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Abstract—Indoor localization in smoke conditions is one of the
EU GUARDIANS [1] project goals. When smoke density grows,
optical sensors such as laser range finders and cameras cease
to be efficient. Zigbee sensor networks provide an interesting
approach due to the fact that radiofrequency signals are pro-
pagated easily in such conditions. Moreover, they permit having
an alternative communication infrastructure to the emergency
brigades, allowing also the implementation of localization algo-
rithms for the mobile sensors, actuators and firefighters. The
overall localization method (i.e. ARIEL) aims to acquire the nodes
position in real time during an intervention, using different sensor
inputs such as laser, sonar, Zigbee and Wifi signals. Moreover,
a fine grained localization algorithm has been implemented to
localize special points of interest such as emergency doors and
fire extinguishers, using a Zigbee programmable high intensity
LED panel. This paper focuses on the Zigbee fingerprinting
localization method used to obtain the position of the mobile
sensors and actuators by training a database of radio signals for
each scenario. Once this is done the proposed recognition method
runs in a quite stable and accurate manner without needing
any sophisticated hardware. Results compare the procedure with
others such as KNN, and neural networks, demonstrating the
feasibility of the method for a real emergency intervention.

Index Terms—Indoor Localization in Smoke; RSS; ZigBee;
Fingerprinting.

I. STATE OF THE ART

Localization of mobile sensors and actuators is an active re-
search field that becomes even more interesting and necessary
in indoor applications such as fire emergency interventions,
where the GPS is either not accessible or not practical to be
used [2] [3].

First of all, some works use the laser range finder as a way to
obtain the position of a mobile system in indoor environments
[4] [5]. This solution is quite straight forward when the
geometrical map of the building is well known, including
the furniture. Other works focus on using visual landmarks
to localize the mobile systems through vision cameras [6]
[7]. These two alternatives are very accurate in situations of
good visibility (e.g. non smoke conditions), although they are
expensive to be implemented.

Moreover, in the sensor networks community, several inte-
resting localization methods based on radio-frequency signals
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can be found, which can be transmitted in smoke conditions.
In fact, some techniques have recently been proposed for
determining the position of mobile nodes by measuring this
kind of signals, such as time of arrival (TOA), time difference
of arrival (TDOA), angle of arrival (AOA), received signal
strength (RSSI), and others [8] [9] [10]. In particular, the
TDOA method can use a radio signal combined with a sonar.
By measuring the difference in time of flight between the radio
and the sonar signals, one can estimate the distance between
the transmitter and the receiver in a very accurate manner [11]
[12] although some extra work must be done to avoid the effect
of reflections.

Radiofrequency allows the distance between transmitter and
receiver to be calculated by measuring the RSS (Received
Signal Strength) and applying to it the propagation/attenuation
model represented by the equation (1):

RSS = A ∗ d−n (1)

where A is the RSS at 1 meter from the transmitter, d is
the distance between transmitter and receiver and n is the pro-
pagation factor. In fairly open outdoor areas this is a suitable
method to calculate distances, since there are no reflections
nor interference and signal strength distribution is very clean,
as shown in Fig. 1. However, due to the unpredictable behavior
of radio signals in indoor scenarios with irregular geometries
and materials, other techniques must be studied, due to the fact
that the RF behavior is affected significantly by these factors.
For example, in Fig. 2 the RF map is shown for a corridor that
has stairs in the middle, including different kinds of metallic
materials. The black area corresponds to the stairs hole, where
the robot can not be positioned and where it was not possible
to take any measures. Some methods such as RADAR [13]
combine the empirical measurements and propagation model
taking into account some geometrical characteristics of the
environment, such as the presence of walls, improving the
efficiency of the propagation/attenuation model. Other systems
(see Horus [14]) use probabilistic techniques, such as Bayesian
estimation, to obtain the most probable transmitter position.

Fingerprinting methods consist of measuring the signal
strength values to build a radio-frequency database model and
then compare the navigation measures with those previously
stored using pattern recognition techniques. These methods
have the disadvantage of needing a previous training procedure
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Fig. 1. Signal strength distribution in an obstacle-free environment (outdoors)
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Fig. 2. Signal strength distribution in an irregular environment (indoors)

for every location of a given scenario, and moreover, they
adapt very well to the specific behavior of radio signals for a
given space, which are affected by the particular characteristics
of reflection, absorption, diffractions, and others, as explained
in [15].

The ZigBee sensor network infrastructure is specially inte-
resting for implementing fingerprinting localization methods,
as it can be easily integrated in a building, offering many
possibilities to control the radio signals characteristics such
as power and frequency, and enhancing the capacity of the
trained radio map.

II. INTRODUCTION

In the frame of the EU GUARDIANS [1] project, a mul-
tisensor localization system has been developed in order to
be able to obtain the localization of mobile robots and fire
fighters inside a building during an intervention. The system,
called ARIEL [16], uses different sensor inputs to calculate the
positions (e.g. laser, sonar, WiFi and ZigBee fingerprinting),
and decides which one is the optimum at every moment,
depending on the environmental conditions (smoke density).

For example, when the smoke density is low, laser range
finder sensors are still able to localize the nodes (Monte Carlo
Localization method [17]), with a small positioning error of
approximately 10 cm, once the building map is available and

the structure of the building has not been affected. When
the laser range finder detects a significant amount of smoke
it considers it as an obstacle, so the ZigBee fingerprinting
methods becomes a suitable alternative to have an approximate
idea of the position, as we will see in the next sections.

Moreover, visual positioning based on visual servoing tech-
niques [18] provide a fine-grain localization when the distance
to the point of interest is reduced. For that, the ARIEL
system provides a programmable ZigBee node that has a high
luminosity LED panel attached on it, which can be perceived
by the onboard camera in smoke conditions [16].

The present article focuses on the radiofrequency localiza-
tion method that has been implemented within the ARIEL sys-
tem to obtain the nodes position in smoke filled indoor areas.
The article compares several pattern recognition algorithms, in
terms of efficiency and needed hardware complexity. Results
show that the proposed fingerprinting method is suitable to be
used in real interventions once the radio map for the given
scenario is known through a training phase.

III. HARDWARE DESCRIPTION

The transceivers used are based on the CC2430 and CC2431
Texas Instruments microcontrollers and meet the ZigBee speci-
fication, with the capacity to obtain the RSS (Received Signal
Strength) from every received packet. Moreover, 16 different
channels can be configured with 256 different power levels.
This fact has been used to increase the number of packets
sent between the beacons and the mobile sensor at each robot
position to improve the efficiency of the localization method.

On the other hand, the CC2431 microcontroller includes the
Location Engine system that estimates the distance between
each beacon and the transmitter by knowing the original signal
intensity and the propagation coefficient of the medium. Then,
by using three or more beacons, the system can triangulate
the transmitter’s position. This will allow us to compare the
proposed fingerprinting localization method performance with
the Location Engine mentioned above, as in [19], where it is
easy to see that this method works well in open spaces but
does not work properly indoors.

The experiments have been performed by using four trans-
mitters in known positions (beacons) and one mobile trans-
mitter, the position of which is going to be calculated. The
whole sensor network information comes to one PC computer,
carried by the robot, which calculates in real-time the mobile
transmitter position.

In summary, two different types of communication modules
(nodes) shown in Fig. 4 are involved in the measurements:

• SRF04EB (Serial Radiofrequency Evaluation Board):
This board is going to be connected to a PC through
a RS232 interface and will be used as a base station
to send commands to the mobile transmitter and receive
measurements from it.

• SOCBB (System On Chip Battery Board): This is the
most simple board to hold a CC243X. They will be used
for two possible functionalities:

– Mobile transmitter: This node will receive commands
from the base station, perform the measurements and
send the results back to the base station.
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Fig. 3. Mobile robot & the remotely controlled high intensity LED panel

SRF04EB

SOCBB

Fig. 4. ZigBee communication modules

– Simple beacon: There are four beacons located at
fixed positions that simply return every packet re-
ceived, including the RSS value.

IV. SYSTEM TRAINING

In general, the proposed fingerprinting method works in two
phases: Training and localization estimation. In this section
we will describe the experiments performed in order to obtain
the measurements corresponding to the training phase and, in
the next section, the ones used to calculate the transmitter
position. Three different scenarios have been used: (1) garden
(Fig. 5), (2) classroom (Fig. 6) and (3) corridor (Fig. 7). Each
of them has specific characteristics that will affect the signal
propagation and RSS measurements.

The training procedure involves taking RSS measurements
in different transmitter positions. In these measurements, bea-
cons are placed at fixed positions, and the transmitter is
located at every position of the scenario, using a certain
density mesh (typically 50 cm by 50 cm). Then, data packet
transmissions are made in different channels (frequencies) and
using different power levels. In fact, for this experiment we

B1B2

B3 B4

Fig. 5. Scenario 1: Garden. B1, B2, B3, and B4 showing the beacons
positions. Green dots are the different transmitter measurement positions.

B1B2

B3B4

Fig. 6. Scenario 2: Classroom.

used six channels and four power levels in order to cover
the whole parameter range provided by the Texas Instruments
transmitters used.

Specifically, for given used channels, the corresponding
frequencies can be calculated with the equation (2):

F = 2405 + 5 ∗ (ch− 11) MHz (2)

Where ch is the channel number, which must take a value
between 11 and 26. Then, channels 11, 13, 16, 19, 22 and 26,
used in this experiment, correspond to the frequencies shown
in Table I. Also, the different power levels used can be seen
in Table II, where the first and last values are, respectively,
the maximum and the minimum power the transmitter can
generate.

Channel Frequency
11 2405 MHz
13 2415 MHz
16 2430 MHz
19 2445 MHz
22 2460 MHz
26 2480 MHz

TABLE I
CHANNEL - FREQUENCY MATCHING

B3 B4

B1 B2

Fig. 7. Scenario 3: Corridor.
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Value Gain
255 0,6 dB

95 -0,4 dB
19 -5,7 dB

3 -25,2 dB

TABLE II
VALUE - POWER MATCHING
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Fig. 8. Signal strength distribution for different channels

The interference pattern distribution for these frequencies
present a distance between nodes in the order of a few centime-
ters. Modifying the frequency of the transmitter will produce
different interference patterns at the same transmitter location,
as seen in Fig. 8, and this will provide additional information
to the location characterization measurements dataset.

For every combination of beacon, channel, and signal power,
five packets are sent from the transmitter (mobile sensor),
which are sent back to the transmitter with the measured RSS
value. This is done in order to have some statistical component
in the data collected, avoiding spurious values.

To perform the training procedure the mobile sensor is
placed at every position of the scenario (green dots in Fig. 6
and Fig. 7), so that every RSS for every combination of
beacon, channel, and signal power may be stored. The actual
coordinates are also saved in the data base.

When a beacon receives a packet from the transmitter, it
calculates its RSS and returns as confirmation a packet with
a four byte payload, as shown in Fig. 9, where the beacon x
and y coordinates in decimeters are sent in the first and second
bytes. The third byte contains the beacon identification number
and the fourth byte contains the obtained RSS value in -dB
(i.e. a positive number between 0 and 90).

If a confirmation packet from the beacon is not received

x(beacon) y(beacon) beacon -dB

1 2 3 4

4 bytes

Fig. 9. Beacon RSS measurement packet contents

by the transmitter in a configurable amount of time, the
transmitter sends a retry packet. This operation is repeated
a configurable number of times. Finally, if no response is
received, the transmitter sets the RSS to a minimum value
of -99 dB for this particular combination of power, channel
and beacon.

For every received packet, the transmitter measures the RSS
and, with the beacon RSS, builds a pair of values that will be
the measurement for this power, channel and beacon combi-
nation. For every transmitter position, six different channels
and four power levels are used against four beacons. This
represents a total of 96 couples of values (the one measured
by the beacon and the one measured by the transmitter).

The transmitter collects the measures and forwards them to
the base station, who will send it to the PC through the RS232
serial port. The PC adds to each packet the transmitter actual
coordinates (previously introduced by hand as reference) and
generates a new entry in the signal strength database. This
information will contain the transmitter characterization for
every position in the scenario.

Once the whole scenario has been measured, some calcula-
tions with the received data are made in order to condense
the radio map. For every set of values obtained for each
location, channel, power and beacon, a mean is calculated,
reducing, with this procedure, the amount of information to
a fifth. This is necessary to improve the system efficiency,
considering that the aim is to obtain the robot localization in
real time. The calculation time is then reduced from 8 s to
1,5 s. As system performance is critical in order to obtain a
valuable localization procedure, working with the whole set
of samples, as would happen when applying any KNN-based
algorithm, is not feasible. The ARIEL system provides this
improvement, by enhancing the accuracy of the localization
method and, at the same time, working with the simplified
training set of radio samples.

V. LOCALIZATION ESTIMATION

Once the database is trained for a given scenario, the
localization estimation procedure comes up, which consists
of calculating the transmitter (mobile sensor) current position
within the scenario. A mini-PC in the robot stores the database
and performs every calculation. Thus, the robot is completely
autonomous in the localization aspect.

To accomplish this, the transmitter performs a set of mea-
surements identical to those made in the training phase, with
the corresponding channel, power and beacon combinations.
For that, the current RSS measurements set is compared with
every sample stored in the database.

Several pattern recognition techniques has been compared
in order to evaluate the performance of the ARIEL system.

A. Neural network

Neural networks [20] have been successfully used for clas-
sification purposes (e.g., image recognition [21], [22] or even
in more sophisticated scenarios [23]).

In this paper neural networks have been used to estimate the
position of the robot by taking as input the radio frequency
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inputs of a mobile node and the radio map that trains the
network. For this, the Resilient Backpropagation algorithm
[24] has been used, based on the results obtained in previous
work [21].

In fact, the implemented neural network contains as many
neurons in the last layer as available positions (this is, 116
in the corridor scenario and 55 in the classroom scenario).
Thus, each neuron will classify a given input parameter as
a concrete position. For example, neuron 1 will be related
with position [0,0]. Experiments with several topologies and
layers have been performed. Best results have been obtained
using a 3 layers topology, with 100 neurons in the input layer
and 200 in the hidden layer. Note that increasing the number
of layers and number of neurons will not always lead to a
performance improvement, since the error could be diminished
when propagated through the network or by the creation of a
local minimum; furthermore, the necessary time to converge
to a solution also increments.

In the experiments, the whole set of 192 descriptors have
been organized in groups of 4. Each of these subgroups
represents the transmission/reception values for each beacon
given a concrete configuration. Each descriptor group has been
classified using a neural network with the above configuration.
The position estimation has been calculated using the average
of the output of each neural network for each subgroup of
descriptors.

B. ARIEL

The proposed method follows a similar criteria to the
k-nearest neighbors pattern recognition method, where one
calculates the k-nearest samples in the radio map that have
a grater similarity to the sample obtained at the current
mobile sensor position. Then, the recognition result is the more
repeated position in this k-nearest vector.

Having this in mind, the following modifications have
been implemented, in order to increase the whole system
performance:

• Once we have a RSS’s sample (array) for the current
position, we give more weight to the RSS values received
by the beacons than the one calculated from the packets
received by the transmitter, since the transmitter changes
its signal power and beacon does not. Then beacons
will receive different values for different power while
transmitter will theoretically receive every confirmation
packet with the same signal strength. There are two
parameters (wfb - weight factor for beacon and wft -
weight factor for transmitter) to adjust this.

• Two values do not need to be equal to be considered
an RSS match. In fact, the parameter (er - equivalence
radius) sets the maximum distance between two signal
strength values to be considered identical.

• In addition to matches, for every couple of compared
values (current measurement and database stored) the
difference between them is calculated and stored. This
value will provide extra information for recognition since
the smaller this value, the better the match.

• As a result, after completing the comparison, eight can-
didates will be obtained1, sorted by match and differ-
ence values. Depending on the matching level, the best
candidate or the one with more candidate neighbors will
be selected (as explained afterwards). To decide if two
candidates are neighbors, the distance between them is
calculated and then compared with the parameter mnd -
maximum neighbor distance.

Then, for every transmitter position one will go over every
RSS set stored in the database and calculate the two values
(matches and difference). The matches (M) value will be
obtained from the equation (3):

M =

4∑
b=1

4∑
p=1

6∑
c=1

{|SSB(b, p, c)−CSB(b, p, c)| < er}∗wfb+

(3)

+{|SST (b, p, c)− CST (b, p, c)| < er} ∗ wft

while the difference (D) value will be obtained by evaluating
the equation (4):

D =

4∑
b=1

4∑
p=1

6∑
c=1

|SSB(b, p, c)− CSB(b, p, c)| ∗ wfb+ (4)

+|SST (b, p, c)− CST (b, p, c)| ∗ wft

where:
• b - beacon id (1. . . 4)
• p - power id (1. . . 4)
• c - channel id (1. . . 6)
• SSB - Stored value for signal strength received by beacon
• CSB - Current value for signal strength received by

beacon
• SST - Stored value for signal strength received by trans-

mitter
• CST - Current value for signal strength received by

transmitter
• er - Equivalence radius
• wfb - Weight factor in measures received by beacon
• wft - Weight factor in measures received by transmitter
• A < B - Takes a ’0’ value if the expression is true and a

’1’ value if it is not
The next step consists of choosing the best candidate. From

the sorted eight candidates list, if the first one (A) is much
better than the second one (B), it will be considered the most
probable transmitter localization. Two intermediate values are
calculated to do this:

• cm: Candidate A matches result respect candidate B
matches result: M(A)/M(B).

• cd: Candidate B difference result respect candidate A
difference result: D(B)/D(A).

1They are eight because it has been experimentally established that the
correct transmitter position is between the eight best results the 95% of times.
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Fig. 10. ARIEL Selected method pseudocode

In both cases, a higher value indicates a better result for
the candidate A respect the candidate B. Four parameters are
established as limits to decide:

• CD HARD and CM HARD are limit values for cd and
cm. Candidate A will be selected if ONE OF THEM is
overcome by the calculated value.

• CD SOFT y CM SOFT are limit values for cd and cm.
Candidate B will be selected if BOTH OF THEM are
overcome by the calculated value.

In other words, if at least one of the two following con-
ditions is accomplished, candidate A will be selected as the
transmitter’s nearest location.

(cd > CD HARD)OR(cm > CM HARD) (5)

(cd > CD SOFT )AND(cm > CM SOFT ) (6)

Otherwise, a two-dimension array called dist (distances
between candidates) will be calculated with the equation 7:

dist(i, j) =
√
(xi − xj)2 + (yi − yj)2 (7)

where i and j are the array indexes, and xk and yk are,
respectively, the x and y coordinates of the k− th candidate.
From this array, one list numneighbors is made to store the
number of neighbors of every candidate. Two candidates are
considered neighbors if they are closer than mnd, thus the
array dist is searched for every candidate and one neighbor
added every time a value less or equal to mnd is found.

Once these calculations are made, the candidate with more
neighbors will be selected as the best result. In Fig. 10 the
equivalent pseudocode is shown.

As an additional method, a mean with the selected candidate
and its neighbors coordinates is provided, with an extra weight

(configurable in parameter cp - central point weight) for the
selected candidate.

VI. EXPERIMENTATION RESULTS

In previous works, the Location Engine engine, integrated
into the Texas Instruments transmitters used, has been com-
pared with the exposed methods. In open spaces, as the garden
scenario, the results are similar with respect to the localization
error and the calculation time, as expected, is hundreds of
times faster in the analytical method, so there’s no point to
use the empirical methods into open spaces.

The exposed methods have been used to calculate the
transmitter position in the two indoor proposed scenarios
(classroom and corridor). Then, distances between the actual
position and the one obtained by every method (i.e., the
positioning errors) have been calculated, as well as the calcula-
tion time spent on every transmitter location estimated. From
this information, sum, mean and typical deviation for every
scenario and method have been calculated. All this values
are shown in the Table III for the classroom scenario and in
Table IV for the corridor scenario. The garden scenario results
have not been included because is an outdoors environment
and analytical methods work quite well and are easier to
implement. On the other hand, in order to appreciate the
ARIEL improvement, results of K-NN and Minimum Distance
(i.e. MD) original methods have been included too.

Neural ARIEL
Method K-NN MD Network Selected Mean
Point 1 14.14 22.36 14.32 10.00 9.85
Point 2 133.42 58.31 14.42 0.00 17.20
Point 3 0.00 36.06 27.92 0.00 20.88

...
...

...
...

...
...

Point 53 20.00 14.14 59.06 10.00 8.00
Point 54 20.00 31.62 0.00 30.00 41.23
Point 55 20.00 160.31 76.59 20.00 12.65
ErrSum 1466.93 1841.40 1448.67 727.67 926.75
ErrMean 26.67 33.48 27.07 13.23 16.85
StdDev 31.20 35.62 23.28 14.70 15.47

CalcTime 1.7 s 0.5 s 2.4 s 0.6 s 0.6 s

TABLE III
POSITIONING ERROR (DECIMETERS) AND CALCULATOIN TIME

(SECONDS). RESULTS IN CLASSROOM SCENARIO

Figs. 11 and 12 show in a graphical way the results
obtained with the three methods in the different scenarios.
The ARIEL Selected method provides always better results
than the neural networks used and, also, a more homogeneous
error distribution.

Finally, Fig. 13 shows the localization error results for every
method considered.

VII. CONCLUSIONS AND FUTURE WORK

The article has shown a proposed fingerprint algorithm
for enhancing the efficiency of localization methods in in-
door environments with irregular scenarios, including different
materials. The ARIEL method increases the performance of
several experimented pattern recognition methods such as K-
NN, Minimum Distance, and Neural Networks, and shows
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Neural ARIEL
Method K-NN MD Network Selected Mean
Point 1 31.62 189.74 19.66 30.00 30.08
Point 2 00.00 22.36 50.02 20.00 26.02
Point 3 00.00 22.36 14.13 31.62 26.93

...
...

...
...

...
Point 114 31.62 28.28 37.79 20.00 11.31
Point 115 10.00 14.14 22.49 22.36 11.40
Point 116 28.28 58.31 42.83 50.00 22.47
ErrSum 2895.58 4137.62 3657.60 1962.38 2301.44
ErrMean 24.96 35.67 31.53 16.92 19.84
StdDev 27.76 39.46 29.84 10.38 23.45

CalcTime 3.4 s 1.3 s 3.8 s 1.5 s 1.5 s

TABLE IV
POSITIONING ERROR (DECIMETERS) AND CALCULATION TIME

(SECONDS). RESULTS IN CORRIDOR SCENARIO

Fig. 11. Results comparison between K-NN, Neural Network and ARIEL
Selected methods in classroom scenario

good results in every tested scenario. Combined with a de-
signed high luminosity visual localization panel, the system
may allow a robot to navigate in a smoky atmosphere and
reach specific points of interest to help a firemen. Due to the
complexity of filling with smoke the explored scenarios, some
measurements have carried out in a small laboratory filled with
paraffin smoke, as shown in Fig. 14, showing no significant
reduction in the precision. Further works will use real fire
smoke.

Fig. 12. Results comparison between K-NN, Neural Network and ARIEL
Selected methods in corridor scenario

Fig. 13. Results comparison between every method considered in corridor
scenario

Fig. 14. Visual and ZigBee positioning experiments carried out at a paraffin
smoke filled small laboratory

It is necessary to consider that the neural network method
requires a previous training phase for every given scenario,
and more hardware resources in the sensor nodes in order
to perform the calculations. Future work will be focused on
determining which measures give the most important informa-
tion to the fingerprinting pattern recognition method, in order
to reduce the amount of measurements involved, improving
the calculation time and allowing the ARIEL method to be
implemented with simpler hardware devices. In the neural
network aspect, more strategies need to be used in order to
improve the recognition efficiency.

In addition, only the localization phase has been considered.
In the navigation phase, once the position of the robot is
reasonably known, only near positions will be searched in
the database, both reducing the calculation time and the
probability of significant errors in distance estimation.
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P1-1B2009-50.

REFERENCES

[1] “GUARDIANS EU project (IST-045269) (Group of Unmanned
Assistant Robots Deployed in Aggregative Navigation supported by
Scent Detection).” [Online]. Available: http://www.guardians-project.eu

[2] N. Bulusu, J. Heidemann, and D. Estrin, “GPS-less low-cost outdoor
localization for very small devices,” Personal Communications, IEEE,
vol. 7, no. 5, pp. 28 –34, oct 2000.

[3] S. Capkun, M. Hamdi, and J.-P. Hubaux, “GPS-free positioning in
mobile ad-hoc networks,” Proceedings of the 34th Annual Hawaii
International Conference on System Sciences, 2001, p. 10 pp., jan. 2001.

[4] G. Cen, N. Matsuhira, J. Hirokawa, H. Ogawa, and I. Hagiwara,
“Mobile robot global localization using particle filters,” ICCAS 2008.
International Conference on Control, Automation and Systems, 2008,
pp. 710 –713, oct. 2008.

[5] M. Hentschel, O. Wulf, and B. Wagner, “A GPS and laser-based
localization for urban and non-urban outdoor environments,” IROS 2008.
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2008, pp. 149 –154, sept. 2008.

[6] D. Li, K. Wong, Y. H. Hu, and A. Sayeed, “Detection, classification,
and tracking of targets,” Signal Processing Magazine, IEEE, vol. 19,
no. 2, pp. 17 –29, mar 2002.

[7] S. Atiya and G. Hager, “Real-time vision-based robot localization,”
Robotics and Automation, IEEE Transactions on, vol. 9, no. 6, pp. 785
–800, dec 1993.

[8] D. Niculescu and B. Nath, “Ad hoc positioning system (APS) using
AOA,” INFOCOM 2003. Twenty-Second Annual Joint Conference of
the IEEE Computer and Communications. IEEE Societies, vol. 3, pp.
1734 – 1743 vol.3, march-3 april 2003.

[9] Z. Shan and T.-S. Yum, “Precise localization with smart antennas
in ad-hoc networks,” Global Telecommunications Conference, 2007.
GLOBECOM ’07. IEEE, pp. 1053 –1057, nov. 2007.

[10] G. Teng, K. Zheng, and G. Yu, “A mobile-beacon-assisted sensor
network localization based on rss and connectivity observations,” In-
ternational Journal of Distributed Sensor Networks, July. 2011.

[11] J. Sales, M. El-Habbal, R. Marin, U. Witkowski, E. Cervera, L. Nomd-
edeu, and U. Rackert, “Localization of networked mobile sensors and
actuators in low-visibility conditions,” in RISE (IARP/EURON Workshop
on Robotics for Risky Interventions and Environmental Surveillance),
Sheffield, Hallam University, jan 2010.

[12] J. Sales, R. Marin, E. Cervera, S. Rodriguez, and J. Perez,
“Multi-sensor person following in low-visibility scenarios,” Sensors,
vol. 10, no. 12, pp. 10 953–10 966, 2010. [Online]. Available:
http://www.mdpi.com/1424-8220/10/12/10953/

[13] P. Bahl and V. N. Padmanabhan., “RADAR: An in-building RFbased
user location and tracking system,” Proc. IEEE Nineteenth Annual Joint
Conference Computer and Communications Societies (INFOCOM00.),
pp. 775–784, 2000.

[14] M. Youssef and A. Agrawala, “The horus wlan location determination
system,” Proceedings of the 3rd international conference on Mobile
systems, applications, and services. MobiSys ’05, pp. 205–218, 2005.

[15] Q. Yao, F.-Y. Wang, H. Gao, K. Wang, and H. Zhao, “Location estima-
tion in ZigBee network based on fingerprinting,” Vehicular Electronics
and Safety, 2007. ICVES. IEEE International Conference on, pp. 1 –6,
dec. 2007.

[16] J. Marti and R. Marin, “ARIEL: advanced radiofrequency indoor envi-
ronment localization: Smoke conditions positioning,” in PWSN 2011 -
3rd International Workshop on Performance Control in Wireless Sensors
Networks, Barcelona, jun 2011.

[17] Y. Wang, D. Wu, S. Seifzadeh, and J. Chen, “A moving grid cell based
MCL algorithm for mobile robot localization,” Robotics and Biomimetics
(ROBIO), 2009 IEEE International Conference on, pp. 2445–2450,
diciembre 2009.

[18] F. Chaumette and S. Hutchinson, “Visual servo control. I. basic ap-
proaches,” Robotics Automation Magazine, IEEE, vol. 13, no. 4, pp. 82
–90, dec. 2006.

[19] J. Marti and R. Marin, “Pattern recognition comparative analysis applied
to fingerprint indoor mobile sensors localization,” in 2010 10th IEEE
International Conference on Computer and Information Technology (CIT
2010), Bradford, UK, jun 2010.

[20] G. P. Zhang, “Neural networks for classification: a survey,” IEEE
Transactions on Systems, Man, and Cybernetics, Part C, vol. 30, no. 4,
pp. 451–462, 2000.

[21] E. Jiménez, R. Marı́n, and P. J. Sanz, “A soft computing classifier based
on Fourier descriptors within online robots context,” in Proceedings of
the IEEE International Conference on Systems, Man & Cybernetics,
2004, pp. 4838–4843.

[22] T. H. Le, “Applying artificial neural networks for face recognition,”
Advances in Artificial Neural Systems, 2011.

[23] L. Shi, Z. Wang, L. Wang, and J. Zhang, “The aide diagnosis of cardiac
heart diseases using a deoxyribonucleic acid based backpropagation
neural network,” International Journal of Distributed Sensor Networks,
vol. 5, no. 1, 2009.

[24] M. Riedmiller and H. Braun, “A direct adaptive method for faster back-
propagation learning: The RPROP algorithm,” in IEEE International
Conference on Neural Networks, 1993, pp. 586–591.


