
The existence of an information unit as a postulate
of quantum theory



What are the physical principles behind QT?

Does information play a significant role in the foundations of
physics?

Information is the abstraction that allows us to refer to the states
of systems when we choose to ignore the systems themselves.

Computation is dynamics when the physical substrate is ignored.
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Quantum information perspective

|ψ〉 ∈ Cd ρ → ∑
i AiρA

†
i prob(E |ρ) = tr(Eρ)
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Universe as a circuit – Pancomputationalism?
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Coding is in general not possible
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Postulate Existence of an Information Unit
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Otuline

1. A new axiomatization of QT
I The standard postulates of QT
I Generalized probability theory
I The new postulates

2. The central theorem

3. DIY - construct your own axiomatization



The standard postulates of QT

Postulate 1: states are density matrices

ρ ∈ Cd×d ρ ≥ 0 trρ = 1

Consequence: state transformations are completely-positive maps
and measurements are POVMs: p = tr(Eρ).

Postulate 2: tomographic locality

Postulate 3: closed systems evolve reversibly and continuously in
time

Postulate 4: the immediate repetition of a projective measurement
always gives the same outcome
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Goal

To break down “states are density matrices” into meaningful
physical principles.



Generalized probability theories

In classical probability theory there is a joint probability
distribution which simultaneously describes the statistics of all the
measurements that can be performed on a system.

Birkhoff and von Neumann generalized the formalism of classical
probability theory to include incompatible measurements.
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Generalized probability theories

Generic features of GPT:

1. Bell-inequality violation

2. no-cloning

3. monogamy of correlations

4. Heisenberg-type uncertainty relations

5. measurement-disturbance tradeoffs

6. secret key distribution

7. Inexistence of an Information Unit
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Why nature seems to be quantum instead of classical?

Why QT instead of any other GPT?
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Generalized probability theories - states

The state of a system is represented by the probabilities of some
pre-established measurement outcomes x1, . . . xk called fiducial:

ω =

 p(x1)
...

p(xk)

 ∈ S ⊂ Rk

Pure states are the extreme points of the convex set S.
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Generalized probability theories

Every compact convex set is the state space S of an imaginary
type of system.



Generalized probability theories - measurements

The probability of a measurement outcome x is given by a function
Ex : S → [0, 1] which has to be linear.

Ex(qω1 + (1− q)ω2) = qEx(ω1) + (1− q)Ex(ω2)

In classical probability theory and QT, all such linear functions
correspond to outcomes of measurements, but this need not be the
case in general.
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Generalized probability theories - dynamics

Transformations are represented by linear maps T : S → S.

The set of reversible transformations generated by time-continuous
dynamics forms a compact connected Lie group G. The elements
of the corresponding Lie algebra are the hamiltonians of the theory.
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1. Continuous Reversibility

2. Tomographic Locality

3. Existence of an Information Unit



New postulates for QT

Continuous Reversibility: for every pair of pure states in S there is
a continuous reversible dynamics which brings one state to the
other.



New postulates for QT

Tomographic Locality: The state of a composite system is
completely characterized by the correlations of measurements on
the individual components.

dimSAB = dimSA × dimSB
p(x , y) = (Ex ⊗ Ey )(ωAB)
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New postulates for QT

Existence of an Information Unit: There is a type of system, the
gbit, such that the state of any system can be reversibly encoded
in a sufficient number of gbits. Additionally, the gbit satisfies:

1. State estimation is possible: k <∞
2. All effects are observable: all linear functions E : S2 → [0, 1]

correspond to outcome probabilities.

3. Gbits can interact pair-wise.

4. No Simultaneous Encoding: when a gbit is being used to
perfectly encode a classical bit, it cannot simultaneously
encode any other information.
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New postulates for QT – No Parallel Encoding

Alice Bob
a, a′ ∈ {0, 1} a =? or a′ =?

♦ 

P(aguess|a, a′) = δaaguess ⇒ P(a′guess|a, a′) = P(a′guess|a)
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New postulates for QT – No Parallel Encoding

1

E
=
1
ω0,0

ωmix

ω0,1

E
=
0

ω1,0 = ω1,1

E
=
0.5

E ′
=
0

E ′
=
0.3

ω0,0

E ′
=
0.8

ω0,1

E ′
=
1

ω1,0 = ω1,1



New postulates for QT – proof sketch

d =? ZP+all effects d =?

CR

d =? redefine xi d =?

TL+CR+interactio
n

d = 3 TL+CR+∃IU



Summary

The following postulates single out QT:

1. Continuous Reversibility

2. Tomographic Locality

3. Existence of an Information Unit

3.1 State estimation is possible
3.2 All effects are observable
3.3 Gbits can interact pair-wise
3.4 No simultaneous Encoding

Any theory different than QT violates at lest one of them.

This allows us to go beyond QT in new ways (e.g. removing
“interaction”).
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Comparison with Hardy’s last axiomatization

I A maximal set of distinguishable states for a system is any
set of states containing the maximum number of states for
which there exists some measurement, called a maximal
measurement, which can identify which state from the set
we have in a single shot.

I An informational subset of states is the full set of states
which only give rise to some given subset of outcomes of a
given maximal measurement (and give probability zero for the
other outcomes).

I Non-flat sets of states. A set of states is non-flat if it is a
spanning subset of some informational subset of states.

I A filter is a transformation that passes unchanged those
states which would give rise only to the given subset of
outcomes of the given maximal measurement and block states
which would give rise only to the complement set of outcomes.

I Sturdiness Postulate: Filters are non-flattening.



Comparison with Chiribella’s et al axiomatization

I A state is completely mixed if every state in the state space
can stay in one of its convex decomposition.

I Perfect distinguishability Axiom. Every state that is not
completely mixed can be perfectly distinguished from some
other state.

I Purification Postulate. Every state has a purification. For
fixed purifying system, every two purifications of the same
state are connected by a reversible transformation on the
purifying system.



The central theorem - 2 qubits

ρ =
1

4

(
I ⊗ I + aiσi ⊗ I + bj I ⊗ σj + c ijσi ⊗ σj

)

Ω =

 a
b
c

 a, b ∈ R3 c ∈ R9

a · a ≤ 1 b · b ≤ 1 algebraic constraints for c

p(x , y) =
1

4
(1 + x · a + y · b + (x ⊗ y) · c)
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The central theorem - 2 gbits

Ω =
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b
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 a, b ∈ Rd c ∈ Rd2

a · a ≤ 1 b · b ≤ 1

pure states =
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 u
u

u ⊗ u

 , g ∈ G2


p(x , y) =

1

4
(1 + x · a + y · b + (x ⊗ y) · c) ∈ [0, 1]

 A 0 0
0 B 0
0 0 A⊗ B

 ∈ G2, ∀A,B ∈ G1
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The central theorem

Let G1 ≤ SO(d) be transitive on the unit sphere in Rd , and let
G2 ≤ GL(R2d+d2

) be compact, connected and satisfy A 0 0
0 B 0
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The central theorem

...either

G2 ≤


 A 0 0

0 B 0
0 0 A⊗ B

 , A,B ∈ SO(d)



or d = 3 and G2 is the adjoint action of SU(4).
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DIY - construct your own axiomatization

I propose to assume the very conservative postulates

I Continuous Reversibility

I Tomographic Locality

and supplement them with another postulate(s) implying

I gbits: d <∞
I gbits: no mixed states in the boundary

I gbits: interact

I the n-gbit state spaces suffice to characterize the theory
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DIY - construct your own axiomatization

”No mixed states in the boundary” is a consequence of:

I Spectrality

I No information gain implies no disturbance

I The second law of thermodynamics?
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I Llúıs Masanes, Markus P. Müller, David Pérez-Garćıa,
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