1.
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A further class of counter automata that we consider are parametric counter
automata. For example, in order to model underspecified systems, they generalise

counter automata to allow for updates of the counter by some parametric value.

Definition 8 Let Y be a finite set of parameters. A parametric k-counter automaton
is a tuple 4 = (Q,Y, A, qo, F, A, X\, §), where all components are the same as in Defini-
tion|6] but where the set of operations additionally allows for adding and subtracting
parametric values, i.e., Op < {add;(z) : i € [k],z € Z} U {add;(y),add;(—y) : i €

[k],y € Y} U {zero; : i € [k]}.

The set C(A) of configurations of a parametric k-counter automaton A is defined

in the same way as for k-counter automata, i.e., C'(A) o

Q x NF. A parametric
counter automaton represents an infinite family of counter automata, each of which
is obtained from a valuation of the parameters, which is a function v : Y — N. Given
a valuation v and a parametric counter automaton A = (Q,Y, A, qo, F, A, X, §), the

counter automaton A is A” % (Q, A\, qo, F, A, N\, £, where for all ¢, ¢’ € Q, £'(q,¢) aof

add;(ov(y)) if £(q,¢') = add;(oy) for y € ¥ and o € {+,—}, and £'(¢.¢') < &(q.¢)
otherwise. We call A” the counter automaton obtained from A under the valuation

v. Reachability in parametric counter is now defined as follows:

PARAMETRIC COUNTER-AUTOMATA REACHABILITY

INPUT: A parametric counter automaton A with parameters Y and C,C’ €
C(A).
QUESTION: Does there exist a valuation v : Y — N such that C' —%, C"?

For convenience, given a parametric counter automaton A and configurations C, C’ €
C(A), we write C' —% C" if there exists a valuation v such that C' —%, C".

Let us fix a parametric counter automaton A = (Q,Y, A, qo, F, A, X, §). The size
|A| of A is defined as follows: for the transition labels, z € Z and y € Y, we set
ladd; (2)| &' 1g |2|, |add;(oy)| = |zero;] & 1, and finally

A = |Q| + |A| + max{|€(q.¢)| : (¢.4) € Q}.
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Figure 2.1: The one-counter automaton A,,; used for testing a bit of a number

ne [2mt — 1],

Thus, our definition of size assumes binary encoding of numbers. If all counter updates
are from the set {—1,0,1}, we call A a unary counter automaton. Otherwise, if
we wish to emphasize binary encoding of numbers, we call A a succinct counter
automaton.

In this thesis, we are going to establish a number of results on succinct one-counter
automata and parametric one-counter automata. In this setting, it is always clear on
which counter an operation is performed. For that reason we label, for example,
an edge with “+5“ or “+y“ instead of “add;(5)” respectively “add;(y)”, and with
“zero” instead of “zero,”. Given a run ¢ : (¢1,n1)(g2,n2) ... in T(A) of a one-counter
automaton A such that no zero test occurs along o, i.e., £(q;,qir1) # zero for all
i € [|lo| — 1], for technical convencience we denote for any n € N by o + n the run
o+ n: (q1,n1 +n)(qg2,na +n).... Reachability and checking for the existence of a

Biichi path for a unary one-counter automaton are known to be complete for NL.

Proposition 2.5.3 ([39]) Reachability and checking for the ezistence of a Biichi run

i unary one-counter automata is NL-complete.

We are now going to consider an example of an instance of a reachability problem
in a one-counter automaton and a parametric one-counter automaton. We are going
to use the two examples in order to explain the way we graphically depict counter
automata and how we represent and use gadgets. Let m € N, i € [0,m] and let us
consider the one-counter automaton .A,,; presented in Figure 2.1l It consists of the
control locations ¢;, ¢, and a number of further control locations, which are depicted
as o, (O and (). A control location is labelled with the label(s) next to it, e.g., ¢; is

labelled with {v}, and if there is no label next to a control location it is implicitly
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Figure 2.2: The parametric one-counter automaton A,,; ;j, which illustrates the way

gadgets are depicted in this thesis.

labelled with (). Transitions between control locations are depicted as arrows and
are labelled with the operation that is performed along the transition. In Figure 2.1,
there is a transition between ¢, and (-) which is labelled with zero. If there is no label
along a transition, it is implicitly labelled with +0.

Let us now discuss the functionality of A,, ;. Suppose we wish to analyse for which
values of n € N, we have (¢;,n) —% (g,0). Starting in (g;,n), each triangle of A, ;
allows for non-deterministically subtracting 2/ once from the counter for each j # i,
and when reaching the control location ¢, it is required that 2¢ has been subtracted
from the counter. Thus, in order to be able to reach the configuration (g¢.,0) starting

in (¢;,0), n must not exceed 2m = 2m+l 1 and the coefficient of 2¢ in the

i€[0,m]
binary representation of n must be 1. Hence the set of counter values n such that

(¢:n) =24, (¢:,0) can be characterised as follows:
{n €N:(g,n) —n,, (qz,O)} = {n e 2" —1] : bit;(n) = 1}.

Next, we discuss an example of a parametric one-counter automaton. Figure
2.2 depicts the parametric one-counter automaton A,,; ;, which uses the previously
discussed one-counter automaton A,,; respectively A, ; as a gadget. The way this
is graphically depicted is as follows: the grey-shaded boxes represent the whole A, ;
respectively A, ; and the control locations () and () are the control locations ()
and (O of A, ; respectively A,, ;. So, for example, A,,;; has a transition from ¢ to
O from A,,; which adds the value of the parameter y to the counter. When dealing
with gadgets, the control locations () and () are always going to be used to mark
the entrance respectively exit of a gadget, or initial and final location of the gadget.
Since we can only reach () in A,,; and A,, ; when the value of the counter is zero, we

can characterise the set of values of parameters for y such that (g, 0) =i (¢',0)
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as follows:

{n e N:v(y) =n,(g,0) _&Zm, (q’,O)} = {n € 2™ — 1] : bit;(n) = 1, bit;(n) = 1}.

J

2.5.3 Timed Automata

Timed automata extend finite-state machines with a finite set of clocks ranging over
the positive real numbers and were introduced by Alur and Dill [1]. While traces
of paths in the transition system generated by a finite-state machine only allow for
reasoning about the relative order of events, timed automata additionally incorporate
timing information between them.

Let X be a finite set of clock variables. A clock valuation is a mapping 9 : X —
R>p, and we denote by C'V(X) & {0 : 9 is a clock valuation} the set of all clock
valuations. Given r € R, we denote by ¥4 the clock valuation J+r Ly I(x)+r
for all x € X. An atomic clock constraint is a term of the form x ~ n, where z € X,
~ € {<,<,=,#4,>,>} and n € N. A clock constraint ¢ is a finite conjunction
of atomic clock constraints ¢ = z; ~ ny A ... Az, ~ n,,. The set of all clock
constraints over clocks X is denoted by CC(X). A clock valuation maps an atomic

clock constraint x ~ n to a Boolean value J(x) ~ n and hence also a clock constraint

¢ to a Boolean value. We write ¥ = ¢ whenever 9 makes ¢ true.

Definition 9 A timed automaton is a tuple A = (Q, X, A, qo, F, A, X\, §), where all
components are the same as in Definition |5, except for X, which is a finite set of
clock variables and & : A — CC(X) x 2% which is the transition labelling function

labelling each transition with a guard.

A guard is a tuple consisting of a clock constraint and a subset of the clock variables
of A that are supposed to be reset when a transition is taken. We say that A is
a k-clock timed automaton whenever | X| = k. Given a clock x € X, the set of

x-constants C, is the set

def

C, ={n € N : there are ¢,¢' € Q s.t. £(¢,¢") = (¢, X') and ¢ has conjunct x ~ n} U {0}.

35



The set C(A) of configurations of A is C(A) 0 x CV(X) and consists of

a control location and a clock valuation. A timed automaton induces a labelled
transition system T4 = (Sa,—4, A, Aa), where Sy o C(A), Ma(qg,9) = A(q) and

(q,9) —4 (¢',0) if one of the following conditions is satisfied:

(i) ¢ = ¢’ and there exists r € R5( such that ¥/ =9 +r; or

(i) (¢,¢) € A, £(¢,¢") = (6, X'),V = ¢ and ¢ is such that 9¥'(z') = 0 for every
' € X' and ¥ (z) = ¥(x) for every z € X \ X'.

Transitions of type (i) are called delay transitions and transitions of type (ii) discrete

transitions. The size of a timed automaton is defined as
1A < \Q| + |A| + max{lgn : n € Cp,z € X}

As in the case of counter automata, we are interested in deciding reachability

between configurations of a timed automaton.

TIMED-AUTOMATA REACHABILITY

INPUT: A timed automaton A with k clocks and C,C" € C(A) N Q x NF,
QUESTION: Does C' =% C"?

Using a technique called region abstraction, Alur and Dill showed the following

theorem.

Theorem 2.5.1 ([1]) Reachability in timed automata is PSPACE-complete.

This result was later refined by Courcoubetis and Yannakakis [37] who showed that
PSPACE-hardness already holds if A comprises of three clocks. The cases with less
than three clocks were left out in [37] and later discussed in [72], where it was shown
that reachability in one-clock timed automata is NL-complete and NP-hard for two
clocks. Closing the complexity gap for the case with two clocks is considered to be

one of the biggest open problems in the theory of timed automata.
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2.6 Integer Arithmetic

In this section, we are going to introduce and recall results on decidable and unde-
cidable theories of number theory. The subsequent sections will in particular focus
on the existential theories of Presburger arithmetic and Presburger arithmetic with
divisibility, which we are going to use in Chapter |4 in order to show decidability
and complexity results for reachability problems in one-counter and parametric one-
counter automata.

The first-order theory of the natural numbers in the structure (N, <, +,-,0, 1) was
shown to be undecidable by Church [27]. Later, Matiyasevich proved Hilbert’s tenth

problem to be undecidable.

HiLBERT’S TENTH PrROBLEM (HTP)

INPUT: A polynomial p : R" — R with integer coefficients.
QUESTION: Do there exist aq,...,a, € Z such that p(ay,...,a,) =07

Theorem 2.6.1 ([77]) Hilbert’s tenth problem is X\-complete.

Since Hilbert’s tenth problem can be expressed in the ezistential fragment of the

structure (N, <, 4+, -,0, 1), it follows that this theory is undecidable as well.

2.6.1 Presburger Arithmetic

Presburger arithmetic (PA) is the first-order theory of natural numbers in the struc-
ture (N, <, +,0, 1) and was shown to be decidable by Presburger [90] in 1929.
Let X be a countably infinite set of first-order variables. A linear polynomial over
= (xq1,...,1,) € X" is given by the syntax rule
p(T) = Z a;x; + b,
i€n]
where the a; and b range over Z and the first-order variables from & range over N.

Formulae of Presburger arithmetic are defined by the following grammar where x
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ranges over X:

@ u=p(@) <p@) | Ao | —p| Tz

We define the standard Boolean abbreviations ¢1 V o o =(—p1 A —ps), 01 — 2 o

=1 Vg and @ < g aof ©1 — o Ay — 1. Moreover, we introduce the abbrevia-
tions pi (%) < pa() < p1(&) < pa() +1 and py(F) = pa(F) = pr(F) < pa(F) Apa() <
p(Z). Let & = (xy,...,2,), for brevity we often write Jz125 ... 2,.0(Z) instead of
dxy. 3y . .. J2,,.0(Z). Moreover, given a finite set X = {z1,...,x,} of first-order vari-
ables, we sometimes use a generalised existential quantifier and write J3,¢cx.¢(Z) in
order to abbreviate the formula 3z ... z,.0(Z).

The size |¢| of a Presburger formula ¢ is defined by structural induction over
. For a linear polynomial p(Z), its size |p(Z)| is the number of symbols needed
to write it down, where we assume binary encoding of numbers. Now [p;(7]) <
pa(@)| £ pi()] + o) + 1, lor A gl € Jul + leal + 1, [l = o] + 1 and
|3z o ||+ 1. Note that binary encoding of numbers is not essential for complexity
considerations since we can “simulate” binary encoding by introducing additional
existentially quantified variables.

The set of free variables fu(p) of a formula ¢ is defined by structural induction

on :

fo(p(xy,...,zn)) = {x1,..., 2.}

)
Fo(pi(a) < pa(a2)) = fu(pr(a)) U folpa(a2))
foler Apa) E fo

)

)

fo(=ep

We write ¢(z1,...,x,) to indicate that {z1,...,2,} C fv(¢). Without loss of gen-
erality, we assume that each first-order variable occurs at most once in the scope of
an existential quantifier and that no first-order variable is both free and existentially
quantified. Given p(z1,...,2,) and ny,...,n, € N, we write @[ny /1, ..., Ny /T

for the formula obtained from replacing each x; with n; in ¢. If fu(¢) = 0, we write
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(N, <,4,0,1) | ¢ if ¢ is a true statement in Presburger arithmetic, or just = ¢ if
the structure we are working in is clear from the context.

In this thesis, we are going to show complexity results for reachability problems in
one-counter automata via a translation into the existential or quantifier-free fragment

of Presburger arithmetic (QFPA ). This fragment restricts formulae to be of the form

Y= Hfl...xk.¢(x1,~"7xk)

and no quantifier is allowed to occur in 7. Given a set M C N* we say M is QFPA-
definable if there exists a finite set R of QFPA formulae, each with free variables

Z1,...,Tx, such that

M = U {(n1,...,nk) € N* (N, <, +,0,1) |= @[ /a1, ..., g /ai] }

o(z1,...,xk)ER
Given a QFPA formula ¢, checking whether = ¢, i.e., if ¢ is satisfiable, is NP-

complete.

Theorem 2.6.2 ([86]) Satisfiability in quantifier-free Presburger arithmetic is NP-

complete.

We close this section with an example of a QFPA definable set. Recall the example
of the one-counter automaton A, ; in Section|2.5.2/ which allows for testing whether
bit;(n) = 1 for n € [0,2™*" —1]. The set {n € N: (g;,n) =% . (¢:,0)} is definable
via the QFPA formula

go(n)d:efﬂxl...xm. /\ (z;=0Va;=1)An— Z 2]'3;],_22‘:0‘

ic0,m j€[0,m]
J€[0,m] ol

2.6.2 Presburger Arithmetic with Divisibility

Presburger arithmetic with divisibility extends Presburger arithmetic with an addi-
tional predicate for divisibility, i.e., it is the first-order theory of natural numbers in
the structure (N, 0,1, <,+,|), where a|b if there exists k € Z such that b = ka for
a,b € N. Robinson [94] showed that the multiplication relation can be expressed in

terms of the divisibility relation, which implies that this theory is undecidable due
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to the results discussed in the introduction of this section. However, the restriction
to the existential or quantifier-free fragment of Presburger arithmetic with divisibility
(QFPAD) makes the theory decidable, as independently shown by Lipshitz [74] and
Bel’tyukov[8]. In fact, Lipshitz shows the decidability of formulae of the form

Y= 3':Cl - Tk /\ pz ’7”2

i€[n]
where the p;(Z) and r;(¥) are linear polynomials. However, this result implies the
decidability of the full existential theory (N,0,1,<,+,|) due to the following identi-
ties. Let a,b € Z, we can express the relations = and < in terms of conjunctions of

divisibility relations:

a=bealbAblaNa+1b+1Ab+1a+1

a<b&e dza+z+1=0.

Next, we consider the non-divisibility relation. First, if |a| > |b] we have a fb. Other-

wise, we have
afp< JzyzzlaAzbANalz ANbjyAz=2—yAN0<zA(z<aVz<—a).

Assuming |a| < |b|, informally speaking this identity states that a b if a multiple
z of the greatest common divisor of a and b is strictly less than |a|. In order to
formally express this relation, we employ Bézout’s identity, which states that for any
pair a,b € Z, there are x,y € N such that ged(a,b) = ax — by and there do not exist
2’y € N such that n = az’ — by’ for all n € [ged(a,b) — 1].

The definitions of size and free variables of a QFPAD formula ¢ are derived in a
straight-forward manner from the corresponding QFPA definitions from the previous
section, in particular [p(Z)|r(Z)| ¥ |p(Z)| + |r(£)| + 1. Likewise, given a set M C N¥,
we say M is QFPAD-definable if there exists a finite set R of QFPAD formulae, each

with free variables x1, ..., x, such that

M = U {(n1,...,np) e N": (N,0,1, <, +,|) = ¢lni/a1, ..., np/zx} -
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Since QFPA is a notational fragment of QFPAD, satisfiability in this logic is NP-
hard. In a follow-up paper [75], Lipshitz showed that satisfiability in QFPAD is NP-
complete. In particular, he showed that NP-hardness already holds for a formula with
five A-connectives. It should however be noted that the paper [75] has been published
in informal workshop proceedings. Although there is no good reason to doubt the
results from [75], we wish to explicitly state at this point that the results therein
have not been published in a peer-reviewed journal or in peer-reviewed conference

proceedings.

Theorem 2.6.3 ([75]) Satisfiability in quantifier-free Presburger arithmetic with di-
visibility is NP-complete and NP-hard already for a fized number of Boolean connec-

tives.
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Chapter 3

Reachability Problems in Timed

and Bounded Counter Automata

This chapter studies the relationship between reachability problems in classes of timed
and counter automata. In short summary, we are going to show that an instance of a
reachability problem in a timed automaton can be reduced to a reachability problem
in a bounded two-counter automaton and vice versa. Figure|3.1 shows in more detail
the precise relationships that we are going to establish. The arrows should be read as
“reduces to”. Thus, we are going to show that any reachability problem in a k-clock
timed automaton reduces to a reachability problem in a bounded 2k + 2-counter
automaton, etc. A particularly special case that we are going to consider in the
second part of this chapter are two-clock timed automata. We are going to show that
reachability problems in this class are inter-reducible with reachability problems in
bounded one-counter automata. This chapter requires the reader to have some level
of familiarity with the region abstraction technique for timed automata, see e.g. [3]
for an introduction. The general style of this chapter is a bit sketchy, the first part
more, the second part less. We are going to put more emphasis on the presentation
of the main ideas underlying the reductions than on the presentation of a bulk of
otherwise unavoidable technical details. Nevertheless, we will get technical at the
critical points. Knowledge of the region abstraction technique will allow the reader

to develop further technical details if desired.
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Figure 3.1: Polynomial-time inter-reducibility between reachability problems in

classes of timed and counter automata, where k£ > 2.

For technical convenience, in this chapter we are going to use a slightly modified
version of bounded k-counter automata, which is equivalent with respect to reacha-
bility problems to bounded k-counter automata as defined in Definition 7. First, we
allow for additional labelling of edges with counter; ~ n,~ € {<,<,=,>,>} with
the obvious semantics, where i € [k],n € N and . For example, an edge labeled with
counter; < n can only be taken if the counter value is strictly less than n € N. Let
b= (b1, ...,b) be the vector of bounds of a k-counter automaton, an edge labeled
with counter; < n can be simulated by two consecutive transitions, where the first
adds b; — n + 1 to the counter and the second subtracts b; — n + 1. Moreover, in the
second part of this chapter we are going to employ bounded one-counter automata
whose counter updates and counter values are from Z U 0.5Z and are bounded by
an upper and a lower bound from Z U 0.5Z. It is easy to see that an instance of a
reachability problem in such a bounded one-counter automaton can be reduced to
standard one-counter automata by multiplying all numbers with two and adjusting

the bounds accordingly.

3.1 From Bounded Counter Automata to Timed
Automata and Back

We are now going to prove the reductions illustrated in Figure[3.1. All reductions and

constructions in this section can be computed in polynomial time, and for readability
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we do not explicitly state this fact in the lemmas given in this section unless necessary.
Polynomial-time computability is going to allow us to transfer complexity results
regarding reachability problems between the classes of automata we consider in this
section. We begin at the top of the figure and show that reachability in bounded k-
counter automata, k > 2, reduces to reachability in bounded two-counter automata.

Let A= (Q, A, q, F, A, Z;, A, €) be a fixed bounded k-counter automaton for some
k > 2. Our first result is that without loss of generality we can assume uniform

bounds on the counters of A.

Lemma 3.1.1 Let A be a bounded k-counter automaton, let the bounds of A be b=
(by,...,by) and let b > max{bs, ..., b,}. There exists a bounded k-counter automaton
A’ such that the bounds of A' are ¥ = (b,...,b) and for dll (¢,7),(¢,7) € C(A),
(q,7) =% (¢, ) if, and only if, (q,7) =% (¢, 7).

Proof. We sketch how to obtain the desired automaton A’ oo (Q', A, qo, F, A, V., ).

For any edge (¢, ¢’) € A such that £(q,q¢') = add;(2), z € Z, A’ consists of an additional
fresh control location (¢, ¢’), and in order to obtain A’ we remove any such transition
(q,¢") from A and add (q, (¢,¢")) and ((¢,¢'),q') to A, i.e., we split the edge (¢, ¢') from
A. The labelling function ¢’ is obtained by extending & such that &'(q, (¢, ¢’)) of add(z)
and £'((q,4'),q) def counter; < b;. 0

We now show how we can reduce an instance of a reachability problem in a
bounded k-counter automaton A, k > 2, to a reachability problem in a bounded

two-counter automaton A’.

Lemma 3.1.2 Let A be a bounded k-counter automaton with k > 2. There exists a
bounded two-counter automaton A’ such that for all (q,7), (¢, n') € C(A) there exist

m,m' € N2 such that (q,7) —% (¢',n") if, and only if, (q,1m) =% (¢',m').

Proof. By the previous lemma we may assume with no loss of generality that A has
a uniform bound b = exp(g) — 1 for some g € N, hence r &f g — 1 bits are sufficient to

represent a counter value. The idea behind our reduction is to simulate the counters
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three to k of A in the upper bits of the second counter of A’, and to use the upper
bits of the first counter of A’ as temporary storage.

The control locations of A’ contain those of A as a subset, however the transitions
of A are going to be replaced with gadgets in A". We set the bound of the counters
of A" to exp(r(k — 1)+ 1) — 1. In order to make our intuition about the relationship

between configurations of A and A’ formal, we define a mapping h as follows:

h:C(A) — C(A) = (g, (n1,...,n)) — | a, | na, Z (=2,

1€[2,k]

—

Our aim is to construct A’ such that (¢,7) —% (q’,ﬁ’) if, and only if, h(q,7) —%
h(¢, n ). To this end, any transition (¢, ¢’) of A that adds a positive integer to the first
counter, i.e., is of the form add;(n),n € [0, b], gets replaced in A" by two consecutive
transitions that first add n to the first counter of A" and then check that the value of
this counter is less or equal to b. Any transition of A adding a negative number to
the first counter is duplicated in A’. Simulating the addition of integers to a counter
different from the first counter requires some more efforts. Informally speaking, we
have to make sure that we do not under- and overflow. Formally, any transition
(q,¢') labeled with add;(2),7 > 2,z € Z, in A gets replaced in A" with a gadget that
performs the following sequence of actions on the first and second counter of A" in

this order:
(i) move the bits (¢ — 1)r + 1 up to (k — 1)r from the second to the first counter;
(ii) add exp((i — 2)r)z to the second counter;

(iii) test that the value of the second counter is less than exp((i — 1)r) + 1;

(iv) move the bits (¢ — 1)r up to (k — 1)r from the first to the second counter; and
(v) switch to control location ¢'.

Provided that all operations used in the gadget can be implemented, it is not difficult

to verify that (q,7) —4 (q’,ﬁ’) if, and only if, there is a path in T'(A’) traversing
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Figure 3.2: Gadget A0, (7, 7) used in the proof of Lemma in order to move the

bits from ¢ up to j of the second to the first counter.

locations of the gadget starting in (g, 7@) and ending in h(¢’,n’). It thus remains to
discuss how the operations used in the gadget can be implemented.

Regarding (i), a gadget A0, ((i — 1)r, (K — 1)r) as sketched in Figure 3.2/ can be
used. The gadget non-deterministically subtracts relevant powers of two from the
second counter and immediately adds them to the first counter. A test that the
counter is less than exp((i — 1)r) at the end ensures that all bits have been moved.
The same gadget can be modified to move the same bits back from the first to the

second counter. 0O

We now move one step forward in Figure 3.1/and show that reachability in bounded
two-counter automata can be reduced to reachability in three-clock timed automata.
Given a bounded two-counter automaton A, the idea is to use the clocks z,y, z of
a corresponding three-clock timed automaton A" in order to encode the value of the
counters. By Lemma [3.1.1, we may assume that A has a uniform bound 6. Our
encoding is as follows: for any clock valuation 1), whenever ¥(z) = b the value of the
first counter of A is encoded in ¥(z) —9(y) and ¥(z) —0(z) encodes the second counter
of A. A similar encoding has also been used in [2] in order to show undecidability of

reachability in parametric three-clock timed automata.

Lemma 3.1.3 Let A be a bounded two-counter automaton and (q, (n1,n2)), (¢, (n},n})) €

C(A). There exists a three-clock timed automaton A" and 9,9" such that (¢, (n1,n2)) =%
(¢, (ny,n3)) if. and only if, (q,9) =% (¢'.9').
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Figure 3.3: Gadget A;,.1 used to simulate incrementing the first counter by n in the

proof of Lemma 3.1.3.

Proof. Without loss of generality, by Lemma [3.1.1 we can assume that A has a

uniform bound b. The clock valuations #,v required in the lemma are defined as

D) =9 () Lo, 9(y) b —ny,9(2) ¥ b—no, 9 (y) € b—nf and ¥'(2) & b — nl,.

We are now going to sketch how A’ can be obtained from A. The timed automaton
A’ contains all control locations of A. However, the transitions from A are going to
be replaced by gadgets that manipulate the clocks in a way that simulates the action
of the replaced transition. As an invariant, we are going to ensure that at any time
A’ reaches a control location that exists in A, the value of the clock = is b. Suppose
(¢,4¢") € A is a transition in A such that £(q, ¢") = add;(n) for some n € N. In A’, we
are going to replace this transition by the gadget shown in Figure 3.3. In this figure,
transitions are labeled with guards, 7.e. with clock constraints such as x = b and with
clocks to be reset at a transition, e.g., x := 0. Since we want to simulate that the
first counter of A increases, we need to increase the difference between the value of
the clock = and the value of the clock y. To this end, A;,. 1 first resets the clock
x. It then non-deterministically guesses the order of the simulated counter values:
it branches upwards if the first counter is less or equal to the second counter and
downwards otherwise. We are only going to discuss the first case here. A;,.; waits
until clock y has value b. It then aims at waiting for n time units. However, clock
z could reach value b in the meantime. Thus, again, a non-deterministic choice is

performed to handle the two cases. If z reaches b before y reaches n, the downward
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branch can be taken in A;,. 1, which first resets z as it reaches clock value b and
then y when it reaches clock value n. The converse case can be shown analogously.
Finally, A;,.1 waits until clock  reaches clock value b in order to establish our agreed
invariant when it reaches (-), which is a control location present in A.

A similar gadget can be constructed for the simulation of incrementing the second
counter. Decrementing the counters can also be simulated in a similar fashion. For
example, if we want to simulate decrementing the first counter by n, instead of waiting
for y to reach clock value b, we wait for y to reach clock value b — n . This concludes

our proof sketch. O

The only reduction from Figure 3.1 that remains to be shown is the reduction
from reachability in k-clock timed automata to reachability in bounded (2k + 2)-
counter automata. Let A = (Q, X, qo, F, A, ) be a timed automaton such that X =
{z1,...,2}. Recall that a configuration of a timed automaton is a tuple consisting
of a control state and clock valuation. In order to deal with the a priori infinite
state space of a timed automaton, the region abstraction as a reachability preserving
equivalence relation on the set of configurations of a timed automaton is defined in

[1], which makes two configurations equivalent if
(a) their control location are the same;

(b) the integral part of the value of each clock with a value below the maximum

constant appearing in A is the same;

(c) the relative order of the fractional parts of the value of the clocks is the same;

and
(d) the clocks with fractional part 0 are the same.

We do not give further details of the region abstraction here and refer to [1, 3] for
further information. Knowledge of this abstraction will however be helpful in under-
standing the reduction provided below as it is heavily inspired by it.

Given a k-clock timed automaton A, we are now going to sketch how to construct

a bounded (2k + 2)-counter automaton A’ such that any reachability problem for
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Figure 3.4: Encoding of the regions of a k-clock timed automaton into 2k+2 counters.

A translates into an instance of a reachability problem in A’. We aim for encoding
(a)-(d) into configurations of A’. Regarding (a), clearly the control locations of A
can be included into A’. However, any of (b)-(d) allows for an exponential number
of possibilities in |.A| and is therefore unsuitable to be encoded into control locations
of A’. Instead, we use the 2k + 2 counters for their encoding. Let m € N be
chosen such that m bits are sufficient to represent one plus the maximum integer
constant appearing in A. A’ has bounded counters fi,..., fer1, 1,...,% and t,
where the maximum value for the counters fi, ..., fry1 and t is exp(k + 1) — 1 and
exp(m + 1) — 1 for the counters iy, ...,4;. The bit representation of the counters is
illustrated in Figure(3.4, where the least significant bit of each counter is at the bottom
and the most significant bit on top. The counter ¢ is going to serve as temporary
storage space. In order to represent a configuration (q,9) of A, fi,..., fry1 will be
used to encode the order of the clocks with respect to their fractional parts induced
by ¥. The counter f; additionally encodes those clocks that have fractional part 0.
Finally, the counters i1, ...,4; will be used to store the integral part of the clocks
induced by . We illustrate the encoding with the help of an example. Consider a
clock valuation ¥ with ¥(z1) = 4.1, d(z2) = 2.0, d(z3) = 0.8, J(xk—1) = 0.0 and
V(xy) = 3.8. Let [ < I' € [k], whenever the j-th bit of the counter f; is set and the

j'-th bit of the counter fi is set, this is supposed to indicate that clock j has a value
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whose fractional part is strictly smaller than the fractional part of the value of clock
j'. Combining our example with Figure we see that the second bit of f; is set and
the first bit of fs, i.e., the fractional part of clock x5 is smaller than the fractional
part of clock x; as expected. In addition, f; indicates which clocks have fractional
part 0, which is why the second and the (k — 1)-th bit of f; are set. Moreover, clock
x3 and x “reside” on the same counter fi,; as their fractional part is equivalent in
our example. The counters iy,..., 7 are used to store the integral part of the clocks
up to exp(m + 1) — 1. In our example, this means that the value of i; is 4, the value
of i5 is 2, etc. Elapsing of time can now be simulated as follows: first, the value of
the counter f;,; is moved to the counter ¢ and the value of f;.; is set to zero. Then,
the value of the counter f; is moved to the counter fi,; until eventually we move the
value of f; to fo. We can then copy the value of ¢ to f;. All clocks that “resided” in
fr+1 have now a fractional part zero and their integral part needs to be incremented
by one. This can be simulated by incrementing the respective counter 7;, provided
that it has not yet reached its maximum value. If the maximum value has already
been reached, no action is performed. We defer the technical details to the next
paragraph. In order to simulate A, any control location of A is present in A’ and has
a loop which elapses time as described above. It remains to describe how to simulate
a transition between two control locations of A. To this end, checking the truth-value
of the guard of the transition against the currently abstracted clock valuation and
resetting of clocks needs to be simulated. Again, we illustrate the reduction with the
help of an example. Suppose the guard is (x; < 6 A zg = 4,{x1}). The constraint
x1 < 6 can be checked in A’ with an edge that is labeled with counter;, < 6, checking
x9 = 4 can also be simulated with an edge counter;, = 4, but we additionally need
to check that the second bit of f; is set. Simulating a reset of x; is also relatively
straight-forward: we non-deterministically choose the fractional class j of x1, i.e., the
counter f; whose first bit is set. We then set this bit to zero, i.e., remove 2° from f;,
add 2° to the counter f; and set i; to zero. The latter can be implemented with the
help of a loop that subtracts 1 from ¢; until a zero-test on i; is successful.

Let us now briefly discuss some of the technical details left out in the previous
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paragraph. In order to simulate elapsing of time, our reduction requires the possibility
to move the contents between the counters of A’. This task can easily be realised by
a slight adoption of the gadget presented in Figure Testing whether the a bit of
a counter f; is set can also be realised in a similar fashion. Using a gadget similar to
the one in Figure we first copy the value of the counter f; to the counter t. Next,
we use the gadget from Figure in Chapter 2/ on counter ¢ in order to check if the
bit is set.

In summary, in order to check (¢,9) —% (¢’,?¥), we construct in polynomial
time A’, compute counter values 7,7 € N2%2 that represent the abstraction of
the clock valuations ¥, and check (q,7) —% (¢/,7’). The converse direction follows
straight-forwardly by defining a bijection between configurations (g, 77) and the region

abstraction of A, we omit further details. We have thus proven the following lemma.

Lemma 3.1.4 Let A be a k-clock timed automaton and (q,7), (¢',9") € C(A). There

exists a bounded (2k+2)-counter automaton A" and 1i, 7w’ € N**2 such that (q,9) —%

(¢',0") if, and only if, (¢,7) =% (¢, 7).

The following theorem combines Lemmas 3.1.2, 3.1.3 and [3.1.4 and summarises

all results obtained in this section.
Theorem 3.1.1 Let k > 2. The following problems are polynomial-time reducible:

e reachability in k-clock timed automata to reachability in bounded (2k+2)-counter

automata;

o reachability in bounded k-counter automata to reachability in bounded two-counter

automata, and

e reachability in bounded two-counter automata to reachability in three-clock timed

automata.

As a byproduct, we obtain the complexity of reachability in bounded k-counter au-

tomata for k& > 2.

Corollary 3.1.1 Reachability in bounded k-counter automata is PSPACE-complete
for k > 2.
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3.2 Two-Clock Timed Automata and Bounded One-
Counter Automata

In the previous section, we dealt with timed automata with at least three clocks and
bounded counter automata with at least two counters. In this section, we are going
to consider the special case of two-clock timed automata and show that reachability
for these automata is polynomial-time inter-reducible with reachability in bounded
one-counter automata. This section is slightly more technical than the previous one
since the reduction from reachability in two-clock timed automata to bounded one-
counter automata requires some efforts to make sure that all constructions can be
performed in polynomial time. Nevertheless, we will not sacrifice an understanding
of the main ideas for providing all technical details.

The reduction from reachability in bounded one-counter automata to reachability
in two-clock timed automata is a rather trivial adoption of the two-counter case
presented in the previous section. Recall that in the reduction in Lemma [3.1.3| we
encode the values of the counters into three clocks, the first counter is encoded as
the difference between the clocks x and y, and the second counter as the difference
between the clocks x and z. In the case of only one counter, two clocks are sufficient
to store the value of the counter as the difference between the two clocks z and y.

The rest follows from a straight-forward adaption of Lemma

Lemma 3.2.1 Reachability in bounded one-counter automata is polynomial-time re-

ducible to reachability in two-clock timed automata.

In the remainder of this section, we are thus going to concentrate on the reduction
in the other direction. As a first step, let us provide a gadget that we will use in our

reduction and that allows for adding numbers in an interval to the counter.

Lemma 3.2.2 Let a < b € N. There exists a one-counter automaton A with control

locations q, q' such that for alln,n’ € N, (¢,n) =% (¢',n') if, and only if, n’—n € [a, b].
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Figure 3.5: The one-counter automaton .4; used for adding a number in the interval

[2¢ — 1] to the counter.

Proof. We first consider the case a = 0 from which we are then going to derive the
general case. For any m € N, let k(m) &of max{i : m > (2 — 1)}. We define a

sequence my > meo > ... as follows:

def
my = b

M1 ot m; — (2k(mi) —1) for 7 > 0.

Let (k;)i>o be the sequence of the k(m;), we have b = >._ (2% —1). Since m;;; <

>0
m;/2 for all ¢ > 0, we have k;; = 0 for some j <lgb and hence b = ziem(Qki —1).
The one-counter automaton A consists of gadgets Ag,,i € [j] as shown in Figure
3.2.2 such that Ay, connects to Ay,,, for i € [j —1]. For each i € N, on a run from
O to (O, A; can non-deterministically add a number from the interval [0, 2" — 1] to
the counter where we assume that Ay does not affect the counter at all. Let ¢ be
the initial location of A, and ¢' the final location of Aj , it is easily verified that
(g,n) =% (¢',n') if, and only if, n’ —n € [0, b].

In the general case where a and b take arbitrary values from N, we construct a
one-counter automaton A4 as above that allows for representing any number in the

interval [0,b0 — a] and add a new initial location that has a transition to the initial

control location of A that adds a to the counter. 0O

Let A = (Q,X,qo, F,A&) be a fixed two-clock timed automaton such that
X = {z,y}. In the following, we will show how to construct in polynomial time
a bounded one-counter automaton A" = (Q, A, qo, F, A, [;’ A, &) corresponding to A.
Here, we are going to use the modified bounded one-counter automaton described in
the introduction to this chapter which allows for counter values and bounds from the

set Z U 0.5Z.
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The set of control locations @' of A’ is going to contain the control locations of A
paired with abstractions of clock valuations. Thus, let us first define the abstractions
that we are going to use. Let C, = {x1,...,2,} be the ordered set of z-constants
in A, i.e, x; < x;y4q for i € [a — 1], and let C, = {y1,...,y} the ordered set of

y-constants, where z; = y; = 0. We define the augmented sets C7° and CJ° as

C 0o def def

C, U {oo} respectively C7° = C, U {oc}, where 2,11 and g4, identify oo in

Cy° and Cp°, respectively. The set of regions R of A, is defined as
R (24,5, Tiroa Yjan,) : T3 € Coy 5 € Cyyba, by € {0,13} C Gy x Oy x O x O,

Note that |R| = O(|.A|?) and that R is computable in polynomial time. Subsequently,
we will write r to identify a region from R. The abstraction of clock valuations
provided by R can be obtained as follows. With each region r € R, we associate a

set of clock valuations ¥(r), which is defined as
19(332'7 Yjs Tiy Yj :e{ﬁ 19( ) = Ty, ﬁ(y> = y]}
{02 <9(2) < 2ip1,9(y) = y5}

{0 :9(x) = i,y < I(y) < yjar}

[N
@
h

(oW
e
h

)
D@, Yj» Tiv1, Yj)
(i, Yj, Tis Yjr1)

)

ﬁ(xiaijwi-‘rl)yj-‘rl :C{ﬂ T; < 19( ) < Tit1,Y; < ﬁ(y) < yj+1}'

We observe that the set of regions R partitions the set of all clock valuations. More-
over, any two clock valuations of a region r cannot be distinguished by A, i.e., for
any two ¢,9" € J(r) and any clock constraint ¢ occurring in labels of the transitions
of A, we have ¥ |= ¢ if, and only if, ¥ = ¢.

Figure presents an example of the regions of a two-clock timed automaton A
with C, = {0,1,5} and Cy = {0, 1, 3}. The stroked lines in the first quadrant indicate
the regions of A, e.g., (1,1,5,3) and (5, 3, 00, 00) are regions of .A.

A further abstraction that we are going to use builds upon the set of clock differ-
ences D of A, which is defined as D & {cz — ¢y 1 ¢y € Cp,cy € Cy}. We write D as
the ordered set D = {dy,...,d.}. Our abstraction is the set of clock difference zones
Z of A, which is a set of symbolic intervals on Z defined as

def

Z%Md,d): d € DYU{(d;,disy) : d; € D,i € [c— 1]} U {[~o00,dy), (de, 0] }.
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Figure 3.6: Example of the regions and the clock difference zones of a two-clock timed

automaton with C, = {0,1,5} and C, = {0, 1, 3}.

Here, we also have |Z| = O(|.AJ]?). We will subsequently write z to identify a clock
difference zone from Z. With each z, we associate a set of clock valuations 9(z),

which gives us an abstraction:
9(z) L9 9(z) — d(y) € 2}

The set of clock difference zones Z also partitions the set of all clock valuations. Figure
3.6 illustrates the partitioning of the clock valuations by clock difference regions where
each dashed line and the space between them in the first quadrant is a partition.
We can now define a subset of the control locations of A’. Our overall goal is to
represent the set of configurations of A as a finite quotient encoded as configurations
of A" and then discretely simulate transitions in 7'(A) as transitions in 7'(A’). In
order to obtain the control locations @)’ of A’, we pair each ¢ € () with a region and

a clock difference zone:
Qx{(r,2) ERxZ:9(r)Nd(z) A0} C Q.

Each tuple (g, (r, 2)) represents a set {(q,9) : 9 € 9(r)NJ(z)} of configurations of A,
and we can associate with each configuration (g,v) a control location (q,9)! of ¢ as

follows:

(q,9)7 d:ef(q, (r,z)), where r, z are uniquely chosen such that ¥ € d(r) N J(z).
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Given r € R and z € Z such that 9(r) NY(z) # 0, in order to discretely simulate
time delay transitions of A in T'(A), we now define the successor succ(r, z) of r with
respect to z. Informally speaking, elapsing of time can be simulated by moving from
region to region along the dashed lines in Figure [3.6. Let us first consider the case

z = [d,d] and suppose in the following that i < a and j < b, i.e., x;11 # oo and

Y1 # 001
_ o) d ! ;o . def
® caseTr = (xhyj?xia yj)7 ana r; = ¥; or yj - yj' SUCC<T7 Z) - (xiayj>$i+17 ijrl)
_ _ def
o case © = (T4, Yj, Tit1, Yj+1)s Tiv1 — Yj41 = di succ(r,2) = (Tit1, Yj+1, Tiv1, Yjt1)
d' def
® case T = (mwijxi—l-luyj—i-l)uxi—l—l —Yj+1 < a: SUCC(T; Z) = ($i+1,yj7$i+17yj+1)
. def
o case 7 = (Ti, Yj, Tir1, Yj+1), Tir1 — Yjp1 > di suce(r,z) = (T4, Yjr1, Titr1, Yjr1)-

The definition of succ can straight-forwardly be extended for the cases in which
Tip1 = 00 or Yj+1 = 0o. Now for the remaining case z = (dj, dy+1), we only sketch

the definition of succ(r, z). Again, suppose in the following that i < a and j < b:

. def
® caser = (Iiayj;$i+17yj+1),dk+1 < Tig1 — Yja1: SUCC(ﬂ Z) = (ﬂﬁi;yj+1,Ii+17?/j+1)
. def
® caser = (wi,yp&?iﬂa yj+1), dp > Tip1 — Yj41: SUCC(Ta Z) = (l‘z‘+1; Yjs Tit1, yj+1)

The remaining cases are defined analogously and it is not difficult to check that
succ(r, z) can be computed in polynomial time. In order to simulate time delay steps,
A’ contains transitions from each (g, (r,2)) to (q, (suce(r, z),z)) and to itself, which
perform no action on the counter. Note that we can only simulate delay steps between
regions but not within regions. Elapse of time inside regions only needs to be consid-
ered when resetting clocks and is going to be handled there. In order to handle clock
resets, we are going to define a further abstraction that establishes a correspondence
between clock valuations and counter values of A’. For our construction, we use the
modification discussed in the introduction to this chapter and allow the counter to

take values from a bounded interval in Z U 0.5Z. More precisely, the counter of A’ is
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bounded to take values from the set V' = {d; — 0.5,dy, ..., dy,dp + 0.5}. We use the

counter to partition the set of clock valuations. For n € V', we define

(

{9 :9(x) —I(y) = n} itneVNZ

o(n) def {9:9(x) —Hy) € (n—0.5,n4+0.5)} ifneV\(ZU{dy —0.5,d,+ 0.5})
{U:9(x) —I(y) < di} if n=d; —0.5
{0 :9(x) —I(y) > di} if n =dy +0.5.

\

We will use this definition to map configurations of A to configurations of A’. For

any clock valuation 1, let ¥ denote the unique n € V such that ¢ € ¥(n). We define:
(4.9)" E((a,0) ).

The partitioning of the clock valuations through the counter value is less coarse than
through clock difference zones. It classifies clock valuations according to whether the
difference between the clocks is a fixed integer, lies strictly in a unit interval between
two consecutive fixed integers, or lies outside the “interesting” integers. While sim-
ulating A through A’, we are going to ensure as an invariant that if we are in a
configuration ((g, (r, z)),n) of A’ then n is compatible with z, i.e., n € z. In fact, it is
easy to construct a gadget that, informally speaking, non-deterministically finds out
the clock difference zone the counter is currently in without destroying the counter
value.

Let us informally justify with the help of an example why we need another ab-
straction of clock valuations through the counter value. Earlier, we have seen that
regions and clock difference zones provide sufficient information to simulate the elapse
of time. However, when it comes to simulating clock resets, the information they offer
is insufficient. For example, consider Figure 3.6 and two clock valuations 91,95 such
that r = (0,1,5,1), z = (2,4), n; = 2.5, ng = 3.5, ¥1,92 € ¥(r) N¥(z), 1 € I(ny)
and ¥y € ¥(ny). If we let time elapse on 1, while staying in r, we cannot reach
a point where, if we reset clock y, the value of the clock z is in the interval (4,5).
Formally, for any ¢; € R such that 9, +t; € 9(r), (V1 + t1)[y — 0])(z) < 4. This
is however not the case for ¥y: there exists t3 € R such that ¥y + t5 € J(r) and

((Wg + t2)[y +— 0])(x) € (4,5). Even though J; and ¥, reside in the same region and
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clock difference zone, the clock difference zone we can reach through an elapse of time
and by resetting the clock y is not fully determined only by the current region and
zone and needs to take the abstraction through the counter value into account. More-
over, as we are going to see below, the change on the counter we need to perform in
order to correctly simulate a clock reset only depends on the current region and zone,
which is the crucial fact that allows for computing the transitions of A’ in polynomial
time.

We now give the technical details on how to simulate discrete transitions and
clock resets. Throughout the remainder of this section, whenever we consider a con-
figuration ((q, (r, z)),n) of A’ that corresponds to some configuration (q,9) of A, it
is helpful to think of ¢ to lie, if possible, at or, otherwise, infinitesimally close to
the bottom left corner of J(r) NY(n). In addition to the control locations mentioned
above, Q' contains control locations that we are going to use to initiate the simulation

of clock resets:
Qx{(r,z) € Rx Z :9(r)N(z) # 0} x {reset,, reset,, reset, ,} C Q'

If (q,¢") € A, €(q,¢") = (¢, X') and 9 = €(q,¢') for all ¥ € 9(r)NJ(z) then, depending
on which clocks are required to be reset by X', A’ contains a transition from (g, (r, z))
to (¢, (r, 2), reset,), (¢, (r, z), reset,) or (¢, (r, z), reset, ,), which perform no action
on the counter. If no clock is required to be reset, i.e., X’ = (), then (g, (r, z)) directly
connects to (¢, (r, z)). Note that checking whether ¥ = ¢ for all ¥ € ¥(r) N¥(z) can
be performed in polynomial time. The way we are going to simulating clock resets
through A’ requires a change of the counter value A’. Thus, before we proceed with
the simulation of clock resets, we are first going to relate configurations of A with
configurations of A’.

Let us first consider the simplest case in which we want to simulate a reset
of both clocks z,y. This can be done by setting the counter to 0, changing r to
(0,0,0,0) and z to [0,0]. Thus, any (g, (r, 2), reset,,) is connected to a gadget that
non-deterministically increases and decreases the counter until the counter value is

0 and then connects to (¢, ((0,0,0,0),[0,0])). If we only want to reset one clock,
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+0.5

@ counter > 1 o counter < x, @

Figure 3.7: Gadget used to simulate a reset of clock y for the case when r =

(.’L‘i, y]7 Tit1, yj+1) and z = [d7 d]

things become slightly more complicated. As stated above, the range of the updated
counter value then depends on the region and the clock difference zone. In the fol-
lowing, we are going to consider three representative cases that show how to simulate
clock resets. The remaining cases follow a similar pattern.

First, suppose r = (z;,y;, Ti+1,Yj+1), 2 = |d,d] and that we wish to reset the
clock y of a clock valuation ¥ € ¥(r) N J(z). Let us illustrate this case with the help
of Figure for example with z = [0,0] and r = (1,1,5,3). In this example, if
we consider a clock valuation ¢ infinitesimally close to (1, 1), if we let time elapse
while staying inside r and then reset clock y, we obtain a new clock valuation '
such that ¥'(z) € (1,3) and hence (¢,9")" = ((q, (1", 2")),n’), where ' = (1,0,5,0),
2 e€{(1,2),[2,2],(2,3)} and n' € [1.5,2.5] such that 2z’ and n’ are compatible. Thus
simulating a reset of clock y boils down to setting the counter to some value in the
interval [1.5,2.5]. This observation generalises to the following procedure: we pre-
compute the left and right boundaries z;, z, on the z-axis of J(r) N J(z), in our
example 1 and 3 respectively, and connect (g, (r,2), reset,) to a gadget that non-
deterministically repeatedly adds 0.5 to the counter, then performs a check that the
counter value is strictly between x; and x, and finally non-deterministically performs
a transition to the correct (q, ((x;,0,x;11,0),2’)) for the new clock difference zone
2 = [dy,dy] or 2’ = (di,dyy1) (recall that we can verify that we are in the correct
clock difference zone.) The gadget that performs the counter update is illustrated
in Figure If we were to reset clock x, we pre-compute the lower and the upper
boundaries y; and y, of ¥9(r) NJ(z). We then non-deterministically subtract 0.5 from
the counter, then ensure that the counter value is strictly between —y, and y; and
non-deterministically switch to the updated region and clock difference zone.

Next, we consider the case r = (x;,yj, Tit1,Yj+1) and z = (di, dx4+1) where we
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wish to reset clock y. Again, we use Figure (3.6 to illustrate this case with the help of
the region 7 = (1,1,5,3). Our first observation is that this case yields four different
sub-cases. First, if d = (—1,0) then the boundaries of ¥(r) N YJ(2) lie at the left and
the top boundary of r. Second, if d = (0,2) then the boundaries of J(r) N ¥(z) lie
at the bottom and the top boundary of r. Third, if d = (2,4) then the boundaries
of 9(r) NY(z) lie at the bottom and the right boundary of r. The fourth sub-case
cannot be found in region (1,1,5,3) but in region (0, 1,1, 3), it is the case when the
boundaries of J(r) N J(z) lie at the left and the right boundary of r. Subsequently,
we are going to consider the first and the second sub-case. The other sub-cases follow
along similar lines.

Suppose 7 = (24, Y;, Tit1, Yj+1), 2 = (dk, dg11) and the boundaries of the intersec-
tion of ¥(z) and ¥(r) lie at (x;,y;, zi, yj+1) and (24, Yj+1, Tit1, Yj41), €., 2 = (—1,0)
in our example. Suppose n € V is the current counter value, since ¥(y) < ;41
for any ¢ € ¥(r) N¥(n), we have ¥(zr) < n + y;11. This implies that when simu-
lating a clock reset, the updated counter must not exceed n + y;,1. On the other
hand, the updated counter value must be above x;. Thus, in this scenario, reset-
ting clock y boils down to connecting (g, (1, 2), reset,) to a gadget that adds y;11 to
the counter, non-deterministically subtracts 0.5 from the counter, checks whether the
counter is strictly above z; and then non-deterministically chooses the new 2’ that
is compatible with the new counter value and switches to (q, ((z;,0,2;41,0),2")). If
we were to reset clock x, we proceed analogously: we subtract x; from the counter,
non-deterministically subtract 0.5 and verify that the counter is strictly above —y;.1.

The last case we consider is © = (4,9, Tit1,Yj+1), 2 = (dg, dg+1) and Y(z) in-
tersects with J(r) at (x;,y;, Tit1,y;) and (2, Yjr1, Tit1, Yj+1), €-9., 2 = (0,2) in our
example. Let us first consider resetting clock y. Similar to the previous case, we
observe that for any n € z and ¥ € 9(r) NJ(n), ¥(z) < n+y;+1. Moreover, the lower
bound for ¥(x) is determined by y;: ¥(z) > n+y;. Thus, simulating a clock reset on
clock y boils down to adding some number from the interval [y; + 0.5,y,_1 — 0.5] to
the counter, which can be realised with the gadget from Lemma 3.2.2. In summary,

in this case a clock reset on the clock y starting a control location (g, (, z), reset,)
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can be simulated by connecting this control location to a gadget that adds a number
from [y; + 0.5,y,-1 — 0.5] to the counter, then non-deterministically chooses the cor-
rect new clock difference zone 2’ and performs a transition to (g, ((x;,0,x;11,0), 2')).
If we were to reset clock z, we observe that the value of clock y always lies in the
interval (y;, y;+1). Thus, starting in (g, (1, 2), reset, ), the reset can be simulated by
connecting to a gadget that non-deterministically subtracts 0.5 from the counter and
then verifies that the counter is strictly between —y;,, and —y;.

All remaining cases have a symmetric case that we discussed before. It is not
difficult to check that all constructions can be performed in polynomial time. The
following lemma provides a summary of the properties of the reduction we described
in this section and allows us to reduce reachability in two-clock timed automata to

reachability in bounded one-counter automata.

Lemma 3.2.3 Let A be a two-clock timed automaton, let A" be its corresponding
bounded one-counter automaton and let C = ((q,(r,z)),n),C" = ((¢,(r',2)),n’) €
C(A'). There exist U,V such that (¢,9)" = C, (¢,9")" = C" and (¢,9) =% (¢',?)
if, and only if, C =%, C".

In order to reduce an arbitrary instance (q,v), (¢’,?') of a reachability problem in a
two-clock timed automaton A to a reachability problem in a bounded one-counter
automaton, we construct A" as described above, but use the sets C, U {¥(z), 9 (x)}
and C, U{9Y(y),?'(y)} in order to construct the regions and clock difference zones of

A’. Applying the previous lemma, we obtain the main result of this section.

Theorem 3.2.1 Reachability in two-clock timed automata polynomial-time inter-reducible

with reachability in bounded one-counter automata.

3.3 Discussion

This chapter discussed the relationship between reachability problems in timed au-
tomata and bounded one-counter automata. We have seen that for timed automata

with at least three clocks, reachability reduces to reachability in bounded two-counter
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automata. Conversely, any instance of reachability in bounded two-counter automata
reduces to reachability in three-clock timed automata. All reductions can be per-
formed in polynomial time. We have additionally considered the special case of reach-
ability in two-clock timed automata and shown that this problem is inter-reducible
with reachability in bounded one-counter automata. This dichotomy can even ex-
tend to one-clock timed automata: Laroussinie et al. show [72] that reachability
in this class is reducible in polynomial time to a reachability problem in a directed
graph. The latter can be viewed as an instance of a reachability problem in a counter
automaton with no counters.

It has been observed in the early days of timed automata that there is a rela-
tionship between timed and counter automata. The classical undecidability proof
of the universality problem for timed automata by Alur and Dill [1] proceeds via
a reduction from reachability in two-counter automata. Moreover, Alur, Henzinger
and Vardi use the same problem to show undecidability of reachability in parametric
timed-automata with at least three parameterised clocks [2]. However, to the best of
the author’s knowledge, no direct correspondence between reachability problems in
timed and counter automata has been known, and this gap has been closed in this
chapter.

While timed automata are a useful tool for modeling systems that require explicit
timing information, we believe that algorithmic properties of verification problems
can more easily be analysed for (bounded) counter automata since their definition is
much simpler than the definition of timed automata. In particular with respect to
settling the complexity of reachability in two-clock timed automata, the reduction
to reachability in bounded one-counter automata provided in Section 3.2| consider-
ably simplifies this problem. At this point, it is fair to mention that both problems
have independently been investigated [72] and [16] without observing that they are
essentially the same.

An interesting aspect for future work would be to find a similar correspondence for
reachability problems in parametric timed automata and parametric bounded counter

automata. By parametric bounded counter automata we mean bounded counter au-
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tomata whose counters can be updated by some parametric value and where the
vector of bounds can also contain parameters. In [2], it has been mentioned that the
reachability problem for a rather non-standard class of parametric one-counter au-
tomata reduces to reachability in parametric two-clock timed automata, but not wvice
versa. Lifting the correspondence between two-clock timed automata and bounded
one-counter automata to the parametric case by adopting the construction presented
in Section [3.2/ of this chapter should be possible if there is a way to construct a pa-
rameterised variant of the gadget constructed in Lemma 3.2.2l This correspondence
might be helpful in order to show that reachability in parametric two-clock timed
automata is decidable, which is an open problem. For the case of parametric timed
automata with more than two clocks, an adoption of the reduction from Section [3.1]

should be a rather straight-forward task.
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Chapter 4

Reachability in Counter Automata

This chapter studies the computational complexity of reachability in classes of counter
automata. In particular, we consider reachability for one-counter automata, paramet-
ric counter automata and bounded one-counter automata.

The first section shows that reachability in one-counter automata is NP-complete,
where obtaining the upper bound is the more difficult part. Given a one-counter
automaton 4 and control locations ¢, ¢, we are going to show that the reachability

set
{(n,n") e N*: (¢,n) =% (¢',n')}

is definable via a set R4(q, ¢') of QFPA formulae, where each formula in R 4(q, ¢’) is of
size polynomial in the size of A and can be guessed in non-deterministic polynomial
time, which yields membership of reachability in NP. The construction of R4(q,q’)
is quite involved. For that reason the section is broken into four parts.

The next section discusses reachability in parametric counter automata. Our
first result is that reachability in parametric counter automata is undecidable in the
presence of four counters even if we disallow zero tests. On the positive side, we sub-
sequently proceed by showing that reachability in parametric one-counter automata
is decidable and in fact NP-complete. This result heavily depends on the results and
techniques obtained in the first section and cannot be understood without having read

the first section. Similar to the first section, membership in NP is shown by showing
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that given a parametric one-counter automaton A4 with parameters yy,...,yr and

control locations ¢, ¢/, the reachability set
{(nl, g, n’) € N2 (gon) =%, (¢/,n) for a valuation v such that v(y;) o nz}

can be defined via a set R4(q, q") of QFPAD formulae, where the size of each formula
in RA(q,q') is polynomial in the size of A and can be guessed in non-deterministic
polynomial time.

The third section then considers reachability in bounded counter automata. In
the previous chapter, we have already shown that reachability in bounded counter
automata with at least two counters is PSPACE-complete. Consequently, this section
focuses on bounded one-counter automata. The precise computational complexity of
reachability in this class remains an open problem of this thesis. We are going to
discuss a very simple class of bounded one-counter automata for which we are unable
to determine the precise complexity of reachability and provide an approach that
might be helpful one day for settling the complexity of this problem.

We close this chapter with a discussion of the results obtained, how they fit into
the existing literature and have been used there, and discuss some directions for future

work.

4.1 One-Counter Automata

In this section we are going to show that reachability in one-counter automata is NP-
complete. As one-counter automata can be viewed as pushdown automata acting on a
singleton alphabet and reachability in pushdown automata is decidable, reachability
in one-counter automata is decidable.

For complexity considerations, it is essential that we assume numbers to be en-
coded in binary. Probably due to their close relationship to pushdown automata, re-
search has mainly focused on one-counter automata with numbers encoded in unary.
Reachability in this class of counter automata is NL-complete, see e.g. [71]. A paper

by Rosier and Yen [95] is one of the first papers to consider one-counter automata
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with numbers encoded in binary, this time from the perspective of vector addition
systems with states. Amongst other things, their paper is concerned with the bound-
edness problem for one-counter automata, which is the question to decide for a given

one-counter automaton A and a configuration (g, n) whether the reachability set

{(¢".n) € @ xN:(g,n) =4 (¢ n)}

is infinite. The authors leave the precise computational complexity of this problem

open, but claim that it is NP-complete:

“We surmise, but are unable to show, that the aforementioned problem
is solvable in NP. [...] The best we can do, at this time, then, is to deduce

that the problem is doable in PSPACE.”

This section gives a positive answer to their claim. Our result that reachability in one-
counter automata is NP-complete yields, as a corollary, that deciding boundedness
for one-counter automata is NP-complete.

Lafourcade et al. show in [71], Lemma 42, that given a one-counter automaton A,
(g,n) and (¢',n), if (¢,n) —% (¢’,n’) then there exists a path ¢ : (¢,n) —% (¢’,n') in
T(A) such that no counter value along g exceeds a value polynomial in m,n and n/,
where m is the maximum increment occurring in 4. Since numbers are encoded in
binary, this implies that a path witnessing reachability has length at most exponential
in |A] and the binary representation of n and n’. The following example shows that
witnessing paths of exponential length can actually not be avoided. Let m,n € N

and consider the following one-counter automaton A:

+1 +1
Q —2" o zero Q —2" o __zero _

Suppose we wish to decide (¢,0) —% (¢”,0), a path witnessing reachability has to
traverse the self-loop at ¢ 2™ times and the self-loop at ¢’ 2" times, which makes

the length of such a path exponential in |A|. In order to show that reachability in
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one-counter automata is NP-complete, this rules out the most natural approach of
using a witnessing path as a certificate.

On a technical level, in order to show NP membership of reachability in one-counter
automata, it is more convenient for our purposes to work with weighted graphs instead
of one-counter automata. In order to decide reachability in one-counter automata,
we can restrict ourselves to zero-test-free one-counter automata since each transition
testing for zero only needs to be traversed at most once, and the order in which
those transitions are traversed can be guessed in NP. In the example above, deciding
(g,0) =% (¢",0) reduces to checking (¢,0) —% (¢’,0) and (¢’,0) —% (¢",0). Zero-
test-free one-counter automata can then be viewed as weighted graphs.

One of the main techniques to provide a polynomial-size certificate witnessing
reachability is to succinctly describe paths in weighted graphs as path flows. A path
flow assigns a natural number to each transition indicating how often a transition is
traversed on a path witnessing reachability. In the example above, viewing A as two
weighted graphs by deleting the two zero-labelled edges, a path flow asserts that the
self-loop at ¢ is traversed 2™ times, the self-loop at ¢’ 2" times and all other transi-
tions are traversed once. For one-counter automata whose control structure is more
complex, a path flow in its corresponding weighted graph alone is not sufficient to
prove reachability. In this section, we will carefully analyse paths and corresponding
path flows and provide sufficient and necessary conditions on path flows that prove
the existence of a path witnessing reachability in the original transition system of the
one-counter automaton under consideration. We are going to show that checking the
existence of path flows and all necessary conditions can be defined via sets of QFPA
formulae of polynomial size and can each formula can be guessed in NP. Since satis-
fiability in QFPA is NP-complete, this is eventually going to show that reachability
in one-counter automata is NP-complete.

The structure of this section is as follows. The first section establishes NP-hardness
of reachability in one-counter automata. Although this fact has already been shown
in [95], we show that reachability is already NP-hard for a one-counter automaton

with very little structure. Hardness is shown via a generalisation of the SUBSET-
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SuM problem. The second section then introduces weighted graphs and some related
concepts such as paths and weights of paths. We also show that some properties of
weighted graphs can be expressed in QFPA. The third section introduces path flows
as a way to succinctly represent paths in weighted graphs. We are also going to show
some technical lemmas about decomposition of path flows that we are going to use
in the remainder of this chapter. The fourth section then combines the concepts of
weighted graphs and path flows, applies them to one-counter automata and shows
that reachability relations can be defined via sets of polynomial-size QFPA formulae.
This result is then extended in order to show that checking for the existence of Biichi
paths and determining boundedness is also NP-complete.

As we have to make sure that all constructions can be performed in (non-deterministic)
polynomial time, this section is the lengthiest and most technical section of this the-
sis. Like in the previous chapter, for the sake of lucidity, when giving constructions in
this section we often do not explicitly state that they can be performed in polynomial

time.

4.1.1 The NP Lower Bound

In this section we are going to show that reachability for one-counter automata is NP-
hard. This result follows already as a corollary from similar results in the literature,
e.g. from [95, 72]. However, we would like to emphasize in this section that reachability
is NP-hard even for one-counter automata with an underlying control graph with very
little structure.

The basis for our proof of the lower bound is the well-known NP-complete SUB-

SETSUM problem, see e.g. [100], which is defined as follows:

SUBSETSUM

INPUT: Aset S={ny,...,n,} CNand a target t € N.
QUESTION: Does there exist S" C S such that ) o n =17

For the NP-hardness of SUBSETSUM, binary encoding of numbers is essential. For

our purposes, we introduce a slight generalisation of the SUBSETSUM problem which
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s | pPl|p, P P |Z| D Dy D,
np | 1] 0 0 1|0 | dig(n) digy(n1)  dig,(n1)
ml1]o0 0 10 0 0 0
n’2 1 0 1 0 0 dlgk (ng) digg(n2) dlgl (n2)
p | 110 1 010 0 0 0
no| 11 0 0|0 dig(nm) digy(nm)  digy ()
pm | 1] 1 - 0 01]0 0 0 0
tlm | 1 - 1 1|0 digy(t) oo digy(t)  digi(¢)

Table 4.1: The input to MULTISUBSETSUM obtained from an input to SUBSETSUM.

All numbers are encoded in base m + 1.

we call MULTISUBSETSUM.

MULTISUBSETSUM

INPUT: Aset S={ny,...,n,} CNand a target t € N.
QUESTION: Does there exist f: S — N such that ) _nf(n) =17

MULTISUBSETSUM differs from SUBSETSUM in that an element of the set S can
contribute more than once to the final target value. However, one can construct
instances which prevent any element of S from being picked more than once, which

allows to show NP-hardness of MULTISUBSETSUM via a reduction from SUBSETSUM.

Proposition 4.1.1 MULTISUBSETSUM is NP-complete.

Proof. Membership in NP is trivial. Let S,¢ be an input to MULTISUBSETSUM. The
description of a witnessing function is of polynomial size in the size of S and t, since
f(n) <tforeachneS.

In order to show NP-hardness, we reduce from SUBSETSUM. Let S = {nq,...,ny,},t
be an input to SUBSETSUM. Without loss of generality, we may assume that n; < t for
alli € [m]. From S, t, we construct an input " = {nj, p; }icfm], t' to MULTISUBSETSUM

such that S’,¢ has a solution if, and only if, S, ¢ has a solution. The construction is
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given in Table[4.1. Apart from the last row, every row in the table is an n} respec-
tively p;, and starting from the second column, every column corresponds to one digit
of n; respectively p;. The last row is the target ¢ that we construct. Every n}, p; and
t is encoded in base m + 1, and k — 1 is the power of the highest non-zero power of
m + 1 in the base m + 1 representation of ¢, i.e., t = 37,y di—1(m + 1)""" for some
d € {0,...,m}. Each digit of a constructed number is identified by the identifier
at the top row. For example, D; is the digit of the lowest power of a constructed
number, so D; of ¢’ is dig,(¢). All n] correspond in any D; to their n; counterpart,
and the p; are all zero there. Each n] has two more non-zero digits, P; and P, which
are also the only non-zero digits of each p;. The D; digits of ¢ also correspond to
those of ¢, the digit P is m, Z is zero and all other digits are one. It can easily be
seen that S’, ¢ can be computed in polynomial time from S, ¢.

Let S” C S be a solution to the instance of SUBSETSUM S,t. For each n; € S”,
we set f(n}) ' and f(pi) 0. For each n; ¢ S", we set f(n] ) 10 and f(pi) &,
It can easily be checked that f is a solution to S’,#', since by assumption the digits
Dy, ..., Dy sum up correctly, f(n)) + f(p;) = 1 for all i € [m], and hence the digits
P; and P also sum up correctly to 1 respectively m.

Conversely, assume that f is a solution to S’,¢'. We show that f(n]) + f(p;) =1

for all ¢ € [m]. It is clear that this implies that S” = o

n; . f(n;) = 1} is a solution to
S,t. First, we see that ) _o f(s) < m, since otherwise we have a carry over at digit
P. Let r & (m + 1)* and recall that 7, denotes the residue class of n € N modulo r,

we have > o f(s)5, < (m + 1)F!, since

S f(s)se < m(m Y (m+ 1))

ses’ i€ k]

<(m+1)(m (m+1))

i€[k]

—mz m—l—l

1€[k]
< (m+ 1)k+1

This implies that every digit greater than &k of > __ f(s)5, is zero. Hence f(n}) +
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q1
—i—nk
q2 q qk

+n2 g

¢

Figure 4.1: The OCA A constructed in the reduction from an input S =
{n1,...,ng},t to MULTISUBSETSUM such that S,¢ has a solution if, and only if,

(q,t) is reachable from (q,0).

f(p}) > 1, since the digit P, of ¢ is one. Moreover, since f(n})+ f(p1) < m, we must
have f(n}) + f(p1) = 1. Iterating this argument for the remaining digits P; and n/
and p;, it follows that f(n}) + f(p;) = 1 for all ¢ € [m)]. 0

Proposition 4.1.2 Reachability in one-counter automata is NP-hard.

Proof. We reduce from MULTISUBSETSUM. Let S = {ny,...,ng},t be an input to
MULTISUBSETSUM. Figure/4.1 shows the one-counter automaton A constructed from
S and t. For each n; € S, A has a transition from ¢ to ¢; and back that adds n;
to the counter. Suppose there is g : (¢,0) —% (¢,t). Counting the number of times
a transition from ¢ to ¢; occurs in p gives rise to the required witnessing function f
that shows that S,¢ has a solution. Conversely, in the same way any such function

allows for constructing a path witnessing o : (¢,0) —% (q,1). 0

The graph underlying the one-counter automaton from Figure [4.1 has a very
simple structure. In fact, if we would allow for multiple transitions between control
locations, this means that reachability is already NP-hard even for a one-counter
automaton consisting of only one control location. Note that by employing a similar

reduction from SUBSETSUM used in [72] to show NP-hardness of reachability in two-
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clock timed automata, reachability for one-counter automata is also NP-hard for

one-counter automata whose underlying graph is acyclic.

4.1.2 Weighted Graphs

In order to show an NP-upper bound of the reachability problem, we subsequently
rely on some basic concepts from graph theory which we are going to introduce below.

Let us start with giving a formal definition of weighted graphs.

Definition 10 A weighted graph is a tuple G = (V, E, u), where V' is a finite set of
vertices, E C'V x V is a finite set of edges, and p: £ — Z is a weight function.

Subsequently, we call weighted graphs just graphs. The size |G| of a graph G is
defined as

G| def V| + |E| + max{lg |z| : u(e) = z for some e € E}.

We call G = (V' E', i/') a subgraph of Gif V! C V| E' C E and p/(e') = u(e’) for
all ¢ € E'. For a given graph G = (V| E, i), any subset E' C FE induces a subgraph
G/E' o (V',E', i), where

o VL {v € V : there is v' € V such that (v,v') € E or (v',v) € E}

o i/(e) = ule) for all e € E'

The skew transpose G°P of a graph G is the graph G°P o (V, E°P, 1°P), which is

obtained from flipping every edge and the sign of every edge of G. Formally,

o por {(v,w) : (w,v) € E}; and

o 1% (v, w) oo —u°P(w, v) for all (v, w) € E°P.

Clearly, both a subgraph and the skew transpose of a graph can be computed in
polynomial time. For the remainder of this section, let us fix a weighted graph

G=(V,E, ).
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Similar to transition systems, an s-t path 7 in G of length n is a function 7 :
[n+ 1] — V or, alternatively, a non-empty sequence of vertices m = v1vy . .. 0,11 such
that v = s, v,y =t and (v;,v;41) € E for all i € [n]. We write |7| to denote the
length of 7. For¢ < j € [|7|+1], 7(4, j) denotes the path 7 (3, j) & (i) (i+1) ... 7(j).
We say t is reachable from s and write s —F, t if there is an s-¢ path in G. Given an

s-u path m = vy ... v, and a u-t path 7’ = v} ... v}, the s-t path 7 - 7’ is defined as

; def / ’
T = v v Ul
We say that a graph is connected if for any v,v" € V| v’ is reachable from v via

some path. The set of edges traversed by a path m is defined to be
edges(m) o {e € E : there is i € [|r]] such that (7 (i), 7(i + 1)) € E}.

Given a path m = v ...v,_1v, in a graph G, we denote by 7°P def UpUn—1 - . .01 the
skew transpose of m, which is a path in G°P.

A path 7 is a simple path if any vertex of a graph occurs at most once along 7.
If the first and the last vertex of a path ¢ is the same vertex v, we call it a v-cycle
or a v-loop. Note that in particular a zero-length path consisting of only one vertex
is a cycle. For any v-cycle m and n € N, the v-cycle ¢ is defined by induction on n
as (0 <y and (1 & n g Tf v is the only vertex occurring twice along a v-cycle ¢,
we call £ a simple cycle. A graph G is a loop if it is connected and there is exactly
one simple v-cycle between any vertex v of G. We call G a simple s-t path if G is not
connected and a cycle when (¢, s) is added to the set of edges.

One central property of a path 7 in a weighted graph is its weight. It is the sum
over all weights of the edges occurring along 7. Formally, for || > 0

weight (G, ) & Z p(m(i), (i + 1)).

i€[|]

If |7| = 0 then weight(G,) €10, The minimum accumulated weight of all prefixes

of a path 7 is called the drop of m, which is formally defined as

drop(G, ) & min{weight(G, w(1,1)) 1 i € (|| +1]}.

If G is clear from the context, we simply write weight(mw) and drop(m) to denote the

weight respectively drop of .
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The next lemma shows that both the weight and the drop of a path in a graph
can be expressed in terms of an open formula in QFPA, which are polynomial time

computable.

Lemma 4.1.1 Given a path 7 in a graph G, there ezxist QFPA formulae ., (G, 7)(c, )
and o4(G,m)(d,d") such that

o v,(G,m)[n/e,n' /] is satisfiable if, and only if, weight(w) =n' —n, and
o vi(G,m)[n/e,n' /] is satisfiable if, and only if, drop(w) =n' —n.
Moreover, |¢u| = O(|7]) and |py| = O(|7[?).

Proof. 1t is easily checked that the following two QFPA formulae have the desired

properties:

pu(G,m)(e.d) E N pln(i),m(i+1) =c —c

i€[]

a(G,m) (e, )=\ pul(G,m(1,0)) e, )N

€[|m|+1]

NN Gdd (G (L) (d d)Ad —d>d —c).

i€]|m|+1]

If weight(£) > 0 for a given cycle ¢ then we call ¢ a positive cycle, and if weight(¢) <
0 then ¢ is called a negative cycle. Likewise, if weight(¢) > 0 then ¢ is called a weakly
positive cycle, and if weight(¢) < 0 then we call £ a weakly negative cycle.

In the remainder of this section, we establish some facts about the properties of
paths, their weight and drop that we are going to use in the remainder of this and the
next chapter. The following technical lemma contains a collection of statements about
the relationship between paths and their weight and drop. These statements will be

helpful when relating paths in weighted graphs to runs in one-counter automata.

Lemma 4.1.2 Given a graph G, paths 7w, 7', a weakly positive cycle £ and n € N, the

following statements hold:
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(i) drop(m-7') > —n if, and only if, drop(w) > —n and weight(m) + drop(7') > —n;
(ii) drop(¢) > —n if, and only if, drop((¥) > —n for all k > 0; and

(11i) drop(m°P) = drop(m) — weight(r).

Proof. (i) The statement follows from the following equalities:

drop(mw-7') > —n
<= min{weight(m - 7' (1,4)) : i € [|[7 - 7'|]} > —n
<= min {weight(n(1,14)), weight(r) + weight(7'(1,7)) : i € [|7| + 1],7 € [|[7'| + 1]} > —n
<= min {drop(w), weight(7) + drop(7')} > —n

<= drop(m) > —n and weight () + drop(x') > —n.
(ii) We show the statement by induction on k. For the induction step, we have that

drop(£Ft1) > —n
< drop Kk-ﬁ) > —n

< drop(f*) > —n and weight((*) + drop({) > —n

(
by () (
< drop({) > —n.

(iii) First, it can easily be seen that for all i € [|w| + 1],
weight(m(1,4)) = weight(m) + weight (7°P(1, |7| + 2 — 1)).
Hence we conclude that

drop(m) = min{weight(m(1,17) : i € [|x| + 1]}
= min{ weight(7) + weight(7° (1, |7| +2 — 1)) : ¢ € [|7]| + 1]}
= weight(m) + min{ weight (7 (1, |7| + 7)) : i € [|7°®| + 1]}

= weight(m) + drop(m°P).
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We devote the remainder of this section to some results on positive cycles in
graphs. Positive cycles can be used to construct paths whose weight exceeds any
natural number, which is a fact we are going to exploit when proving the NP upper
bound of reachability in one-counter automata. We first give some criteria that prove
the existence of positive cycles in a graph. Next, we consider how to algorithmically
determine if there is a positive cycle in a graph.

Given a vertex v, as seen in the introduction to this section, in the worst case a
positive v-cycle can be of exponential length. However, if we are only interested in
witnessing the existence of a positive cycle at v, it is sufficient to give a not-necessarily

positive cycle of linear length as a certificate.

Definition 11 Let ¢ be a v-cycle and n € N. We call ¢ a positive v-cycle template
with respect to n if £ decomposes into ¢ = 7y - o - w3 such that 7 is a positive w-cycle,

drop(my - m) > —n and 0 < |my|, |mal, |m3| < |G O

We are now going to show that a positive cycle template proves the existence of a

positive cycle in a graph.

Lemma 4.1.3 Letv € V and n € N. There exists a positive v-cycle template ¢ with

respect to n if, and only if, there exists a positive v-cycle ¢ such that drop({') > —n.

Proof. (“=") Since weight(my) > 0 and drop(m - m3) > —n we can always find k& > 0
such that for ¢ & 7y - myF - 15 we have weight(¢') > 0. Lemma 4.1.2(i) implies that
drop(l') > —n.

(“<=") Let ¢ be a positive v-cycle of length m with drop(¢) > —n. Without
loss of generality we may assume that ¢’ does not contain any negative cycles. Let
i,7 be chosen minimal such that m = £(i,j) is a simple positive w-cycle for some
vertex w. Let m; = £(1,4) and 73 be obtained from £(j,m + 1) by removing all cycles.
We have that ¢ %' my - Ty - Mg i a v-cycle and the minimality of ¢ guarantees that

drop(my - ma) > drop(¢) > —n. Moreover, by construction 0 < |m|, |m2|, |ms3] < |G|. o
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We next consider the problem of deciding whether or not a graph contains a cycle

with positive weight.

NoPosITIVECYCLE

INPUT: A weighted graph G.
QUESTION: Are all cycles in G weakly negative?

A naive approach to this problem would be to enumerate all simple cycles of G and
then to check for each of them whether or not they have positive weight. However,
such an algorithm would not run in polynomial time since there is potentially an
exponential number of simple cycles in a given graph. Instead, Algorithm 1, which is a
variant of the celebrated Bellman-Ford algorithm, see e.g. [36], avoids this exponential
blow-up by using a dynamic programming approach. Let n be the number of vertices
of G, for any vertex v of G, Algorithm (1 contains variables d?, ..., d", which are all
assumed to be initialised with 0. Each d! keeps the maximum weight of some path
of length at most ¢ that ends in v. Since the longest simple path in G has length at
most n— 1, d" > d?~! for some vertex v indicates that there exists a positive cycle in

G. In this case, Algorithm [1 returns false, and true otherwise. Clearly, the running

time of the algorithm is polynomial in n.

Lemma 4.1.4 Given a graph G, Algorithm 1 decides NOPOSITIVECYCLE in time
O(IG]?).

We close this section by deriving from Algorithm 1 a sentence in QFPA that
decides NOPOSITIVECYCLE. To this end, we construct a formula ¢(G) such that ¢
is satisfiable if, and only if, G does not contain any positive cycle. The basic idea is
that p(G) contains first-order variables d' that represent the same d’, from Algorithm
1 and that we can unravel the for-loops from Algorithm [1. Formally, we first ensure
that all d° are initialised with 0:

oo & N\ & =0

veV

Next, we encode the computation of the d¢, in terms of the previously computed values

di=! for each i € [n], where n = #V. What makes the formula below look slightly
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Algorithm 1 Variant of the Bellman-Ford algorithm that returns true if, and only

if, the graph G does not contain a positive cycle.
Input: G = (V,E, p)

n=#V

for i =1ton do

for all v € V do
di :=max ({0} U{d;" + p(u,v) : (u,v) € E})

end for

end for

if there exists v € V such that d? > d”~! then
return false

else

return true

end if

more complicated is the encoding of the maximum function: we first check if the
edge we are currently considering results in a maximum value for d! among all other

incoming edges. If this is the case, we check if it improves d’~! and set d', accordingly.
o= NN | N+ pw) <dT + plu) | -
veV (u,v)eE \ (ww)EE
- <(d371 +p(u,v) > d7t = dy = dy A+ () )A
A+ p) < A7 dy = i)
Finally, we need to assert that no d” improves d"!:

pn S N\ dr < dn!

veV

We note that |¢;| = O(|G|?) for each i € [0,n — 1]. The QFPA formula ¢(G) is now
obtained by taking the conjunction of ¢y up to ¢,.

Lemma 4.1.5 Given a graph G, there exists QFPA formula ¢(G) such that ¢(G) is
satisfiable if, and only if, G does not contain any positive cycles. Moreover, |p| =

o(lG1).
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Proof. Let each ¢; be defined as above, it is easily checked that
def 0 n
P(G) = Jpevdd, . dy. N\ @i
1€[0,n]

is a QFPA formula with the desired properties. O

4.1.3 Path Flows

In the previous section, we have seen that positive cycle templates allow for providing
a polynomial-size certificate for paths of potentially exponential length. We are now
going to introduce the concept of path flows, which serve a similar purpose. Path flows
enable us to encode sets of paths in a graph in a succinct way. Let G = (V, E, u) be
a fixed graph.

Definition 12 A flow is a function f : £ — N. Given s,t € V, wecall f: F — N
an s-t path flow if there exists a corresponding path m starting in s and ending in ¢

such that for all e € F,
fley)=#{ieN:e= (n(i),n(i+1)),i € [|7]]}.
O

Given a path m, the corresponding path flow abstracts away the order in which edges
are traversed and only keeps information on how often each edge occurs along 7. Since
numbers are encoded in binary, we can immediately see that the size to represent a
path flow corresponding to 7 grows logarithmically in |7|. As a notational convention,
we denote by f, the path flow corresponding to a path 7. For an edge e = (v, w) of
a graph G, we denote by f, the v-w path flow for which f(e) 1 and f(e) 10 for
all e # €.
The weight of a flow f is defined as
weight (G, f) = > f(e)ule).
c€E

If G is clear from the context, we just write weight(f) to denote the weight of f. Note
that weight(G, fr) = weight(m) for any path .
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By F(f) € {e: f

be seen as a template of a path flow selecting the set of edges that a corresponding

(e) > 0} we denote the support of the flow f. A support can

path traverses. Most of the time, the support of a flow f is clear from the context
and for convenience we denote it by F. We call F' C F an s-t support if the subgraph
G/(FU{(t,s)}) is connected.

An alternative characterisation of path flows in terms of Eulerian path conditions
is provided by the following lemma. In the following, let in(v) &of {w: (w,v) € E}
and out(v) oof {w : (v,w) € E} denote the set of incoming respectively outgoing

vertices of v for any v € V.

Lemma 4.1.6 A flow f is an s-t path flow, if and only if, f satisfies the following

conditions:
(i) (a) If s =t then

Z f(vaw): Z f(w>v)

we out(v) wein(v)

forallv e V. (4.1)

(b) If s #t then

Z f(v,w) Z f(w,v) for allv e V\ {s,t}, (4.2)
we out(v) wein(v)

Z f(s,w) Z f(w,s) (4.3)
wEout(s) wein(v)

thw wat—l (4.4)
weout(t) wein(t

(i) F(f) is an s-t support.

Proof. The proof is by induction on n =} __, f(e). For the induction step, suppose
the lemma holds for all & < n.

(“=") Suppose that f comes from a path 7 = 7’ - vt whose length is n. Let f
be the s-v path flow corresponding 7. By the induction hypothesis, (i) and (éi) hold
for f', and we have f = f'[(v,t) — f'(v,t) + 1]. We only consider the case s # t

and v # s, the remaining cases follow along similar arguments. It is not difficult
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to check that G/(F" U {(v,?),(t,s)}) is connected. Moreover, >° . ... f(s,0) =
> weout(s) /(8 w) = Zwein(s) f(w,s) +1 = Zwein(s))eE f(w,s) + 1. For v, we have
Zweaut(v,w) flo,w) = Zweaut(v) fo,w) +1 = Zwein(v) f(w,v) = Zwein(v) f(w,v).
Finally, > c oy f (6 0) = 2 ey f 6 0) = D pein [/ (W0, 8) = 2 eing fw,t)—
1. It is easily checked that holds for the remaining vertices.

(“<") Let f be an s-t path flow. Choose v € in(t) such that f(v,t) > 0.
Set f" = f[(v,t) — f(v,t) — 1]. In the following, we assume s # ¢ and v # s,
the other cases follow similarly. We claim that f’ is an s-v path flow that fulfills
the conditions (7)(b) and (#i). By the induction hypothesis, it then follows that
there exists an s-v path. Indeed, it is easy to check that (i7) holds. Moreover,
> weout(s) ] (50) = D e ours) F(8:0) = D pcinwen f(W ) + 1 =37 i [/(w, 8) +
L Zwéout(v) f(v,w) = Zweout(v)EE flo,w)—1 = Zwein(w,v) fw,v)-1 = Zwein(v) f(w,v)—
B and 3 oy 6 0) = S FE0) = Sy F0 =1 = Sy (w80

In the proof of the “only if” direction of the previous lemma, we choose an arbitrary
incoming vertex v of ¢ with f(v,¢) > 0. This non-determinism can be seen as the
cause why in general a path flow does not uniquely determine a path. The benefit
of the characterisation in terms of Eulerian path flow conditions is that it allows for

rephrasing the existence of a path flow with a certain weight into a sentence in QFPA.

Lemma 4.1.7 Let s,t € V, n,n’ € N and F be an s-t support, there exists a QFPA
formula (G, F,s,t)(c, ') such that p[n/c,n’/c] if, and only if, there exists an s-t
path flow f with support F and weight(f) =n' —n. Moreover, || = O(|G|?).

Proof. First, we observe that if we treat each f(e) as a first-order variable in the Eu-
lerian path flow conditions in Lemmal4.1.6, each condition (4.1)—(4.4) yields a QFPA
formula open in f(e1),..., f(er). Denote by ¢(f(e1),..., f(ex)) the appropriate con-
junction of QFPA formulae derived from these conditions depending on whether or
not s = t. We have v = O(|G/?).

Next, we need an additional formula fixing the weight of f and ensuring that all
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edges not in F' have zero flow:
V(fe)so flea) E Y fleue) = —en N\ fle)=0.
eckF e€E\F

We set (G, F, s,t) dof Jeerf(e).) A9, which by Lemma 4.1.6/ has the desired prop-

erties. 0

A nice property of path flows is that they are additive. Given flows f, f’, we define

s def

[+ =ew— fle)+ fe)

Addition of path flows can be seen as the operation corresponding to concatenation

of paths.

Lemma 4.1.8 Let f, f' be paths flows, then f + [’ is an s-t path flow if there exists
v €V such that

(i) f is an s-v path flow and [’ is an v-t path flow; or

(i1) f is an s-t path flow, f" is a v-v path flow and F'U F' is an s-t support.

Proof. The lemma follows in both cases from a straightforward application of Lemma

4.1.6. O

In the remainder of this section, we look at different ways to decompose path flows
into sequences of path flows. Those decompositions are later going to be used for our
results on reachability in one-counter automata. We first show that any path flow
corresponding to a cycle can be decomposed into path flows whose supports induce

subgraphs that are loops.

Lemma 4.1.9 A flow f is a v-v path flow if, and only if, there are path flows
fi,-o f5,0 € [|Gl] such that each G/ F; is a loop and f =3 0 fi.
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Proof. (“=") We show the lemma by induction on the number of edges in G/F. For
the induction step, choose some subset of edges E’ of the edges of G/F such that
G/E' is a loop and there is some ¢’ € E’ such that f(e’) is minimal among all edges
from F. Define f; such that fi(e) &f f(e) if e € E' and fi(e) %' 0 otherwise. By
definition, G/Fy is a cycle. Moreover, let f’ be a flow such that f = f; + f’, such
a flow exists due to our choice of ¢/. Now [’ is not necessarily a path flow, since
G/F' may consist of several disjoint strongly connected components. However, by
restricting f’ to each of these strongly connected components and by applying the
induction hypothesis on each of these restricted flows, we obtain the required path
flows fo,..., f; that give f =37, fi.

(“«<") It is easily checked that the conditions (i)(a) and (i) in Lemma [4.1.6 are

fulfilled for f. Hence f is a v-v path flow for some vertex v of G/F. O

Using the previous lemma, we now show that an arbitrary path flow can be de-
composed into a path flow whose support induces a subgraph that is a simple path

and a number of path flows whose supports induce subgraphs that are simple cycles.

Lemma 4.1.10 A flow f is an s-t path flow if, and only if, there are j path flows f;
with 7 = O(|G|?) and a path flow fo such that f = fo+ >icy) fir G/Fo is a simple
s-t path, each G/F; is a simple cycle, and G /(U Fi) s connected.

Proof. If s =t then the lemma directly follows from Lemma[4.1.91 Thus, we subse-
quently assume s # t.

(“=") Let 7 be a path corresponding to f, and let my be obtained from = by
deleting all cycles. Define fy such that fy(e) L iifee edges(mg) and fo(e) Lo
otherwise. Let f’ be the flow such that f = f’+ f,, which is not necessary a path flow.
However, by successively restricting f’ to each of the strongly connected components
in G/F’ and applying Lemma to each component, we obtain the required path
flows f;.

(“<") It is easily checked that the conditions (i)(b) and (i7) in Lemma [4.1.6] are

fulfilled for f. Hence f is an s-t path flow. O
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We close this section by introducing edge decompositions of path flows. An edge
decomposition of a path flow f is a sequence of tuples (f;,e;)icpm) consisting of a
path flow and an edge such that the edge e; has zero flow in any f; for j > ¢ and
all the components of the decomposition sum up to f. By sorting the edges a path
7 traverses in the order of their last appearance in 7, each path 7 gives rise to a
canonical edge decomposition of f,. We first define edge decompositions for supports

and then for path flows.

Definition 13 Given an s-t support I, a support-edge decomposition of F' is a se-

quence of tuples (Fj, v;, ws, €;)icpm) With F; C F, vy = 5, Upq1 44 such that
e [} is a v;~w; support, e; = (w;, v;11), © € [m],
e, Fjforalll <i<j<m,
o = Uie[m]{ei}‘

An edge decomposition of a path flow f is a sequence of tuples (f;, €;)icm), where each
fi is v;-w; path flow, v; = s, v, 41 =t and €; = (w;, v;41) such that f = Zie[m] fit+ fe

and (F}, vi, w;, €;)icim] is a support-edge decomposition. O

Figure [4.2] gives an example of an edge decomposition of a path flow. The path
flow f is decomposed into (fi,€;)ieq and it is easily verified that f =3,y fi + fe,-
An example of a path inducing this edge decomposition is a path that traverses the

following edges in this order:

€1€1€3€4€2€1€1€1 €1 €3€4€4€9€3€E4 €2€3 €4€4€4 €4.
~ ~— > ~— - ——
fi f2 fa

4.1.4 The NP Upper Bound

Using the concepts introduced and developed in the previous sections, we are now
going to show that reachability in one-counter automata is in NP.
In the first part of this section, we will only consider one-counter automata without

zero tests. This allows us to view one-counter automata as weighted graphs. For
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Figure 4.2: An example of an edge decomposition of a path flow. Each path flow is
determined by the number next to the edges of each graph, e.g., f(ez2) = 3. Here, the
decomposition of the path flow f is given by (f1,e1)(fe, e2)(f3,e3)(f1,eq).

now, let us fix a zero-test free one-counter automaton A = (Q, A, qo, F, A, X\, £). The
weighted graph corresponding to A is G4 o (Q, A, X). Just as we can relate A4 with
G4, we can relate runs in T'(A) with paths in G 4: the path corresponding to a run
(q1,¢1)(q2,¢2) -+ (qn, ¢) in T(A) is the path ¢iqs ... ¢, in G4, i.e., the projection on
the control locations visited.

However, the converse does not hold in general: a path in G4 does not necessarily
correspond to a run between two configurations in T'(.A). Informally speaking, if the

counter value we start with is not large enough, a path in G might force the counter

to drop below zero. The following lemma provides the connection between paths in

G4 and runs in T(A).

Lemma 4.1.11 Let 7 be a q¢-¢' path in G4 and n,n’ € N. There is a run (g,n) —%

(¢',n') that ™ corresponds to if, and only if, drop(m) > —n and weight(w) =n' — n.

Proof. We show the statement by induction on |7|.
(“=") Suppose 0 = ¢ - (¢",n")(¢’,n') is a run that m corresponds to for some
n” € N. By the induction hypothesis, drop(n’) > —n and weight(n’) = n” — n,

where 7' is the path corresponding to ¢/. Moreover, n’ = n” + u(q”,q"), hence
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weight(m) = weight(7') + u(q”,q¢) = n" —n + u(d,q") = n’ —n and drop(w) =
min{ drop(n’), weight(m)} > —n.

(“<=") Let m = 7" - ¢"¢' be a path in G 4 such that drop(m) > —n and weight(7) =
n’ —n. By the induction hypothesis, there is a run o' : (¢,n) =% (¢",n"), where
n” = weight(7') +n. Asn' =n" 4+ u(q,¢') >0, o o (¢",n")(¢',n’) is the desired

run. O

As already discussed earlier, a path witnessing reachability might become exponential
in the size of A and is for that reason unsuitable for providing an NP upper bound.
However, the size of a path flow corresponding to a witnessing path m is logarithmic
in the size of 7 and hence can be guessed in NP. The only drawback is that given
a path flow we cannot reconstruct a witnessing path, and thus we cannot be sure
whether a given path flow is induced by a witnessing path. For that reason, given
two configurations in 7'(A), we have to look for suitable conditions on path flows that
guarantee the existence of a path witnessing reachability. We call these conditions

reachability criteria.

Definition 14 Let G be a graph, f an s-t path flow and n,n" € N. Then (G, f,n,n’)
fulfills the

(i) type-1 reachability criteria if

e GG/F does not contain positive cycles
o weight(f) =n'—n

e f has an edge decomposition (f;, €;)icfm) such that Ziem weight (fi+ fe,) >

—n for all j € [m];
(i) type-2 reachability criteria if
o (G°P, f°P n'/ n) fulfills the type-1 reachability criteria;
(iii) type-3 reachability criteria if
o weight(f) =n'—n
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e there is a positive s-cycle template ¢ in G with respect to n

e there is a positive t-cycle template ¢’ in G°P with respect to n'. O

We call (G, f,n,n') a type-i reachability certificate if (G, f,n,n’) fulfills the type-i

reachability criteria.

Our aim now is to show that given counter values n,n’ and a ¢-¢’ path flow f, if
(G4, f,n,n’) is a reachability certificate then (¢’,n’) is reachable from (¢, n) in T'(A).
Before we begin with the formal part, let us explain on an intuitive level why this is
the case.

Suppose that (G, f,n,n’) is a type-1 reachability certificate. Since G/F does
not contain any positive cycles, the weight of a path that corresponds to f always
decreases whenever it repeatedly traverses an edge. The constraints on the edge
decomposition of f make sure that the last time we traverse an edge the weight of
a corresponding path does not go below —n. Hence for any fixed edge, at any time
we traverse it the weight of the current path segment is above —n. Since the edge
decomposition ranges over all edges that have flow greater than zero, it is guaranteed
that a path exists that fulfils the conditions from Lemma 4.1.11. The case of type-
2 reachability certificates reduces to the type-1 case. The definition of a type-3
reachability certificate can be read as requiring the existence of a suitable path flow
f together with a suitable positive and negative cycle at the source s respectively
target t of f. The positive cycle at s whose drop is above —n guarantees that starting
from a configuration (¢, n) we can reach a configuration (g, m’) such that m’ > m for
any m > n. If 7 is some path that f corresponds to, we can thus “pump up” the
counter value as high as we need in order to ensure that starting from this counter
value 7 does not force the counter to drop below 0. Once some configuration (¢, m")
is reached, we can use the negative cycle at ¢ to bring the counter value down to n’.
Consequently, we can reach (t,n') from (¢,n) in T(A). The following lemma makes

our intuition formal.

Lemma 4.1.12 Let (¢,n) and (¢',n’) be configurations of a one-counter automaton

A, G4 the graph corresponding to A and [ a q-¢' path flow. We have that
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(1) if (G, f,n,n') is a type-1 reachability certificate;
(i1) if (G4, f,n,n') is a type-2 reachability certificate; or
(111) if (Ga, f,m,n') is a type-3 reachability certificate
then f = fr for some path m corresponding to a run o : (q,n) =% (¢',n’) in T'(A).

Proof. (i) Let (f;, €;)icim) be the edge decomposition of f from Definition[14(i), where
we identify e; as (v;, w;). For each f; choose some arbitrary path m; such that f; = f;,
for i € [m] and set 7 def 1 - VW] * Tg - VoWa * . . . * Ty * Uy Wiy, By assumption, G/ F does
not contain a positive cycle and consequently there is no positive cycle in 7. Hence
for two prefixes 7} - v;w; and 7} - v;w; of ™ with |m| < |my| that traverse the same
last edge, we have weight(m] - vjw;) > weight (7} - vjw;). It follows that we can obtain
the drop of 7 by just considering the segments of 7 in which each edge is visited the

last time. We deduce that

drop(m) =min {weight(m - vywy - ... 7 - v;w;) 1 j € [m]}

=min Z weight(m; - vjw;) = j € [m]
i€[j]

= min Zweight(fi + fe,) 17 € [m]
i€[j]

> —n.

The application of Lemma [4.1.11]yields that the desired run o : (¢,n) —% (¢, n’)
in T'(A) exists.

(ii) By (i), we have that there exists a path 7°P in G°P such that weight(7°?) =
n —n' and drop(n°P) > —n'. Using Lemma [4.1.2(iii), it follows that



By applying Lemma [4.1.11, it follows that a desired run o : (¢,n) —% (¢, n’) in
T(A) exists.

(iii) Let 7 be some path with the corresponding flow f, and let ¢ be the positive
s-cycle template with respect to n and ¢ the positive t-cycle template in G°P with
respect to n’. By Lemma[4.1.3] ¢ induces a positive v-cycle ¢; with drop(¢;) > —n,
and ¢ induces a positive fo in G° such that drop(¢y) > —n’. We use ¢; and £5°
in order to appropriately “pump up” and “pump down” w. Let m = weight(¢;)
and m' = weight({3). Choose a € N such that a-m -m’ > drop(m) and define
m =060 (0,5™)%P. Clearly, we have weight (') = weight (£,%™ ) 4 weight (m) +
weight ((€2"™)°P) = weight(m). Thus, it remains to show that drop(n’) > —n, which
allows us to apply Lemma [4.1.11] and to conclude that #’ has corresponding run
0 : (g,n) =% (¢,n). Subsequently, we make implicit use of the statements from

Lemma 4.1.2. We have that

drop(r') > —n
— drop((,*™ - 1) > —n and weight((,%™ - 1) 4 drop((£,2™)%P) > —n
— drop(,%™) > —n and weight((,*™) + drop(w) > —n and

weight(0,%™ - ) 4 drop((£,%™)°P) > —n.

By Lemma [4.1.2(ii) and by the choice of a, we have drop(£,*™) > —n and
weight((;°™) + drop(w) > —n. Thus, it remains to show that weight(¢,%™ - 1) +
drop((€5"™)°P) > —n. It follows that

weight (0,%™ - 1) 4 drop((£,°™)°P) > —n
= weight (1,°™ - 1) + drop(£,%™) — weight (L,*™) > —n
< drop(£,"™) + weight(m) > —n
< drop(l,*™")+n' —n > —n
< drop(£,*™) > —n’

By assumption, drop(¢3) > —n' and hence by Lemmal4.1.2(ii) we get drop(£,*™) >

. m
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Thus, any reachability certificate guarantees the existence of a path in G4 that cor-
responds to a run. However, the converse direction does not hold. An arbitrary run
does in general not yield a path flow that fulfills some reachability criterion. As we
are now going to show, it is however possible, starting from an arbitrary run, to con-
struct a run that decomposes into at most three runs that all yield path flows that
give reachability certificates. Before showing this fact, we need to prove the following

technical lemma.

Lemma 4.1.13 Let o : (¢,n) =% (¢',n') be a run in T'(A) with the corresponding
path ™ in G4 and let F' be the support of f.. If m does not contain any positive cycle
then either G4/ F does not contain any positive cycles or there is a path @' in G4
that factors as ' = my -y - w3 and corresponds to a run o' : (¢,n) =% (¢',n') in T(A)

such that |m| < |m| and m is a positive cycle.

Proof. Suppose that G 4/F contains a positive cycle £. Let p be the first vertex of ¢
that occurs in 7, and let m € N be such that the configuration (p, m) is first reached
by 0. We claim that there is a positive cycle at p in G4 that corresponds to a run
(p,m) =% (p,m’) in T(A) for some m' > m.

If ¢ does not correspond to such a run starting from (p, m) we argue as follows.
Factor £ as { = my-my with 7y 1 p —¢, 7, m 1 7 —¢, psuch that r is the node with the
maximum decrement in ¢, i.e., weight(m}) = drop(¢) and whence weight(m]) < —m.
Since p is the first vertex of ¢ visited by 7, r is visited by 7 sometime after the first
visit of p. So there is a p-r path 74 in G4 such that weight(n}) > drop(n}) > —m >
weight(m;). Consider now the cycle ¢ o il - my. It follows that ¢ is a positive cycle,

since

weight({") = weight(my) + weight (1))
> weight () + weight ()

= weight({).
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Moreover, by our choice of r we have drop(m) > 0 and hence we conclude that

drop(') > drop(ms) + drop(m))
> —m+0

= —m.

Hence, Lemma 4.1.11/implies that ¢’ corresponds to a run from (p, m) —% (p,m’) in
T(A).

Next we observe that the first occurrence of p in 7 actually lies on a negative cycle
in m. This is because m must visit p in 7 again, otherwise ¢ would not exist in f;.
By assumption all cycles in 7 are negative. Thus, we can decompose ¢ as 01 - 02 - 03
with 01 : (¢,n) =% (p,m), 02 : (p,m) =% (p,m") and g3 : (p,m") =% (¢, )
with m” < m. Denote by «, 73 and 74 the path corresponding to 1, 02 and g3
respectively.

In order to obtain the path @ = 7y - w5 - 3 required in the lemma, we reuse an idea

from the proof of Lemma [4.1.12(iii). Let i = weight(¢') and j = |weight(n})|. Define
m =7, m = ()7 and 7y = 7T . 7. Clearly, |m| < 7 and 7, is a positive cycle
as required. Since the positive cycle (')’ is canceled out by the negative cycle (75)¢,

and by applying Lemma 4.1.11, the required run ¢ exists. O

We can now use this lemma in order to show that if (¢, n) —7% (¢’,n’) then there exists
a run that can be decomposed into three components whose corresponding paths each

yield reachability certificates.

Lemma 4.1.14 There is a run o : (¢,n) —% (¢, n') in T(A) if, and only if, there is
a q-q' path w in G4 that can be written as m = m -7y - w3 such that there are ny,ny € N

such that
o if |m| > 0 then (G4, fr,n,n1) is a type-1 reachability certificate;
o if || > 0 then (G4, fr,,n1,n2) is a type-3 reachability certificate; and

o if |m3| > 0 then (G, fry,n2,n) is a type-2 reachability certificate.

92



Proof. (“=")1f o : (¢g,n) =% (¢',n’) is a run with a corresponding path 7m whose
corresponding path flow has support F' such that G 4/F does not contain any positive
cycle then 7 induces a unique vertex decomposition and hence (G, f,,n,n’) fulfills the
type-1 reachability criteria.

Otherwise, let 7’ be a path in G 4 corresponding to some run g : (¢,n) —% (¢, n’).
By repeatedly applying Lemmal4.1.13 to 7/, we can obtain 7y - ) - 74 from 7’ such that
T 1 q —¢, Py Ga/Fr does not contain any positive cycles and 7 = - 73 is a p-¢’
path with 7, being a positive cycle. If G 4/ F,» does not contain any negative cycles,
by setting m3 = 7" and n; = n + weight(m), we can easily see that (G 4, fr,,n,11)
and (G 4, frs,n1,n') are type-1 respectively type-2 reachability certificates. It follows
that m = m; - m3 is the required path.

Otherwise, by repeatedly applying Lemma [4.1.13 to (7”)°® in G°} we obtain a
path that decomposes into 73" - (74)°P - (7])°P such that m = 77 - 7} is a p-p’ path
with (7)°P being a positive cycle in G and G%/ For does not contain any positive
cycle. Let ny = n + weight(m) and ny = n’ — weight(ms). Both 7} and 7)) witness
the existence of a positive cycle in G4 respectively G with drop(m) > —ny and
drop((7§)°®) > —ng. Thus, (G4, fry,n1,n2) fulfills the type-3 reachability criteria.
As above, (G4, fr,,n,n1) and (G4, fry,n2,n’) fulfill the type-1 respectively type-2
reachability certificates, and hence m = 7y - w5 - 73 is the required path.

(“«<=") This direction follows by combining the statements from Lemma [4.1.12.

We have thus shown that deciding reachability in T'(A) can be reduced to checking
for the existence of at most three reachability certificates in G4. We now proceed
by showing that checking the existence of a reachability certificate can be phrased
in terms of an open formula in QFPA. To begin with, we take the conditions re-
quired by the type-1 reachability criteria in Definition 14/ and translate them into
an open formula in QFPA for a fixed edge decomposition. Suppose we are given G,
vertices s,t, a support F' and a support edge decomposition (E,vi,vg,ei)ie[m]. For
i € [m], let (G, F;,v;,v})(c;, ¢;) be the path flow formulae from Lemma [4.1.7 such
that p;[n/c;,n'/c)] if, and only if, there exists a v;-v] path flow f; in G with support F;
such that weight(f;) = n’ —n. Furthermore, let ¢(G/F') be the formula from Lemma
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4.1.5 guaranteeing that there are no positive cycles in G/F. The type-1 reachability
criteria for a fixed edge decomposition can now be expressed by the following QFPA

formula p(G, F, (F, v;, v}, €;)icfm)) (¢, ¢'), which is computable in polynomial time:

2 d_ef Elze[m]cla i SO(G/F) A /\ QO(G, F;, v, U;)(Cia C;) A
——

no positive cycles 16 [m] y

'

there are path flows f; with weight ¢} —c¢;

A /\Z — ¢+ ple) > —c /\Z —ci+pule) = —c (4.5)

i€[m] j€[i] | i€[m]

Vv Vv
weights of the edge decomposition sum up correctly total weight matches

We can now prove the following lemma.
Lemma 4.1.15 Given a graph G and vertices s,t, the sets

{(n,n') : there exists an s-t path flow f such that (G, f,n,n') is a

type-1 reachability certificate}

{(n,n') : there exists an s-t path flow f such that (G, f,n,n’) is a

type-2 reachability certificate}

are definable via sets Ry(G,s,t) and Ro(G,s,t) of QFPA formulae, where |p| =
O(|G|*) for each v € Ry (G, s,t) U Ry(G, s,t).

Proof. For each possible s-t support I and each support edge decomposition (5, vy, v}, €;)ic[m)
of F', R(G,s,t) is the smallest set containing a formula p(G, F, (Fj, v, v}, €;)icfm]) a8
in Equation (4.5). As |¢(G/F)| = O(|G|*) dominates every other conjunct and by

combining Lemmas 4.1.5/and [4.1.7] it is easily checked that R; has the desired prop-
erties. The set Ry can be defined as Ry(G, s,t) = & R (GP,t,s). O

We now proceed by proving a similar statement for type-3 reachability certificates.
First, we show how to express the conditions on positive cycle templates in QFPA.
Recall that a v-cycle £ is a positive v-cycle template with respect to n if it factors

into 7 - 7o - 3 such that drop(m - m) > —n and weight(my) > 0. Define the QFPA
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formula (G, 1y, m9) as follows, where ¢4 and ¢,, are the QFPA formulae defining the
drop and the weight of a path as defined in Lemma 4.1.1:

(G, m1,m)(c) ¥ 3d, d (pa(G, 71 - m)(d, d)Nd —d > —c)A

A3d, d (pu(G,m)(d,d)Nd —d > 0) (4.6)

It follows from Lemma [4.1.1 that |¢(G, w1, m2)(c)| = O(]G|?). By applying the same
lemma it is easily checked that ¢(G, i, m)[n/c| holds if, and only if, ¢ = 7 - mo - 73
is a positive v-cycle template with respect to n. The type-3 reachability criteria for
fixed cycle templates ¢ = my -y - w3 in G and ¢/ = 7} - 7} - 7} in G°P and a fixed s-t
support F' can now be expressed as follows, where ¢(G, 7, m) and ¢(G, 7y, 75) are

the formulae from and ¢(G, F, s,t)(c, ) is the formula from Lemma 4.1.7:

P(G s, 1, 0,0)(e,d) S o(Gym,m)(e) A o(G®ml, ) () A
—_— ~ 2

~
suitable positive cycle at s  suitable positive cycle at t in G°P

#(G, F,s,t)(c,c) (4.7)

~
suitable path flow with weight ¢/—c

Note that ¢(G, F, ¢, ¢')(c, ) is computable in polynomial time.

Lemma 4.1.16 Given a graph G and vertices s, t the set

{(n,n') : there exists an s-t path flow f such that (G, f,n,n') is a

type-3 reachability certificate}

is definable via a set R3(G,s,t) of QFPA formulae, where |¢| = O(|GJ?) for each
p e Rg(G,S,t).

Proof. For each positive s- and t-cycle template ¢ and ¢’ in G respectively G°P and
for each s-t support F', Rj is the smallest set containing a formula ¢(G, F,s,t, ¢, (")
as defined in Equation (4.7). It is easily verified that each formula in ¢ € Rj3 has size
lo| = O(|G]?) and using Lemma [4.1.7 and our reasoning above it is easily checked
that R3 has the desired properties. O

Putting the pieces together, we can now show that the reachability set for zero-test

free one-counter automata is definable via a set of QFPA formulae.
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Lemma 4.1.17 Let A be a zero-test free one-counter automaton, the set

{(n,n) : (g,;n) = (d',n)}

is definable via a set R%(q,q') of QFPA formulae, where |p| = O(|G4|*) for each

v € Ralq,q).

Proof. For any q1,q2 € @, R%(q,q') is defined as the smallest set consisting of
QFPA formulae open in ¢, ¢ of the form Jeq, co.01(c, ¢1) A @s(cr, o) A pa(ca, ) where
1 € Ri(q,q1), o3 € R3(q1,q2) and @y € Ra(qe,q'). Lemma 4.1.14 states that
(g,n) =% (¢',n') if, and only if, there is a path 7 that can be written as 7 = 7y - m - 3
and ny,ns € N such that in the most general case (G 4, fr,,7,11), (G A, fry, 1,12)
and (G4, frs,n2,n') each yield type-1, type-3 respectively type-2 reachability certifi-
cates. Thus, assuming (¢,n) —% (¢’,n’), by Lemma there exists p1(c,c1) €
R1(G4,q,q1) such that pi[n/c,n1/c1]. By the same lemma, there exists @so(co, ') €
Ry (G 4, q,q1) such that ¢o[ns/ce,n'/]. Finally, Lemma [4.1.16] yields that there ex-
ists p3(c1,c2) € R3(Ga,qu,q2) such that ¢z[ng/ci,na/ce]. Hence, p[n/c,n'/c] for
some ¢(c, ) € R4(Ga,q,.q).

Conversely, if p[n/c,n’/c] for some (¢, ') € R%(q,¢') then by the Lemmas4.1.15]
and [4.1.16 the reachability certificates required in Lemma exist. O

It is now an easy task to generalise this approach to one-counter automata with
zero tests. The main idea is that any edge testing the counter for zero is traversed

at most once on a run ¢ : (¢,n) —% (¢’,n'). Indeed, if p can be factored as o = ¢ -

(p,0) (P, 0)- 02-(p, 0) (', 0) - 03 where &(p, p') = zero then clearly o % ;- (p,0)(1/,0)- 0

is a run in which the transition (p,p’) is traversed one time less than in p.
Lemma 4.1.18 Let A be a one-counter automaton, the set
{(n,n) = (¢,;n) =% (¢, ')}

is definable via a set Ra(q,q') of QFPA formulae, where |p| = O(|G4|°) for each

v € Ralq,q).
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Proof. We obtain from A zero-test free one-counter automata A;,..., A; with ¢ €
[|A]] such that any run g factors into o = 01 - (¢1,0)(¢2,0) - 02 - ... - (¢;_1,0)(¢;,0) - 0;
where &£(q}, gi+1) = zero and each p; is a run only involving control locations from
the zero-test free one-counter automaton 4;. Hence, for any possible combination of
zero-test free automata A, ..., A; and locations ¢;,q}, Ra(q,q’) is the smallest set

containing a formula

def
p(e,d) = Fienes. \ e =0A@ilea) Apilee) A\ eleg i),

jeli] j€l2,i—1]
where 901(07 cl) € Rf‘ll (CLQQ)? gOi(Ci,C/) € Ritl (QMQ,) and Soj(cjacj-‘rl) € Ri\] (QJaqz) for
Jj € [2,1—1]. Here, Rjj are the sets of QFPA formulae from Lemmal4.1.17. It is easily

verified that the statement of the lemma follows as a straightforward consequence from

Lemma 4.1.17 O

The previous lemma now immediately gives us one of the main results of this

chapter.

Theorem 4.1.1 Reachability in one-counter automata is NP-complete.

Proof. Let A be a one-counter automaton and (¢,n) and (¢’,n’) be configurations
of A. By Lemma [4.1.18 (¢,n) —% (¢,n’) if, and only if, there exists ¢(c,c) €
R4(q,q) such that ¢[n/c,n’'/c]. An NP-algorithm that decides reachability non-
deterministically guesses all components needed to compute such a formula (¢, ) €
RA(q,q), i.e., the order in which zero-edges from A are traversed and the implied
zero-test free automata, the support-edge decompositions for the type-1 and type-2
reachability certificates, and the positive cycle templates and support required for
type-3 reachability certificates. It then computes ¢(c, ') in polynomial time, checks
in NP satisfiability of Je,d.p(c,d) Ae = n A = n’ and returns the result of the
satisfiability check. O

We close this section with considering deciding the existence of Biichi paths in
T(A) and boundedness of one-counter counter automata. For both problems, we

construct sets of QFPA formulae that characterise the set of configurations for which
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a Biichi path exist respectively for which the reachability set is unbounded. To this
end, we incorporate the reachability sets Ry(q, ¢') defined previously.
We begin with Biichi paths and provide sufficient and necessary criteria for the

existence of Biichi paths. In the following, let F' be the set of final locations of A.

Lemma 4.1.19 A one-counter automaton A has a Biichi path starting in (q,n) if,

and only if, there are ¢y € F' and n’ € N such that

(i) there are n"” € N and runs 1,00 such that n” > n, o1 : (q,n) =% (qr,n),

02 : (qr,n') =% (qr,n") and oo is zero-test free; or

(i) there are runs o1, o3 such that o : (q,n) =% (qr, ') and o3 : (qr,n') =% (g7, 7).

Proof. (“=") Suppose A has a Biichi path starting in (¢, n) and let ¢ be a run starting
in (¢,n) such that ¢y € inf(o) N F. Let (¢r,m1), (¢, n2), ... be the gp-configurations
visited in p. Our first observation is that for any ¢ € Ny, there is some 7 > ¢ such that
n; > n,; since there are no infinite descending chains in N. If there is a zero-test free
segment (qr,n;) —% (gr,n;) with j >4 and n; > n; in g then the conditions in () are
fulfilled by setting n’ = n; and n” = n;. Otherwise, some transition testing the counter
value for zero is visited infinitely often. Hence there is some (¢’, 0) occurring infinitely
often in p for some ¢’ € ). Hence p has a prefix ¢} : (¢,n) =% (¢’,0). Moreover,
there are segments of : (¢/,0) =% (¢r,mi) and o : (gr,ni) —% (¢',0) since g5 and
(¢’,0) occur infinitely often in p for some i € Nyo. By setting n’ = n;, 01 = 0} - 0}
and g3 = of - 05 we obtain the runs g; : (¢,n) =% (¢r,n') and g3 : (g7, n") =% (g, )
as required in condition (i1).

(“«<=") We define an infinite run g on which ¢ occurs infinitely often. In case (i),
since g, is zero-test free, we have (¢r,n' + d) —% (¢r,n" + d) for any d > 0. Hence,
we can define the required run to be g : g1 - 02 - (02 + 1" —n') - (02 +2(n" — 1)) .. ..

In case (i1), we obviously have that ¢ : o1 - 03 03 03... is a suitable run in T'(A). g

It is now clear that we can translate the conditions from the previous lemma into a
sentence in QFPA, which gives us NP membership of checking for the existence of a

Biichi path. Hardness for NP easily follows from an adoption of Proposition 4.1.2.
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Lemma 4.1.20 Let A be a one-counter automaton and q € @), the set
{n : there is a Biichi path starting at (q,n) in T(A)}

is definable via a set RE(q) of QFPA formulae, where |p| = O(|GAJ®) for each ¢ €
RA(q)-

Proof. We encode the conditions from Lemma [4.1.19/into a sentence in QFPA. Let
A’ be obtained from A by removing all edges labelled with zero. The set RZ(q) is

the smallest set containing for each pair ¢; € F and ¢ € @ a formula ¢(c) such that

o(c) def 50, (3. > Nor(e, ) Npa(d, "))V (e3(e, ) A pa(d,e))),

where ¥1 <C7 C/) S RA(q7 Qf>7 902(6/7 C//) S R.A/ (qf) qf)7 903(07 C/) € R.A(Qa Qf) and @4(6,7 Cl) €
R4(qs,qr). The correctness of the lemma is an immediate consequence of the lemmas

4.1.18) and [4.1.19. -

Theorem 4.1.2 Deciding the existence of a Biichi path for one-counter automata is

NP-complete.

Finally, we provide a solution to the problem left open by Rossier and Yen in [95]
and show that boundedness for one-counter automata is NP-complete. Recall that
for a given one-counter automaton A4 and a configuration (¢,n), boundedness is to

decide whether the set

{(¢,n") €@ xN:(g,n) =4 (¢',n)}
is infinite. As observed in [95], deciding boundedness boils down to checking if we can
reach a configuration from which we can loop with a strictly positive counter incre-
ment. We define the set B4(q) of QFPA formulae to be the smallest set containing
for each ¢’ € @Q a QFPA formula

(10(0) d:ef ElC/7 C”.@%q/(c, CI) N gpq/7q/(cl, C”> A CH > C/,

where ¢,y (c,d) € Ra(q,q) and ¢y o € Ra(q.q'). Clearly, for any n € N and
o(c) € Balq), ¢lc/n] is satisfiable if, and only if, the reachability set at (g¢,n) is
infinite. Moreover, |p| = O(|A|?) for each ¢ € Ba(q).

Theorem 4.1.3 Deciding boundedness for one-counter is NP-complete.
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4.2 Reachability in Parametric Counter Automata

In this section, we are going to establish the complexity of reachability in parametric
counter automata. As discussed in Chapter|2, reachability in k-counter automata with
k > 2 is undecidable, but decidable for any k if we consider zero-test-free k-counter
automata. The first result of this section is that even if we restrict ourselves to zero-
test-free parametric k-counter automata, the reachability problem is undecidable for

k> 4.

Theorem 4.2.1 The reachability problem for zero-test-free parametric k-counter au-

tomata is X.9-complete for k > 4.

Proof. Regarding hardness, we reduce from the reachability problem for two-counter
automata. Given a two-counter automaton A, we derive from A a zero-test-free
parametric four-counter automaton A" with one parameter y such that for any two
control locations ¢, ¢ of A we have (¢,0) —% (¢/,0) if, and only if, (o, 0) —% (40, 6)
for some designated control locations qq, g, of A’.

Suppose that there is a run p starting in (¢, 0) and ending in (¢, 0) in T'(A). Since
r is finite, each counter of A does not grow above some m € N. Our aim is to use
the parameter y in order to guess this maximum value m so that we can simulate a
run of A by A’. We adopt an idea introduced by Lipton [76]. During an emulation
of a run of A, the first counter of A’ stores the value n; of the first counter and
the second counter of A’ stores m — mq, ensuring as an invariant that the sum of
the value of the first and the second counter is m. Likewise, the third counter of A’
stores the value ns of the second counter of A and the fourth counter of A’ stores
m — ng. Performing a zero-test on the first respectively second counter of A can
then be simulated by adding and subtracting y from the second respectively fourth
counter of A’. Thus, for any instantiation of y, provided that the above invariants
hold, A’ can correctly simulate all runs of A in which the counter value does not
exceed the value of . In order to construct A’ from A we introduce an extra control
location in between all transitions of A, as shown by the replacement rules in Figure

4.3: any add;(z)-operation on the i-th counter of A is replaced by two consecutive
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addy;_1(2) addy;(—y)

add;(2) — e zero;(z)| = .
addy;(—2) addy;(+y)

/ i i /

A A’ A A’

Figure 4.3: Replacement rules for the reduction from reachability in a two-counter
automaton A to reachability in zero-test free parametric four-counter automaton A’.
Here A’ is obtained by replacing each transition on the left-hand side of the =--arrow

by the transitions on the right-hand side of = arrow.

add-operations on the (2i — 1)-th and the 2i-th counter of A’, and any zero;-operation
on counter ¢ is replaced by consecutively subtracting and adding y to the counter
2¢ — 1. The only missing piece is the initialisation part of A’ that initially establishes
the invariant between the counters of A’. But this is trivially done by introducing
a new control location gy and by adding y to the second and fourth counter along a
unique path connecting gy to g. Likewise, we connect ¢’ to a new location ¢ and along
the transition from ¢’ to ¢ we subtract y from the second and the fourth counter.
Clearly, (¢,0) =% (¢, 0) if, and only if, (qo, 0) —% (40, 0).

Regarding membership in X{, we can enumerate all possible valuations v of the
parameters and check whether (¢,7) —% (¢’ ,1’?’), which is decidable by Theorem

41.1. -

In contrast to this negative result, we show in the remainder of this section that
reachability is decidable for parametric one-counter automata with zero tests. This
result is shown by generalising the concepts and techniques from Section 4.1. Reach-
ability relations in parametric one-counter automata are not definable in QFPA, but,

as we are going to show below, definable in QFPAD. Deciding reachability and related
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problems for various classes of counter machines via a reduction to QFPAD is a tool
that has extensively been used in the literature, see e.g. [64, 38,/63].

Before we begin, we provide a reduction in the converse direction and show that
satisfiability in QFPAD is reducible to reachability in parametric one-counter au-
tomata. This reduction serves two purposes. First, it is an interesting fact that sat-
isfiability in QFPAD can be rephrased in automata-theoretic terms. It is known [21]
that satisfiability in QFPA is reducible to emptiness in non-deterministic finite-state
automata, and thus we produce here a result in a similar spirit for QFPAD. Second,
the reduction provided strengthens the NP-hardness result for reachability. Recall
that satisfiability in QFPAD is already NP-complete for a QFPAD formula with a
fired number of Boolean connectives. The subsequent result shows that shows that
reachability in parametric one-counter automata is already NP-hard for a fixed num-

ber of control locations.

Lemma 4.2.1 Let p(y) be a QFPAD formula. There exists a parametric one-counter

automaton A with control locations q,q such that ¢ is satisfiable if, and only if,

(4,0) =% (¢, 0).

Proof. Let ¥ = (y1,...,yn), for our purposes we may assume with no loss of gener-
ality that y,...,y, are all variables occurring in ¢, i.e., no J-quantifier occurs in
. Moreover, we assume that no negation symbol occurs in ¢. Any QFPAD for-
mula can be transformed into negation normal form and by applying the procedure
described in Section 2.6.2, i.e., by introducing additional first-order slack variables,
non-divisibilities in ¢ can be eliminated. Furthermore, we may assume that co-
efficients in ¢ are encoded in unary. Moreover, we subsequently assume that the
first-order variables in any linear polynomial p from ¢ are ordered in a way such that
variables with positive coefficient are written first and variable with negative coeffi-
cients last, 7.e., any p is written as p = y;1 + ... +¥i; +2 — Yijt1 — ... — Yim, Where
z €.

Figure [4.4 shows the gadgets that are the building blocks of our reduction. On

top, the parametric one-counter automaton A, for a single linear polynomial p(¥) is
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Figure 4.4: Gadgets of the parametric one-counter automaton constructed in the

reduction from QFPAD to a reachability instance.

given. One row below is the automaton A,y used to handle divisibilities p|p’ from .

plp
The automaton A,y first non-deterministically chooses to add the valuation of the
linear polynomial p’ or —p’ to the counter. It then repeatedly subtracts either p or
—p from the counter until the counter value is 0. Since under any valuation we have
plp & p|l—p < —p| —p' & —p|p’ it follows that under any valuation, whenever we
can reach the location () from () then the value of p divides the value of p’. Here, it
is important that the parameters in the linear polynomials are ordered according to
their sign, roughly speaking, in order to prevent the automaton from getting stuck.
Boolean connectives are handled in a straightforward fashion, i.e., the automaton
Ay g, first Tuns through the automaton that corresponds to ¢; and then through
the automaton corresponds to ¢,. Likewise, disjunction is handled by A, v, via

branching. It is now clear how to define the automaton A, by structural induction

for any ¢ and that A, has the desired properties. O
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Corollary 4.2.1 Reachability in parametric one-counter automata is NP-hard al-

ready for a fixed number of control locations.

We now show that for any reachability problem in a parametric one-counter au-
tomaton we can construct a QFPAD formula ¢ such that reachability holds if, and
only if, ¢ is satisfiable. To this end, we generalise the approach taken in Section
4.1. For the remainder of this section, let us fix a parametric one-counter automaton
A=(Q,Y, A\, qo, F,A, X\, &) with Y = {yy,...,yx}. Given an instance (¢,n), (¢',n’) of
a reachability problem and let ¥ = (y1,...,yx), we are going to show that the set

{w@),n.n) € N2 w(f) = (ma, ... ,my), (g,n) =0 (d',0)}

is QFPAD-definable. Here, we have lifted valuations to vectors, i.e., v(¥) oof (v(y1), .-, v(yk))-
As a first step, we generalise weighted graphs to parametric weighted graphs, which

we sometimes just call parametric graphs. Similar to a weighted graph, a parametric

graph is a tuple G = (V,Y, E, 1), where p can additionally label a transition with a

parameter from Y, i.e., p: E — ZU{oy : o € {+,—},y € Y}. Given a valuation

of the parameters v : Y — N, we denote by G" the weighted graph obtained from

replacing every label oy € Y of G by ov(y). All other definitions from weighted graphs

carry over straightforwardly and parameters are treated symbolically. For example,

given a path flow f : F — N, the weight of f becomes a linear polynomial in ¢ instead

of an integer:

weight (G, f)(7) = Y f(e)n(e).

c€E
Recall that for a weighted graph G and an s-t support F', in Lemma 4.1.1 we gave
a QFPA formula (G, F, s,t)(c, ) such that for all n,n € N, o(G, F, s,t)[n/c,n'/c]
is satisfiable if, and only if, there exists an s-t path flow f with support F' such
that weight(G, f) = n’ — n. For a parametric graph G, the analogous question is to
decide whether there exists a valuation of the parameters such that there is an s-t
path flow with a certain weight. This problem is expressible in the existential theory

(N, <,+,-,0,1), where as in Section [4.1] we treat the weights f(e) of f as first-order
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variables:

¢(G7 Fa ?77 S, t)(C, Cl) d:ef Elyla s 7yk'aeEEf(e)‘¢(Gv S, t)/\

A fleue)=d —ch N\ fle)=

ceF e€E\F

Here, (G, s,t) is the QFPA formula open in f(e),e € E corresponding to the Eu-
lerian path flow conditions from Lemma The drawback is of course that the
existential theory of (N, <, +,-,0,1) is undecidable. However, using the decomposi-
tion of path flows as loops and simple paths given in Section 4.1.3] we obtain a set of
equi-satisfiable QFPAD formulae. We thus now consider those two types of graphs
separately.

Let G be a graph with parameters 4 = (y1,...,¥yx), let F' be a v-v support such
that G/F is a loop and let n,n’ € N. By the Eulerian path flow conditions given
in Lemma [4.1.6, any path flow f assigns the same weight to each of the edges in F'.
Consequently, if we are asking for the existence of a valuation of the parameters and
a v-v path flow f with support I’ and a weight z = n’ —n, the valuation and the path
flow exist if the total weight of the loop G/F divides z. This expresses in QFPAD
as follows, where the last conjunct ensures that loops with negative weight can only
contribute to a total negative weight and vice versa:

oG, F)(y dEfZ,u c—c/\z,u(e)>0<—>c'—c>0. (4.8)

ecF c€F
It follows that for any valuation v, ¢,(G, F)[v(9)/y,n/c,n’/c] holds if, and only if,
there exists a v-v path flow f in G such that weight(G¥, f) =n' —n.

Next, we consider the case when G/F is a simple s-t path. This case is trivial,
since any s-t path flow can only assign weight one to each edge in F'. We set

op(G, F) (Y, ¢, ) Z/L =d—c (4.9)
eeF

Clearly for any valuation v, ¢(G, F)[v(¥)/y,n/c,n’'/c'] holds if, and only if, there
exists an s-t path flow f such that weight(G”, f) =n’ — n.

We can now use the decomposition provided in Lemma 4.1.10 in order to show

that the existence of path flows in parametric graphs is definable in QFPAD.
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Lemma 4.2.2 Given a parametric graph G, vertices s,t and an s-t support F', the

set

{(v(¥),n,n’) : there exists an s-t path flow f with support F

such that weight(G”, f) =n' —n}

is definable via a set P(G, F,s,t) of QFPAD formulae, where |p| € O(|G|?) for each
v € P(G,s,t).

Proof. For any sequence of supports F = (Fy, Fy, ..., F;), j € [|G)?] such that G/F,
is a simple s-t path, G/F; is a simple loop and F = Uie[O,j] F;, P(G,F,s,t) is the

smallest set containing a QFPAD formula

def = =
= EIiE[O,j]Ci7 C;'(pP<G7 FO)(Z/u Co, 66) A /\ @E(Gv E)(Z/v Ci, Ci)/\

i€y
A Z c—c=dc —c,
]

1€[0,5

0(G,F)(f,c,¢)

where ¢, and ¢, are defined as in Equation respectively (4.8). Both |p,| =
O(|G|) and |¢¢| = O(|G|), hence |p(G, F, s, t)| = O(|GP).

Suppose (G, F)[v(§)/7,n/c,n’ /¢] holds for some (G, F) € P(G, s,t), a valua-
tion v and n,n’ € N. Applying the semantics of ¢, and ¢y, we conclude that there
are path flows fy, f1,..., f; and n;,n; € N such that weight(G”, f;) = n; —n; and
> iclog) weight(GY, f;) = n’ — n. 1t follows from Lemma 4.1.8/that f & >y fiisa
path flow. Moreover, weight(G, f) =n’ — n as required.

Conversely, assume that f is an s-t path flow such that weight(GY, f) = n' —
n for some valuation v and n,n’ € N. By Lemma 4.1.10 there exist path flows
fo, f1,-- 5 fj,J € [|G]?] such that G/F, is a simple s-t path and each G/F; is a loop
for i € [j]. By construction of P(G, s,t), there exists some ¢(G, F) that is satisfiable

for this particular decomposition. 0

This lemma is basically all that is needed in order to show that reachability in
parametric one-counter automata is in NP. Everything else is just a straightfor-

ward adaption of the proof given for one-counter automata without parameters, since
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through the parameters, most formulae constructed in Section[4.1 just become open

formulae in those parameters. The lemmas [4.1.15 and [4.1.16/ which construct sets of

QFPA formulae that guarantee the existence of type-1, type-2 and type-3 reachabil-
ity certificates need to be adjusted to cater our needs. We defer details to the end
of this section and, for now, assume that there exist sets Ry (G, s,t), R2(G, s,t) and

R5(G, s,t) that define the sets

M;(G,s,t) & {(v(),n,n’) € N*2 : there exists an s-t path flow f such that

(G”, f,n,n') is a type-i reachability certificate}

for each ¢ € [3]. In order to show that reachability in parametric one-counter automata
is in NP, instead of repeating the proof given in Section [4.1, we now only sketch

differences and slight adjustments to the key lemmas in Section 4.1.

e The definition of the formulae given in Lemmal4.1.1 which express in QFPA the
weight and the drop of a path can be reused in order to obtain QFPA formulae
ouw(G, ) (¥, c,d) and p4(G, m)(¥, ¢, ") such that for any path ,

pul G, m) V() .0 c,n [¢] & weight (GY,7) = n' — n; and

0l G, M) (W) /y,n/c,n' /] < drop(GY,7) =n' —n.

e Building upon the generalization of ¢, and ¢4, we obtain an analogue to the
QFPA formula defined in Equation that allows for determining if a path
7 that can be factored as m = m - my - 73 yields a positive cycle template with
respect to some n € N. More specifically, we can construct a QFPA formula
©(G,m, m) (Y, ¢) such that (G, w1, m)[v(y)/y,n/c| holds if, and only if, 7 is a

positive cycle template in G¥ with respect to n.

e The encoding of the Bellman-Ford algorithm in QFPA in Lemma can
directly be used for parametric graphs such that we obtain a formula ¢(G)(%)
such that ¢(G)[v(¥)/y) holds if, and only if, G¥ does not contain any positive

cycle.
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e Assuming we have shown the analogue statements to the lemmas [4.1.15] and
and thus have sets R;(G, s,t) as described above, we can easily adopt the
proof of Lemma [4.1.17 in order to obtain a set R%(q,q’) of QFPAD formulae
that defines the set

{(w(@),n,n') € N2 (g,n) =% (¢, 1)}

for zero-test free parametric one-counter automata.

e Finally, by guessing the order in which zero-test transitions are traversed in A
and using the sets R%(q, ¢') constructed above, we get the analogue to Lemma
and can construct for an arbitrary parametric one-counter automaton A
and control locations ¢, ¢ a set R4(q,q") of QFPAD formulae that defines the

set
{(v(),n,n') € N2 (¢,n) —*w (¢,n)}

Moreover, since the size of the constructed formulae do not change in our gen-

eralisation, we have |p| = O(|G4]?) for all ¢ € R4(q,q).

Since by Theorem satisfiability in QFPAD is NP-complete, we obtain the main

result of this section.

Theorem 4.2.2 Reachability in parametric one-counter automata is NP-complete.

As in the case of one-counter automata without parameters, this result allows us
to conclude that checking the existence of a Biichi path in parametric one-counter
automata is NP-complete as well via a straightforward adoption of the proof of Lemma

4.1.20

Theorem 4.2.3 Deciding the existence of a Biichi path in parametric one-counter

automata is NP-complete.

We close this section with the deferred construction of the sets R1(G, s,t), Ro(G, s, t)

and R3(G, s, t) for a parametric graph G and vertices s and ¢. The construction is
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analogue to the construction in Section [4.1. The main difference is that we have to
incorporate Lemma [4.2.2.

Regarding R;, suppose we are given GG and vertices s,t. Let us fix an s-t support
F and a support-edge decomposition (£}, v;,v;, €;)icjm)- For each F;, by Lemmal4.2.2]
there exists a set P(G, F;,v;, v}) of QFPAD formulae that defines the set of valuations
for which a v;-v] path flow f; exists. Each QFPAD formula in such a set P(G, F;, v;, v})
is determined by supports Fj g, F 1, ..., F;;, for some j; € [|G|?] which give the decom-
position of F; in simple paths and cycles. Thus, for any fixed s-t support F', any fixed
support-edge decomposition ([}, vs, v, €;)icjm) of ' and any fixed decomposition of all
F}; into a simple path and loops F, = (Fio, Fi, ... Fii;), Ri(G, s,t) is the smallest set

containing a QFPAD formula

def —
2 = Elze[m]cu i (G/F)(y> A
N 1
no positive cycles

N /\ QD(G>F:Z)(37> Ci?d) A

1€[m]

J/

P
there are path flows f; with weight ¢/—c; for the fixed decompositions Fi 0,5 F5 5,

A /\Zc ¢ + ule;) > —c /\Zc ci +ple) =d —c.

[m] j€li] i€[m]

J/ (& J/

vV Vv
weights of the edge decomposition sum up correctly total weight matches

Here, o(G/F)(y) is the QFPAD formula ensuring that no positive cycles exist and
(G, F)(i], ¢;, ¢}) is the QFPAD formula from Lemma/4.2.2 for the fixed decomposition
of each F;. Since the size of o(G/F)(y) dominates the size of all other conjuncts, we
have |¢| = O(|G|*) for each ¢ € Ry (G, s,t).

As in Section [4.1, the set Ry can be defined as Ry(G, s,t) = o R (G®®,1, ).

Finally, we are going to sketch the construction of the set R3(G, s,t). To this end,
we fix a support F' and cycle templates ¢ = 7y - my - 3 and ¢/ = 7} - 7, - 5. As in
the case of Ry, there is no single formula QFPAD that expresses the existence of a
valuation v and a path flow f with support F', and for that reason R3 also needs to
contain a formula for each formula in P(G, F, s,t). Thus, for all fixed s-t supports
F, all s-cycles ¢ that decompose as ¢ = 71 - mo - 73, all t-cycles ¢/ that decompose as

0" = 7y -}y - wh and all decompositions of F' into a single path F = (Fo, Fy,..., F;)
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Figure 4.5: A simple bounded one-counter automaton.

for some j € [|G|*], R3(G, s, t) is the smallest set containing a QFPAD formula

()O(G’ F7 87 t) E? gl) (g’ C7 C/) dZBf ip(G7 7T17 7T2)(y_)7 c)J /\ ?(G0p7 7T:/l? ﬂ—é)(g: C,)l /\

suitable positive cycle at s  suitable positive cycle at ¢t in G°P

e(G, F)(f.c.c)

g

there is an s-t path flow for the fixed decomposition Fy,...,F; of F

4.3 Bounded One-Counter Automata

The precise complexity of reachability in bounded one-counter automata remains an
open problem of this thesis. Recall that bounded one-counter automata are one-
counter automata in which the counter has to stay between zero and some upper
bound b € N on every run. At first sight, it might seem surprising that adding
an additional constraint makes determining the complexity of reachability harder.
However, a crucial observation in Section 4.1 was that we can use type-3 reachability
certificates in order to pump up and down the counter as necessary. It is obvious that
this approach does not work when there is an a priori upper bound on the counter.

In the remainder of this section, we are going to investigate aspects of reachability
in a simple class of bounded one-counter automata for which in the general case we
are unable to determine the precise complexity of reachability. However, we provide
some indications that the problem might still be in NP. We call the class we are
dealing with simple bounded one-counter automata. A simple bounded one-counter
automaton is presented in Figure 4.5. For simplicity, we allow for multiple edges
between control locations. Thus, a simple bounded one-counter automaton consists
of one control location ¢ and d self loops at ¢ labelled with a; € Z and a bound b € N.
It follows from Proposition [4.1.1 that the reachability problem for simple bounded
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one-counter automata is NP-hard. However, even if we are given the path flow of
a run, there is no apparent upper bound below PSPACE to verify the existence of a
run. Simple bounded one-counter automata thus provide the simplest instance of a
class of bounded one-counter automata for which we cannot determine the precise
complexity of reachability. The contribution of this section is that for d = 2 and a
given path flow, we are subsequently going to show that it is possible to check for
the existence of a run in polynomial time without actually constructing it as it is of
potentially exponential length.

Our main idea is to associate with every reachability instance and a given path flow
a polyhedron in a d-dimensional space. Checking reachability then reduces to checking
for the existence of a lattice path to some designated point inside this polyhedron
that corresponds to the path flow. For the special case d = 2, the existence of a
lattice path can be related to the number of integral points inside the polyhedron,

which is computable in polynomial time for the polyhedron that we obtain.

Definition 15 Given a simple bounded one-counter automaton A as depicted in
Figure (4.5 with edges labelled with @ = (ay,...,aq) € Z%, abound b € N and & € N4,
the polyhedron P4(¢) C RY corresponding to A is defined as

PA@) LT eR : 0<G-F<b,0<2; < ey, € [d]}

where ¥ - @ is the inner product of 7 and @, and x; and ¢; denote the i-th component

of ¥ respectively c. O

The grey shaded area in Figure 4.6] shows an example of a polyhedron P4(¢) corre-
sponding to a simple bounded one-counter automaton with two transitions such that
d = (—5,7), with bound b = 11 and ¢ = (5,4). The vector ¢ can be thought of as
a path flow and, as we are going to show below, reachability in A reduces to asking
for the existence of a lattice path in P that starts in 0 and ends in & Formally, let
d € Ny and for i € [d] let w; € {0,1}? denote the i-th unit vector, i.e., the i-th

component of w; is equal to one and all other components are equal to zero.
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Figure 4.6: Example of a polyhedron P4(¢) and a lattice path from 0 to & where
¢=(5,4) and @ = (—5,7) and b = 11.

Definition 16 Let P C R? be a convex polyhedron and ¢ € N¢ a lattice path p
of length m starting in 0 and ending in € in P is a finite sequence of unit vectors

Ui ... Uiy, such that Zke[j] ui € P for all j € [0,m] and Eke[m] Uiy = C. O

Here, the empty sum is defined to be zero. An example of a lattice path can be found

in Figure The following lemma relate runs in 7'(A) to lattice paths inside P ().

Lemma 4.3.1 Let A be a simple bounded one-counter automaton with bound b € N,
there exists a run o : (¢,0) —% (¢,n) with the corresponding path 7 in G4 if, and

only if, there exists a lattice path p starting in 0 and ending in @ in Pa(C), where

c= (fTr<€1)7 s 7f7r<€d>>'

Proof. Let o : (¢q,0) =% (¢,n) be arun and let m = e;,e;, ... ¢€;,, be its corresponding
path in G 4'. Define the desired lattice path as p oo Ui1Ui2 .. Uiy We have 0 <

k < b for all configurations (g, k) visited along ¢ and hence > Ui, € P 4(€) for all

jEli

i € [0,m]. The converse direction follows analogously. 0

LAs we allow for multiple edges between control locations, here a path is a sequence of edges

rather than a sequence of vertices.
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We remark, but do not prove, that by intersecting P4(¢) with the linear flow con-
straints from the equations to this lemma can be generalised such that
given a path flow of a run in an arbitrary bounded one-counter automaton corre-
sponds to the problem of deciding the existence of lattice paths in the corresponding
convex polygon.

As stated earlier, in the case of two dimensions it is possible to decide the existence

of a lattice path in terms of the discrete volume of P4(¢). In the following, let

D(P) & 4(P N Z?) denote the discrete volume of a polyhedron P.

Lemma 4.3.2 Let P4(C) be the polyhedron corresponding to a simple bounded one-
counter automaton A with ¢ = (¢, c3) € N? and let n = ¢, +cy. There exists a lattice

path p from 0 to & in P4(¢) if, and only if, D(P) > n+1.

Proof. (“=") Let p = uj1 ... uj, be alattice path in P4(¢). We have that } -, ., uilk €
P4(€) N7Z? for j € [0,n] and since each u;; # 0 we conclude that D(P4(6)) > n + 1.

(“<") If there is a point (¢},c;) € Pa(€) such that (¢} — 1,¢,) € P4(c) and
(¢, ¢y — 1) € Pa(€) then we have |ai| + |az| < b. Hence, any point in P4(¢) has a
predecessor in P4(¢) and thus every point in P4(¢) is reachable via a lattice path
starting from the origin.

It remains to consider the case in which each & € P4(¢) N Z* has at most one
predecessor. For i € N, set D; & {z: (z,1) € Pa(é) NZ*}. We have #(D; N D;y1) <
1 since otherwise some point in P4(¢) has two predecessors. Since D(P4(¢)) =
Zie[(),@] #D; > ¢1 + co + 1 this implies #(D; N D;41) = 1 for all i € [0, ¢ — 1]. Thus,
every pair of D; and D, contains a point with the same x;-coordinate, which allows

us to construct a unique lattice path from 0 to & O

Considering the example in Figure [4.6, we see that the polyhedron P4(¢) contains
10 integral points, which by the previous lemma proves the existence of a lattice
path from 0 to (5,4). It remains to show that the discrete volume D(P4(@)) of
P 4(¢) can be computed in polynomial time. Our first observation is that D(P4(c))
can be expressed as a sum of simpler polyhedra. Let us denote by A(P, Py, P3)
and A(P], P, Py) the triangles with endpoints Py, Py, Ps respectively P|, P, P;, by
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O(Py, Pj, Py, Ps) the rectangle with endpoints P|, P, Py, P;, and by PP, and P[P,
the lines between P, and P; respectively P| and Pj in Figure4.6. Since all endpoints
lie at the intersection of linear functions with rational coefficients, all endpoints are

rational. The discrete volume of P 4(¢) can now be expressed as

D(Pa(€)) = D(O(F, P3, Py, Py)) = D(A(Py, Py, Py)) — D(A(P], By, P))

+ D(PR,) + D(P/P}). (4.10)

We have that D(O(P], P§, Py, P3)) = (¢1 + 1)(c2 + 1), which clearly is computable
in polynomial time. Regarding D(P,P,) and D(P]Pj) we observe that given a linear
function f(z) = (mz+n)/l with ged(m,n,l) =1, f(x) € Zforx = kl-n/m, k € Z. It
follows that the number of lattice points of f(x) in an interval [z, z1] can be obtained
by evaluating |(x; +n/m)/l] — [(xo +n/m)/l] + 1, which clearly can be computed
in polynomial time. Finally, by giving a generalisation of Pick’s theorem, Beck shows
[7] that the discrete volume of triangles with rational endpoints is computable in
polynomial time. Summing up, it follows that D(P4(¢)) is computable in polynomial
time via Equation (4.10). Hence by Lemma [4.3.2, the existence of a lattice path in

P4(€) can be decided in polynomial time.

4.4 Discussion

This chapter established previously unknown complexity results about reachability
problems in various classes of counter automata. We showed that reachability in
one-counter automata is NP-complete, and, based upon that result, that reachabil-
ity in parametric one-counter automata is NP-complete as well. For the latter class,
we showed an interesting connection with satisfiability in quantifier-free Presburger
arithmetic with divisibility. We have also proved that reachability in k-counter au-
tomata with no zero tests is undecidable for £ > 4. Finally, we discussed reachability
in bounded one-counter automata, which remains an open problem of this thesis.
Our result on reachability in one-counter automata solves a problem left open by

Rosier and Yen about boundedness in one-counter automata [95]. It can also be seen
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to generalise a result by Plandowski and Rytter who show in [89] that deciding mem-
bership of compressed unary words in regular expressions with compressed constants
is NP-complete. Together with the inter-reducibility result between reachability in
two-clock timed automata and bounded one-counter automata in Chapter 3, our re-
sult on reachability in one-counter automata also gives some hints that reachability
in two-clock timed automata might be in NP. The result on reachability in para-
metric one-counter automata is closely related to work by Ibarra et.al. [65], which
shows decidability of reachability for a subset of the class of deterministic parametric
one-counter automata with sign tests. The decidability of reachability over the whole
class of such automata is stated as an open problem in [65]. Note that although we
do not allow negative counter values and sign tests, we allow for nondeterminism.
Thus, our result is incomparable with this open problem. From a language-theory
perspective, it is interesting to mention that parametric one-counter can generate
traces of the form a"b"c", which cannot be generated by pushdown systems [6]. The
result that reachability in parametric one-counter automata is decidable has recently
been used by Demri and Sangnier in order to show decidability of model checking a
fragment of freeze LTL over one-counter automata [41].

With regard to future work, the status of reachability in bounded one-counter
automata is a compelling problem that remains to be solved, in particular due to its
connection to reachability in two-clock timed automata. It is not clear at the moment
whether the lattice-path approach presented in Section [4.3 can be generalised for
simple bounded one-counter automata with more than two transitions. If this were the
case, employing similar decomposition techniques that have been used in Section
could then possibly help to solve the general problem. We have seen that determining
the complexity of reachability in one-counter automata almost immediately yields
decidability of reachability in parametric one-counter automata. It seems conceivable
that determining the complexity of reachability in bounded one-counter automata is
going to give a similar result for parametric bounded one-counter automata, which in
turn might give a result for reachability in parametric two-clock timed automata as

discussed at the end of Chapter (3.
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A further direction for future work would be to consider synthesis problems for
parametric one-counter automata that ensure that no Biichi paths exist in the one-
counter automaton obtained under a valuation. There is no obvious way to obtain a
solution to this problem via a straightforward adoption of the techniques developed in
Section Without going into too much detail, in particular QFPAD does not seem
to be expressive enough to capture such a problem, since we ask whether there ezists a
valuation to the parameters such that all paths are no Biichi paths, which essentially
involves one quantifier alternation. Although the first-order theory of (N, <, +,-,0,1)
is already undecidable with one 3V quantifier alternation [75], there exist syntactic
fragments of the first-order theory of (N, <,+,-,0,1), which are decidable [17]. It
should be interesting to investigate whether such a syntactic fragment allows for

encoding and solving this synthesis problem.
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Chapter 5

Model Checking One-Counter

Automata

This chapter is about model checking traces of transition systems generated by one-
counter automata and families of transition systems generated by parametric one-
counter automata. Model checking a labelled transition system 7" = (S, —, A, \) is
to determine whether a formula ¢ given in some temporal specification logic holds
in a state s € S of T', which we write as (T, s) = ¢. Generally speaking, a formula
holds in a state if the traces that begin in this state are a model of this formula.
The precise semantics depend on the type of specification logic under consideration
and mainly differ depending on whether we deal with branching-time or linear-time
logics. Details are going to be provided in the respective sections of this chapter.
In all generality, this chapter is about the computational complexity of the following

problems.

OCA MoDEL CHECKING

INPUT: A one-counter automaton A, a formula ¢ in some specification logic
and (q,n) € C(A).
QUESTION: Does (T'(A),(q,n)) E ¢?

For parametric one-counter automata, we are going to consider model checking the
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family of all transition systems generated by all instantiations of the parameters.

POCA MobDEL CHECKING

INPUT: A parametric one-counter automaton A with parameters Y, a formula
¢ in some specification logic and (¢, n) € C(A).
QUESTION: Does (T'(A),(g,n)) [= ¢ for all valuations v : Y — N7

There are a number of computational challenges involved in solving the above prob-
lems. First, in general, transition systems generated by one-counter automata have
an infinite number of traces leaving from a given state. Second, a parametric one-
counter automaton yields an infinite family of one-counter automata since there are
infinitely many possible instantiations. It should not be surprising that some model
checking problems turn out to be undecidable.

The first part of this chapter deals with the branching-time logics. We are going
to consider computation tree logic (CTL) and its syntactic fragment EF and show that
CTL model checking of one-counter automata is EXPSPACE-complete, whereas it is
PSPACE-complete for EF. For both logics, the model checking problem for parametric
one-counter automata is undecidable. The second part then deals with linear-time
temporal logic (LTL), for which model checking one-counter automata is PSPACE-
complete and coNEXPTIME-complete for parametric one-counter automata. Except
for the EF case, the lower bounds are going to be the most interesting. They rely on
some number-theoretic encoding of information in counter values, and we are going
to construct one-counter automata and formulae in the specification logics under
consideration that allow us to access this information in quite sophisticated ways.
Where possible, we will give a fine-grained analysis of the computational complexity
of the model checking problems and distinguish between their combined and their
data complexity. When establishing the combined complexity of a model checking
problem, the counter automaton and the formula are allowed to vary. When dealing
with the data complexity of a model checking problem, the counter automaton is
allowed to vary but the formula is fixed.

Many of the upper bounds provided in this chapter rely on results from the lit-
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erature on model checking of one-counter automata with updates encoded in unary.
We are now going to describe a procedure, which turns a one-counter automaton
into a unary one-counter automaton and is going to enable us to make use of those
results. The underlying idea is straightforward: we are going to replace every transi-
tion updating the counter by a chain of unary updates. All control locations that are
newly introduced during this process are going to be labelled with some designated
fresh label, which will later allow us to distinguish old from new control locations.
More formally, given a one-counter automaton A = (Q, A, qo, F, A, X\, §), the unary
one-counter automaton A" = (Q', A\, qo, F, A", N, &) corresponding to A is obtained
from A by

e introducing for each transition (q,¢") € A of A labelled with add(z), |z| > 1,
|z| — 1 new control locations (¢,¢’,1),...,(q,¢, |2| —1) € @' that are all labelled
by A with a fresh label «;

e removing the transition (g, ¢’) for any such transition from A’;

e introducing new transitions (g, (¢,¢', 1)), (¢, ¢, |2[=1),¢') € A"and ((¢, ¢, ), (¢, ¢, i+
1)) € A’ for all i € [|z| — 2] that are all labelled by ¢ with add(+1) if z > 1 and
labelled with add(—1) if z < —1; and

e otherwise leaving A unchanged.

We have |A'| = O(exp(|A])). Note that A" can be constructed from A with a PSPACE

transducer.

5.1 Branching-Time Logics

This section considers model checking formulae of the branching-time logic CTL and
its syntactic fragment EF on transition systems generated by one-counter automata
and families of transition systems generated by parametric one-counter automata.

The syntax of CTL is given by the following grammar, where v ranges over a set of
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labels A:

pu=7leNeo| o | EXe | E(pUp) | E(pWUyp).

The size |¢| of a CTL formula ¢ is the number of symbols required to write it down.
We define true & —(y A —y) for some v € A. The additional Boolean connectives are
defined as follows: @1 V o o —(—1 A =), p1 — P2 o —p1 Vg and @1 <> @y o
p1 — o Ay — 1. Moreover, we introduce the following additional modalities:
EFp &f trueUyp, AGyp &f —EF—p and AXyp &f —EX-p. The branching-time logic EF is

defined as a syntactic fragment of CTL by the following grammar:

=7 pANe| @ | EXe|EFp.

An EF formula is in negation normal form (NNF') if all negation symbols only occur in
front of a label. Using standard algorithms and the modal abbreviations introduced
above, any EF formula can be turned into one in negation normal form in polynomial
time.

The semantics of CTL and EF are presented in Table 5.1/ and given in terms of a
labelled transition system 7" = (S, —, A, \) and a state s € S.

In [98], Serre shows that modal p-calculus model checking of unary one-counter
automata is decidable and in PSPACE. Since CTL can be embedded into the model p-
calculus [20], it follows that CTL model checking of unary one-counter automata is in
PSPACE. We are going to use this result in order to show that CTL model checking of
one-counter automata is in EXPSPACE. Given a one-counter automaton A, let A’ be
the unary one-counter automaton corresponding to A as described in the introduction
of this chapter. Given an instance A, ¢ and (¢,n) of a CTL model checking problem,
the idea is to compute a modified CTL formula ¢! such that (T'(A), (¢,n)) E ¢ if,
and only if, (T'(A’), (¢,n)) | ¢'. Informally speaking, the formula ¢! needs to ignore
states labelled with the fresh proposition «. It is formally defined as follows:

7y (EXp)t & EX(E(aU(—a A ¢h))
(o1 A pa) € ol A gl (E(p1Up2))" € E((a v o))U(ma A @)
(—p)t & =t (E(p1WUp2))T EE((a v o] )WU(=a A pl))
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(Tos)Er = 7€EAH)
(Tos)Eeinhps <= (T's) = g1 and (T,5) |= ¢
Ts) - = (Iis)Fo
(T,s) = EXp — (T,s") E ¢ for some s’ € S with s — &
(T, s) E E(¢1Ugps9) = there are n € N, s1,...,s, € S such that s; = s,
si — Siv1, (T, 8;) |E ¢y for all i € [n — 1]
and (T, s,) E @2
(T, s) = E(o1WUps) = (T, s) = E(¢1Ugy) or there are sq,83,... € S

such that s; = s,8; — ;11 and (T, 8;) = ¢4

for all i € Nyg

Table 5.1: Semantics of CTL.

Note that the size of ¢! is linear in the size of ¢. The following lemma establishes

the correspondence between A and ¢ and A’ and .

Lemma 5.1.1 Let A, ¢ and (q,n) be an instance of an CTL model checking problem,
and let A" and ¢ be defined as above. Then (T(A),(q,n)) E ¢ if. and only if,

(T(A), (g.n)) |= ¢

Proof. We sketch a proof by structural induction on ¢ and only consider the inter-
esting cases ¢ = EX¢', ¢ = E(p1Ups) and E(p;WUgps). For o = EXy', suppose
(T'(A),(g,n)) E ¢, by the semantic definition there is a (¢, n’) such that (¢,n) —4
(¢,n') and (T(A),(¢,n")) & ¢'. By the induction hypothesis, (T'(A),(¢,n")) E
(¢")t. Moreover, there is a (q,n)-(¢’,n') path ¢ in T(A’) such that (T(A’), o(i)) F «
for all i € [2,]0]]. Consequently, (T'(A’), (g,n)) | EX(E(aU(=a A ¢1))).

For ¢ = E(p1Uyps), by the semantic definition there exists a (q,n)-(¢',n’) path
o in T(A) such that (T(A),(¢,n")) E 2 and (T(A), 0(i)) E ¢ for all i € [|g|].
By the induction hypothesis, (T(A"), (¢',n')) = @} and (T(A"), 0(i)) = ¢! for all
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i € [lo]]. Moreover, for all ¢ € [|o|] there are o(i)-o(i + 1) paths p; in T'(A’) such
that (T'(A"), 0:(j)) E « for all j € [2,]o;]]. Consequently, (T'(A"),(q,n)) E E((av V
©NU(=a A @})). The same argument can be adopted to the case of ¢ = E(¢1WUgp,).

The converse direction follows analogously. O

By the results from [98], deciding (T(A’),(¢,n)) = ¢' is in PSPACE in the sum of
|A|, |¢T| and the unary representation of n. Thus, deciding (T(A), (q,n)) &= ¢ is
in EXPSPACE in the sum of |A], |¢| and the binary representation of n. Moreover,
this immediately gives us I19-membership of CTL model checking on parametric one-
counter automata. Given a parametric one-counter automaton A and a CTL formula
©, in order to decide whether there exists a valuation v such that (T'(A"), (¢,n)) ¥~ ¢,
we can enumerate all possible valuations v and check (T7'(A"), (¢,n)) = ¢. Enumer-
ating all possible valuations of parameters Y can for example be done by iterating

over every ¢ € N and considering every valuation v such that Zer v(y) = i.

Proposition 5.1.1 Model checking CTL on one-counter automata is in EXPSPACE

and in H(l] for parametric one-counter automata.

5.1.1 EF Model Checking

We are now going to establish the computational complexity of EF model checking of
one-counter and parametric one-counter automata. For one-counter automata with
updates encoded in unary, this problem has first been considered by Jancar et al. in
[68] who established a DP lower boun. A couple of years later, Goller, Mayr and
To showed that the problem is actually PNP-complete? [51].

The first part of this section considers EF model checking of one-counter automata,
where we show that the problem is PSPACE-complete. The more difficult part is
showing membership in PSPACE, which is achieved by a thorough periodicity analysis
of paths in weighted graphs and builds upon and extends the results from Chapter

LA language L is in DP if L = L, N Ly for languages L1 € NP and L, € coNP.
2PNP 5 the class of problems solvable by a polynomial-time algorithm that has access to an NP

oracle.
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4. The second part then considers parametric one-counter automata. We are going
to show that EF model checking is IT{-complete and provide a lower bound via a
reduction from Hilbert’s tenth problem.

EF Model Checking of One-Counter Automata

We are now going to show that EF model checking of one-counter automata is
PSPACE-complete. For the lower bound, we reduce from validity of quantified Boolean

formulae.

Definition 17 A quantified Boolean formula (QBF) 1 is a formula of the form

Y =0Q121.Qa. .. QnTpn.d(T1,...,2,),
where ¢ is a Boolean formula and @; € {3,V} for all i € [n]. O

The wvalidity of a QBF formula v is defined by induction on n. For n = 0, ¢ is
a propositional formula ¢, and v is valid if ¢ evaluates to true. For n > 0 and

b= Q21.Qos . .. Qun.d(a1, ..., 70),
e if Q; = 3 then ¢ is valid if
— Qoo Qun.(0]0/21]) (Tas . . . ) OF
— Qoa. .. Qun.([1/21]) (72, . . ., 2,) are valid; and
o if Q, =V then ¢ is valid if

— Q22 ... Quxy.(Pl0/x1]) (22, ..., x,) and

— Q2% ... Quxy.(P[1/x1]) (24, . .., x,) are valid.

Checking validity of a quantified Boolean formula is a PSPACE-complete problem [100]
and remains PSPACE-hard if we restrict the matrix formula ¢ to be in 3-CNF.
QBF 3-SAT

INPUT: A QBF formula ¢ = Q1 ... Qnx,.0(21, ..., x,) with ¢ in 3-CNF.
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Figure 5.1: One-counter automaton A constructed in the proof of PSPACE-hardness
of EF model checking.

QUESTION: Is ¢ valid?

We are now going to show PSPACE-hardness of EF model checking of one-counter au-

tomata via a reduction from QBF 3-SAT. Given an instance ¢ = Q121 . .. Qn2,.¢(z1, . ..

of QBF 3-SAT, the idea is to encode an assignment of the Boolean variables into the
bits of the counter. The EX and AX modalities can then be used in order to simulate
the quantifiers of ¢, and the gadgets A, ; from Section|2.5.2/that allow for testing indi-
vidual bits of the counter in order to check whether an encoded assignment evaluates

¢ to true.

Proposition 5.1.2 Model checking EF on one-counter automata is PSPACE-hard.

Proof. Let ¥ = Q121 ... Qunxy.d(x1, ..., x,) be an instance of QBF 3-SAT. Consider
the one-counter automaton A in Figure Starting in ¢, on any path to ¢’ the
automaton can non-deterministically add 2° to the counter for each i € [n], where
adding 2! indicates that the Boolean variable z; is set to 1. The control location ¢’
is then connected to gadgets A, 1, ..., A, from the example in Section 2.5.2, which
are such that starting in O, a location labelled with ; is reachable in A, ; if, and
only if, the i-th bit of the counter is set to 1, i.e., if 2¢ has previously been added to
the counter.

We now show how to derive from ) an EF formula v such that 1 is valid if, and
only if, (T'(A), (¢,0)) = 9. For a literal z;, we define a:j def EFy; and for a literal —z;
we set (—a;)T def —a:ZT. For ¢ = (L1 V liaVUlz)Nooo A(bmaVLlmaV lys), we set
ot & (6;1 Y [{,2 v 51’3) Al 1V o o V TN 3) and for a quantifier @ € {3,V}, we
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set 37 & EXEX and Vi & AXAX, and finally define o' % QTQL ... Q1 (41). Tt is easily
checked by induction on n that ' has the desired properties. O

We now turn towards showing that EF model checking of one-counter automata is
in PSPACE. Decidability of the problem already follows from Proposition 5.1.1, but
only gives us an EXPSPACE upper bound. In order to obtain a PSPACE algorithm,
we show a periodicity property of EF formulae. Informally speaking, this is going
to allow us to shrink the search space of counter values to consider when trying to
prove or disprove formulae of the form EFy, which a priori require the inspection of
a potentially infinite number of configurations.

To begin with, we state the following lemma. Informally speaking, it says that for
every one-counter automaton we can find constants k and d polynomial in the size of
A and polynomials p, p’ such that p/(k) serves as a threshold above which whenever
there is a path whose absolute weight is greater than p(k) we can find a path whose
weight increases by the period §. This gives us a periodicity property for reachability

relations.

Lemma 5.1.2 Let A be a one-counter automaton. There exist constants k,0 =

O(|A|?) and fized polynomials p,p’ such that for all (q,n),(¢',n’) € C(A),

(i) if n—n' > p(k) andn’ > p'(k) then (¢,n) =% (¢',n') if, and only if, (¢,n+0) —7%

(¢',n); and

(it) if 0’ —n > p(k) and n > p'(k) then (q,n) =% (¢',n') if, and only if, (¢,n) —7%
(¢',n" +9).

The proof of this lemma is quite tedious and technical, and we defer it to the end of
this section. In the following, let us fix a one-counter automaton A, the constants
k,0 and the polynomials p,p’ from the Lemma [5.1.2. When proving Lemma [5.1.2,
the construction of the polynomial p will ensure that p(k) is greater than the absolute
maximum increment in A. This ensures that if there is a run ¢ : (¢,n) =% (¢, )

such that n —n’ > p(k) then this run can be decomposed as ¢ = g1 - g2 such that
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o1:(¢,n) =% (¢",n"), 02 : (¢",n") =% (¢',n') and n — n” < p(k). We will implicitly
use this fact in the subsequent lemmas.
We now show the periodicity property for EF formulae: given an EF formula ¢,

there exists a threshold polynomial in |A| and |p| such that ¢ holds with period .

Lemma 5.1.3 Let ¢ be an EF-formula in negation normal form and n > p(k)|e| +
p'(k). Then (T(A),(q,n)) = ¢ if, and only if, (T(A), (q,n +0)) |= .

Proof. We show the statement by structural induction on ¢ and consider the only
interesting cases p = EX¢' and ¢ = EF¢’. For ¢ = EX¢’, by the semantic definition
there exists a configuration (¢’,n’) such that (¢,n) —4 (¢/,n') and (T(A), (¢',n)) =
¢'. Since n' > p(k)|¢'| + p'(k), the induction hypothesis yields (T'(A), (¢/,n')) E ¢’
if, and only if, (T'(A),(¢',n' +0)) = ¢, hence (T(A),(q,n)) = ¢ if, and only if,
(T(A). (q.n+9)) = ¢

If ¢ = EFy/, by the semantic definition there is (¢’,n’) such that there is a run
o:(qg,n) =% (¢,n') and (T'(A), (¢, n)) = ¢'. Let m be the path corresponding to
o in G 4. We distinguish two cases: (a) the smallest counter value occurring along o
is less than n — p(k) and (b) the smallest counter value occurring along o is at most
n — p(k). In the latter case (b), no zero-labelled transition occurs along o. Moreover,
n' > p(k)|¢'| + p'(k) and hence by the induction hypothesis, (T'(A), (¢',n)) E ¢
if, and only if, (T(A), (¢,n +9)) | ¢'. Consequently, we obtain the run ¢ + § :
(g,n +0)) =% (¢,n' + 9)), which gives (T'(A), (¢,n + J)) = EF¢’. Otherwise in
case (a), we can decompose g into ¢ = ¢’ - ¢” such that ¢ : (¢,n) =% (¢",n"),
o (¢",n") =* (¢,n), n" > p/(k) and n — n” > p(k). By Lemma 5.1.2(i), we get
(g,n) =% (¢",n") if, and only if, (¢,n + ) =% (¢",n"), hence (T'(A), (¢, n +0)) =
EFy'. O

We can now provide the EF model checking algorithm. Algorithm 2/is an alternat-
ing algorithm that given a one-counter automaton A, a configuration (¢,n) and an
EF formula ¢ in negation normal form returns true if, and only if, (7'(A), (¢,n)) = ¢.
The algorithm proceeds via induction on the structure of ¢. The first lines deal with

the cases ¢ = v, p = =y, ¢ = Y1 A g and p = 1 V @9, which are defined in a
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Algorithm 2 EF model checking algorithm deciding (T'(A), (¢,n)) E ¢

Input: One-counter automaton A, EF formula ¢ in NNF, (¢,n) € C(A)
case p = 7: return v € \(q)
case ¢ = —vy: return v ¢ \(q)
case ¢ = 1 A ot Teturn (T'(A), (¢.n)) F 1 && (T(A), (¢,n)) F o2
case ¢ = 1V @y: return (T'(A), (q,n)) |= o1 || (T(A), (g, n)) E ¢2

case ¢ = EXy': existential move:

q':= choose A(q)

case {(q,¢') = add(z) && n+ z > 0: return (T(A), (¢',n+2)) = ¢’
case £(q,q') = zero && n = 0: return (T'(A), (¢,0)) E ¢’
otherwise: return false

case p = AX¢': universal move:

q:= choose A(q)

case £(q,¢") = add(z) && n + z > 0: return (T(A), (¢',n +2)) = ¢
case £(q,q") = zero && n = 0: return (T(A), (¢,0)) E ¢’
otherwise: return true

case ¢ = EFy’: existential move:

¢ := choose A(q)
n' := choose {m € N: m <max{n + 2p(k),p(k)|¢'|} +p'(k) + 6+ 1}
existential move:

if (¢,n) =74 (¢',n') then return (T'(A), (¢, 7)) |= ¢/

else return false

case ¢ = AGy': universal move:
¢ := choose A(q)
n’ := choose {m € N :m < max{n + 2p(k),p(k)|¢'|} + (k) + + 1}
existential move:

if (¢,n) —% (¢',n') then return (T'(A), (¢',n")) = ¢’

else return true
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straightforward way by just expanding the semantic definition of EF formulae. The
cases p = EX¢’ or ¢ = AX¢' are also straightforward. In the former case, a successor
configuration (¢’,n’) of (¢,n) is non-deterministically chosen, and Algorithm [2 then
recursively determines (T'(A), (¢',n')) = ¢'. In the latter case, the algorithm checks
(T(A),(¢',n')) = ¢ for all possible successor configurations (¢',n’) of (¢,n). There
are two cases remaining: ¢ = EFy¢’ and ¢ = AGy'. For ¢ = EFy’, the algorithm

non-deterministically chooses a configuration (¢',n’), where
n' < max{n + 2p(k), p(k)|¢'|} + p'(k) + 0 + 1

It then checks whether (¢,n) —% (¢/,n’), recursively checks (T'(A), (¢',n')) E ¢’ and
returns the result. The algorithm handles the case ¢ = AGy’ analogously, but checks
(T(A),(¢',n)) E ¢ for all (¢’,n) with n’ as above such that (¢,n) —% (¢,n'). It
is clear that Algorithm 2/ runs in alternating polynomial time, in particular since the
quantification in the EF and AG case is over a set of elements of size polynomial in
the size of A, n and ¢. Hence by Theorem [2.4.1, the algorithm runs in PSPACE.
The correctness of the algorithm is immediate for all cases except for the EF and AG

modalities.

Proposition 5.1.3 Given a one-counter automaton A, (q¢,n) € C(A) and an EF
formula ¢, Algorithm |2 decides (T(A), (¢,n)) E ¢ in PSPACE.

Proof. As discussed above, the algorithm runs in alternating polynomial time and
hence in PSPACE.

Correctness of the algorithm is shown by induction on the structure of ¢. As
already discussed, we only consider the cases ¢ = EF¢’ and ¢ = AGy'. Sup-
pose (T'(A), (q,n)) = EF¢', by the semantic definition there exists (¢’,n’) such that
(g,n) =% (¢',n') and (T'(A), (¢',n')) = ¢'. In order to prove Algorithm|[2 correct, we
need to show that there is n” < max{n + 2p(k), p(k)|¢'|} + p'(k) + § + 1 such that
(q,7) =% (¢, n") and (T(A), (¢,n")) | @' 160 > masc{n-+2p(k), p()| |} +7/ (k) +
d + 1, it follows from Lemma 5.1.3 that (T'(A), (¢,m)) [= ¢’ for all

me{n +id:ieZn{m e N:m'>pk)|le|+p'(k)}.
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Moreover, we have (¢,n) —7% (¢, m) for all
me{n +id:ieZin{m eN:m' >n+2pk)+p(k)}

The latter fact follows directly or indirectly from Lemma [5.1.2(ii): if n > p/(k) then
we can directly apply Lemma 5.1.2(ii). Otherwise, thereisarun o: (¢,n) =% (¢",m')
such that m' > p/(k), n' —m/' > p(k) and (¢",m') =% (¢’,n'). It follows that the
required n” exists.

The case ¢ = AGy' follows analogously to the EF case. O

It remains to prove Lemma[5.1.2. The proof is split into several smaller lemmas
and begins with showing periodicity properties of weights of paths in weighted graphs.
Let us fix a weighted graph G = (V, E, ). We define a period ¢, which is going to
be the least common multiple of the greatest common divisors of all weights of all
simple cycles in all strongly connected components of GG. Formally, given a strongly

connected component S of G, we define

M(S) o {2z € Z\ {0} : there is a simple v-cycle ¢ s.t. v € S and weight(¢) = z} and

ged(S) & 1 if M(S)=10
ged(M(S)) otherwise

The period 0 is now defined as
5 lem({ged(S) : S is a strongly connected component in G}).

Let r € N be the absolute maximum value of all weights occurring as labels in G and
let k & r|V|, i.e., the maximum absolute value that the weight of a simple cycle in
G can be. Since 1 < ged S < k for any strongly connected component S, we have
1 <6 < |V|k. Thus, the binary representation of § is O(|G|?).

In order to show a periodicity property of weights of arbitrary paths in weighted
graphs, we are first going to establish a periodicity property for cycles. Recall that
S(v) denotes the strongly connected component of v, our first observation is that

ged(S(v)) divides the weight of any v-cycle.
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Lemma 5.1.4 Let S be a strongly connected component, v € S and £ be a v-cycle

such that g = ged(S) and z = weight({), then g|z.

Proof. We show the statement by induction on |¢|. For the induction step, let ¢ be
obtained from ¢ by removing some simple w-cycle ¢,, from ¢ for some w € S. We
have z = weight (') + weight({,,). By the induction hypothesis, g|weight(¢') and the
definition of ged(S) yields ged(S)|weight(¢,,), hence g|z. O

The converse is however not true in general. For example, if there were exactly two
simple v-cycles in S with weights 5 and 7 say, no v-cycle can have weight 23 even
though ged(5,7) = 1 divides 23. Determining which weights can be achieved by some
cycles relates to the Frobenius problem for which the following result is known. For

a proof, see e.g. [99].

Proposition 5.1.4 Let a1 < ... < a, € Nyg, g = ged{ay,...,an} and p(Z) =

a1x1 + ... + @y, be a linear polynomial with constant term zero. The set
M = {z € Z : there exists i € N™ such that z = p(7i)}

can be written as M = U U a + gN, where U C [0,a%] and a = min{n € N: n > a?,

and g|n}.

In the above example, this proposition implies that for any n > 49 there is a v-cycle
¢ such that weight(¢) = n. Since simple cycles in strongly connected components can
have mixed positive and negative weights, we need a slightly more general version of

this proposition for our purposes.

Lemma 5.1.5 Let a1 < ... < ap, € Z, n = maxX;cpm{|ai|}, g = ged{as, ..., an}, and
let a,p(Z) and M be defined as in Proposition 5.1.4. Then

(i) if a; >0 then M = U U a + gN for some U C [0, n?];
(ii) if am < 0 then M = U U —a — gN for some U C [-n?,0]; and
(iii) if a1y < 0 and a,, > 0 then M = gZ.
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Proof. (i) This case follows immediately from Proposition[5.1.4. (ii) Define a ey
for all i € [k]. We have that p/(¥) = ajz1 + ... + al,x,, is an instance of case (i) with
integral solutions M’ and M = {—2': 2/ e M'} = {—v' : v/ € U'} U—a — gN. (iii)
By Euclid’s theorem, there exists 4 = (y1,...,ym) € Z™ such that g = p(¢). For any
z € M, by setting ¢/ o (y12/9,- -, ymz/g), we have z = p(g]) We now show how
to obtain @ € N™ from 3 such that z = p(7). To this end, we iterate the following
process: for any a; such that a; < 0 and y; < 0, let 2; € N be chosen such that
yi + z;a, > 0 and replace y; with y; + z;a,, and y,, with y/ + x;|a;|. Once y; > 0 for
all i such that a; < 0, we turn towards those a; for which a;, > 0 and y} < 0. For any
such a;, let z; be chosen such that y} + z;|a;| > 0. We replace y, with y; + x;]a;| and

y1 with y; + x;a,. After this process has finished, we obtain a vector 7 € N™ such

that p(77) = p(y). D

The previous lemmas indicate that once we cross a certain threshold, the converse
direction of Lemma begins to hold. We are now going to make this intuition
formal. Recall that G = (V, E, ) is a fixed weighted graph and let k& be defined as
above, i.e., the maximum absolute weight that can be achieved on a simple cycle
in G, and let 9 be the period as defined above. We define three fixed polynomials
P1, P2, p3 that yield bounds for the periodicity properties that we aim to establish. The
intention behind the polynomials is as follows: whenever there is a v-cycle ¢ such that
weight (¢) < —po(k) we can construct a v-cycle ¢ such that weight (¢') = weight(¢) — 0,
which yields the desired periodicity property. The analogue relationship holds for
cycles with positive weight. Building upon this result, we then show that for an
arbitrary v-w path 7m with weight(7) < —p3(k), we can construct a v-w path 7’ such
that weight(n') = weight(m)—0. In both cases, the drop of ¢ and 7’ does not decrease
by more than p;(k). The three polynomials are defined as follows:

def

pi(k) =

def

2k% + k po(k) 3K+ k ps(k) = (k+ 1) (pa(k) + )

We are now going to show the periodicity property for cycles and paths with negative
weights and then use symmetry to lift our results to cycles and paths with positive

weights.

131



Lemma 5.1.6 Letv € V and g = ged(S(v)). For any z € Z such that z < —po(k),

(i) if there exists a v-cycle { with weight({) = z then there exists a v-cycle ¢ with
weight(0') = z — 0 and drop({') > z — § — py(k); and

(11) if there exists a v-cylce € with weight({) = z — § then there exists a v-cycle '
with weight(¢') = z and drop({') > z — p1(k).

Proof. We show (i), statement (ii) follows analogously. Let ¢;,...,¢; be all simple
v;-cycles in the strongly connected component of v. We have ¢; € [k, k| for all ¢;, and
hence j € [2k]. Let m; denote a simple v-cycle that traverses vy, i.e., m; = m;1 - 7; 2 for
a simple v-v; path m; ; and a v;-v path ;2. Since j € [2k], we have Ziem weight (m;) >
—2k? and hence m &z — > icpy) weight(m;) < —k? — k. By Lemma[5.1.4, we have
ged(S(v))|0 and hence Lemma [5.1.5 guarantees the existence of a;...,a; € N such
that

m — 0 = ayweight((y) + ... + ajweight(£;).

With no loss of generality, we assume that the weights of the ¢; are ordered, i.e.,
weight(Cy), ..., weight((y) < 0 < weight(ly41),. .., weight(¢;) for some g € [j]. Set

= l, - g, where

def CLI a/.

by =Tgr10 - Lgi1™ott - Tgpno oo Ty 4% - T
def a’ a

0y =711 < T2 ..t Tg 'gg YTy

Thus, ¢, traverses all positive cycles and ¢, all negative cycles. Clearly, weight(¢') =
z — 0. Regarding the drop of ¢, since all loops in ¢, are positive, we have drop(¢,) >
—2k? — k, as this is the minimum total weight that the m; can take. The same
argument yields drop([(;) > —2k* — k. In order to estimate drop(¢'), using Lemma
4.1.2, we conclude that
drop(€") = drop(£, - £g)

= min{drop(¢,), weight(¢,) + drop({4)}

— min{drop (), weight((,) + weight(£q) + drop(h)}

> weight({') — 2k* — k.
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Consequently, drop(n’') > z —§ — p1 (k). O

As stated earlier, building upon this lemma, we can now show a similar statement for

arbitrary paths with negative weight that exceeds —ps(k).

Lemma 5.1.7 Let v,w € V. For all z € Z such that z < —p3(k),

(1) if there exists a v-w path m with weight(mw) = z then there exists a v-w path 7

with weight(n') = z — ¢ and drop(w') > min{drop(w) — §,z — 6 — p1(k)}; and

(ii) if there exists a v-w path m with weight(w) = z — § then there exists a v-w 7'

with weight(n') = z and drop(7’) > min{drop(w) + 0,z — p1(k)}.

Proof. We show statement (ii). Statement (i) can be shown in a similar way. Suppose
there exists a v-w path 7 with weight(m) = z — . We divide z into k + 1 evenly sized
segments, so each such segment has size at least py(k) — d. Since |V| < k, it thus
follows that we can write 7 as m = 7y -£- o such that 7y is a v-v’ path, drop(m) > z—94,
¢ is a v'-cycle for some v € V', weight({) < —pa(k) — 9, weight(my - £) > z and my
is a v'-w path. Lemma 5.1.6 yields a v'-cycle ¢ with weight({') = weight(¢) + 6
and drop({') > weight(¢) + 0 — pi(k). We define 7" as 7’ © 0w Clearly,
weight(n") = weight(m) + 0 = z. Regarding the drop of 7', using the identities from
Lemma 4.1.2, we have

drop(w') = drop(my - €' - 79)
= min{drop(my), weight(my) + drop(¢' - o)}
= min{ drop(m ), weight(m) + drop(¢'), weight(my - ') + drop(ma))}
> min{z, z — p1(k), drop(m) + 6}
= min{z — py(k), drop(m) + 0}

Using the symmetry between G and G, we now obtain a corresponding result for

paths with positive weight exceeding ps(k).
Lemma 5.1.8 Let v,w € V. For all z € Z such that z > p3(k),
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(1) if there exists a v-w path ™ with weight(mw) = z then there exists a v-w path

with weight(n') = z + ¢ and drop(n’) > min{—p,(k), drop(n)}; and

(1) if there exists v-w path m with weight(n) = z + ¢ then there exists a v-w path 7'
with weight(n') = z and drop(n’) > min{—p;(k), drop(m)}.

Proof. We only show statement (i), the other statement follows along similar lines.
Suppose there exists a v-w path 7 with weight(r) = 2. We have weight(r') = —z <
—p3(k). By Lemma[5.1.7) there exists a path (7')" such that weight((7')!) = —z — 6
and drop((7')") > min{drop(n") — 6, —2 — § — p3(k)}. Hence, weight(n') = 2z + 6 as
required. Regarding the drop of 7/, again by using the identities from Lemma [4.1.2,

we conclude

drop(') = weight(r') + drop((7')")
> 24 6 + min{drop(n") — 6, —z — 6 — p1(k)}
= min{drop(w), —p1(k)}.
We can now use the results obtained for paths in weighted graphs in order to prove
Lemmal5.1.20 Let us fix a one-counter automaton A and let G 4 be the weighted graph
corresponding to 4. As a slight adjustment, we assume that G 4 is such that every

zero-labelled transition in A is replaced with a transition labelled with “4-0” in G 4.

The constants k£ and 0 are defined as above.
Lemma 5.1.9 Let n,n’ € N,
(1) if n —n' > p3(k) + k and n' > pi(k) then (¢,n) =% (¢,n') if, and only if,
(¢ n+96) =4 (¢,n); and

(it) if " —n > ps(k) + k and n > pi(k) then (¢,n) =% (¢',n) if, and only if,
(q,n) =% (¢',n +9).

Proof. (i) Suppose there is a run g : (¢,n) —% (¢’,n’) and let 7 be the corresponding

q-q' path in G 4. We can write 7 as m = 7' - o such that 7' : ¢ —¢,, ¢", weight(n') <
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—ps(k) and drop(n') > —ps(k)—k. By Lemmal5.1.7(i), there exists a path 7 : ¢ —7,
q" such that weight(n") = weight(n') — ¢ and drop(n") > weight(7') — § — p1(k).
Consequently, there exists a run (g,n + 0) —% (¢’,n') whose corresponding path is
7" - my. The converse direction follows in similar way by applying Lemma [5.1.7(ii).
(ii) Suppose there is a run (g,n) —% (¢’,n’) and let = be the corresponding ¢-¢’
path in G 4. We can write m as 7 = 7o -7’ such that 7' : ¢" =% ¢/, weight(n') > p3(k)
and drop(n’) > —py(k). By Lemma [5.1.8(i), there exists a ¢”-¢’ path 7" such that
weight (") = weight(n') + ¢ and drop(n”) > —p;1(k). Consequently, there is a run

"

(g,n) —a (¢,n + d) whose corresponding path is 7y - #”7. The converse direction

follows in a similar way by applying Lemma [5.1.8(ii). 0

Lemma [5.1.2 now follows as a direct consequence of Lemma 5.1.9 by defining k

def

and ¢ as above and setting p(k) &f ps(k) + k and p'(k) = pi(k). Taking together

Propositions [5.1.2]and [5.1.3, we obtain the main result of this section.

Theorem 5.1.1 Model checking EF-formulae on parametric one-counter automata

is PSPACE-complete.

EF Model Checking of Parametric-One Counter Automata

We now consider model checking EF formulae on parametric one-counter automata
and show that this problem is TI9-complete. Hardness for II{ is shown via a reduction
from Hilbert’s tenth problem which we sketch in the following. Recall that Hilbert’s
tenth problem is to decide for a given polynomial p : R® — R whether there are
ai,...,a, € Z such that p(a,...,a,) = 0. As discussed in Chapter [2] it is actually
sufficient to restrict the a; to be from N. For our reduction, the crucial step is to show
how we can express a multiplication relation over the parameters of a parametric one-
counter automaton. To this end, we use a trick that became popular by the work of

Robinson [94]: multiplication can be defined in terms of the least common multiple.
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Figure 5.2: The parametric one-counter automaton A, used for testing whether

v(z) = lem(v(x),v(y)) for a given valuation v.
In fact, given z,y € N, we have

lem(z +y, o +y+ 1) — lem(z,z + 1) — lem(y,y + 1)
= (@ +r+ 2y +yt +y) = (@ o) = (1" +y) (*)

= 2xy.

The multiplication relation in a parametric one-counter automaton can now be ex-

pressed as follows.

Lemma 5.1.10 There exists a fized parametric one-counter automaton A, with

parameters x,y, z and a control location q and a fixed EF formula ¢ such that for any

valuation v, (T'(A”),(q,0)) | ¢ if, and only if, v(z) = v(z)v(y).

Proof. In order to construct A,,,, we make use of the identities in (x) and first
construct a parametric one-counter automaton A4;.,, with parameters x, y, z, a control
location ¢ and an EF formula ¢, such that for any valuation v, (T'(A%,.), (q,0))

iem if, and only if, v(z) = lem(v(z),v(y)). For any r,s,t € N, we have that t =

lem(r, s) if, and only if, for all a € N,

tla < lem(r, s)|a < (rs/ ged(r, s))|a < r|a and s|a.
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Now consider the parametric one-counter automaton A, in Figure[5.2/ and the EF

formula

¢ = AG(y — ((EFy, AEFy,) < (EFy.))).

v
lem

Suppose that v is a valuation such that (7°( ),(q,0)) E ¢, then ¢ enforces for all

n € N that v(z)|n and v(y)|n if, and only if, v(2)|n. Hence by the above reasoning,
v(z) = lem(v(), v(y)).

In order to construct the required parametric one-counter automaton A,,,;, it is
thus sufficient to introduce additional slack parameters x, x5, r3, ensure via gadgets
Ao that z; = lem(z+y, 2 +y+1), 0 = lem(z, 2+ 1), 23 = lem(y, y + 1) and assert

that 2z = z; — 29 — 23. 0O

Being able to express multiplication relations between parameters of a parametric
one-counter automaton immediately enables us reduce any instance of Hilbert’s tenth
problem to an instance of an EF model checking problem, which thus implies I1-
hardness of the latter problem. Due to the existence of a universal polynomial,
it follows that there is a parametric one-counter automaton with a fixed number of
control locations and parameters and a fixed EF formula for which the model checking
problem is undecidable. Since EF is a notational fragment of CTL, membership in IT0

follows from Proposition [5.1.1.

Theorem 5.1.2 Model checking EF-formulae on parametric one-counter automata
is TI{-complete already for a parametric one-counter automaton with a fized number

of control locations and a fized EF-formula.

5.1.2 Computation Tree Logic (CTL) Model Checking

This section deals with model checking formulae of CTL on one-counter and paramet-
ric one-counter automata. In the introduction, we have already stated in Proposition
5.1.1 that this problem is in EXPSPACE for one-counter and in ITY for parametric one-
counter automata. Subsequently, we are going to show that those bounds are tight.

Although II9-hardness of CTL model checking on parametric one-counter automata
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already follows from TI%-hardness of EF model checking, we strengthen this result
by showing that CTL model checking is already IT1%-hard for parametric one-counter

automata with only one parameter.

CTL Model Checking of One-Counter Automata

In this section, we are going to show that CTL model checking of transition systems
generated by one-counter automata is EXPSPACE-complete. As discussed above,
membership in EXPSPACE already follows from Proposition[5.1.1. We therefore con-
centrate on the lower bound and show that the problem is EXPSPACE-hard for a fixed
CTL formula.

Proving PSPACE-hardness of modal p-calculus model checking of one-counter au-
tomata with updates encoded in unary can be achieved via a straightforward reduction
from the halting problem of an alternating polynomial-time Turing machine acting
on a unary alphabet, which is known to be PSPACE-complete [61, 69]. However,
PSPACE-hardness of CTL model checking of those automata requires some more ef-
fort and was shown by Goller and Lohrey in [50]. Instead of directly reducing from
the halting problem of a PSPACE Turing machine, in [50] the authors make use of
logspace-serialisability of PSPACE in order to obtain PSPACE-hardness. Inspired by
the ideas from [50], we are subsequently going to show EXPSPACE-hardness of CTL
model checking of one-counter automata by making use of the fact that EXPSPACE
is exponentially logspace-serialisable as defined in Section [2.4.1. Although we are
going to provide a large amount of technical details, for the sake of understandability
and readability we only sketch our reduction, ¢.e., show the existence of a reduction
proving EXPSPACE-hardness.

Before we begin with the reduction, we need to introduce some additional nota-
tion and results that are concerned with an alternative way of representing natural
numbers. Given naturals m,n € N, the Chinese remainder representation CRR,,(n)

of n is a word over the alphabet {0,1} and defined as

def

CRRm(n) = (bi,[) T bi,pi—l)ie[m]a
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where p; is the i-th prime number and b; ; e ifn = J mod p; and b, ; def 0 otherwise.
The following problem is concerned with obtaining a bit of a number given in Chinese

remainder representation.

Brr-FroM-CRR

INPUT: CRR;,,(n) of some n,m € N, i € [0,m — 1] and b € {0, 1}.
QUESTION: Is bit:(n mod 2) = b?

The following proposition states that BIT-FROM-CRR is computable in logarith-
mic space. It is a consequence of the result that division is computable in logspace-

uniform NCI, which was shown in [26], Theorem 3.3.

Proposition 5.1.5 ([26]) BiT-FrRoM-CRR is computable in L.

We are now going to prove EXPSPACE-hardness of CTL model checking of one-
counter automata. Given a language L € EXPSPACE, by Theorem there exists
a regular language R such that L is exponentially L-serialisable via R. Hence, there
exists an L-Turing machine M and a polynomial p such that for any w € {0,1}*
and m = exp?(p(Jw|)), w € L if, and only if, (XM(w'bin(lgm)(d))>de[0,m—1} € R.
Suppose we were asked to write a program that decides w € L via the serialisation
of L. A possible solution to this task is given by Algorithm (3| It requires w and
the serialisation of L, i.e., an L Turing machine M, a regular language R given as
a deterministic finite state automaton Agr and a polynomial p as input. For m as
above, the algorithm successively iterates through all d € [0, m — 1] and simulates in
each iteration Ag on input ya(w - binggmy(d)). Once d = m, Algorithm 3] returns
true if the simulation of Ar ended in an accepting state and false otherwise. Our goal
in this section is to simulate an execution of Algorithm 3| via an instance of a CTL
model checking problem of some polynomial-time computable one-counter automaton
Ap(w) and a fixed CTL-formula ¢.

Before we begin with the details of our reduction, let us discuss some problems

that we need to overcome:

3NC! is the class of decision problems solvable by a uniform family of Boolean circuits, with

polynomial size, depth O(lg(n)), and fan-in 2.
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Algorithm 3 Algorithm deciding w € L for an EXPSPACE-language L given via its

serialisation M, R and p.

Input: w e {0,1}*, M, Ar = (5,50, F,A),p:N—=N

S

b

=950

=€ d:=0

m = exp?(p(|w]))
while d < m do

b = bin(lg m) (d)

5 = Als, xwu(w - b))
d:=d+1

end while

return s e F

(a)

As Algorithm 3/ stands, it requires exponential space in |w| in order to store the
values of b, d and m. This excludes the possibility of encoding those variables into
the control locations of A (w). A possible solution to this problem is to store
the values of the variables on the counter. However, when we want to compute
b, we need to access the bit representation of d, and the binary representation of
d comprises of exponentially many bits. Moreover, we need to be able to check
if d = m, which cannot be done by simply subtracting m from the counter and

performing a zero-test, since the size of m is too large.

In [50], the problem of accessing the bit representation of d is solved by storing
d in Chinese remainder representation using the first lg m prime numbers. Each
such prime number can be represented in O((p(|w])?) bits. However, we need

exponentially many of them, and for that reason we cannot hard-wire them into

.AL(U)).

When we want to compute xa(w - b), we need to simulate M on an input ex-
ponential in |w|. A pointer to the input w - b can be stored using O(p(|w|)) bits.
However, we need to provide some on-the-fly mechanism to extract the bit that

such a pointer points to.
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Figure 5.3: Segmentation of the counter used in the reduction. Here, £ € N is
polynomial in |w|. Switching to the consecutive b, i.e., incrementing d in Algorithm

3, can be simulated by adding exp(k + |w| + 1) to the counter.

There are a number of key insights that allow us to overcome those problems. The
first is that the branching provided by CTL allows us to test the value of a bit of the
counter without destroying the counter value, provided the address of the bit we test
is polynomial in |w|. This enables us to toggle individual bits of the counter without
affecting the other bits. We exploit this insight in order to partition the counter
into various segments that can be used to store information that can individually be
accessed. The second insight is that we can simulate in these segments computations
of space-bounded Turing machines that require polynomial space in |w| for their
computations. To this end, we reserve a segment of the counter that is going to
serve as the working tape of such a Turing machine. This is, for example, going to
enable us to run M and to compute prime numbers on-the-fly. Third, we show that
it is possible to compute the residue class of the counter modulo the i-th prime p;,
where i is exponential in |w|. This will enable us to test a bit of the counter whose
address is exponential in |w| by computing the Chinese remainder representation of
the current counter value on-the-fly. All those insights are eventually going to enable
us to simulate Algorithm

We are now going to proceed with the technical details of our hardness proof.
Let us consider Figure 5.3. It shows a bit representation of a counter value, where
the least-significant bit is on the left-hand side and the most-significant bit is on the

right-hand side. As discussed above, we aim for partitioning the counter into segments
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with some intended purpose. In our hardness proof, for some k polynomial in |w| to
be determined later, given a counter value n € N, nlk, k + |w| + 1] is supposed to
encode w. Moreover, n[k + |w|+ 1, k + |w| + exp(p(|w|)) + 1] is supposed to encode b
from Algorithm 3. Thus, n[k, k + |w| + p(Jw|) + 1] = w - b and if we could find a way
to evaluate x(w - b), we could simulate one cycle of the while-loop of Algorithm
3. Simulating the consecutive cycle of this loop would then be possible by adding
exp(k + |w| + 1) to the counter. In our reduction, we are going to use the segment
n[0, k] of the counter as storage space for the working tape of M and as some further
temporary storage.

We are now going to provide a number queries that we use in order to simulate
Algorithm (3| and which we implement via a number of model-checking problems of
one-counter automata gadgets and CTL formulae. All gadgets are computable in
polynomial time, and we will omit mentioning this fact in order to improve readability.
The queries form a hierarchy and build on top of each other, and the last query
establishes our hardness proof. The first two queries deal with extracting information
encoded into the counter that enable us to then construct more sophisticated queries.
In the following, let n € N be a counter value, and let ¢ € N be a number given in
unary, I = (nliy, ic))s for iy, i. € N, J = (n[jp, je])2 for jp, jo € N and K = (n[ky, 00])2

for k, € N given in unary.

(i) What is the value of bit;(n)?
(ii) Is K = J mod I, provided J € [0,] — 1]7
(iii) Is J the I-th prime number?
(iv) What is the value of bit;(n)?
(v) Is nfk, k +w| + p(Jw|) + 1] € L(M)?
(vi) Isw e L?

We now show how to implement Query (i), which is realised with a gadget Ay;.
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Figure 5.4: Gadget A, (i) used for testing the value of i-th bit of the counter.

Lemma 5.1.11 For any i € N given in unary, there exists a one-counter automaton
Apit (i) with a control location q and fized CTL-formulae ppip, b € {0,1} such that for
any n € N, (T'(Apit(i), (q,1)) = @oie if, and only if, b = bit;(n).

Proof. Consider the automaton Ay;(7) in Figure and let ¢ be the () location.
Define the required CTL-formulae as

def
Vpito = ¥ N EF(y A =EXy A =EXvp)

def
@pit1 = 7 A EF(y A =EXy A EXvpi),
which can easily be seen to have the desired property. 0

We continue with the gadget A,,,q¢, which realises Query (ii) and uses A;; as an

oracle.

Lemma 5.1.12 Let iy < 1 < Jp < Je < k € N be given in unary. For any n € N,
let I = (nlip,ic])2, J = (njp, Je))2 and K = (nlk,o0])s. Assuming J € [0,1 — 1],
there exist a one-counter automaton Ao (iy, e, Jb, Je, k) with a control location q and

a fized CTL-formula @eq such that (T'(Amea), (¢,n)) if, and only if, K = J mod I.

Proof. Consider the one-counter automaton A4 (i, ie, Jo, je, k) in Figure where
q is the O location. A,,,q consists of two rows, each consisting of i, — i, respectively
Je — Jp diamonds. We aim for achieving that any time we traverse the upper row
we subtract [ from K. Likewise, the lower row is supposed to subtract J from K.
Thus, if there is a path reaching the location labelled with 5 such that it is not
possible to reach the location labelled with ~,,,s, we have K = J mod I. In both

rows row, each diamond is connected to an A;; gadget. The CTL formula we are
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Apit(Je — 1) Apit(Je — 2) o Apit(Jv)

Figure 5.5: The one-counter automaton A,,.q(ip, ic, jb, Je, k) used for the implemen-

tation of Query (ii).

going to define below will make sure that any time we traverse a diamond through a
location labelled with v, EX@y; 1 holds, where ¢y 1 is defined as in Lemma [5.1.11.
For example, in the first diamond in the upper row this will ensure that we only
subtract exp(k + i, — i, — 1) from the counter if, and only if, bit,,_;(n) = 1 for the
current counter value n. This allows us to construct a suitable CTL-formula that

ensures that the gadgets A;; can be used to “guide” the paths through A,,,s. We set

Pmod e (70 = EX@piro A 71 — EX@pie 1)U (72 A "EXYm0d))

which can be seen to have the desired properties. O

We now turn towards Query (iii). Instead of giving a direct implementation,
we sketch how an arbitrary space-bounded Turing machine can be simulated via an

instance of a model checking problem. A concrete implementation of Query (iii)
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then follows as an instantiation of the next lemma with a Turing machine M that

computes prime numbers.

Lemma 5.1.13 Let iy < i < Jp < Je < ky < ke € N be given in unary and
let M be a space-bounded deterministic Turing machine such that M wuses at most
Je — Ju tape cells on an input of size i, — i,. There exists a one-counter automaton
A (i, e, Jbs Je, Ko, ke) with a control location q and a fixzed CTL-formula @ such that
for alln € N, (T(Am), (¢,n)) = om if, and only if, M has on input nliy,i.] a Tun

that ends in an accepting state in which the content of the working tape is n[ky, ke).

Proof. The idea is to simulate a run of M on input nli,, i.] using the cells in n[j, j|
as the working tape of M until we reach an accepting state of M. Once an accepting
state has been reached, we can compare the contents of n[j, jo| and nlky, k.] with an
additional gadget. We omit details of this additional gadget for brevity and concen-
trate on the simulation of M. The construction of such a gadget is an easy exercise
and can be realised using the gadget Ay;; constructed in the implementation of Query
(i).

The one-counter automaton Ay, contains a gadget Ay, (m) for each m € [iy, i, —

1] U [4p, Je — 1] and additional control locations
S % ([0,4e —ip +1]) x ([0, je — J» + 1]) x {0,1} x {0,1}

that we use to simulate runs of M. The intention behind those control locations is
as follows: a tuple (s, 1,7, by, be) corresponds to the configuration of M in which M
is in control state s, the input head of M is at position ¢ reading b; and the working
head of M is at position j reading by,. We will use + = 0 and j = 0 to indicate that
the input respectively working head has reached the left delimiter >, and 7, — 4, + 1
to indicate that the input head has reached the right delimiter <. The content of the
whole input or working tape is not encoded in the control locations of M, but in the
respective segments of the counter, which keeps the number of control locations of
Apq polynomial.

Let us explain how Ay, is wired and how it works with the help of an example

shown in Figure Here, we assume that A is in control location (s, 1, 4,0, 1),
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Figure 5.6: Part of the one-counter automaton A (ip, ie, J», je) for the case when M
is in state s and the input head scans cell ¢ reading 0, the working head of M scans
cell j reading 1 and the transition function requires the input head to move to the

right, the output head to the left and to write a 0 to the current working tape cell.

i € [ic — 1], J € [Je — jb] and that the transition relation A of M is such that
A(s,0,1) = (s',1,—1,0). Thus, we simulate a transition in which M is in control
state s, reading a 0 on the input tape, 1 on the working tape, and the transition
function requires the input tape head to move to the right, the output tape head to
move to the left, to write a 0 on the current working tape position and to switch to
control state s’. Each (s, 4, 7, b1, b2) of A is labelled with atomic propositions 7, »,
and Yy, and connects to a gadget Ap;(ip+i—1) and Ay (jp +7 —1). Consequently,
(s,1,7,0,1) in Figure[5.6 is labelled with 7, o and 7y,1. Whenever we reach a control
location (s, 1, , b1, bs), this labelling allows us to verify that the bits at the respective
positions of the counter actually correspond to the intended content of the tapes of
M. Now (s,14,7,0,1) has a transition to each (s',i + 1,5 — 1,b},65),0,0, € {0,1},
and along each transition we subtract exp(j, + j — 1) from the counter. The four
transitions allow us to guess the content of the input respectively working tape at
the updated head positions. The validity of our guess can be verified in the next
step using the gadgets Ap;. Subtracting exp(j, + 7 — 1) from the counter simulates

writing 0 at the current position of the working head. Extra effort is needed to get
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the behaviour for control locations of the form (s',4', 5/, b}, b)) with ¢ € {0,4, — i, +1}
or 7/ € {0, j. — j» + 1} right, i.e., when M has reached a delimiter. However, this
is a rather technical than conceptual issue and will not be considered here. Finally
any (s,1,7,b1,by) such that s € A, i.e., s is an accepting location, is labelled with a
proposition v4 and connected to a gadget that allows for testing whether the content
of nljp, je] is the same as n[ky, k] via a CTL formula ¢, that holds if, and only if,
njvs Je] = nlke, ke]. Let ©pito, ppien be the CTL-formulae from Lemma 5.1.111 We

define the CTL formula required in the lemma as

YM « E( /\ (Vinby = EX(Yin A Pbitby) A Ywobs = EX(Vuwo A Pbitp,))U(74 A EXpeg)).-
b1,b2€{0,1}

Thus, when adding a distinguished control location ¢ to A that non-deterministically

branches into control locations (sg,1,1,b1,bq),b1,b2 € {0,1}, we have that for all

n €N, (T(A), (gm,n)) E o if, and only if, M has a run on input n[iy, i.| that ends

in an accepting state in which the content of the working tape is n[ky, ke]. O

We are now going to consider an implementation of Query (iv), which is about
extracting bits from the counter whose address is encoded in binary into the counter.
With Figure in mind, we will be interested in testing bits in the upper segment
of the counter beyond the working area. The main challenge we need to overcome is
that we cannot adopt the idea from Query (i) and use loops in a counter automaton to
test for divisibility, as the address of the bit we test for can be exponential. Instead,
we represent the counter value in Chinese remainder representation and then use

Birr-FROM-CRR in order to extract the desired bit.

Lemma 5.1.14 Given n € N and i, < i, < k € N in unary, and let i = (n[ip, ic))2
andm = (n[k,00]). Provided k is sufficiently large, there ezists a one-counter automa-
ton Apinpit (i, ie, k) with a control location q and a fixzed CTL formula ©pinpirp, b € {0,1}
such that (T(Apinpits), (¢, 1)) = Qbinbiep 4f, and only if, bit;(m) = b.

Proof. As discussed above, we determine bit;(m) through the Chinese remainder rep-

resentation of m. By Proposition [5.1.5, there is an L-Turing machine M computing
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bit;(m). Since i is given in binary, M can compute bit;(m) in space polynomial in
ie — 1p. Simulating M can be done in a similar way as described in Lemma[5.1.13.
However, the input CRRs(m) with s = exp(i. —i;) cannot be encoded in the counter
as it is exponential in i, —1;. Instead, we sketch below how the construction in Lemma
can be altered in a way such that the input to M is computed on-the-fly.

Recall that CRR(m) = (bjo...bjp;—1)je[s), Where p; is the j-th prime number.
In order to compute a fixed b;,, Apinpie uses a segment of the counter distinct from
[ip, 7] and [k, 0o] in which it stores the index j € [s], p; and r € [0, p; — 1] in binary,
which serve as pointers to the Chinese remainder representation of m. We can then
employ A4 in order to test whether m = r mod p;, i.e., compute b;,. In order
to compute the j-th prime number p;, Apinpie employs a one-counter automaton Ay
that we obtain from Lemma whose working tape is stored in some unused
segment of the counter of size polynomial in lgs. Consequently, when simulating
M as in Lemma [5.1.13 and guessing the current input symbol, Ay uses A,,oq in
order to verify the guess. Simulating a movement of the input head of M is done as
follows. If r € [1,p; — 2] then simulating that the input head moves to the left or
right corresponds to decrementing respectively incrementing r. If r = 0 and we wish
to simulate that the input head moves to the left then the index j is decremented,
p; is re-computed and r is set to p; — 1. The case when r = p; — 1 and we wish to
simulate that the input head moves to the right follows analogously.

As discussed above, storing the working tapes of M, M’ and the additional storage
requires segments of size polynomial in i, —i,. Hence, if k is sufficiently, polynomially
large, those segments can be reserved in the working area of the counter and the

lemma follows. |

Using Apinpi as a gadget, we can now sketch an implementation of Query (v). This
query requires us to simulate the computation of a logarithmically-space bounded
Turing machine on an exponentially large input which is encoded into a segment of

the counter.

Lemma 5.1.15 Given an L-Turing machine M, n € N, k € N in unary and |l € N
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in binary, and let m = n[k,k +1]. Provided k is sufficiently large, there exists a one-
counter automaton An(k,1) and a fized CTL formula g such that (T'(A), (¢,n)) E
om if, and only if, M accepts input m.

Proof. We sketch a proof which combines the ideas from the Lemmas 5.1.13 and
We cannot directly apply Lemmal5.1.13, since the input to M is of exponential
length. Instead, we will extract the input to M bit by bit using the gadget Apinpi
from Lemmal5.1.14.

Since the input to M is of exponential length, M runs in PSPACE and we can
reserve a segment in the working area of the counter below k which stores the working
tape during the simulation of M. Moreover, we are going to use an additional segment
n[jp, je| below k in order to store a pointer to the input m. This segment requires a
linear number of bits in the size of [.

The simulation of M can be done in a similar way as in Lemma 5.1.13. In partic-
ular, the symbol read on the input tape is guessed when moving the head, however,
as in Lemma 5.1.14] we cannot use p;; from Lemma 5.1.11 in order to validate our
guess. Instead, we use Apinpit(Jp, Je, k) and @pinp from Lemmal5.1.14 for this purpose.
Simulating moving the input head can be done by incrementing respectively decre-
menting the pointer in n[jy, jel. Apinsit(Jo, Je, k) requires some additional segments in
the working area of the counter, but only of size polynomial in the size of [. Con-
sequently, if k is chosen sufficiently large, polynomial in [, M can be simulated on

input m via A, and a CTL formula pa. 0

Finally, we can turn towards an implementation of Query (vi), which builds on
top of all previously defined gadgets concludes our proof of EXPSPACE-hardness of

CTL model checking of one-counter automata.

Lemma 5.1.16 Let L C {0,1}* be a language in EXPSPACE and w € {0,1}*. There
exists a one-counter automaton Ar(w) with a control location q, n € N and a fized

CTL-formula ¢ such that (T'(A), (¢,n)) = ¢ if, and only if, w € L.
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Figure 5.7: Part of the one-counter automaton Aj, constructed in Lemma [5.1.16.

Proof. By Theorem there are an L-Turing machine M and a polynomial p such
that for any w € {0, 1}* and m = exp?(p(|w])),

w € L& (xm(w - binggm)(d))) e 0m_1 € B-

Let Ar = (S, so, F, A) be a deterministic finite-state automaton defining R. We are
now going to sketch the construction of a one-counter automaton A, that simulates
Algorithm [3. To this end, as discussed at the beginning of the hardness-proof, we
partition the counter into segments as sketched in Figure [5.3. Hence, for a given
counter value n and some k € N to be determined later, n[k, k + |w|] stores w and
nlk + |w|, k + Jw| + exp(p(Jw|)) + 1] stores a bit-string of length exp(p(|w]|)) which
represents b from Algorithm (3.

In order to compute y(w-b), Ar contains a gadget A (k, |w| +exp(p(Jw|)) +1)
as defined in Lemma 5.1.15. Furthermore, A}, contains a gadget Apinpit(ip, ie, k) from
Lemma [5.1.14! for some i, < i, < k that we are going to use in order to test whether
bit st jw|+exp(p(w]))+1(n) = 1 for a given counter value n. This is going to enable us to
determine when to quit from the while-loop in Algorithm (3.

We are now going to concentrate on the simulation of the body of the while-loop

in Algorithm 3. In order to simulate a run of Ag, Ay contains two control locations
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(s,0) and (s,1) for each s € S that indicate that Ag is simulated to be in state s
reading 0 respectively 1. A control location (s,0) is labelled with v, and (s, 1) with
~v1. Moreover, each s € F' is labelled with y¢ in order to indicate that an accepting
state has been reached. The transitions between the (s, ¢),c € {0,1} control locations
of Ay are sketched in Figure[5.7. Each (s,c) has a transition to A(s,¢), which adds
exp(k + |w| + 1) to the counter, thus simulating an increment of d. Moreover, each
(s,c) has a transition to the gadget Axg and Apinpir(ip, ie, k). The initial locations of
the gadgets are labelled with v, and 74, respectively. The transition to A enables
us to verify that a guessed value of x(w - b) is actually correct. The other transition
to Apinbit(ip, e, k) allows us to check for a counter value n if ity ju|texp(p(w))+1(n) = 1.

We are now going to give the required CTL formula ¢, which is defined as follows:

o = E(0 = EX(ra A=) At = EX(raa A =oma) A = (EX (Yo A @)U

(vr AN EX(Ye0 A Ppinit))-

Here, wpimpic and ppq are the CTL formulae from the Lemmas [5.1.14 and [5.1.15. In-
formally speaking, ¢ makes sure that we guess the value of x(w - b) correctly as
long as d < exp?(p(Jwl])). Once d = exp?(p(Jw])), ¢ requires that the simulation of
Apr ends in an accepting state.

It remains to discuss the size of k. The value of k needs to be chosen sufficiently
large such that the gadget A, can work properly. By a similar argument as in the
discussion at the end of the proof of Lemma[5.1.15, Ax requires k to be polynomial
in |w|. Moreover, the gadget Ay also requires k to be polynomial in |w|, as 4, and
ie only need to be polynomial in |w].

The counter value n required in the lemma is the unique natural number n € N
such that n[k, k + |w|] = w, (nliy,i.])2 = exp*(p(Jw|)), and all other bits of n are
zero. Clearly, this n can be computed in polynomial time and, informally speaking,
provides a proper initial configuration of Aj,.

Finally, by introducing a distinguished control location ¢ to the control locations
of Ay, that connects to (sg,0) and (sg, 1), we have (T'(Ar(w)), (¢,n)) = ¢ if, and only

if, w e L. O
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Together with Proposition [5.1.1, we can now deduce the main theorem of this

section.

Theorem 5.1.3 CTL model checking of one-counter automata is EXPSPACE-complete
already for a fired CTL formula.

CTL Model Checking of Parametric-One Counter Automata

Since EF is a syntactic fragment of CTL, it follows from the results in Section|5.1.1/that
model checking CTL formulae on parametric one-counter automata is I1{-hard. In this
section, we strengthen this result for the CTL case and show that I1%-hardness can
already be achieved for a fixed CTL formula and a parametric one-counter automaton
with only one parameter.

We reduce from the reachability problem for two-counter automata. Given a two-
counter automaton A’ and two locations ¢, ¢ of A’, we construct a parametric one-
counter automaton .4 with one parameter y from A’ such that (¢, 0) —% (¢, 6) if, and
only if, (T'(A), (¢,0)) ~ . For our purposes, we may assume with no loss of generality
that counter updates of A" are in unary, i.e., of the form add;(z) for i € {0,1} and
z € {—1,0,4+1}. Moreover, we assume that the first and second counter of A" are
tested for zero before ¢’ can be reached. As in the hardness proof in Section 4.2) we
exploit the fact that on a witnessing run there exists an m € N such that none of the
two counters of A’ exceeds this value. We use the parameter y in order to guess m,
which allows us to give a one-to-one correspondence between configurations of A" and
A. Given a configuration (g, ni,ng) of A" with ny,ny < m and a valuation such that
v(y) = m, the corresponding configuration of A is (¢,n), where n = mny + ny, i.e.,
ny =n mod m and ny = ndivm. Testing the first and the second counter of A’ for
zero corresponds to checking whether whether n = 0 mod m respectively n < m. In
our reduction, we use the branching that CTL formulae offer in order to perform these
tests without destroying the value of the counter. Incrementing and decrementing the
first counter of A’ can be simulated by adding respectively subtracting 1 from the
counter of A. Regarding the second counter of A’, incrementation and decrementation

correspond to adding respectively subtracting m, i.e., the value of the parameter vy,
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Figure 5.8: Gadgets used in the reduction from two-counter automata reachability to

CTL model checking of a parametric one-counter automaton.

from the counter. Of course, we have to ensure that we do not overflow when we
perform these operations. For example, suppose that n = —1 mod m. If we intend
to add 1 to the counter of A in order simulate an increment of the first counter of A’,
informally speaking we would accidentally reset the first counter of A" and increment
its second counter. Again, we will use the branching that CTL formulae offer in order
to make increments and decrements safe.

We begin the formal part of the reduction by providing some gadgets that allow

us to perform the necessary tests described above.

Lemma 5.1.17 There exist fived parametric one-counter automata Ay, Ay, Az with
one parameter y, each with a control location q, and a fired CTL formula ¢, such that

for all valuations v and n € N

(1) (T(AY),(q,n)) = ¢ if, and only if, n 0 mod v(y);
(i3) (T(A9), (q,m)) b= o1 if, and only if, n % —1 mod v(y); and
(111) (T(AY),(q,n)) E ¢ if, and only if, n < v(y).
Proof. The parametric one-counter automata Ay, Ay, Az are depicted in Figure 5.8.

It is now easily verified that ¢ oo —(EFy) when evaluated in the locations labelled

with O is a CTL formula with the desired properties. 0

Figure [5.9/ shows the replacement rules that we apply in order to obtain A from A’.

The top row deals with operations on the first counter: any transition acting on the
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Figure 5.9: Replacement rules for obtaining a parametric one-counter automaton A4

from a given two-counter automaton A’ used in the hardness proof of CTL model

checking.
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first counter of A’ is split by introducing a fresh control location that is connected to
an A; or Ay as defined in Lemma 5.1.17 and labelled with an extra label depending
on which operation is performed in A’. This allows us to use the formula ¢; defined
in Lemma 5.1.17 in order to check if the value of the counter is congruent 0 or
—1 modulo the value of y before we add respectively subtract 1 from the counter.
The bottom row deals with operations performed on the second counter of A’. All
addy(£1)-operations are replaced with a corresponding add(=+y)-operation. In order
to simulate testing the second counter for zero, we again split the edge connecting any
g and ¢ by introducing a fresh control location which is connected to an A3z gadget
as defined in Lemma [5.1.17. This allows us to use the formula ¢; from the lemma in
order to check if the value of the counter is less than the value of y. Additionally, we
label ¢’ with a fresh label 7, in A as a marker indicating that control location ¢' has

been reached. We now define the CTL formula for our hardness proof as follows:

ef _
ve = (77 VAT VL) = EX( A g)) A (1) = EX( A =)

def
¢ = E(pUvy).

Suppose there exists a valuation v such that m = v(y) and (T'(A"), (¢,0)) = ¢. There
exists a finite path in T'(A") starting in (g, 0) along which ¢, holds and which ends
in (¢',0). Since ¢, ensures that all corresponding zero-tests in A’ are matched and
that all updates to the counter of A" respect the boundary m, this path yields a
run of A’ witnessing (¢,0) —% (¢’,0) on which both counters do not exceed m. The
converse direction follows analogously. This shows that model checking CTL-formulae
of parametric one-counter automata is I1%-hard.

Membership in TI? is rather trivial as in the EF case. Given a parametric one-
counter automaton A with parameters y;,...,y,, a CTL formula ¢ and (q,n), we

can enumerate all possible valuations v of the parameters and check whether or not

(T'(A”),(¢q,n)) = ¢, which by Proposition is decidable.

Theorem 5.1.4 Model checking CTL-formulae on parametric one-counter automata

is T19-complete already for parametric one-counter automata with only one parameter

and a fired CTL-formula.
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TEY < ye(0)

TE-p <= Ty
TEEpIAps < T ¢ and 7 | @9

TEXp <= 1t Ep

7= ¢Upy <= there is j € N such that 77/ |= ¢y and for all i € [0,7 — 1], 7" |= ¢y

Table 5.2: Semantics of LTL.
5.2 Linear-Time Temporal Logic (LTL) Model Check-
ing

This section establishes the computational complexity of model checking formulae
of linear-time temporal logic (LTL) on transition systems generated by one-counter
automata and families of transition systems generated by parametric one-counter au-
tomata. In contrast to CTL, we are going to show that the model checking problem is
decidable in both cases, PSPACE-complete in the former and coNEXPTIME-complete
in the latter case. We begin with some standard definitions.

Formulae of LTL are inductively defined according to the following grammar, where

~ ranges over a set of labels A:

=7 leAe| Xe | pUp.

The standard Boolean abbreviations and true are defined in the same way as in CTL.
The finally modality Fy is an abbreviation for trueUy and the globally modality Gy
abbreviates =F—p. The size |p| of an LTL formula ¢ is defined as the number of
symbols required to write it down. The semantics of LTL is given in terms of traces
7 : N — 2% and shown in Table 5.2. The model checking problems that we consider

are defined as follows:
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LTL OCA MoDEL CHECKING

INPUT: A one-counter automaton A, a configuration (¢,n) of A and an LTL
formula .

QUESTION: Does 7 |= ¢ for every infinite trace 7 starting in (¢, n)?

LTL POCA MODEL CHECKING

INPUT: A parametric one-counter automaton A, a configuration (¢,n) of A
and an LTL formula .

QUESTION: Does 7 |= ¢ for every valuation v : Y — N and every infinite trace 7
starting in (¢, n) in T(A")?

All of our upper bounds rely on the standard automata-theoretic approach to
LTL model checking [105]. In the following, we give a brief account of this approach.
Expositions on this topic can be found in the literature, see e.g. [3, 33]. The heart
of the approach is the construction of a Biichi automaton A, from an LTL formula ¢
whose transition system consists of all traces satisfying ¢, formally captured by the

following theorem.

Proposition 5.2.1 ([105]) Given an LTL formula ¢, there exists a corresponding
Biichi automaton A, with the initial control location q, such that |A,| = exp(O(|yp]))
and for all traces T, T = ¢ if, and only if, there is a Bichi run o in T(A,) starting

in q, with trace 7.

Thus, for a given one-counter automaton A and an LTL formula ¢, checking (T'(A), (¢,n)) ¥~
¢ can be reduced to checking whether there is a common trace 7 in 7T'(A) starting
in (¢,n) and T'(A-,) starting in ¢-,. Consequently, this reduces to checking whether
there is a Biichi run in T'(A) x T'(A-,) which traverses states with a component of
the final locations of A, infinitely often. In the following, we show how to construct
a one-counter automaton that generates the transition system 7'(.A) x T'(A-,), which
then allows us to decide the existence of a Biichi path via our results obtained in

Chapter
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Let A = (Q, A, qo, F,A, X\, §) be a one-counter automaton with ) = F' and let
A, = (Qyp, A, gy, Fiyy Ay) be the Biichi automaton corresponding an LTL formula ¢.
We define the product automaton A" of A and A, as A = (Q', A, qp, F', A", N, '),

where

Q' = {(¢.9,) € Q x Qp: Ma) = A\o(g) }:

o« ¥ QxF,

A/ d:ef ((q’q¢)7 (q/’q:p)) c Ql % Q/ . (q7q’) € A and ((Jgp,Cpr) € A‘,D}7

N(g,9,) = A(q); and

o &((,90), (¢ ) & &q. ).

We write A x A, to denote the product automaton of A and A,. It is easily checked
that A x A, is computable in L and that T'(A x A,) is isomorph to T'(A) x T'(A,).

LTL Model Checking of One-Counter Automata

We are now going to show that the combined complexity of LTL model checking of
one-counter automata is PSPACE-complete and coNP-complete if we fix . PSPACE-
hardness of the model checking problem follows immediately from PSPACE-hardness
of LTL model checking on Biichi automata [101]. In order to show membership in
PSPACE, we employ the automata-theoretic approach discussed in the previous sec-
tion. However, given a one-counter automaton A and an LTL formula ¢, it is not
sufficient to naively construct the product automaton A4 x A, and then check for
the existence of a Biichi path, since |4 x A_,| = |A|exp(O(|¢])), which only gives
a coNEXPTIME upper bound for LTL model checking. Instead, we reduce the model
checking problem to a model checking problem in a unary one-counter automaton,
similar to the CTL case.

Let A’ be the unary one-counter automaton obtained from A by expanding tran-

sitions that increment the counter as described at the beginning of this chapter. As
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in the CTL case, in order to decide a model checking problem on A via A’, we have to

make some adjustments to the LTL formula ¢. To this end, we define ' as follows:

o
¢}
h

o (X))t = X(aU(=a A )

(=)f £ () ($2Up2)" = (@ v plU(=a A o))
)!

def

Il
)

(1 A o /\ 802

Clearly, o' can be constructed by a log-space transducer. The following lemma es-

tablishes the correspondence between A, ¢ and A’, .

Lemma 5.2.1 Let A, ¢ and (q,n) be an instance of an LTL model checking problem,
and let A" and ¢ be defined as above. Then (T(A),(q,n)) = ¢ if, and only if,

(T(A), (g.n)) = ¢".

Proof. We sketch a proof by structural induction on ¢ and only consider the in-
teresting cases ¢ = X¢' and ¢ = p1Ups. For ¢ = X¢', suppose (T(A), (¢,n)) =
@, by the semantic definition there exists an infinite path o with a trace 7 such
that 7 & ¢, e, 78 E ¢. Let o(1) = (¢’,n'). By the induction hypothesis,
(T(A), (¢,n") E (¢'). The construction of A’ ensures that (T'(A'), (¢',n')) E —a,
hence (T'(A'), (¢',n")) E —a A (). Moreover, by the construction of A’ there is a
finite (¢,n)-(¢’,n’) path ¢ such that A\(¢'(i)) = « for all i € [2,|¢|]. Consequently,
(T(A"), (g,n)) E X(aU(=a A ()7), i.e., (T(A),(g,n)) = ¢ The converse direction
follows analogously.

For the case ¢ = ¢1Ups, by the semantic definition there exists an infinite path o
with a trace 7 and j € N such that 7 = ¢, 7(i) = ¢y for all i € [2,j] and 7(j) | @a.
Consequently, (T'(A),o(i)) = ¢ for all i € [2,5], (T'(A),0(j)) = 2 and hence by
the induction hypothesis (T(A'), (i) = ¢! for all i € [2, ] and (T(A"), 0(4)) = &b
Moreover, the construction of A" ensures that (T'(A’), 0(i)) = -« for all i € [2, j] and
that there are finite o(i)-o(i+ 1) paths g; for all i € [2, j] such that (T'(A’), 0;(k)) E «
for all k € [1,]oi| — 1]. Consequently, (T(A"), (¢,n)) E (aV H)U(=a A @b), ie.,

(T(A"), (¢,n)) E (p1Ups)T. The converse direction follows analogously. O
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We can now prove the PSPACE upper bound for LTL model checking of one-counter
automata. Given an instance A, ¢ and (q,n) of a model checking problem, we can
construct with a PSPACE transducer the unary one-counter automaton A’ correspond-
ing to A, the LTL formula ¢, the Biichi automaton A_+ and the product automaton
A" A % A_,t. We have (T'(A),(¢,n)) = ¢ if, and only if, there is a Biichi run
in T'(A") starting in (g, n). Since |A”| = exp(O(|A|)) exp(O(|¢|) and by Proposition
2.5.3 checking for the existence of a Biichi run in a unary one-counter automaton
A is NL-complete, the combined complexity of LTL model checking of one-counter
automata is PSPACE-complete.

If we fix ¢, we can avoid the construction of a unary one-counter automaton and
directly construct the product A’ & A x A, whose size is |A’| = O(|A||A-,|). It
then follows from Theorem[4.1.1 that model checking LTL on a one-counter automaton
for a fixed LTL formula is coNP-complete. Hardness for coNP can easily be derived
from the fact that reachability for one-counter automata is NP-hard. The following

theorem summarises the results of this section.

Theorem 5.2.1 LTL model checking of one-counter automata is PSPACE-complete
and coNP-complete for a fized LTL-formula.

LTL Model Checking of Parametric One-Counter Automata

In this section, we are going to establish the computational complexity of model check-
ing LTL on parametric one-counter automata. We are going to show that the problem
is coONEXPTIME-complete in general and coNP-complete for fixed LTL formulae.
The upper bounds follow straightforwardly in the same way as discussed in the
previous section. Given an LTL formula ¢, a parametric one-counter automaton A and
a configuration (¢, n), in order to decide (T'(\A), (¢, n)) = ¢ we can construct the Biichi
automaton A, and the product automaton A’ A x A, and then decide whether
there exists a valuation v such that T'(A”) has a Biichi path starting in (¢,n). By
Theorem|4.2.2, the latter problem is NP-complete, and since | A’| = |A| exp(O(|¢])) we

get that model checking LTL on parametric one-counter automata is in coONEXPTIME.

If ¢ is fixed, we have | A’| = O(|.A|), whence model checking is in coNP. Hardness for
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coNP follows from coNP-hardness of reachability in parametric one-counter automata,

which can be checked with a fixed LTL formula.

Theorem 5.2.2 LTL model checking of parametric one-counter automata is coNP-

complete for a fived LTL-formula.

It remains to show that the combined complexity of LTL model checking on para-
metric one-counter automata is cONEXPTIME-hard. We reduce from the comple-
ment of the NEXPTIME-complete problem SucciNcT 3-SAT [87], which is to decide
whether a Boolean formula in 3-CNF given as a circuit is satisfiable.

In order to define SuccINCT 3-SAT, we now define circuits in an informal way.
A more rigorous treatment can for example be found in [100]. A Boolean circuit
consists of Boolean gates, AND-, OR- and NOT-gates. The AND- and OR-gates have
two inputs and one output, and the NOT-gate has one input and one output. Inputs to
and outputs of the gates are Boolean values, i.e., Os and 1s, and each gate computes
a Boolean function, i.e., an AND-gate outputs by A by on input by,by € {0,1}. A
circuit is a collection of Boolean gates in which the outputs of some gates connect
to the inputs of other gates such that the resulting graph is acyclic. It is important
to mention that the output of a gate can connect to more than one input of another
gate. The inputs of the gates of a circuit that are not connected to any output of
another gate are called inputs to the circuit. Likewise, the outputs of the gates of a
circuit that are not connected to the input of a gate are called outputs of the circuit. A
circuit C with m inputs and n outputs computes a function f : {0,1}"™ — {0,1}". We
define the size |C| of a circuit C to be the number of gates it consists of. An example
of a Boolean circuit C of size three is shown in Figure 5.10l It consists of three gates,
one AND-, one OR- and one NOT-gate, has three inputs i1, i2, 73 and two outputs
01,09. Hence it computes a function fe : {0,1}3 — {0,1}2. Clearly, a polynomially
space-bounded deterministic Turing machine can evaluate a circuit, i.e., compute the
output for a given input. We can now formally define SucciNCcT 3-SAT. An input
to SucciNncT 3-SAT is given by a Boolean circuit C that encodes a Boolean formula

¥ in 3-CNF in N = exp(O(|C|)) Boolean variables and with M = exp(O(|C|) clauses.

161



o0 NOT ¢ ——» 09
S e T
AND o —~eo
19— @ o9
OR e—0
i3 )

Figure 5.10: An example of a Boolean circuit C with inputs i1, 5, 73 and outputs o1, 0o
defining a function fc : {0,1}®> — {0,1}?. For example, we have f¢(1,0,1) = (1,1)
and fe(1,1,1) = (0,1).

We write ¢ as

U(@o,..ana) = N (BVEVE).
JE[0,M—1]

The circuit C encodes 9 as follows: C has m = (Ig M) + 2 inputs and n = (Ig V) + 1
outputs. On input ¢ - £, where ¢ € {0,1}™ and ¢ € {0,1}?, both read as binary
numbers, fe outputs z -b, where x € {0,1}" and b € {0, 1} such that z is the index of

the variable of the /-th literal of the clause with index c¢ in v, and b indicates whether
or not x is negatecJ;. SuccINCT 3-SAT is to decide whether 1) is satisfiable.

SuccincT 3-SAT

INPUT: A Boolean circuit C encoding a Boolean 3-CNF formula .
QUESTION: Is ¢ satisfiable?

Due to the exponential succinctness provided by Boolean circuits, the complexity
of deciding SuccINCT 3-SAT increases by one exponent as compared to classical

3-SAT.

Proposition 5.2.2 ([87]) SucciNCT 3-SAT is NEXPTIME-complete.

In order to establish coNEXPTIME-hardness for the combined complexity of LTL

model checking, given an input C to SUCCINCT 3-SAT, we construct a parametric

4For definiteness, 1 can be assumed to be augmented with redundant clauses and literals to

handle the cases when ¢ > M or ¢ = 4.
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Figure 5.11: High-level description of the automaton A used in the hardness-proof of

LTL model checking on parametric one-counter automata.

one-counter automaton A with one parameter y and an LTL formula ¢ such that 1
is satisfiable if, and only if, there is a valuation v such that (7'(A4"),(¢,0)) |= ¢ for
some distinguished control location g of A(y).

As a first step, let us provide a suitable encoding of truth assignments of the
variables of ¢ by natural numbers. The encoding we use has also been employed for
establishing lower bounds for EF model checking of unary one-counter automata [68].
Let p; denote the i-th prime number. Every natural number y defines a truth assign-
ment v : {z1,...,ox} — {0, 1} such that v(x;) = 1 if, and only if, p;|y. By the prime
number theorem, py = O(N log N) and hence O(|C|?) bits are sufficient to represent
pn. We will use the parameter y to guess an assignment, but the above encoding
of course requires exponentially many prime numbers to verify that this assignment
evaluates v to true, and those prime numbers cannot be hardwired into A. Instead,
they are going to be computed in A on-the-fly.

Let us now take a high-level look at A, which is sketched in Figure|5.11. It uses one
parameter y and employs several gadgets. The only gadgets manipulating the counter

are Agivides and A-——. The remaining gadgets are designed in a way such that they

divides*
communicate via designated propositional variables and not, as in Section 5.1.2 with

the help of the counter. First, A loads the value of the parameter y on the counter.
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Recall that the value of y is supposed to encode a truth assignment to ¥¢. Next, A
traverses through a gadget A;,., which initially chooses an arbitrary index c¢ identi-
fying a clause of 1. Every time A;,. is traversed afterwards, it increments ¢ modulo
M and hereby moves on to the next clause. Now 4 branches non-deterministically
into a gadget A¢ in order to compute z - b from C on input c- 1, c- 2, respectively c¢- 3,
i.€., in order to compute the index of the variable of the first, second or third literal
of the clause with index ¢. The computed index x is then used as input to a gadget
Aprime, which computes p.. Then if b = 0, it is checked in Ag—— that p; does not
divide the value of y, and likewise in Agyiqes that p; divides the value of y if b = 1.
These checks require the counter to be modified. After the checks have been finished,
A restores the value y on the counter and the process continues with clause ¢ + 1
mod M. Clearly, if ¢ is satisfiable then there exists a valuation v of y such that there
is an infinite path in T'(A") that traverses the control location ¢ infinitely often, since
every time we traverse A;,. we can always determine which A gadget to choose next
so that we do not “get stuck” at the divisibility respectively non-divisibility tests.

It remains to show how the gadgets and the communication between them can
be realised. Our first observation is that the computations of A;,., Ac and A,vime
can be realised by space bounded deterministic Turing machines using no more than
a number of tape cells polynomial in |C|. Indeed, it is easily seen that incrementing
modulo M, evaluating C and computing the i-th prime number p; can be performed by
such a deterministic Turing machine. Thus, we now show how given a generic space-
bounded deterministic Turing machine M, we can construct in polynomial time a
one-counter automaton Au, and some LTL formulae that mimic computations of M
on traces of Ay,. Our approach is inspired by the classical proof of PSPACE-hardness
of LTL model checking on Kripke structures [101].

Let M = (S,%,T, s0, A, R, A) be a DTM with a fixed input tape with m tape cells,
and n working tape cells, and let S = {sg, ..., sx}. We may without loss of generality
assume that X = I' = {0, 1}. Figure[5.12 shows the one-counter automaton A, that
we use for the simulation of M. There, besides Greek letters we additionally use

italic Latin letters in order to denote atomic propositions of Ax.. A simulation of M
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Figure 5.12: One-counter automaton A, used for the simulation of a space-bounded

deterministic Turing machine.
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starts when Ay, is entered at the location labelled with ¢ and is finished when the
location labelled with [ is reached.
The sequence of propositions occurring on a trace of a path starting from and

ending in g encodes a configuration of M. In more detail,

e s; indicates that M is in state s;;

e h; that the input tape head scans cell ;

e wh,; that the working tape head scans cell i;

e 4, that the ¢-th bit of the input tape is set to b; and

e w;; that the ¢-th bit of the working tape is set to b, where ¢ is in the respective

range and b € {0,1}.

We are now going to introduce some LTL formulae that enforce that a proper
sequence of configurations of M is encoded in traces of A First, we look at LTL
formulae that allow for testing properties of the current configuration. It is helpful
to think of all of them as being evaluated in ¢. The formula @ () def Xs; for
each i € [0, k] expresses that the current state of M is s;. Additionally, with the
formula @ineaa(?) dof XXXXih; we express that the input head is at position ¢, where
i € [0, m+ 1]. Similarly, define the formulae @yonead (%), Puork(J, ), and @iy (2, b) for
expressing that the working head is at position ¢, that the i-th bit of the input tape
is b, and that the j-th bit of the working tape is b, respectively, where i € [m], j € [n]
and b € {0,1}.

The LTL formula below, assumed to be evaluated in the control location labelled

with «, ensures that the transition function is correctly encoded into traces of A,

for states s € S\ A whenever the input respectively working tape head does not scan
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a start marker > or end marker <:

/\ /\ /\ Pstate (l) A Soinhead(i) A Spmput (Z, bl) A Pwohead (]) A Pwork (]a b2) —
sieS\A 166[?1]]’ b1,b2€{0,1}
JE[N

- ((X(_'O[ A _'ﬁ)U(O‘ A Qosucc(sla ’i,j, bl; b2))/\

A /\ (@work(k7 b) A (XﬁOéU(O{ A (pwork(ku b))))))

k#j,
be{0,1}

Here, whenever A(s;, by, by) = (sp,d1,ds,b), the formula

.. def
Spsucc(sla v, 7, bla bQ) = Pstatey, A (pinheadi+dl A Spwoheadj_'.d2 A SOworkj’b

guarantees that the correct bit is “written” to the working tape and that the state,
the input head position, and the working tape position of the next configuration seen
indeed match the successor configuration. A similar formula can be constructed for
the case when one or both of the input or working heads point to a start respectively
end marker.

Once we have reached an accepting state s; € A, we require that A, is left, which

is expressed by the following formula when evaluated in ¢:

/\ @state(i) - (ﬁOéUﬁ)

sieF
It is now easily seen that we can construct an LTL-formula ¢ compute that is derived
from a conjunction of the formulae from above such that the formula G(a@ — @ compute)
constraints paths through A, in a way such that their traces yield the encoding of
a valid computation of M.
Let us now turn towards ensuring that once we enter A, we initially traverse
it in a way such that the trace corresponds to an initial configuration of M. The

formula

G(< - X(Spstate(o) A Spinhead(l) A prohead(l) A /\ Spwork(jv 0)))
]

JjE[n
ensures that the heads of the input and working tape point to the first tape cell, that

the working tape is filled with Os and that we are in the initial state. If the input tape
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Figure 5.13: The one-counter automaton A 45 for testing the counter for divisibility

with some natural number of bit length [ + 1.

can be initialized with an arbitrary content, we are done. Otherwise, suppose that
we want to transfer the first j bits of the output of a space-bounded deterministic
Turing machine M’ from its corresponding one-counter automaton A,y to the input
of Ay. For b€ {0,1}, let b ©0ifb=1and b1 otherwise, and suppose that all

atomic propositions are primed in A, . The formula

N\ G(why A (ma'UB)) — (=i 5U7)
b0t}
guarantees that we traverse through the first j bits of the component of A, repre-
senting the input tape of M in the same way as we traverse the first j bits of the
working tape component of M’ in A,y when a computation has finished. In sum-
mary, we have thus shown how the gadgets A;,., Ac and A, from Figurel5.11land
the communication between them can be realised.

The only major question left open is how we can perform a divisibility respectively
non-divisibility test of the counter value with a prime number computed in A, ime.
To this end, let us consider the one-counter automaton A g,iqes Shown in Figure[5.13.
One cycle through Agiges Subtracts some natural number of bit length [ + 1 from
the counter. In order to properly test for divisibility, we need to make sure that we
remain on the same path in every cycle. In the CTL setting, this problem was resolved
by branching into the additional one-counter automaton Ay;. In contrast, in LTL we
cannot branch, but use the propositions v;,,j € [0,{],b € {0,1} in order to stay
on a precisely fixed path in every cycle. Assuming that the number p for which we

want to test for divisibility with the current counter value is encoded as a sequence of
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propositions Wb, of a one-counter automaton 4,4, the subsequent formula enforces
that we always subtract p in cycles of Agyides:

GO A ((wyp, A (maUB)) — (=7,5U8))).

J€[0,1]
b;€{0,1}

It is straightforward to derive a similar one-counter automaton A —— and an appro-
priate LTL formula for testing non-divisibility of the counter value with a previously
computed prime number. Finally, we can also adopt these techniques in order to
correctly handle the branching on b performed in Figure[5.11.

In summary, by taking the disjoint union of all the gadgets from Figure [5.11,
their appendent LTL formulae that we described in this section, wiring the gadgets
correctly and taking the conjunction of the relevant LTL formulae, given an input C
to SuccINCT 3-SAT, we can construct a parametric one-counter automaton 4 with
one parameter y and an LTL formula ¢ such that there is an assignment v assigning
a natural number to y such that (T'(.A”), (¢,0)) = ¢ if, and only if, 1 encoded by C

is satisfiable.

Theorem 5.2.3 The combined complexity of LTL model checking on parametric one-

counter automata is cONEXPTIME-complete.

5.3 Discussion

This chapter established complexity results for model-checking problems on transition
systems generated by one-counter automata and parametric one-counter automata.
We considered two classes of specification logics, branching-time and linear time log-
ics.

Section [5.1 dealt with the branching-time logic CTL and its syntactic fragment
EF. We showed that the expressive power of those logics renders the model checking
problem on parametric one-counter automata undecidable. Decidability of the prob-
lem on one-counter automata was already known, the contribution of this chapter

is that we have developed tight bounds for the complexity of model checking this
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class of counter automata. Although EF model checking of one-counter automata
with updates encoded in unary is PNP-complete, the succinct encoding of numbers
in our model does not increase the complexity by one exponent and model checking
EF on one-counter automata is PSPACE-complete. The crucial insight in establishing
the upper bound was to show a periodicity property for reachability relations and
EF formulae. In contrast, CTL turned out to be expressive enough to fully exploit
the exponential succinctness of one-counter automata: while CTL model checking
of one-counter automata with updates encoded in unary is PSPACE-complete, it is
EXPSPACE-complete already for a fixed formula when updates are encoded in bi-
nary. Proving the lower bound was far from being straightforward and shown by
using the fact that EXPSPACE is exponentially L-serialisable. In Section[5.2 we then
considered model checking LTL on one-counter automata and parametric one-counter
automata. In contrast to the branching-time logics, both problems were shown to be
decidable. Moreover, we showed that model checking LTL on transition systems gen-
erated by one-counter automata is from a complexity point-of-view not harder than
standard LTL model checking and PSPACE-complete. Similar to the CTL case, LTL
model checking of parametric one-counter automata turned out to be computationally
harder, but remained decidable and coNEXPTIME-complete.

We have recently considered in [49] an even more restricted fragment of CTL
which only allows for the EX modality. It is not difficult to adjust the proof of
Proposition [5.1.2] in order to show that model checking this logic on one-counter
automata is PSPACE-hard. For parametric one-counter automata however, model
checking becomes decidable and can be shown to be PSPACE-complete.

With regards to future work, it would be interesting to investigate synthesis prob-
lems for LTL. Instead of asking whether an LTL formula holds for all one-counter
automata obtained from all possible valuations, we could instead ask whether there
exists a valuation such that an LTL formula holds. This problem is closely related to

the Biichi synthesis problem discussed at the end of the previous chapter. For CTL

respectively EF, this problem is undecidable by Theorem [5.1.2 and [5.1.4!
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Pointers and Linked Lists



Chapter 6

Tractable Reasoning in a Fragment

of Separation Logic

This chapter is about the complexity of reasoning in a fragment of separation logic
(SL). Separation logic [66, 92] is an extension of Hoare logic to reason about pointer
manipulating programs. It extends the syntax of assertions with predicates describing
shapes of memory; aliasing and disjointness can be concisely expressed within these
shapes. This extended assertion language allows elegant and concise hand written
proofs of programs that manipulate dynamically allocated data structures. However,
generating such proofs in an automated fashion is constrained by the undecidability
of almost all reasoning tasks in separation logic [92]. For that reason, there has been
a lot of research on finding decidable fragments of this logic, see e.g. [11,23].

In this chapter, we study the separation logic fragment introduced by Berdine,
Calcagno and O’Hearn in [11]. This chapter is independent from the previous chapters
of this thesis. Although in the literature decidability results for separation logic have
been obtained via reductions to decision problems for counter automata, as discussed
in the introduction of this thesis, we do not follow this approach in this chapter.
The fragment of separation logic that we consider and has been presented in [11]
allows for reasoning about structural integrity properties of programs with pointers
and linked lists. Traditionally, separation logic formulae are interpreted in memory

models consisting of a stack and a heap. The stack is a mapping from a finite set
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of stack variables to cells of the heap. The heap is partitioned into a finite set of
allocated heap cells and an infinite set of non-allocated heap cells. An allocated heap
cell maps, or in different words points to, a possibly non-allocated heap cell. The
separation logic assertion language we consider allows for specifying shapes of the
heap. An assertion consists of a pure and a spatial part. The pure part consists of a
conjunction of equalities and disequalities over the stack variables. For example, the
pure assertion z = yAx # z holds in all memory models in which the stack variables x
and y map to the same heap cell, and in which the heap cell that x (and thus y) maps
to is different from the cell that z maps to. An atomic spatial assertion is either x — y
or /s(x,y), where x and y are stack variables. The semantics is that x — gy holds in
a memory model in which the heap cell that  maps to is allocated and points to the
heap cell of y, which is not required to be allocated. The assertion ¢s(x,y) holds in
a memory model if either the heap cell that z is mapped to is equivalent to the heap
cell of y and no heap cell is allocated, i.e., there is an empty list on the heap, or there
is a chain of heap cells ¢y, ..., ¢, 1 such that ¢,..., ¢, are allocated and ¢; points to
¢iv1 for all 7 € [n]. Atomic spatial assertions can be combined with the star-operator.
Given atomic spatial formulae o, 05, we have that o * g9 holds in a memory model
if its set of allocated heap cells can be separated into two disjoint parts such that in
one part o; holds and o5 holds in the other part. Recall that, for example, x +— y
does not require y to be allocated in a memory model. Therefore, both o and o5 can
mention the same stack variable without resulting in an inconsistent spatial assertion.
So, for example, z — y * £s(y, z) has a memory model, even though y is mentioned
on both sides of the star-operator. An assertion in the separation logic fragment that

we consider now is a tuple consisting of a pure and a spatial formula. For example,

a=(y#zx—yxls(yz))

describes memory models in which y and z map to different heap cells, and in which
the heap can be separated into disjoint heaps, on in which the heap cell of z is
allocated and maps to the heap cell of y, and another heap in which there is a list,i.e.

a possibly empty chain of allocated heap cells forming a linked list, from ¥ to z. Since
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y and z are required to be disjoint, this list is non-empty and thus y is required to be
allocated in the heap in which /s(y, z) holds.

The decision problem that we consider in this chapter is entailment, which is to
decide given assertions aq, g whether s holds in every memory model in which oy
holds. We write a1 = g if a; entails ap and show that entailment can be decided
in polynomial time. For example, we have x — y |= ls(z,y), but ls(z,y) £z — y
since the list from z to y could possibly be empty or of length greater than two.
Thus, a memory model disproving entailment can be obtained by considering the
canonical memory model obtained from replacing the ¢s(x,y) assertion with two new
assertions x — z % z — y, where z is a fresh stack variable. A formalisation of this
way of disproving entailment was developed in [11] by showing that list assertions
need to be expanded to length at most two in order to disprove that an entailment
holds. This immediately yields a coNP algorithm for entailment which, in order to
disprove an entailment, non-deterministically guesses how much any list assertion on
the left-hand side of an entailment needs to be expended.

In order to show that entailment is computable in polynomial time, we need to take
a fundamentally different approach to [11]. The first difference is that we represent
memory models and assertions as a special class of directed coloured graphs, which
we call SL graphs. In order to represent memory models, in an SL graph, heap cells
are nodes which are coloured red if they are allocated and coloured black if they are
not allocated. Each node is labelled with a finite set of stack variables that point to
this heap cell this node represents. Special edges between nodes allow for indicating
that heap cells are disjoint. Arrows between cells indicate that the heap cell at the
source of the arrow points to the heap cell at the target of the arrow. Figure6.1(a)
shows an example of how we graphically represent memory models. There, nodes
coloured red are circles, and thus the represented memory model consists of three
allocated heap cells, to which the stack variables x,y and u point to. The heap cell
with stack variable x points to the heap cell with stack variable y, etc. Dashed lines
explicitly assert that the heap cells are not equivalent, e.g., a dashed line between the

heap cell labelled with x and the heap cell labelled with y asserts that those heaps
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Figure 6.1: Examples of the way memory models and assertions are graphically rep-

resented in this chapter and homomorphic embeddings.

cells are not equivalent. Finally, there is one non-allocated heap cell to which the
stack variables z and w point, i.e., z and y are equivalent in the represented memory
model. Some structural restrictions have to be made in order to reflect particularities
of the semantics of separation logic, but this basically is the main idea how memory
models are represented. Separation logic assertions are also represented as graphs,
but allow for additional list edges between nodes, depicted as dotted arrows. Figure
6.1(b) and (c) show the graphs corresponding to a; = (x # z;2 +— y * ls(y, 2))
respectively ao = (z # 2;0s(x, 2)). The ls(y, z) assertion is represented as a dotted
list in the figure. The graphs are constructed in a way such that each SL assertion
has a corresponding SL graph and wvice versa. So in particular, a memory model also
corresponds to an SL formula. The advantage of representing assertions as graphs and
memory models as a subclass of general SL graphs is that entailment can be decided
by checking for the existence of a homomorphic embedding, which is a mapping

between the node of SL graphs that preserves structural properties. For example,
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the memory model in (a) is a model of the assertion oy, and an embedding of the
SL graph corresponding to «; is shown in Figure 6.1 by the arrows from (b) to (a).
The homomorphism is fully determined by the stack variables, and once it has been
fixed, it can be checked that all assertions are fulfilled. Indeed, z # 2z holds in the
memory model, x points to y as well and there is a list from y to z. Likewise, there is
a homomorphism from the graph of as to the graph of as, and we are going to show
in this chapter that this implies that o; = ag. The difficult part is that, in general,
computing homomorphisms between graphs is an NP-complete problem. However, we
are going to show that we can bring SL graphs into a particular normal form, where
deciding the existence of a homomorphism can be performed in polynomial time.

The fragment of separation logic that we consider is the basis for tools such as
SMALLFOOT [12], which however employs the coNP algorithm discussed above in or-
der to decide entailments. Despite the worst-case exponential time complexity, the
tool demonstrated that separation logic could be used to automatically verify memory
safety of linked list and tree manipulating programs. Based on the success of SMALL-
FOOT, this approach has been extended to allow automatic inference of specifications
of systems code [10, 22], to reason about object-oriented programs [43, 67], and even
to reason about non-blocking concurrent programs [12]. But fundamentally all these
tools are based on the same style of syntactic proof theory presented in [11].

This chapter is structured as follows: in Section [6.1 we formally introduce our
fragment of separation logic, graphs and the decision problems that we consider. Sec-
tion[6.2.1 then shows how we can compute in polynomial time from a given assertion
a graph in normal form that represents the same set of models of the formula. We
then show in Section 6.2 that a homomorphism between graphs in normal form wit-
nesses an entailment, and that such a homomorphism can be computed in polynomial
time. Section [6.3 deals with syntactic extensions that make entailment coNP-hard.
We close this chapter with a discussion in Section [6.4, where we in particular focus

on the differences between the semantic model used in thesis and in [11].
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6.1 Separation Logic and SL-Graphs

Let Vars and V be countably infinite sets of variables and nodes. We assume some
fixed total order < on Vars and for any finite set S C Vars, we denote by min(.S) the
unique x € S such that x <y forall y € S.

The syntax of our assertion language is given by the following grammar, where x

ranges over Vars:

expr = (expressions)
¢ = expr = expr | expr # expr | ¢ A\ ¢ (pure formulae)
o = expr — expr | {s(expr, expr) | o x o (spatial forumlae)
a = (¢;0) (assertions)

Subsequently, we call formulae of our assertion language SL-formulae. An example
of an SL-formula is a = (x # y;¥s(z,y) * y — 2). It describes memory models in
which the value of the stack variable z is not equal to the value of the stack variable
y, and in which the heap can be separated into two disjoint segments such that in
one segment there is a linked list from the heap cell whose address is the value of x
to the heap cell whose address is the value of y, and where in the other segment the
latter heap cell points to the heap cell whose address is z. We denote by |¢| the size
of a pure formula and by |o| the size of a spatial formula, which is in both cases the
number of symbols used to write down the formula. Given an assertion a = (¢;0),
the size of a is |a| & |¢| + |o|. By €, we subsequently denote the empty spatial
assertion of size zero.

The semantics of SL-formulae is given in terms of SL-graphs, which we define to
be a special class of directed graphs. Later, we are also going to use SL-graphs in

order to represent SL-formulae.

Definition 18 An SL-graph G is either L or (V;,V,, E}, E,, E4, () such that

ERTAUNYE

o VL,V Can V, VNV, =0, Vj,
o El - ‘/b,r X ‘/b,r;
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Figure 6.2: Three SL-graphs, where bullets represent black nodes, circles red nodes
and where [-edges are dotted arrows, p-edges solid arrows and d-edges dashed lines.
Nodes are labelled with the variables next to them. The graphs (b) and (c) are in
normal form, where (b) is obtained by reducing (a). The arrows from (c) to (b) depict

a homomorphism.
o E,C V., xV, and for every v € V,, E,(v) # 0;
e B, C {{v,w}:v,w € V,,,v#w}; and
o (: Vars —g, Vi,

An SL-interpretation is an SL-graph where E; = (), E, is functional and E; = {{v, w} :
v,w € Vi, v # wh. O

An SL-graph L indicates an inconsistent SL-graph. The set V;, of nodes of an SL-
graph partitions into sets V;, and V., where we refer to nodes in V}, as black nodes and
to those in V. as red nodes. We call E, the set of pointer edges (p-edges), E; the set
of list edges (l-edges), Eq4 is the set of disequality edges (d-edges) and ¢ the variable
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ITkr=y < F(x) =1y
ITkaty < () #(y)
ThegiAgy < T ¢ and T = ¢
Thoey < JoweVEVE = (v}, B = {(n,0)}, £(z) = v, E(y) = w
TE ts(z,y) — TneNTEls"(a,y)
T e, y) — F(z) = Z(y) and VZ = §
Tt (a,y) = 3z ¢ dom(D),v € VI = v/l]] £ 71— 2 % £5™(2, )
Tleoxoy e I, 5.1 =T +L, T, =01, = o
Tl (¢;0) <= T=1T+To,T) E ¢ and T, |= 0, where T k= ¢ for all T

Table 6.1: Semantics of the assertion language, where 7 is an SL-interpretation.

labelling function. For convenience, E,; denotes the set £, U E;. Given a node v € V,
we set vars(v) oo {z € Vars : {(z) = v} and var(v) &of min(vars(v)). We sometimes
wish to alter one component of a graph and, e.g., write G [E;/o /E,] to denote the graph
G = (Vy, Vi, E), E, Eq, ().

Figure [6.2 shows three examples of SL-graphs. Subsequently, we identify nodes
of an SL-graph with any of the variables they are labelled with. Graph (a) has an
l-edge from the black node x; to the red node x3, depicted by a dotted arrow. The
latter node has a p-edge to the black node x4, depicted by a solid arrow. Moreover,
there is a d-edge between x5 and x7, depicted by a dashed line.

In the remainder of this chapter, we denote an SL-interpretation by Z and usually
denote the components of an interpretation with superscript Z, e.g., we write V%
in order to denote the black nodes of an interpretation Z. Given SL-interpretations

Z,7,7", we define the star operator as T = I’ x« Z" if, and only if,
« VI=VZ WL

o VI =VIuvt;
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o VI =VFUVH,
T _ T 7.

e Ly =F;, WE; ;and

o (T =T =/

The semantics of our assertion language is presented in Table [6.1. We call Z a
model of o if Z = . The decision problems of interest to us are satisfiability and

entailment.

SL SATISFIABILITY

INPUT: An assertion .
QUESTION: Does there exist an interpretation Z such that Z = a?

SL ENTAILMENT

INPUT: Assertions «a, o,
QUESTION: Does 7 = « imply Z |= « for all interpretations Z7?

Given an assertion «, we say « is satisfiable if there exists a model Z such that Z |=
a. Given two assertions «a and ai, we say «y entails oo if for any SL-interpretation
7, whenever Z |= ay then 7 |= as. We write a1 = s if ap entails as, and oy = as if
a) | ag and as = a;.

Given an SL-graph G, we are now going to define its corresponding assertion a(QG).
If G = L then o(G) & (x # x;€), i.e., an unsatisfiable SL-formula. Otherwise, the
assertion a(G) corresponding to G is defined as follows, where we use an indexed star
operator:

o(G) Lf /\ r=yA /\ var(v) # var(w),

Uevb,r {’U,w}eEd
z,yEvars(v)

o(G) def (*(v,w)eEp var(v) var(w)) * (*(v’w)eElfs(var(v),Var(w))) ,

a(G) E (6(G), 0(@)).

We define the size of an SL-graph G as |G| &f |a(G)|. An example of the above

definition is given in Figure 6.2, where graph (b) corresponds to the assertion o =
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(¢;0), where

def
¢:l‘l:$2AI2:I3A$4:ZE6/\ZL‘17é$4/\l'57£l'7,

o & x1 > xy x Us(xy, w5) * £s(xy, 7)),

and where we have omitted superfluous equalities.

We now give some technical definitions about paths in SL-graphs. Given a relation
E CV xV,av-w path in E of length n is a sequence of nodes 7 : vy - - - v,41 such
that v; = v, v,41 = w and (v;,v;41) € E for all 1 <i < n. We write |7| to denote the
length of m. The edges traversed by m is defined as edges() o {(vi,vi31) 1 1 <1< n}.
Two paths 71, 7y are distinct if edges(m)Nedges(ma) = 0. If v # w, we call a v-w path
loop-free if v; # vj for all 1 < ¢ # j <n+1. We write v ~», w, v ~; w and v ~,; w
if there exists a v-w path in E,, E; respectively E,;. Moreover, we write v —, w,
v —;wand v —,; wif (v,w) € E,, (v,w) € Ej respectively (v,w) € E,;. Given a
set of edges E, V(E) denotes the set V(F) oof {v:Jw.(v,w) € E or (w,v) € E}. As
usual, F* denotes the reflexive and transitive closure of E. For e = (v,w) € E, we

define E*(e) o {u: (w,u) € E*} U{v}, i.e., E*(e) is the set of all nodes reachable

starting from edge e.

6.2 Deciding Entailment via Homomorphisms be-
tween SL-Graphs

The challenging aspect in giving a polynomial time algorithm to decide entailment
is that there is some implicit non-determinism introduced by list assertions. As has
already been observed in [11], given a = (y # z; ¢s(x,y) xs(x, z)), for any model Z of
awehaveZ |= (x = y;€) or Z |= (x = z;€). However there are models Z;, 7, of a such
that Z; [~ (z = y;€) and Zy [~ (x = z;€). Non-determinism often makes computing
entailment coNP-hard for logics that contain predicates for describing reachability
relations on graphs, e.g., in fragments of XPath or description logics [79, 55]. However,
in our SL fragment we obtain tractability through the SL-graph normal form we are

going to develop in the next section and the fact that variable names only occur at
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exactly one node in an SL-graph, which fully determines a graph homomorphism if
it exists.

The structure of this section is as follows. The first part deals with a particular
normal form of SL-graphs. We are going to show that any satisfiable SL-formula has
an equivalent SL-formula whose corresponding SL graph is in such a normal form
and which can be computed in polynomial time. The subsequent section then shows
that entailment can be decided by checking for the existence of a homomorphism
between SL-graphs in normal form. The key property is that a homomorphism can be
computed in polynomial time, which yields a polynomial-time algorithm for checking

entailment between SL formulae.

6.2.1 A Normal form of SL-Graphs

In this section, we are going to show that given an assertion «, we can compute in
polynomial time an SL-graph G in a normal form such that a = a(G). This normal

form serves three purposes:

e it makes implicit equalities and disequalities from « explicit;

e an SL-graph in normal form has the structural property that if there is a loop-
free path between two distinct vertices then there is exactly one such path;

and

e any SL-graph G # L in normal form can be transformed into an interpretation
7 such that 7 = «(G), thus showing that satisfiability in our SL fragment is in

polynomial time.

Our strategy is as follows: we first show how given an assertion «, we can compute
an SL-graph G such that o = a(G). Next, we define the normal form of SL-graphs
and show that from any SL-graph G # 1 we can compute an SL-graph G’ in normal
form such that a(G) = a(G’).

To begin with, we show how given a pure formula ¢ we can construct a cor-

responding graph G, such that (¢,¢) = a(Gy). Let {z1,...,2,} C Vars be the
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set of all variables occurring in ¢, and let {[e1],...,[en]} be the set of all equiv-
alence classes of variables induced by ¢, i.e., z,y € [e;] if, and only if, ¢ implies

x = y. Let Vj def {v1,...,u,} C V; L(x) dof v; if, and only if, x € [e]; and

B, ¢ {{vi,v;} + I,y € Vars.e € [e;],y € [xj] and @ # y occurs in ¢}. If there
is a singleton set in E; then set Gy aof 1, otherwise Gy aof (Vs,0,0,0,E4,¢). The

following lemma can now easily be verified.

Lemma 6.2.1 Let ¢ be a pure formula. There exists a polynomial time computable

SL-graph G4 such that a(Gy) = (¢, €).

Next, we show how to deal with spatial assertions. When processing spatial asser-
tions and transforming SL-graphs into normal form, we need to manipulate SL-graphs.
The two operations we perform on them are merging nodes and removing edges. These
operations can be realised by the algorithms that we subsequently introduce. Let us
fix an SL graph G = (V,,V,, Ei, E,, Eq, £).  Algorithm MERGE(G,v,w) takes an
SL-graph G as input and merges the node w into node v by adding all labels from w
to the labels of v and appropriately updating £, £, and E;. Moreover, the algorithm
makes sure that if either v € V,. or w € V, then v € V, in the returned graph. If
both v,w € V, or {v,w} € E; then MERGE(G, v, w) returns L. It is obvious that the

algorithm runs in polynomial time, and we can characterise MERGE as follows.

Lemma 6.2.2 Let a(G) = (¢;0), v,w € Vi, © = var(v) and y = var(w). We have
a(MERGE(G,v,w)) = (¢ Nx =y;0).

In order to remove edges, we define for removing [- and p-edges. Algorithm LREMOVE(G, (v, w))
takes an SL-graph G and an [-edge as input and removes the (v, w) from E;. We omit
the pseudo-code of LREMOVE for readability, the algorithm can be characterised as

follows.

Lemma 6.2.3 Let a(G) = (¢;0 * ls(z,y)), v,w € Vi, x = var(v) and y = var(w).
We have a(LREMOVE(G, (v, w))) = (¢;0).

Similarly to LREMOVE, PREMOVE(G, (v, w)) removes a p-edge (v, w) from E, and,
if necessary, moves v from V, to V, if v has as a result no outgoing p-edge. The

algorithm can be characterised as follows.

183



Algorithm 4 MERGE(G, v, w) merging two nodes v and w of G semantically
Input: An SL-graph G and nodes v, w € V},,

if v = w then
return G
end if
if {v,w} CV, or {v,w} € E,; then
return L
end if
Vi E A\ {wh VL E VN {w)
if w eV, then
VIS VIOV E W {v)
end if
B, = B\ ({(w',w) € B} U{(w,w') € E,})
By S B, U({(w,0) : (', w) € B} U{(n,0) : (w,w) € By}
B BN\ ({(w',w) € By U{(w,w') € Ei})
E{ = BU{(w,v): (w,w) € B}U{(v,w): (w,u) € E})
E, def Ei\ ({{w,w'} € Eg}) U ({{v,w'} : ' {w,w'} € E4})
V' (z) Ly if ((x) = w and ¢'(z) oof ¢(x) otherwise
G < (V). V), By B B )

return G’

Lemma 6.2.4 Let a(G) = (¢;0 %z +— y)) v,w € Vp,, x = var(v) and y = var(w).
We have a(PREMOVE(G, (v, w))) = (¢;0).

We introduce functions LREMERGE(G, (v, w)) and PREMERGE(G, (v, w)) as macro,
which first remove an [- respectively p-edge (v, w) from G and then merge w into v.

Coming back to our original goal which was to show how to deal with spatial
assertions, Algorithm ApPPLY (G, o) takes an SL-graph G and a single spatial assertion
o € {x — y,ls(x,y)} as input and outputs an SL-graph G’ such that if a(G) = (¢; 0”)
then a(G’) = (¢; 0’ * o). Some extra care has to be taken if an [-edge is added that

is already present in G, since (¢;0 * ls(x,y) * ls(x,y)) = (p Nz =y;0 % ls(x,y)). It
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Algorithm 5 PREMOVE(G, v, w) removing a p-edge (v, w) semantically
Input: An SL-graph G, a p-edge (v,w) € E,

if |E,(v)| > 1 then
return G[(E,\ {(v,w)})/E,]

else

return G[(V;\ {v})/V;, Vo U {v})/ Vi, (E, \ {(v,w)})/E,)
end if

is easily checked that APPLY runs in polynomial time.
By combining the algorithms considered in this section and computing the SL-
graph corresponding to an assertion « by induction on the structure of «, we obtain

the following lemma.

Lemma 6.2.5 Let o be an SL-graph. Then there exists a polynomial-time algorithm

that computes an SL-graph G such that o = a(G).

We now are now going to move towards defining the normal form of an SL-graph
and show that any SL-graph can be transformed into one in normal form such that
their corresponding assertions are equivalent. A key concept of the normal form is

that of a persistent set of edges.

Definition 19 Let G be an SL-graph, a set of edges £ C E,; is persistent if V(E) N
V. # 0 or there are v,w € V(E) such that {v,w} € E,.

Let us illustrate this definition with the help of Figure|6.2. Let e; be the [-edge from
x4 to x5 and es the l-edge from x4 to x7 of graph (a) in Figure Neither {e;} nor
{ea} is persistent, but {e;,es} is as there is a d-edge between x5 and 7. Intuitively,
the idea behind the definition is as follows: suppose we are given an SL-graph G
with (v,w) € Ej such that F = E (v,w) is persistent. Then in any model Z of
a(G) for v = (*(var(v)), we have v € VZ since v’ must have an outgoing p-edge as
the persistence property enforces that there is a p-edge in E or that not all variable
names occurring in F are mapped to v' in Z. Moreover, if v has a further outgoing

l-edge (v,w’) then ¢*(var(w')) = v since v can only have one outgoing p-edge in Z.
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Algorithm 6 AprpLY(G,0) adding a p or l-edge semantically

Input: An SL-graph G, an assertion o € {x — y, ls(z,y)}
v E it E )y L EvEY,
if ¢(z) is undefined then
v choose(V \ V4,); Vi, & Vi u{v} ' o Uz — ]
end if
if /(y) is undefined then
w % choose(V'\ Vi,); Vi V7 U fuhs ¢ 9 ¢y s o]
end if
if 0 =2 — y then
if ({(x),¢(y)) € E, then
return |
end if
VISV, U {l) V) = Vi {U()}
B B, U{(U(x), (y)}: G & (V)V}, B, By, Bq, 0)
end if
if 0 = ls(z,y) then
if (¢(x),¢(y)) € E; then
G ¥ MERGE(G, (), ((y))
else
B} B U {l(x) ()} G E (V. V], By, B, B, 0)
end if
end if

return G’
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(i) if v € V; then |E,(v)| =1
(ii) if v —,; w such that B>, (v, w) is persistent then Fj(v) C {w}

(iii) if v —; wy; and v —; wy such that E¥ (v, wi) U E5 (v, ws) is persistent then

Ej(v) € {wy,ws}

(iv) there are no distinct loop-free v-w paths 7, mp in Ej.

Table 6.2: Conditions for an SL-graph G to be reduced.

For graph (a) in Figure[6.2, this means that xg becomes equivalent to 4 in any model
of the corresponding SL-formula. Thus persistency allows us to make some implicit
equalities in G explicit.

We can now give a definition of our normal form of SL-graphs.

Definition 20 An SL-graph G is reduced if G = L or if it fulfills the conditions in
Table [6.2. An SL-graph G is in normal form if G is reduced and for all v,w € Vj,
such that o(G) = (¢;0), z = var(v) and y = var(w), whenever (¢ A x = y;0) is

unsatisfiable then {v, w} € Ey.

Thus, an SL-graph is in normal form if it is reduced and if its set of d-edges is
saturated. Let us explain on an informal level the four conditions given in Table
6.2 that constitute the property of a graph being reduced. The idea behind those
conditions is that if any of them is violated by an SL-graph G then we can make
some implicit facts explicit. Clearly, if (i) is violated then a(G) is unsatisfiable as
the spatial part of «(G) consists of a statement of the form = — y x z — 2. If (i)
or (iii) is violated then by our previous discussion on persistent edges any further
outgoing [-edge can be collapsed into v. Condition (iv) contributes to making sure
that between any two different nodes there is at most one loop-free path, as can
be seen by the following lemma. Note that in particular any interpretation Z is an

SL-graph in normal form.
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Algorithm 7 REDUCE(G) reducing G according to Definition 20
Input: An SL-graph G

while G is not reduced do
case split on violated condition at node v
// conditions are as in Table|6.2

// node names below refer in each case to the corresponding case in Lemmal6.2.9

case (i): return L
case (ii): G = LREMERGE(G, (v, w’))
case (iii): G = LREMERGE(G, (v, w"))
case (iv): G = MERGE(G',v,w)

end while

return G

Lemma 6.2.6 Let G # L be a reduced SL-graph, v,w be distinct nodes in V4, and

T U~ w a loop-free path. Then m is the unique such loop-free path.

Proof. To the contrary, assume that there are two different loop-free v-w paths 7, .
Then there are nodes v’, w’ such that there are distinct v-w’ paths 7} and 7/, that are
segments of m; respectively m, where at least one of 7 or 7y is of non-zero length.
If ' = w’ then this contradicts to m or w5 being loop-free. Thus, assume v" # w’. If
both 7/, 7 are [-paths then this contradicts to G being reduced, as condition (iv) is
violated. Otherwise, if 7} reaches a red node then edges(n}) is persistent and hence
v" has one outgoing edge, contradicting to m} and 7, being distinct. The case when

mh, reaches a red node is symmetric. 0

It is easy to see that checking whether a graph G is reduced can be decided in
polynomial time in |G|. In order to transform an arbitrary SL-graph into a reduced
SL-graph, Algorithm REDUCE(G) just checks for a given input G if any condition
from Table [6.2] is violated. If this is the case, the algorithm removes edges and
merges nodes, depending on which condition is violated, until G is reduced. We will

subsequently prove REDUCE to be correct. First, we provide two technical lemmas
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that will help us to prove correctness. They allow us to formalise our intuition about

persistent sets of edges.

Lemma 6.2.7 Let G be an SL-graph and v,w,w" € V,, such that x = var(v), y =
var(w), v ~»; w, and let T be a model of a(G). Then the following holds:

(i) if (*(y) € VI then (*(z) € V*; and

(i1) if v~ w' and {w,w'} € Ey then (*(x) € VI.

Proof. (i) Let a(G) = (¢;0). The proof is by induction on the length of the l-path 7
from v to w. The case |r| = 0 is trivial. For the induction step, let 7 = vw’-7’. Then
(s(x, z) is a spatial assertion in o with z = var(w’). By the induction hypothesis,
(*(2) € VI. Moreover, Z |= ¢s(z,z) and hence Z = (s"(2’,2) for some n € N. If
n = 0 we have £(x) = (*(z) € V,. Otherwise, T &= x + 2/ % {s"" (2, 2), where
2" € Vars is fresh. Consequently, ¢*(x) € VZ.

(ii) Let a(G) = (¢;0) and 7 and 7’ be l-paths from v to w respectively w’. We
show the statement by induction on |r| 4 |7’|. Let m = || + |7’|. As {w,w'} € Ejy,
we have m > 0. If m = 1, assume without loss of generality that |7| = 1 and let
y = var(w). For any model Z of a(G), Z | ¢s(x,y) and hence Z = (s"(x,y) for
somen € N. SinceZ Fx # y, n>0andthus Z | z — 2 £s"1(2,y) for some
fresh z € Vars. Consequently, ¢*(z) € VZ. For m > 1, we assume without loss of
generality that |r| > 0, i.e., 7 = vu - 7”. Hence ¢s(x,y) is a spatial assertion in o,
where y = var(u). We have Z |= ¢s(x,y) and hence Z |= ¢s"(x,y) for some n € N. If
n > 0 then Z = x — 2z % 5" 1(2,y) for some fresh z € Vars, hence ¢*(z) € V. If
n=0,let G ¥ RLMERGE(G, (v,u)). As (Z(z) = (X(y), it follows that Z is a model
of a(G"), hence the induction hypothesis yields that ¢(z) € V,. 0

The next lemma formalises our intuition about [-edges whose source node is guaran-
teed to be red in any model. It shows that in this case any outgoing [-edge collapses

into its source node.
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Lemma 6.2.8 Let o« = (¢,0) and x € Vars be such that for all models T of «,
2(z) € VI. Then for all y € Vars and o/ = (¢, 0 x €s(x,y)), " = (6 ANz =1y, 0), we

have o/ = .

Proof. We clearly have that o” = /. For the other direction, let Z' be a model of «'.
By definition, there are Z;, Z, such that 7' = Z1%Zs, Z; = (¢;0) and s |= (¢ 0s(x, y)).
By assumption, ¢*1(z) € V7 and hence (*2(x) ¢ V*2. Consequently, (72(z) = (*2(y).
Hence (' (x) = (% (), which yields T’ |= (¢ Az = y;0). 0

We are now prepared to show the correctness of REDUCE. Each case in the lemma
below captures a violated condition from Table and shows that the manipulation

performed by REDUCE is sound and complete.

Lemma 6.2.9 Let G be an SL-graph,

(1) if there is v € V,. such that |E,(v)| > 1 then a(G) is unsatisfiable;

(i1) if there are v, w,w € Vi, x,y € Vars such that v —,; w, v —; W', v = var(v),
y = var(w'), EX,(v,w) is persistent and a(G) = (¢,0 x ls(x,y)) then a(G) =

p,l
(pANz=y;0);

(111) if there are v, w,w, w" € Vi, x,y € Vars such that v —; w, v —; ', v —; wW",
r = var(v), y = var(w"”), E} (v, w) U Ey (v,w') is persistent and o(G) = (¢, 0 *

ls(z,y)) then a(G) = (p Nx =y;0); and

(iv) if there are v,w € Vi, x,y € Vars such that x = var(v), y = var(w), a(G) =
(¢p,0) and there are distinct loop-free v-w l-paths 7,7y in E; then o(G) =

(P Az =y;0).

Proof. Case (i): Let = var(v), we have that there are y, z € Vars such that (¢; o *
x +— y*x +— z), which clearly is unsatisfiable.

Case (ii): We show that for all models Z of a(G), ¢*(x) € V,. The statement then
follows from Lemma 6.2.8. If there is u € V(E;,(v,w)) NV, then by Lemma6.2.7(i)
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we have x € V7. Otherwise, if there are u, ' € V(E} (v, w)) such that {u,u'} € Eq
then Lemma 6.2.7(ii) gives z € VZ.

Case (iii): Again, we show that for all models Z of a(G), (*(x) € V,. The
statement then follows from Lemma [6.2.8. It is sufficient to consider the case in
which there are u,u’ € Vj, such that w ~»; u, w ~»; v’ and {u,u'} € E, as all other
cases are subsumed by (ii). But then, Lemmal6.2.7(ii) again yields z € V}7,.

Case (iv): Let m = vwy - 7] and w9 = vwy - w5 be v-w paths. Thus, w; # wy and
hence m & |71|+|m2| > 3. We show the statement by induction on m. For m = 3, the
statement follows from a similar reasoning as in Lemma|6.2.8. For the induction step,
let m > 3 and Z be model of a(G). Let y; = var(w;) and yo = var(ws), we have that
a(G) = (¢;0%ls(x,yp)*Ls(x, yo)) and consequently Z |= o *£s™ (z,y1) s (x, yo) for
some ny,ng € N. If ny = 0 then Z = G’, where G’ = LREMERGE(G, (v, w;)) and the
induction hypothesis yields #Z(x) = ¢Z(y). The case ny = 0 follows symmetrically. o

Proposition 6.2.1 Let G,G" be SL-graphs such that G' = REDUCE(G). Then G’
is reduced and a(G) = a(G"). Moreover, REDUCE runs in polynomial time on any

mput G.

Proof. Clearly, REDUCE only returns graphs that are reduced. Moreover, Lemma
6.2.9 shows that in every iteration equivalent graphs are generated and hence o(G) =
a(G"). Regarding the complexity, checking if G is reduced can be performed in
polynomial time in |G|. Removing edges and merging nodes in the while-body can
also be performed in polynomial time. Moreover, the size of G strictly decreases
after each iteration of the while-body. Hence the while-body is only executed a

polynomial number of times. 0

The next proposition summarises all constructions that we have established in

this section so far.

Proposition 6.2.2 For any SL-formula «, there exists a polynomial time computable

SL-graph G in normal form such that o = o(G).
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Proof. Given an assertion o = (¢; o), by Lemma[6.2.5 we can construct an SL-graph
G’ such that a(G’) = a. Applying REDUCE to G’ yields a reduced graph G” such
that o(G’) = a(G"). In order to bring G” into normal form, we check for each of the
polynomially many pairs v, w € V,, if REDUCE returns L on input MERGE(G”, v, w).
If this is the case, we add {v,w} to E4, which finally gives us the desired graph G.

As argued before, all constructions can be performed in polynomial time. O

Let us now illustrate our definitions with the help of an example. Graph (b) in
Figure 6.2 is in normal form and obtained from the graph (a) by applying REDUCE.
Graph (a) violates condition (iii) of Table(6.2 as {(¢(x4), ¢(x5)), (€(x4), £(x7)} is persis-
tent, which results in REDUCE merging x4 into x4. Moreover, the graph also violates
condition (iv) since there are two distinct [-paths from z; to x3. Hence, REDUCE
merges 1 and x3 and then removes all newly obtained outgoing [-edges from x3 due
to a violation of condition (ii). Finally in order to obtain graph (b) in normal form,
{(€(x3),0(x4))} is added to E4 as merging the nodes x3 and z4 and applying REDUCE
results in an inconsistent graph.

As stated before, a nice property of SL-graphs in normal form is that they allow

to easily construct a model of their corresponding SL-formulae.

Lemma 6.2.10 Let G # L be a reduced SL-graph and v,w € V,, such that v # w.
Then o(G) has a model T such that (*(var(v)) # ¢X(var(w)) and for all z,y € Vars,
U(z) = L(y) implies (% (x) = (X(y).

Proof. We sketch how G can iteratively be turned into a desired model Z. Suppose w
is reachable from v and let 7 be the loop-free path from v to w. First, we replace any
l-edge occurring on w by two consecutive p-edges. For all nodes v' # w along 7 that
have further outgoing l-edges, we merge all nodes reachable via [-paths from v" into
v and remove the connecting l-edges. If v is reachable from w via a loop-free path
7', we apply the same procedure to 7’. Finally, we iterate the following procedure: if
there is a node v with more than one outgoing [-edge, we fix an [-edge e and merge all
nodes reachable from u via the remaining [-edges different from e into u and remove

the connecting [-edges. We then replace e with two new consecutive p-edges. Once
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this procedure has finished, we obtain an SL-graph containing no l-edges that can be

turned into an interpretation Z. It is easily checked that 7 is a model of a(G) and
X (var(v)) # £ (var(w)). O

As the reduced SL-graph corresponding to an assertion can be computed in polyno-
mial time, we have thus shown that checking satisfiability in our assertion language

is decidable in polynomial time.

Theorem 6.2.1 Satisfiability of SL-formulae is decidable in polynomial time.

6.2.2 SL-Graph Homomorphisms

In this section, we are going to show that entailment between SL-formulae can be
decided by checking for the existence of a graph homomorphism between their cor-
responding SL-graphs in normal form. Throughout this section, we will assume that
all SL-formulae considered are satisfiable and all SL-graphs G # L, since deciding
entailment becomes trivial otherwise, and checking for satisfiability can be done in
polynomial time.

A homomorphism is a mapping between the nodes of two SL-graphs that, if it
exists, preserves the structure of the source graph in the target graph. In the definition
of a homomorphism, we make use of the property of SL-graphs in normal form that
between any disjoint nodes there is at most one loop-free path connecting the two
nodes, c.f. Lemma [6.2.6. For nodes v # w, we denote this path by (v, w) if it
exists. If v = w then m(v,w) is the zero-length path (v, w) & . Subsequently, let
us fixed SL-graphs G = (Vi, V;., By, B, Eg, (), G" = (V},V/, B, E,, Eg, (') and "G =
(V' VI By ELL B 1),

Definition 21 Let G, G’ be SL-graphs in normal form. A mapping h: V,, — Vj  is
a homomorphism from G to G’ if the homomorphism conditions from Table [6.3 are

satisfied. O

Given a mapping h, it is easy to see that checking whether h is a homomorphism can

be performed in polynomial time in |G|+ |G’|. The goal of this section is to prove the
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(i) vars(v) C vars(h(v))

(ii) if {v,w} € By then {h(v), h(w)} € E}
(ifi) if v —, w then h(v) —' h(w))
(iv) if v — w then h(v) ~!, h(w)

(v) for all v, —,; w; and vy —,; wy such that (vi,w1) # (v, w2),

edges(m(h(vy), h(wy))) Nedges(m(h(ve), h(wy))) = 0

(vi) if v,w € V. and v # w then h(v) # h(w)

Table 6.3: Conditions for a homomorphism A from G to G'.

following proposition, which gives us the relationship between homomorphisms and

entailment.

Proposition 6.2.3 Let G,G" be SL-graphs in normal form. Then o(G') = o(G) if,

and only if, there exists a homomorphism h from G to G'.

Before we begin with formally proving the proposition, let us discuss its validity on
an intuitive level. Suppose there is a homomorphism from G to G’. Condition (i)
makes sure that for any node v of GG its image under h is labelled with at least the
same variables. If this were not the case, we could easily construct a counter-model
of a(G") disproving entailment. Likewise, condition (ii) ensures that whenever two
nodes are required to be not equivalent, the same is true for the two nodes under
the image of h. Since G’ is in normal form, merging the two nodes in the image
of h would otherwise be possible since E is maximal. Condition (iii) requires that
whenever there is a p-edge between any two nodes v, w, such an edge also exists in G'.
Again, it is clear that if this were not the case we could construct a counter-model 7
of a(G’) such that there is no p-edge between ¢ (var(v)) and #*(var(w)). Condition
(iv) is of a similar nature, but here we allow that there is a whole path between h(v)

and h(w). In condition (v), we require that the paths obtained from the image of
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two disjoint edges do not share a common edge in G'. If this were the case, we could
construct a model of a(G’) in which separation is violated. Finally, condition (vi)
makes sure that no two different nodes from V,. are mapped to the same node. This
condition is needed to handle p-edges of the form (v,v), which may not be covered
by condition (v). We now proceed with formally proving Proposition 6.2.3. First,
the following lemma shows the relationship between models and homomorphisms and

that homomorphisms can be composed.

Lemma 6.2.11 Let G,G',G" be SL-graphs in normal form and I an interpretation.
Then the following holds:

(i) let h: Vi, — Vi& be such that for allv € Vi, h(v) d:eféz(var(v)); then T = a(G)

if, and only if, h is a homomorphism from G to Z; and

(i1) given homomorphisms h', h" from G' to G respectively G" to G'; then h Ypron

is a homomorphism from G” to G.

Proof. (i) Throughout this proof, we make implicit use of the fact that for all Z,
T = (¢;0 % 0') if, and only if, there are Zy,Z, such that Z =7, x Ty, 7; |= (¢;0) and
I = (¢;0').

(“<") We show the statement by induction on |o|. In the following, let a(G) =
(¢,0). It is not difficult to check that the statement holds in the induction base case.

For the induction step, let us first consider the case a(G) = (¢;0’ * x — y). We
show that there are 7,7, such that Z; |= (¢;0'), Zo = (¢;x — y) and Z = Ty xZ,. Let
v =) and w = £(y). Set T < Z[{h(v)}/Vy, VU(VALA(0)})/ Vo, {(h(0), h(w))}/E).
Clearly, Z, = x +— y. Choose Z; such that Z = Z,%Z, and let G’ = PREMOVE(G, (v, w))
be an SL-graph in normal form such that a(G") = (¢;0’). It is not difficult to ver-
ify that h is a homomorphism from G’ to Z;. In particular conditions (iii) and (iv)
are satisfied by h since condition (v) makes sure that when we remove the p-edge
(h(v), h(w)) from Z then we do not destroy any other path under the image of h. It
follows from the induction hypothesis that Z; = (¢;0”).
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Next, suppose a(G) = (¢; 0’ * €s(x,y)). Again, we show that there are Z;,Z, such
that 7y = (¢;07), Iy = (¢;0s(x,y)) and T = T3 * Iy. Let v = {(x) and w = {(y)
and w(h(v), h(w)) = Vvl v, Define V/ < {v! ), ...,v/_,}, which is possibly an
empty set when 7(h(v), h(w)) has length zero. Now set Z, = Z[V//VE V, U (VE\
V) VE AW, vi,) + 1 < i < n}/EI] and choose Iy such that Z = 7y * Z. Let
e LREMOVE(G, (v,w)), it follows that G’ is an SL-graph G’ in normal form
such that a(G’) = (¢;0’) and h is a homomorphism from G’ to Z;. The induction
hypothesis then yields Z; = a(G’) as required.

(“=") Let a(G) = (¢; 0) and let Z be a model of a(G). We show by the statement
by induction on the number of spatial assertions in ¢. The induction base case is
reasonably clear, in particular {¢*(z),(*(y)} € E7 if, and only if, *(x) # (*(y)
ensures that condition (ii) is satisfied. For the induction step, let us consider the
case a(G) = (¢;0" * x +— y), the case a(G) = (¢; 0’ * ls(x,y)) follows along similar
lines. Let v = {(z), w = {(y) and G' = PREMOVE(G, (v,w)), so that a(G’) = (¢; o).
As 7 = a(G), we have T = 7' « " such that 7' |= (¢;0') and Z” = (¢;2 — y).
By the induction hypothesis, there exists a homomorphism A’ from G’ to Z’. Set
he h[l(z) — (*(x),0(y) — (*(y)], we claim that h is a homomorphism from G to
Z. Conditions (i), (ii) and (iv) are obviously satisfied. For (iii), since Z" = = — y, we
have that (¢*(z),(*(y)) € EX" C EZ and since h' is a homomorphism, condition (iii)
is true for all remaining p-edges that are in G’ as well. Regarding (v), if both (v, wy)
and (vg,wq) are edges in G’ then condition (v) holds, since A’ is a homomorphism.
Otherwise, suppose (vy,wy) = (€(z), 4(y)) € E,, then by the semantics definition there
is no p-edge in Z'. Since (iii) and (iv) hold for A/, {(¢(z), £(y)) }Nedges(m(h(v2), h(w2)))
must be empty. Last, it is easily verified that (vi) holds as well.

(ii)) We check that all homomorphism conditions are met. Regarding condition
(i), let v € V.. We have vars(v) C vars(h/(v)) C vars(h”(h'(v))) = vars(h(v)). For
(ii), from A’ we have (v,w) € EY implies (h'(v),h'(w)) € E! and hence A" implies
(" (h"(v)), k" (W (w))) € EY, i.e., (h(v),h(w)) € E}. For (iii), for v —, w, h' gives
h'(v) —, h(w) and A" yields h"(h'(v)) —7 h"(R'(v)), i.e., h(v) —7 h(w). Likewise for
(iv), if v —; w then ' gives h'(v) ~ ; h'(w). Now for any p- or I-edge (v', w’) along the
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path 7' = 7(h'(v), ' (w)), h" yields h"(v') ~7 ; h"(w'), which implies h(v) ~7, h(w).
We now show that (v) holds for h. To this end, let v; —,; w; and vy —,; wy. Let
w1 = 7(h(vy), h(wy)) and 75, = 7(h(ve), h(ws)), from h' we get edges(7}) Nedges(m,) =
(). Now h” gives us that for any pair of edges (v}, w]) and (vh,w)) that appear along
m respectively w5, edges(w]) N edges(wy) = 0, where 7/ = n(h"(v}),h"(w})) and
my = w(h"(vh), h"(wh)). Hence, edges(m(h(v1), h(wi))) N edges(m(h(ve), h(ws))) = 0.
Finally for (vi), let v,w € V4, such that v # w. Then h'(v) # h/(w) and ' (v), h'(w) €
Vy, and hence h(v) = h"(h'(v)) # h"(W (w)) = h(w). 0

Proposition now is a consequence of the following lemma. Note that the

homomorphism is fully determined by G and G'.

Lemma 6.2.12 Let G,G" be SL-graphs in normal form and let h : Vi, — Vj _ be
defined as h(v) d:efﬁ’(var(v)) for allv € V,,.. Then o(G") = a(G) if, and only if, h is

a homomorphism from G to G'.

Proof. (“«<”) Let h be a homomorphism from G to G’ and Z be such that Z = a(G’).
By Lemma [6.2.11(i), there exists a homomorphism A’ from G’ to Z. By Lemma
6.2.11(ii), r" © pohisa homomorphism from G to Z. Consequently, Lemma
6.2.11(1) yields Z = a(G).

(“=") Let a(G) = (¢,0) and a(G’) = (¢',0’). We show the contrapositive.
Suppose h is not a homomorphism from G to G’, we construct a counter-model Z
such that Z = a(G’) and 7 }= o(G).

Suppose condition (i) is violated by h. Then there are z,y € Vars such that
l(xz) =L(y) =v and ¢'(z) = v # w = {(y). By Lemma, «(G") then has a model Z
such that (Z(v') # (*(w'), which clearly is not a model of a(G).

Next, suppose condition (ii) is violated by h. Then there are {v,w} € E; such
that {h(v),h(w)} & E/. Let x = var(h(v)) and y = var(h(w)), since G’ is in normal
form (¢’ Az = y;0') is satisfiable, i.e., there exists Z such that Z | «(G’) and
(z) = ().

If condition (iii) is violated, let (v,w) € E, such that (h(v), h(w)) ¢ E,; and let
7 be a model of a(G"). If ((*(var(h(v))), *(var(h(w))) ¢ ET we have the desired
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counter model. Otherwise, let h’ be a homomorphism from G’ to Z and let 7’ aof
PREMOVE(Z, (h(v), h(w))). Clearly, i still is a homomorphism from G’ to Z’, hence
7' = a(G"). However, obviously Z' = a(G). If (h(v), h(w)) € E; this approach does
not work. But then Lemma 6.2.10 gives us a model Z of a(G’) in which this list is
expanded to a path of length two, hence (¢*(var(v)), *(var(w))) ¢ E7.

If condition (iv) is violated by h, we proceed along similar lines. Let Z be such
that Z = a(G’). If there is no path between ¢ (var(h(v))) and ¢*(var(h(w))) in Z
then 7 serves as the desired counter-model. Otherwise, let A’ be a homomorphism
from «(G’) to Z. There is some edge (v",w”) € E N edges(m(¢* (var(v), ¢* (var(w)))
that is not in the image of #/. Define 7/ & PREMOVE(G', (v",w")). We clearly have
that A’ is a homomorphism from G’ to 7’ and hence Z' |= a(G’). However as there is
no path between % (var(v)) and (% (var(w)) anymore in Z’, ' = a(G).

Last, suppose (v) does not hold for h. Thus, there are vy, vo, wy, wy € V3, and
v,w € V), such that (vi,wy), (va,ws) € Epy and (v,w) € edges(m(h(vy), h(wi))) N
edges(m(h(vy), h(ws))). For simplicity, we assume (vq,w), (ve,ws) € Fj, the other
cases following similarly. Moreover, let x = var(v), y = var(w), x; = var(v;) and
y; = var(w;), i € {1,2}. By Lemma[6.2.10, a(G’) has a model Z such that ¢*(z) #
¢*(y). Now for any separation of Z = Z' x Z”, only one of 7' and Z” can contain a
path of length greater zero between ¢%(z) and ¢%(y), and hence in either Z’ or Z"
there is no path from Z(x;) to ¢%(y;) respectively ¢%(zs) to ¢*(y;). Hence, T £
ls(x1,y1) * €s(xq,y2) and consequently Z £~ a(G).

In the last case (vi), we have that there exists a model Z of «(G) such that
((x) # (*(y), where x = var(v) and y = var(w). Consequently, Z £ x +— 2z xy s 2/

for any z, 2 € Vars. Hence Z = o(G). 0

We can now combine all results of this chapter so far. Given satisfiable SL-formulae
a and o/, by Proposition 6.2.2/ we can compute in polynomial time SL-graphs G and
G’ in normal form such that o = a(G) and o = «a(G’). Next, we can compute
in polynomial time a mapping h from «(G’) to a(G) and check in polynomial time
whether h is a homomorphism. By the previous lemma, this then is the case if, and

only if, o = .
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Theorem 6.2.2 Entailment between SL-formulae is decidable in polynomial time.

An example of a homomorphism can be found in Figure The arrows from graph
(c) to graph (b) depict a homomorphism witnessing an entailment between the cor-

responding formulae of the graphs.

6.3 Syntactic Extensions Leading to Intractability

As stated in Section 6.2, due to the non-convexity present in our assertion language,
it is rather surprising that entailment in our fragment is decidable in polynomial time.
In this section, we briefly discuss natural syntactic extensions that render satisfiability
or entailment intractable. It turns out that even small extensions make computing
entailment intractable.

First, we consider additional Boolean connectives in pure and spatial formulae.

Formally, we amend the syntax of pure formulae to

¢ = expr = expr | @ | o Ay,

where Z |= - if, and only if, Z [~ ¢, as expected. Clearly, we can reduce satisfi-
ability of Boolean formulae to satisfiability in the extend assertion language. Since
an assertion « is satisfiable if, and only if, a £ (x # z;€), we thus get that in the
extended assertion language satisfiability is NP- and entailment coNP-hard.

It is not too surprising that allowing for all Boolean connectives in pure formulae
makes satisfiability and entailment computationally hard. Less obvious, allowing for
conjunction in spatial assertions makes satisfiability NP-hard and thus entailment

coNP-hard. Formally, we amend the definition of the syntax of spatial formulae to
o = expr — expr | ls(x,y) |o*xo| o Ao,

where 7 |= 01 A 0y if, and only if, 7 |= 07 and Z |= 5. In order to show our hardness

results, we reduce from three colorability of undirected graphs.
3-CoL

INPUT: An undirected graph G = (V,€).
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QUESTION: Does there exist a coloring f : V — {1,2,3} such that f(v) # f(w)

whenever (v, w) € £7

3-CoL is known to be NP-complete [45]. For our reduction, given an instance
G = (V,€) of 3CoL with V = {vy,...,v,}, we construct an assertion « such that
there exists a three-coloring of G if, and only if, « is satisfiable. We set « dof (p,0),
where
o & /\ T; # Z;
(vi,vj)€€

def
0 =Y Ya*kYa = yYs A /\ Us(yr, i) * Us(;, y3).
v; €V

Let us sketch the correctness of our reduction. The first conjunct of o ensures that
any model of a contains a list of three nodes that are successively labelled with the
variable names y, 42 and y3. The remaining conjuncts enforce that for any v; € V,
some y;-node is additionally labelled with the variable name z;. Our intention is that
y; is additionally labelled with z; in a model of « if v; is coloured with colour j in
a three-colouring induced by that model. We use ¢ to enforce that that two labels
x;, xy are not placed on the node labelled with the same y; if v; and v, are adjacent
in G, i.e., they must have a different colour in the induced three colouring. Hence G
can be three coloured if, and only if, « is satisfiable. Consequently, satisfiability is
NP- and entailment coNP-hard in the extended assertion language

Finally, we briefly discuss allowing for existentially quantified variables in asser-

tions. Formally, we amend the syntax of assertions to
a =3 ... 2,.(0,0),

where 1, ..., 2, range over Vars. The semantics for an interpretation Z = (V;Z, Eg )
is Z = Jz1...2,.(¢,0) if, and only if, there exist vy,...,v, € VZ such that 7' |=
(¢,0), where ' = (VI EX (*[xy — v1,..., 2y — v,]). It is easily seen that satisfia-
bility in this extended fragment is still in polynomial time. However, it follows from
recent results by Gorogiannis, Kanovich and O’Hearn on the complexity of abduction

that entailment becomes coNP-hard [53].
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6.4 Discussion

This chapter dealt with the computational complexity of entailment in a fragment of
separation logic that was introduced in [11] and allows for reasoning about programs
with linked lists. We improved the coNP algorithm given in [11] and showed that
entailment is decidable in polynomial time. To this end, we showed that for any SL-
formula we can compute in polynomial time a corresponding SL-graph in a particular
normal form which has an equivalent corresponding SL-formula. Moreover, we showed
that deciding entailment between two SL-formulae then reduces to checking for the
existence of a homomorphism between their associated SL-graphs in normal form. A
key advantage was that the homomorphism, if it exists, is uniquely determined by
the SL-graphs, and that checking the homomorphism conditions can be performed in
polynomial time. As a byproduct of the developed concepts, we obtained that satisfi-
ability in the assertion language is in polynomial time. Finally, we discussed various
natural syntactic extensions that lead to intractability of satisfiability or entailment.

As promised in the introduction, we close this chapter with discussing the differ-
ences between the syntax and semantics used in this thesis and in [11]. On a syntactic
level, the difference between [11] and our assertion language is that [11] contains nil as
an expression. This does however not give more expressiveness, since we can introduce
a designated variable nil and implicitly join nil — nil to every spatial assertion to
obtain the same effect. On a semantic level, we have given the semantics of our asser-
tion language in terms of SL-graphs, whereas it is given in terms of heaps and stacks
in [11]. This is, however, only for technical convenience, since both semantic models
are isomorph: red nodes of an interpretation can be viewed as the set of allocated
heap cells, the set of p-edges of an interpretation as a representative of the contents of
the heap cells and the variable labelling function as the stack. The main difference to
[11] on a semantic level is that our semantics is intuitionistic. In [11], Z = a = (¢; 0)
if, and only if, Z |= ¢ and Z = o, i.e., the semantics is non-intuitionistic with respect
to the definition provided by Reynolds [92]. Informally speaking, in our semantics

models can contain more red nodes than actually required. It should, however, not
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be difficult to transfer the results obtained in this thesis to the semantics used in
[11]. The concept of SL-graphs in normal form should adopt straight forwardly to
non-intuitionistic semantics. However, the homomorphism conditions would require
some adjustments. There basically needs to be an extra condition that ensures that
when h is a homomorphism from G to G’, all edges from G’ are covered by h. These
extra conditions would ensure that no model of «(G’) can contain extra red nodes
that, informally speaking, do not get used up by «(G). Furthermore, some adjust-
ments would need to be made to cater for the precise semantics of lists used in [11],
since our list semantics is imprecise. Working out the details is an interesting task
for future work.

A further aspect of future work could be to identify syntactic fragments of exten-
sions of our assertion language for which computing entailment remains in polynomial
time. For example, regarding the extension of our assertion language with existential
quantification, the hardness proof in [53] requires formulae that do not naturally oc-
cur in real-world program verification. Without going into too much detail, it seems
conceivable that there exist fragments of this assertion language defined in terms of

properties of SL-graphs for which entailment could be polynomial time computable.
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Appendix A

Missing proofs

A.1 Missing proofs from Chapter 2

A.1.1 Proof of Serialisability of EXPSPACE

The proof of EXPSPACE-serialisability was established by Géller in an informal tech-
nical report accompanying [48]. As already stated in Chapter 2, we wish to repeat
the proof of the theorem here in order to keep this thesis self-contained.

Recall that by Definition[4] given a complexity class C and a language R C {0, 1}*,
a language L C X* is exponentially C-serialisable via R if there exists a polynomial p

and a language U € C such that for all w € ¥" and m = exp p(n),
w € L < xy(w - bin,,(0)) - xu(w - bin, (1)) - - - xu(w - bin,, (exp exp(p(n)) — 1)) € R.

Theorem 2.4.2 states that for every L € EXPSPACE there is a regular language R such
that L is exponentially L-serialisable via R. The proof of this theorem builds upon
results from [50], which are stated in terms of a polynomial version of serialisability

given in the subsequent definition.

Definition 22 Given a complexity class C and a language R C {0, 1}*, a language
L C ¥* is C-serialisable via R if there exists a polynomial p and a language U € C

such that for all w € X" and m = p(n),

w e L < xy(w-bing,(0)) - xp(w - bin,, (1)) - - - xg(w - bin,, (exp(p(n)) — 1)) € R.
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The following theorem follows as an immediate consequence from Theorem 22 in [50].

Theorem A.1.1 For every L € PSPACE there is some reqular language R such that

L is L-serialisable via R.

Before we begin with the proof of Theorem[2.4.2, let us recall the following proposition

which is folklore.

Proposition A.1.1 For every language L C 3* in EXPSPACE there is some polyno-
mial q such that the padded language L' & {w-$":w e L,n=-expq(lw])} C T{$}
is in PSPACE.

We are now going to prove Theorem[2.4.20 Let L C ¥* be a language in EXPSPACE
and assume without loss of generality that {0,1,$} N X = (). By Proposition A.1.1,
there exists a polynomial ¢ and a language L' = {w-$" : w € L,n = exp q(Jw|)} such
that L' € PSPACE. Theorem [A.1.1 yields a polynomial p/, an R’ € REG and U’ € L
such that for each w' € (XJ{$})" and m' = p'(n) we have

w' e L' < xy(w - bing,(0)) - xpr(w - bing, (1)) - - - xpr(w - bin,, (exp(p'(n)) — 1)) € R.

Theorem [2.4.2 requires us to provide U € L, R € REG and a polynomial p. Choose p
such that for all n € N, expp(n) > p'(n+exp(q(n))) + 1. The language U consists of
all words u € (XW{0,1})* such that u can factored as

u=w-b-z 0, (%)

where j € N, w € ¥, b € {0,1}, z € {0, 1}P'(+exp(@®)) guch that b = 1 implies
w-$PUM) L2 e U’ e, b =0 or w-$PUM) . 2 c U Let us argue that U € L.
First, checking whether u is of the form (x) clearly can be performed in logarithmic
space. Second, p grows sufficiently large in order to simulate any logarithmically-space
bounded Turing machine M that decides L’ in L due to our choice of p.

It remains to provide the regular language R, which we are construct from R'.

Suppose that
biby -+ b, = xvr(w - bing, (0)) - xpr (w - bing, (1)) - - - xpr (w - bin, (exp(p'(n)) — 1)).
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By construction of U, for m = expp(n) we have that

xu(w - bin, (0)) - xy(w - bin,, (1)) - - - xu(w - bin,, (expexp(p(n)) — 1)) =
10410y - - - 16,00 - - - 00.

Thus, when reading 1b;1bs - - - 15,00 - - - 00 in pairs, i.e., as (1b1)(1bs) - - - (1b,)(00) - - - (00),
whenever the first component is 1 we read information relevant for the simulation
of R'. Recall that regular languages are closed under homomorphisms. We set
R h(R' - {O}*), where h : {0,1,0} — {0,1} is a homomorphism such that
h(0) =10, h(1) = 11 and A(J) = 00. This finishes the proof of Theorem [2.4.2.

220



	Introduction
	Background
	Scope and Contribution of this Thesis
	Structure and Style of this Thesis
	Related Work
	Joint Work

	Preliminaries
	General Notation
	Transition Systems
	Formal Languages and Computational Complexity
	Regular Languages
	Turing Machines

	Computability and Computational Complexity
	Results from Structural Complexity Theory

	Models of Finite and Infinite-State Systems
	Finite-State Machines
	Counter Automata
	Timed Automata

	Integer Arithmetic
	Presburger Arithmetic
	Presburger Arithmetic with Divisibility


	Reachability Problems in Timed and Bounded Counter Automata
	From Bounded Counter Automata to Timed Automata and Back
	Two-Clock Timed Automata and Bounded One-Counter Automata
	Discussion

	Reachability in Counter Automata
	One-Counter Automata
	The NP Lower Bound
	Weighted Graphs
	Path Flows
	The NP Upper Bound

	Reachability in Parametric Counter Automata
	Bounded One-Counter Automata
	Discussion

	Model Checking One-Counter Automata
	Branching-Time Logics
	EF Model Checking
	Computation Tree Logic (CTL) Model Checking

	Linear-Time Temporal Logic (LTL) Model Checking
	Discussion

	Tractable Reasoning in a Fragment of Separation Logic
	Separation Logic and SL-Graphs
	Deciding Entailment via Homomorphisms between SL-Graphs
	A Normal form of SL-Graphs
	SL-Graph Homomorphisms

	Syntactic Extensions Leading to Intractability
	Discussion

	Bibliography
	Missing proofs
	Missing proofs from Chapter 2
	Proof of Serialisability of EXPSPACE



