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0: Introduction:
The discussion of time in quantum theory is
liable to turn into a survey of the pros and
cons of the various contending interpreta-
tions. Agreed: they say very different things
about time ...

Collapse: does the irreducible indetermin-
ism need branching, or merely divergence, of
histories?

The pilot-wave: most versions return us to
an absolute time.

Everett: as Deutsch laments, we await a
mathematically exact formulation of the mul-
tiverse.

But such interpretations aside: quantum
physics seems to treat time as the classical
cousin theories do.

I will address two novelties: uncertainty
principles (especially time-energy), and the
Montevideo interpretation.
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In Sections 1 to 3, I report the work by
P. Busch et al. in sorting out long-standing
confusions, especially about the time-energy
uncertainty principle, including such topics
as time operators, i.e. Pauli’s ‘proof’ (Sec-
tion 3f.). Like Busch, I first distinguish three
roles for time (Section 2).

I will set aside many details. And I will
wholly exclude: (i) historical aspects, e.g.
the legacy of Pauli’s proof (for which cf. Busch
1990, 2007, Hilgevoord 2005); (ii) treating
time as a canonical coordinate.
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Overall, we will see that there are very dif-
ferent versions of the time-energy uncertainty
principle, i.e. a relation like

∆T∆E ≥ 1

2
~ (0.1)

that are valid in different contexts.

Some will use, not the variance, but rather
some other measure of spread; some will not
involve a time operator (which frequently can-
not exist, for the problem/Hamiltonian in
question) ... But so far, there is no general
theory of time measurements...

Besides: Some of these novelties, e.g. mea-
sures of spread other than variance, are also
important for quantities other than time and
energy. So we begin by reviewing ...
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1: Uncertainty principles in general:
We recall the ‘Heisenberg-Robertson uncer-
tainty principle’

∆ρA∆ρB ≥ 1

2
|〈[A,B]〉ρ| (0.2)

with the special case, from [Q,P ] = i~I :

∆ρQ∆ρP ≥ 1

2
~ (0.3)

But the standard deviation has defects.
E.g.: it can be very large for states that ‘look
like’ a delta-function.
So the traditional eq. 0.2 and 0.3 allows very
narrow distributions, e.g. in Q and P .
So we should consider other measures of spread:
some of these will not require a correspond-
ing operator ...
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1.1.: An uncertainty principle for Width
of the Bulk:
Often, a better measure of the spread of a
distribution is the length Wα of the smallest
interval on which a sizeable fraction α of dis-
tribution is supported; (where ‘sizeable’ can
be taken to mean α ≥ 1

2).

That is: we represent the spread of a dis-
tribution in terms of the smallest interval on
which the bulk of the distribution is found.
We call this a width.

Then we have (Uffink 1990), for position
and momentum:

Wα(Q)Wα(P ) ≥ cα~ if α ≥ 1

2
; with cα ≈ 1

(0.4)

A bit more generally and explicitly: For
any normalized L2 function i.e.

∫ |f |2dx =
1:—
we define Wα(|f |2) to be the width of the
smallest interval J such that

∫
J |f |2dx = α;
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and similarly for the Fourier transform f̂ .
Then we have

Wα(|f |2)Wα(|f̂ |2) ≥ cα~ if α ≥ 1

2
; with cα ≈ 1.

(0.5)

1.2: An uncertainty principle for Trans-
lation Width, and Width of the Bulk:
Another measure of uncertainty reflects an
uncertainty about the state, rather than the
value of a quantity: and has the merit of
combining Wα as in eq. 0.4, to give un-
certainty principles—with an exactly similar
treatment of space and time. But I postpone
the case of time till Section 3.

Given |〈φ|ψ〉| = 1− r, with 0 ≤ r ≤ 1, we
call r the reliability with which |φ〉 and |ψ〉
can be distinguished. So if |φ〉 = |ψ〉, then
r = 0; while if |φ〉 and |ψ〉 are orthogonal, r
attains its maximum value, 1.
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We apply reliability to the translation of a
quantum state |ψ〉 in space (in one spatial di-
mension, labelled x). Translation is effected
by the exponentiation of the total momen-
tum, i.e. by the unitary operators (with ~
set equal to 1):

Ux(ξ) = exp(−iPxξ) . (0.6)

Then for given r ∈ [0, 1], we define ξr as the
smallest distance for which

|〈ψ|Ux(ξr)|ψ〉| = 1− r . (0.7)

ξr may be called the spatial translation width
of the state |ψ〉.
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NB: ξr should be distinguished from the
spatial width Wα(q) , i.e. the width of the
probability distribution |〈q|ψ〉|2 of the posi-
tion operator Q̂ in a given (pure) state ψ.

Agreed: if |〈q|ψ〉|2 has a single peak, and
the bulk of the distribution is on an inter-
val of length d, then Wα, for α close to 1, is
close to d. And ξr, for r close to 1, will also
be close to d.

But if |〈q|ψ〉|2 has many narrow peaks of
a small width e, while the entire distribution
is spread over an interval d (example: inter-
ference), then ξr will be of the order e, while
Wα(q) will be of order d.
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This translation width combines with the
width W introduced previously (cf. eq. 0.4)
in uncertainty relations. To define W for
momentum, let |px〉 denote a complete set
of eigenstates of Px. We set aside degener-
acy, to simplify notation. So, with integra-
tion perhaps including a sum over discrete
eigenstates ∫

|px〉〈px|dpx = I . (0.8)

Then we define the width Wα(Px) of the mo-
mentum distribution as the smallest interval
such that∫

Wα(Px)
|〈px|ψ〉|2dpx = α . (0.9)

Then it can be shown that for r ≥ 2(1− α)

ξrWα(Px) ≥ C(α, r)~ (0.10)

where for sensible values of the parameters,
say α = 0.9 or 0.8, and 0.5 ≤ r ≤ 1, the
constant C(α, r) is of order 1.
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1.3: Comments:
Formal comments:

(1): Completely general: eq. 0.10 depends
only on the existence of translation operators
and completeness relations, eq. 0.8.

(2): Also, it is relativistically valid.

Comments about physical significance:
(1): We will see an exactly parallel treat-

ment for translation in time.
(2): Broadly speaking: eq. 0.10 gives more

information than the traditional Heisenberg-
Robertson UP, eq. 0.3. It is not just that
as we said, the standard deviation has some
defects. Also...

(2a): Recall that ξr should be distinguished
from the spatial width Wα(q): in an interfer-
ence pattern we can have ξr << Wα(q). In
such a case, eq 0.10 is stronger than eq. 0.3.
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(2b): eq. 0.10 shows that in a many-
particle system the width of the total mo-
mentum can control whether the positions of
the component particles can be sharply de-
termined.
For if the spread of just one position variable
is small, then ξr for the entire system’s state
is small.
(For ‘distinguishing under translation requires
distinguishing only one component’; cf. or-
thogonality in one factor of a tensor product
implies orthogonality in the whole.)
And so, by eq. 0.10, the width in the to-
tal momentum must be large. Conversely, if
Wα(Px) is small, ξr must be large; and so
the spread of all position variables must be
large.
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2: Three roles for time:
(1): External time:
(a) Measured by clocks not coupled to the
objects studied in the experiment.
(b): Used to specify a parameter, e.g. instant
or duration of preparation or measurement,
or of the time-interval between them. So no
scope for uncertainty...

Yet there is tradition (founding fathers, Lan-
dau, Peierls ...) of an uncertainty principle
between (i) the duration of an energy mea-
surement, and (ii) either the range of an un-
controllable change of the measured system’s
energy or the resolution of the energy mea-
surement.

Aharonov and Bohm (1961) refute this tra-
dition. They give a simple model of an arbi-
trarily accurate and arbitrarily rapid energy
measurement. (Two particles are confined to
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a line and are both free except for an impul-
sive measurement of the momentum and so
energy of the first by the second, with the
momentum of the second being the pointer-
quantity.)

(2): Intrinsic times:
A dynamical variable of the studied system,
that functions to measure the time.
For example: The position (motion) of a clock
dial, or of a free particle!
In principle: every non-stationary quantity A
defines for any state ρ a characteristic time
τρ(A) in which 〈A〉 changes ‘significantly’.
For example: if A = Q, and ρ is a wave
packet, say ρ = |ψ〉〈ψ|, then τρ(A) could be
defined as the time for the bulk of the wave
packet to shift by its width ...

So we expect various uncertainty principles
for various definitions of intrinsic times. De-
tails in Section 3. Some of the scenarios sug-
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gest time of arrival, or time of decay, or time
of flight; so they raise the quest for time op-
erators...

(3): Time operators: A glimpse of ‘Pauli’s
legacy’ ...
A self-adjoint operator T generating transla-
tions in energy according to

exp(iτT/~)H exp(−iτT/~) = H+τI , ∀τ ∈ IR
(0.11)

would imply that the spectrum of H is IR.
Informal reason as follows:
UHU† = H + τI ⇒ [U,H ]U† = τI, i.e.
[U,H ] = τU .
Applying this to an eigenvector ψE of H with
eigenvalue E, we get:
UEψE −HUψE = τUψE,
i.e. UψE is an eigenvector of H with eigen-
value E − τ .
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Eq. 0.11 would imply that in a dense do-
main:

[H, T ] = i~I ; (0.12)

which would imply (cf. eq 0.2) our opening
‘prototype form’ of the time-energy uncer-
tainty principle for any state ρ

∆ρT∆ρH ≥ 1

2
~ . (0.13)

But eq 0.12 does not imply eq. 0.11. So
the door is open for some realistic Hamiltoni-
ans (i.e. bounded below and-or with discrete
spectrum; without the whole of IR as spec-
trum), to have a T satisfying eq 0.12—which
Busch calls a canonical time operator.

Examples include the harmonic oscillator
... But there is little general theory of which
Hamiltonians have such a T (even when we
generalize to POVMs).
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3: Time-energy uncertainty princi-
ples with intrinsic times
Many such, with time as a parameter! Cf.
Busch 1990, 2007.

3.1: Mandelstam-Tamm principle:
We combine the Heisenberg equation of mo-
tion of an arbitrary quantity A

i~
dA

dt
= [A,H ] (0.14)

with the Heisenberg-Robertson uncertainty
principle, eq. 0.2, and the definition of a
characteristic time

τρ(A) := ∆ρA / | d〈A〉ρ /dt | (0.15)

and deduce

τρ(A)∆ρ(H) ≥ 1

2
~. (0.16)

Example: A free particle in a pure state
ψ with a sharp momentum i.e. ∆ψP <<
|〈P 〉ψ|. We can deduce that ∆ψQ(t) ≈ ∆ψQ(t0),
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i.e. slow spreading of the wave-packet; so
that the Mandelstam-Tamm time τρ(Q), as
defined by eq 0.15, is indeed the time it takes
for the packet to propagate a distance equal
to its standard-deviation.

Example: Lifetime of a property P̂ :
Define p(t) := 〈ψ0|U−1

t P̂Utψ0〉, with of course
Ut := exp(−itH/~). Then the Mandelstam-
Tamm uncertainty relation gives

|dp

dt
| ≤ 2

~
(∆ψ0

H)[p(1− p)]
1
2 . (0.17)

Integration with initial condition p(0) ≡ 1
(i.e. P̂ actual at t = 0) yields

p(t) ≥ cos2(t(∆ψ0
H) / ~) for 0 < t <

π

2

~
(∆ψ0

H)
(0.18)

so that if we define the lifetime τ
P̂

of the

property P̂ by p(τ
P̂

) := 1
2, we deduce

τ
P̂
.∆ψ0

H ≥ π~
4

. (0.19)
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The general point is that the rate of change
of a property of the system decreases with in-
creasing sharpness of the energy: and in the
limit of an energy eigenstate, of course, all
quantities have stationary distributions.

3.2: Hilgevoord-Uffink ‘Translation-Bulk’
uncertainty principle:
We report how to combine:

(i) Wα as in Section 1.1, cf. eq. 0.4;
(ii) translations-widths as in Section 1.2;
(iii) equal treatment of space and time.

We apply reliability to the translation of a
quantum state |ψ〉 in time instead of space.
Translation is effected by the exponentiation
of the energy, i.e. by the unitary operators
(with ~ set equal to 1):

Ut(τ ) = exp(−iHτ ) . (0.20)
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Then for given r ∈ [0, 1], we define τr as
the smallest time for which

|〈ψ|Ut(τr)|ψ〉| = 1− r . (0.21)

τr may be called the temporal translation
width of the state |ψ〉. If we choose r such
that (1 − r)2 = 1

2, i.e. r = 1 −√1
2, then τr

is the half-life of the state |ψ〉.
The translation widths τr, and ξr from Sec-

tion 1.2, combine with the widths W intro-
duced previously (cf. eq. 0.4) in uncertainty
relations.

To avoid referring back, and yet bring out
the analogy between position-momentum and
time-energy, I now repeat the case of position-
momentum, from Section 1.2.

In order to define the widths W for en-
ergy and momentum, let |E〉 and |px〉 de-
note complete sets of eigenstates of H and
Px respectively. I again set aside degener-
acy, to simplify notation. So, with integra-
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tion perhaps including a sum over discrete
eigenstates∫
|E〉〈E|dE = I and

∫
|px〉〈px|dpx = I .

(0.22)
We define the widths Wα(E) and Wα(Px)
of the energy and momentum distributions
as the smallest intervals such that∫

Wα(E)
|〈E|ψ〉|2dE = α;

∫

Wα(Px)
|〈px|ψ〉|2dpx = α.

(0.23)
Then it can be shown (Uffink and Hilgevoord
1985, Uffink 1993) that for r ≥ 2(1− α)

τrWα(E) ≥ C(α, r)~ ; ξrWα(Px) ≥ C(α, r)~
(0.24)

where for sensible values of the parameters,
say α = 09 or 0.8, and 0.5 ≤ r ≤ 1, the
constant C(α, r) is of order 1.

21



The comments from Section 1.3, both for-
mal and as regard physical significance, carry
over. We can add:

Broadly speaking: the second equation of
eq. 0.24 gives more information than the tra-
ditional Heisenberg-Walker uncertainty prin-
ciple, eq. 0.3. The extra information is not
merely what we said in 1.3. Also eq. 0.24
shows that in a many-particle system it is
the width in the total energy that determines
whether the time variables can be sharply de-
termined.
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3.3: Quantum clocks:
The general idea of such a clock is a sequence
ψ1, ψ2, ... of orthogonal clock-pointer states
that are occupied at equi-spaced times t1, t2, ...;
so that the clock resolution is δt := tk+1−tk.
We apply (i) the Mandelstam-Tamm inequal-
ity eq. 0.19, or (ii) the Hilgevoord-Uffink in-
equality eq. 0.24.1, to get uncertainty rela-
tions.

(i): If the clock-pointer is taken to be the
mean position of a wave packet, then eq. 0.19
and the constraint δt ≥ τψ(Q) implies

δt ≥ τψ(Q) ≥ π~
4

1

∆ψH
. (0.25)

(ii): The temporal translation width must
be less than the time resolution, so that eq.
0.24.1 implies:

δt ≥ τr ≥ C(α, r)~
Wα(E)

. (0.26)
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4: The Montevideo interpretation:
4.1: Evolution with respect to a real clock:
We envisage measuring Ô on a quantum sys-
tem, when T̂ on another quantum system
(‘the clock’) has value ‘T ’.

In the Heisenberg picture (with respect to
the background time t), the projector for the
clock system for the value T lying in the in-
terval [T0 −∆T, T0 + ∆T ] is

PT0
(t) :=

∫ T0+∆T

T0−∆T
dT Σk |T, k, t〉〈T, k, t| .

(0.27)

Similarly the projector for the measured sys-
tem for the value O lying in the interval [O0−
∆O,O0 + ∆O] is

PO0
(t) :=

∫ O0+∆O

O0−∆O
dO Σj |O, j, t〉〈O, j, t| .

(0.28)
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Then the (orthodox Born-rule) conditional
probability that Ô takes value O0 given that
the clock indicates time T0

P(O ∈ [O0 −∆O,O0 + ∆O] given that(0.29)

T ∈ [T0 −∆T, T0 + ∆T ])

is

lim
τ→∞

∫ τ
−τ dt Tr(PO0

(t)PT0
(t)ρPT0

(t))∫ τ
−τ dt Tr(PT0

(t)ρ)
(0.30)

where the integrals over all t reflect our ig-
norance when in the background time t the
clock takes the value T0.

Assume ρ = ρsys⊗ρcl and U = Usys⊗Ucl.
And define (i) a probability density of t at
given T :

Pt(T ) :=
Tr(PT0

(0)Ucl(t)ρclUcl(t)
†)∫∞

−∞ dt Tr(PT0
(t)ρcl)

;

(0.31)
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and (ii) an “effective” density matrix of the
observed system as a function of T :

ρeff(T ) :=

∫ ∞

−∞
dt Usys(t)ρsysUsys(t)

†Pt(T ) .

(0.32)

It is easy to verify, that the conditional
probability eq. 0.30 is equal to

P(O0|T ) :=
Tr(PO0

(0)ρeff(T ))

Tr(ρeff(T ))
: (0.33)

which is of the familiar form except with the
effective density matrix ρeff(T ) substituted
for the background-time density matrix ρ(t).

“I measure O when the clock reads ‘T ’.
But the statistics of O that I gather are as
if each measurement draws the system from
an urn, in the state Usys(t)ρsysUsys(t)

† with
a probability Pt(T )dt.”
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In terms of T , evolution is not unitary: for
ρeff(T ) is a convex combination of density
matrices, each of which is unitarily evolving
with respect to t, but which are associated
with different values of t.

Under some assumptions, the equation of
motion for ρeff(T ) in terms of T has the exact
solution

ρeff(T )nm = [ρeff(0)nm]× (0.34)

exp(−iωnmT ) exp(−σω2
nmT )

where: (i) ωnm := ωn− ωm is the difference
of the frequencies for levels n and m; and
(ii) σ is the (constant) rate of change, with
respect to T , of the width of Pt. Thus the
off-diagonal go to zero exponentially.

This temporal decoherence is at the centre
of the Montevideo interpretation.
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4.2: The meaning of a mixture:
The two usual roles for a mixture:

(Basis): To define a preferred quantity, or
basis, or set of nearly orthogonal states: that
intuitively is definite at the end of measure-
ment.

(Outcome): To secure that in each specific
measurement trial, there is an outcome (rep-
resented mathematically by one component
of the mixture).

Various aspects for various approaches to
the measurement problem, such as:

(Ein): Decoherence by the environment.
(DRP): Dynamical reduction programme.

In short: (Ein) fulfills (Basis), but not (Out-
come). The total system being in a pure state
can in principle be revealed by measuring a
‘global quantity’.

(DRP) fulfills both (Basis) and (Outcome).
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Agreed, various debates:
(1): Can we ignore small amplitudes? ‘The
problem of revivals’
(2): Is vagueness a virtue or a vice?

As to the Montevideans:
(Basis): They appeal to a combination of

(Ein) and temporal decoherence, eq. 0.35.
Temporal decoherence solves the problem

of revivals that besets (Ein)’s fulfillment of
(Basis), by making revivals unobservable in
principle.

(Outcome): The Montevideans succeed in
justifying the ascription of a proper (i.e. ignorance-
interpretable) mixture.

Temporal decoherence, eq. 0.35, answers
the ‘global quantity’ objection against (Ein):
the global quantity is unmeasurable in prin-
ciple.
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But securing an individual outcome in each
specific measurement trial?

I think the interpretation fits best in an
Everettian picture, for reasons to do with the
vagueness debate, (2).
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4.3: Throwing away the ladder:

(i) Some heuristic arguments about black
holes suggest fundamental limits to how ac-
curate a quantum clock can be.
Measuring a time interval T has a minimum

uncertainty δT proportional to T
2/3
PlanckT

1/3,

where TPlanck = 10−44 seconds is the Planck
time.

(ii) The equation of motion in terms of an
optimal clock-quantity T should be taken as
fundamental: ‘throw away of the ladder’ of
background time t.

The exact solution, for a system with dis-
crete energy levels now has width σ(T ) =(

TPlanck
T

)1/3
.TPlanck

ρeff(T )nm = [ρeff(0)nm]×(0.35)

exp(−ωnmT ) exp(−ω2
nmT

4/3
PlanckT

2/3).
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(iii) This fundamental temporal decoher-
ence, together with environmental decoher-
ence, solves:

(i) The problem of revivals, i.e. the fact
that in some models without temporal de-
coherence, the off-diagonal terms can in the
very long run, become large.

Detail: the off-diagonal terms get multi-
plied by an N -fold product of exponentials
whose exponents are proportional to T 2/3.
This gives unobservably small tails, and so
no revivals even in very long times, even for
N ∼ 100.

(ii) The problem of global quantities, i.e.
the fact that in some models without tempo-
ral decoherence, one in principle measure a
quantity revealing the total system to be in
a pure (entangled) state.
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(iv) Although the arguments in (i) vary in
the accuracy limits they suggest, the ensu-
ing solution to the measurement problem is
robust.
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BUT: There are still ‘tails’. So we have
not secured that in each specific measure-
ment trial, there is an individual outcome.
We have not yet passed from Bell’s ‘and’ to
his ‘or’.

The Montevideans reply:
There is an individual outcome, a transition
to ‘or’, exactly when it becomes in princi-
ple undecidable (thanks to temporal decoher-
ence) whether or not the evolution is unitary.

But they have not yet given us a rigorous
statement of what is their proposed restric-
tion on quantities.

So I suggest that the Montevideo interpre-
tation fits best in an Everettian approach, in
which a ‘branching’ is effective and approx-
imate: an approximation whose value does
not depend on its being precisely defined—
indeed, the value depends on its not being
precisely defined.
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