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Abstract

The dynamic nature of ontology development has moti-
vated the formal study of ontology evolution problems.
This paper presents a logical framework that enables
fine-grained investigation of evolution problems at a de-
ductive level. In our framework, the optimal evolutions
of an ontology O are those ontologies O′ that maximally
preserve both the structure of O, and its entailments
in a given preservation language. We show that our
framework is compatible with the postulates of Belief
Revision, and we investigate the existence of optimal
evolutions in various settings. In particular, we present
first results on TBox-level revision and contraction in
the EL and FL0 families of Description Logics.

Introduction
Ontologies written in the Web Ontology Language
(OWL) (Horrocks, Patel-Schneider, and van Harme-
len 2003), and its revision OWL 2 (Cuenca Grau et
al. 2008b) are becoming increasingly important for a
wide range of applications. The formal underpinning of
OWL is based on Description Logics (DLs) – knowledge
representation formalisms with well-understood compu-
tational properties (Baader et al. 2003). A DL ontology
O typically consists of a TBox T , which describes gen-
eral (i.e., schema-level) domain knowledge, and an ABox
A, which provides data about specific individuals.

OWL ontologies are being extensively used in the
clinical sciences, where large-scale ontologies have been
developed (e.g., the NCI Thesaurus (Nci), the Founda-
tional Model of Anatomy (Fma), and Snomed). These
ontologies are not static entities, but rather they are
frequently modified when new information needs to be
incorporated, or existing information is no longer consid-
ered valid (e.g., the developers of Nci perform over 900
monthly changes (Hartung, Kirsten, and Rahm 2008)).
The impact of such changes on the semantics of the
ontology, however, is difficult to predict and understand.

This dynamic nature of ontologies motivates the study
of ontology evolution from both foundational and prac-
tical perspectives (Fridman Noy et al. 2004; Haase and
Stojanovic 2005; Flouris et al. 2008; Qi and Du 2009;
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Calvanese et al. 2010; Wang, Wang, and Topor 2010b;
Jiménez-Ruiz et al. 2011; Konev, Walther, and Wolter
2008; Gonçalves, Parsia, and Sattler 2011).

In AI and Belief Revision, the process of “incorpo-
rating” new information into a knowledge base (KB) is
called revision, whereas the process of “retracting” infor-
mation that is no longer considered to hold is called con-
traction (Alchourrón, Gärdenfors, and Makinson 1985;
Peppas 2007). The properties that revision and con-
traction operators need to satisfy are dictated by the
principle of minimal change (Alchourrón, Gärdenfors,
and Makinson 1985), according to which the semantics
of a KB should change “as little as possible”, thus en-
suring that modifications have the least possible impact.
A distinction is often made between revision and up-
date, where the purpose of the latter is to bring the
KB up to date when the world changes (Katsuno and
Mendelzon 1991; Kharlamov and Zheleznyakov 2011;
Liu et al. 2011). In this paper, however, we use the term
evolution to encompass revision and contraction, and
we do not consider here the problem of update.

Logic-based semantics derived from the principle
of minimal change have been recently studied in the
context of ontology evolution. These semantics are
either model-based (MBS) or formula-based (FBS).
Under both semantics, evolution of an LO-ontology
O results in an LO′-ontology O′ that incorporates (or
retracts) the required information, and the difference
lies in the way O′ is obtained. Under MBS the set of all
models M of O is evolved into a new set M′ of models
that are “as close as possible” to those in M (w.r.t.
some notion of distance between models); then, O′ is
the ontology that axiomatises M′ (Qi and Du 2009;
Giacomo et al. 2009; Calvanese et al. 2010; Kharlamov
and Zheleznyakov 2011; Wang, Wang, and Topor 2010b;
2010a). MBSs, however, suffer from intrinsic inex-
pressibility problems, even for lightweight DLs such as
DL-Lite (Calvanese et al. 2007), where axiomatisation
of M′ requires a DL with disjunction and nominals
(Kharlamov and Zheleznyakov 2011).

Under FBS, O′ is defined as a maximal subset of
the deductive closure of O (under LO-consequences)
that satisfies the evolution requirements. FBSs for DLs
have been less studied. In particular, existing results



(Calvanese et al. 2010; Lenzerini and Savo 2011) are
restricted to DL-Lite, where the deductive closure of O
is finite. It is unknown, however, how to compute O′
if the closure of O is infinite, as is the case when O is
an EL ontology (Baader, Brandt, and Lutz 2005).

Approaches to ontology evolution typically adopted
in practice (especially when changes occur at the TBox
level) are essentially syntactic (Haase and Stojanovic
2005; Kalyanpur et al. 2006; Jiménez-Ruiz et al. 2011).
Many such approaches are based on the notion of a
justification: a minimal subset of the ontology that
entails a given consequence (Kalyanpur et al. 2005;
Schlobach et al. 2007; Kalyanpur et al. 2007; Peñaloza
and Sertkaya 2010). For example, to retract an axiom
α entailed by O, it suffices to compute all justifications
for α in O, find a minimal subset R of O with at least
one axiom from each justification, and take O′ = O \R
as the result of the evolution. This solution complies
with a “syntactical” notion of minimal change: retract-
ing α results in the deletion of a minimal set of axioms
and hence the structure of O is maximally preserved.
Furthermore, O′ is guaranteed to exist for expressive
DLs, and practical algorithms have been implemented in
ontology development platforms (Kalyanpur et al. 2007;
Suntisrivaraporn et al. 2008). By removing R from
O, however, we may be inadvertently retracting con-
sequences of O other than α, which are “intended”.
Identifying and recovering such intended consequences
is an important issue.

This paper presents a framework that bridges the
gap between logic-based and syntactic approaches to
ontology evolution. On the logic side we focus on FBSs,
which deal with formulae rather than models, and hence
are closer in spirit to syntactic approaches than MBSs.
Roughly speaking, evolution of an LO-ontology O is
“triggered” by semantic constraints C = (C+, C−) – sets
of formulae in a constraint language LC specifying both
the consequences C+ that must hold in an evolved on-
tology O′, and the consequences C− that cannot hold.
The principle of minimal change is reflected in our
framework along two dimensions. The first one is struc-
tural : ontologies are the result of a time-consuming
modeling process and thus O′ should not change the
structure of O in a substantial way. The second di-
mension is deductive: in addition to satisfying the con-
straints C, O′ should, on the one hand, avoid intro-
ducing spurious consequences that do not follow from
O ∪ C+ and, on the other hand, it should maximally
preserve the consequences of O in a given preservation
language LP. Ontologies that comply with the princi-
ple of minimal change along these two dimensions are
called optimal evolutions. To show that our semantics
does not lead to unexpected results, we discuss instan-
tiations of our framework and establish a connection
with the revision and contraction postulates of Belief
Revision (Alchourrón, Gärdenfors, and Makinson 1985;
Peppas 2007).

An important issue in our framework is expressibility
(Can an optimal evolution O′ of O be expressed in a

given LO′ for given C and LP?). If such O′ exists, we
aim at establishing bounds to its size (Cadoli et al. 1999).
We show that if LP is finite (i.e., it has only finitely
many non-equivalent sentences for any finite signature)
an optimal O′ exists provided that the constraints them-
selves can be satisfied; this case already extends all
syntactic evolution approaches known to us and also
captures the scenario where LP is DL-Lite. We then ad-
dress the challenging problem of expressibility when LP
is an “infinite” language and focus on the retraction of
axioms in TBoxes expressed in the lightweight DLs EL
and its “dual” logic FL0 (Baader et al. 2003). We show
inexpressibility of optimal contractions in both cases
when LP coincides with the ontology language, even
when retracting a single subsumption between atomic
concepts. Our negative results provide insights in the
causes of inexpressibility, so we then focus on EL (which
is especially relevant for bio-medical ontology model-
ing), investigate sufficient conditions for expressibility,
and study the size of the resulting optimal evolutions.
To the best of our knowledge, ours are the first re-
sults on TBox-level revision and contraction beyond
DL-Lite. Finally, we report on experiments in which we
study contraction in Snomed. This paper is accompa-
nied with an online technical report containing all proofs
www.inf.unibz.it/˜zheleznyakov/krfull.pdf .

Preliminaries
Our evolution framework is applicable to first-order logic
(FOL) rather than Description Logics. Our work, how-
ever, is motivated by DL ontologies, so we will use DL
terminology throughout the paper. We assume standard
definitions of (function-free) FOL signature, predicates,
sentences, interpretations, satisfiability and entailment.

An ontology O = T ∪ A consists of a finite set of
sentences T (the TBox) and a finite set of ground atoms
A (the ABox). A DL is a recursive set of ontologies
closed under renaming of constants and the subset re-
lation. Predicates in DL signatures are either unary
(called atomic concepts) or binary (atomic roles). DLs
use a specialised syntax, where variables are omitted,
and which provides operators for constructing complex
concepts (formulae with one free variable) and roles
(formulae with two free variables) from simpler ones, as
well as a set of axioms. For ξ a concept, role, or (set
of) axiom(s), sig(ξ) denotes the set of atomic concepts,
roles and constants in ξ.

An interpretation I for a DL signature Σ is a pair
I = (∆I , ·I), where ∆I is a non-empty domain set and
the interpretation function ·I maps each constant a to an
element aI ∈ ∆I , each atomic concept A to a set AI ⊆
∆I , and each atomic role R to a relation RI ⊆ ∆I×∆I .
Many DLs provide the > and ⊥ concepts, which are
interpreted as >I = ∆I and ⊥I = ∅, respectively.

Let L and L′ be DLs s.t. L′ ⊆ L and O be an L-
ontology. The closure of O w.r.t. L′, written ClL′(O)
(or Cl(O) when L′ is clear from the context), is the
set of all L′-axioms α entailed by O. Let α ∈ ClL′(O),
then [α] = {β ∈ ClL′(O) | β ≡ α}. Clearly, [α] is an



equivalence class in the quotient set of ClL′(O) modulo
logical equivalence.

The Description Logics EL and FL0
We next describe the specific DLs mentioned in this
paper, namely EL (Baader, Brandt, and Lutz 2005) and
its “dual” logic FL0 (Baader et al. 2003). Since we
only mention these logics in the context of TBox-level
evolution, we omit the definition of ABoxes.

Let L be either EL or FL0 and let Σ be a DL signature,
which we consider implicit in all definitions. The set of
L-concepts is the smallest set containing >, A, C1 uC2,
and QR.C with Q = ∃ if L = EL and Q = ∀ if L = FL0,
for A an atomic concept, C, C1 and C2 L-concepts, and
R an atomic role. For w = R1 . . . Rn a word of atomic
roles, Q ∈ {∃,∀} and C a concept, we denote with Qw.C
the concept QR1. . . .QRn.C.

The quantifier depth of an L-concept is inductively de-
fined as follows, for A atomic, and C, C1, C2 L-concepts:
(i) depth(A) = 0; (ii) depth(QR.C) = 1+depth(C); and
(iii) depth(C1 u C2) = max(depth(C1), depth(C2)).

An L-axiom is of the form C1 v C2, where C1 and C2

are L-concepts (C1 ≡ C2 is a shorthand for C1 v C2

and C2 v C1). An L-TBox is a finite set of L-axioms.
The semantics is standard. We denote with Lmin the DL
that only allows for axioms A v B with A,B atomic.1

An EL-TBox T is normalised if it has only axioms
of the following forms, where A, B, A1, A2 are atomic
concepts or >: A v B, A1 u A2 v B, ∃R.A v B, or
A v ∃R.B. Each EL-TBox T can be normalised into a
TBox T ′ that is a conservative extension of T (Baader,
Brandt, and Lutz 2005). The canonical model IT of a
normalised EL-TBox T is defined as follows:

• ∆IT = {vA | A ∈ sig(T ) ∪ {>} is a concept};
• AIT = {vB | T |= B v A}; and

• RIT = {(vA, vB) | T |= A v ∃R.B}.
Deductively, IT is described by the basic closure BCl(T )
of T , i.e., the subset of Cl(T ) with all axioms of the
form A v B, or A v ∃R.B, with A,B,R ∈ sig(T )∪{>}.
The set BCl(T ) is of size polynomial in the size of T .

Ontology Evolution Under Constraints
We next introduce our ontology evolution framework.
Since our framework is not restricted to any particular
Description Logic, we adopt the general definition of a
DL in the preliminaries.

Semantic Constraints
Ontologies are dynamic entities, which are subject to
frequent modifications. Consider, for example, the de-
velopment of an ontology Oex about disorders of the
skeletal system, which entails the following axioms:

β1 = Arthropathy v JointDisorder,

β2 = ArthropathyTest v JointFinding,

γ1 = Arthropathy v JointFinding.

1Lmin is arguably the smallest DL and Lmin ⊆ EL∩FL0.

After close inspection, the developers of Oex notice
that γ1 is due to a modeling error and should be re-
tracted, whereas the other entailments are intended and
hence the retraction of γ1 should not invalidate them.
These requirements are formalised in our framework
using a constraint C = (C+, C−), where C+ specifies the
entailments that must hold in the evolved ontology and
C− specifies those that cannot hold. In our example, we
have C+ex = {β1, β2}, C−ex = {γ1}, and Cex = (C+ex, C−ex).

Definition 1. Let LC and LO′ be DLs. An LC-
constraint is a pair C = (C+, C−), with C+, C− ∈ LC.
We say that O′ ∈ LO′ conforms to

• C+ (written O′ ∝ C+) if O′ |= C+;

• C− (written O′ ∝ C−) if O′ 6|= α for all α ∈ C−; and

• C (written O′ ∝ C) if O′ ∝ C+ and O′ ∝ C−.

We say that C is LO′-conformant if there exists an
ontology O′ ∈ LO′ such that O′ ∝ C.

In general, C+ may contain new information to be
incorporated in O, or information already entailed by
O to be preserved in the evolution; conversely, C− may
contain information in O to be retracted, or information
not in O that must not be introduced by the evolution.
A constraint C such that C− contains a tautology α, (i.e.,
∅ |= α) cannot be LO′-conformant, regardless of LO′.

Let us assume that the following axioms about skeletal
disorders are also contained in Oex:

δ1 = JointDisorder v SkeletDisorder u JointFinding,

δ2 = JointDisorder v ∃located.Joint,
δ3 = ∃located.Joint v ∃located.Skeleton,
δ4 = SkeletDisorder ≡ Disorder u ∃located.Skeleton,
δ5 = Cortisone v Steroid u ∃treats.JointDisorder.

Clearly, an ontology containing δ1 cannot conform to Cex;
in contrast, axioms δ2-δ5 do not preclude conformance.
The following reasoning tasks are thus of interest.

(T1) Check if O′ conforms to C;
(T2) Check if C is LO′-conformant.

Task T1 amounts to checking entailment. Furthermore,
as shown next, task T2 also reduces to entailment check-
ing provided that LO′ can express the constraints.

Proposition 2. Let C = (C+, C−) be an LC-constraint
with LC ⊆ LO′. Then, C is LO′-conformant iff either
C+ is satisfiable and C+ ∝ C−; or C− = ∅.

Essentially, a constraint is conformant if its two com-
ponents C+ and C− do not contradict each other. The
constraints in our running example are clearly EL-
conformant since β1, β2 ∈ EL where every ontology
is satisfiable, and {β1, β2} 6|= γ1.

The Notion of an Evolution

The notion of conformance, however, does not yet es-
tablish a connection between the original ontology O
and the evolved ontology O′. The required connection
is established by the notion of an evolution.



Definition 3. Let LO and LO′ be DLs. An ontology O′
is an LO′-evolution of a satisfiable LO-ontology O un-
der constraint C = (C+, C−) if the following holds:

1. O′ ∈ LO′;
2. O′ ∝ C; and

3. if C+ is satisfiable, then an ontology O1 ∈ LO exists
s.t. O |= O1, O1∪C+ is satisfiable, and O1∪C+ |= O′.

With EvolLO′(O, C) we denote the class of all LO′-
evolutions of O under C.

The last condition in Definition 3 essentially ensures
that O′ only entails “genuine” information that follows
from O∪C+, thus preventing the introduction of logical
consequences unrelated to O and C+; furthermore, the
main role of ontology O1 in the definition is to preserve
satisfiability in the evolution whenever possible: if C+ is
satisfiable, then every evolution O′ is guaranteed to be
satisfiable as well. As discussed later on, Condition 3 in
Definition 3 makes our notion of evolution compatible
with the postulates of Belief Revision, according to which
unsatisfiable revisions are only acceptable when the new
information itself is unsatisfiable.

Definition 3 motivates the following reasoning tasks.

(T3) Check if O′ is an LO′-evolution of O under C;
(T4) Check if some LO′-evolution of O under C exists.

Task T3 amounts to entailment checking provided
that O ∪ C+ is satisfiable. The following proposition
shows that tasks T4 and T2 are inter-reducible, thus
establishing a strong connection between constraint con-
formance and existence of an evolution.

Proposition 4. Let C be an LC-constraint where LC ⊆
LO′. Then, EvolLO′(O, C) is non-empty iff C is LO′-
conformant.

In our example, O′ex = C+ex = {β1, β2} is an evolu-
tion of Oex. Although O′ex conforms to Cex and does
not introduce spurious entailments (in fact, it is the
simplest ontology with these properties), it is arguably
not compliant with the principle of minimal change, as
it loses all information in Oex that is not in C+ex (e.g.,
everything that follows from axioms δ2-δ5).

Optimal Evolutions
The principle of minimal change is reflected in our
framework both structurally and deductively. On the
one hand, O′ should minimize alterations in the struc-
ture of O; on the other hand, O′ should maximally
preserve the entailments of O in a given preservation
language LP . Formally, our framework defines a preorder
≥LP over the class EvolLO′(O, C), which establishes a
“preference” relation between evolutions based on the
aforementioned structural and deductive criteria. Our
definition of ≥LP uses the notion of entailment w.r.t. a
DL introduced in (Konev, Walther, and Wolter 2008).

Definition 5. Let LP be a DL. We say that an ontol-
ogy O1 LP-entails an ontology O2 if O2 |= α implies
O1 |= α for each α ∈ LP. The binary relation ≥LP over
EvolLO′(O, C) is defined as follows: O′1 ≥LP O′2 iff

1. O′1 LP-entails O′2, and

2. O′2 ∩ O ⊆ O′1 ∩ O.

It is well-known that a preorder induces an equivalence
relation as given next.

Definition 6. The equivalence relation ≡LP induced by
≥LP is defined as follows: O′1 ≡LP O′2 iff O′1 ≥LP O′2
and O′2 ≥LP O′1. Given O′ ∈ EvolLO′(O, C), we denote
with [O′] the equivalence class to which O′ belongs.

Ontologies in the same equivalence class are indis-
tinguishable from the point of view of our framework:
they coincide in their entailments over the preservation
language, and they contain the same axioms from O.

We can now establish a partial order �LP over the
quotient set, and define optimal evolutions as the ontolo-
gies belonging to an �LP -maximal equivalence class.

Definition 7. The relations �LP and �LP over the
quotient set EvolLO′(O, C)\ ≡LP are as follows:

• [O′] �LP [O′′] iff O′ ≥LP O′′; and

• [O′] �LP [O′′] iff [O′] �LP [O′′] and [O′] 6= [O′′].

We say that O′ ∈ EvolLO′(O, C) is LP-optimal if [O′]LP
is a �LP -maximal element in EvolLO′(O, C)\ ≡LP .

In our example, the evolution O′ex = {β1, β2} is not
EL-optimal: first, it does not include “harmless” axioms
from Oex such as δ2-δ5; second, O′ex does not entail con-
sequences of Oex such as JointDisorder v SkeletDisorder
or Cortisone v Steroidu∃treats.SkeletDisorder, which do
not cause γ1 to be entailed.

Definition 7 thus motivates the following tasks.

(T5) Check if O′ is LP-optimal in EvolLO′(O, C);

(T6) Check if an LP-optimal O′ ∈ EvolLO′(O, C) exists.

Note that there can be multiple LP-optimal evolutions
of O. In particular, each ontology in an �LP -maximal
class is LP-optimal; furthermore, ontologies in the same
�LP -maximal class are indistinguishable, whereas ontolo-
gies in different �LP -maximal classes are incomparable.
Hence, the following additional task is also of interest.

(T7) Compute [some/all] LP-optimal evolutions.

In an application, it may be desirable to single out a
“preferred” optimal evolution. This could be achieved, by
imposing a preference relation over axioms in O (e.g.,
using trust values), or by taking into account users’
feedback. Such mechanisms, however, are application
dependent and hence external to our framework.

Framework Instantiations & Belief Revision

We next argue that our evolution semantics is theoret-
ically well founded, and does not lead to unexpected
results. To this end, we discuss several instantiations
of our framework, and establish a connection with the
Belief Revision postulates.



R1 O ∗ (C+, ∅) ∈ LO
R2 O ∗ (C+, ∅) |= C+
R3 O ∪ C+ |= O ∗ (C+, ∅)
R4 If O ∪ C+ is satisfiable, then O ∗ (C+, ∅) |= O ∪ C+
R5 If C+ is satisfiable, then O ∗ (C+, ∅) satisfiable
R6 If C+1 ≡ C

+
2 , then O ∗ (C+1 , ∅) ≡ O ∗ (C+2 , ∅)

C1 O ÷ (∅, C−) ∈ LO
C2 O |= O ÷ (∅, C−)
C3 If O ∝ C−, then O ÷ (∅, C−) ≡ O
C4 If ∅ 6|= C−, then O ÷ (∅, C−) ∝ C−
C5 If O |= C−, then (O ÷ (∅, C−)) ∪ C− |= O
C6 If C−1 ≡ C

−
2 , then O ÷ (∅, C−1 ) ≡ O ÷ (∅, C−2 )

Figure 1: Basic revision and contraction postulates in Belief Revision

No evolution. Intuitively, constraints C act as “trig-
gers” to the evolution of O. In particular, if O already
conforms to C and LO′ = LO, then O should not evolve.
The following proposition ensures that our framework
behaves as expected in such situation, and (the equiva-
lence class of) O is singled out as optimal.

Proposition 8. Let LO′ = LO = LC, let O ∈ LO,
let C be an LC-constraint, and O ∝ C. Then, for each
O′ ∈ EvolLO′(O, C) and each DL LP, O′ is LP-optimal
iff O′ ∈ [O].

Revision. Revision is the process of accommodating
new information while preserving satisfiability whenever
possible (Alchourrón, Gärdenfors, and Makinson 1985;
Peppas 2007). The new information is perceived as reli-
able, and it prevails over all conflicting knowledge in the
ontology. More precisely, the process of revision is for-
malised by means of a revision function “∗”, which maps
each theory K in a language L and each L-formula ϕ to
a new L-theory K ∗ ϕ; in this setting, the principle of
minimal change is formalised as a set of postulates that
each revision function ought to satisfy (Peppas 2007;
Alchourrón, Gärdenfors, and Makinson 1985).

Revision can be captured in our framework by us-
ing C+ to represent the new information and C− to be
the empty set. Furthermore, since in Belief Revision
no distinction is usually made between the languages
of K, ϕ and K ∗ ϕ, we will also assume that that lan-
guages LO, LO′ and LC coincide. In this setting, revision
functions can be defined as given next.

Definition 9. Let LO = LO′ = LC and LP be DLs. A
revision function ∗ is a binary function that maps each
LO-ontology O and each LC-constraint C of the form
C = (C+, ∅) to an ontology O ∗ C such that

(i) O ∗ C is LP-optimal in EvolLO′(O, C); and

(ii) If C+1 ≡ C
+
2 , then O ∗ (C+1 , ∅) ≡ O ∗ (C+2 , ∅).

Our next step is to show that revision functions as
in Definition 9 are consistent with the basic postulates
of Belief Revision. These postulates can be formulated
in the context of our framework as given in Figure 1.
Postulate R1 says that the result of the revision is also
an ontology in the relevant language; postulate R2 says
that the new information always holds after revision;
postulate R3 and R4 together state that, whenever the
new information does not contradict O, there is no
reason to remove any information from O; postulate
R5 says that satisfiability should be preserved whenever
possible (unsatisfiability is only acceptable if the new

information itself is unsatisfiable); finally, postulate R6
states that the syntax of the new information is irrelevant
to the revision process.

Theorem 10. Let LO = LO′ = LC and LP be DLs,
and let ∗ be a revision function as in Definition 9. Then,
function ∗ satisfies postulates R1 to R6 in Figure 1.

Contraction. Contraction is the process of retract-
ing information that is no longer considered to hold.
Like revision, contraction is defined using a func-
tion “÷” mapping each theory K and formula α to
a theory K ÷ α while satisfying a given set of pos-
tulates (Alchourrón, Gärdenfors, and Makinson 1985;
Peppas 2007). Similarly to revision, contraction can be
captured in our framework using a constraint C by set-
ting C+ = ∅ and C− to represent the information to be
retracted. Contraction functions can be defined in our
framework as follows.

Definition 11. Let LO = LO′ = LC and LP be DLs.
A contraction function ÷ is a binary function that maps
each LO-ontology O and each LC-constraint C of the
form C = (∅, C−) to an ontology O ÷ C such that

(i) O ÷ C is LP-optimal in EvolLO′(O, C); and

(ii) If C−1 ≡ C
−
2 , then O ÷ (C−1 , ∅) ≡ O ÷ (C−2 , ∅).

Contraction postulates can also be adapted to our
framework (Figure 1). Postulates C1 and C2 are self-
explanatory; C3 says that if O already conforms to C
(i.e., it does not entail any axiom in C−), then there
is no reason to change O; C4 says that tautologies are
the only sentences that cannot be retracted; C5, called
the recovery postulate, states that we can get back the
initial theory by first retracting some information and
then adding it back; finally, C6 is the analogue to R6.

Theorem 12. Let LO = LO′ = LC, and LP be DLs,
and let ÷ be a contraction function as in Definition 11.
Then, ÷ satisfies postulates C1-C4, and C6 in Figure 1.

Our contraction functions satisfy all postulates ex-
cept for the recovery postulate. Consider our running
example and let O1

ex = {β1, δ1} and C− = {γ1}. The
ontology O2

ex = {β1, JointDisorder v SkeletDisorder} is
Lmin-optimal, so let O1

ex÷C = O2
ex. Since O2

ex∪C− 6|= δ1,
we have O2

ex ∪ C− 6|= O1
ex, which falsifies C5. Failure to

satisfy C5 is hence intuitive (and expected).

Syntactic Repair. We finally show that “syntactic
approaches to contraction” in ontologies – often called
ontology repair techniques (Kalyanpur et al. 2005; 2006;
Schlobach et al. 2007) – can be easily captured in our
framework using the empty preservation language.



Algorithm 1: Evolution for finite LP
INPUT : O : satisfiable,

C = (C+, C−): LO′-conformant,
LP: finite and computable

OUTPUT: LO′-ontology O′

If C+ is unsatisfiable, Return O′ := O ∪ C+;1

Om := max. subset of O such that Om ∪ C+ is2

satisfiable and (Om ∪ C+) ∝ C;
S1 := {α | α ∈ allLP(sig(O)), and O |= α};3

Sm := max. subset of S1 such that Om ∪ C+ ∪ Sm4

is satisfiable and (Om ∪ C+ ∪ Sm) ∝ C;
Return O′ := Om ∪ C+ ∪ Sm.5

Definition 13. Let O and U be ontologies s.t. O |= U .
A syntactic repair of O for U is an ontology O′ ⊆ O s.t.

(i) O′ 6|= α for each α ∈ U ; and

(ii) for all β ∈ O\O′, there is α ∈ U s.t. O′∪{β} |= α.

Syntactic repairs are in fact evolutions:

Proposition 14. Let LO = LO′ = LC, and LP = ∅.
Let O, U ∈ LO, and O′ ∈ LO′ be a syntactic repair of
O for U . Then, O′ ∈ EvolLO′(O, (∅, U)) is LP-optimal.

Note that there can be exponentially many different
syntactic repairs of O for U ; thus, the non-determinism
inherent to the choice of an optimal evolution already
manifests itself in syntactic approaches.

Computing Optimal Evolutions
Having established our framework, the focus in the re-
mainder of this paper will be on the computation of
LP-optimal evolutions of an ontology O.

Existence of an optimal evolution critically depends on
the properties of preservation language LP . In particular,
we will make a clear distinction between finite and
infinite languages, as given next.

Definition 15. A DL L over a signature Σ is finite if
for every finite Σ′ ⊆ Σ there are only finitely many non-
equivalent L-sentences over Σ′. Otherwise, L is infinite.
A finite DL L is computable if an algorithm allL exists
that given a finite signature Σ′ computes a set allL(Σ′) of
non-equivalent L-sentences over Σ′ such that any other
L-sentence over Σ′ is equivalent to some α ∈ allL(Σ′).

Finite Preservation Languages

Many practically relevant languages are finite and com-
putable as in of Definition 15; these include, for example,
propositional logic, the language Lmin, or the description
logic DL-Lite (Calvanese et al. 2007).

If LP is finite, an optimal LP-evolution is guaranteed
to exist provided that the constraints are conformant;
indeed, the closure ClLP(O) contains only finitely many
non-equivalent axioms, and thus the (non-empty) quo-
tient set Evol(O, C)\ ≡LP contains finitely many equiv-
alence classes. Furthermore, if LP is computable, then
Algorithm 1 computes one such LP-optimal evolution.

Theorem 16. Let LC ∪ LP ∪ LO ⊆ LO′ and let en-
tailment in LO′ be a decidable problem; let LP be finite
and computable, and let C be an LO′-conformant LC-
constraint. Then, Algorithm 1 computes an LP-optimal
LO′-evolution of a satisfiable ontology O under C.

Note that Algorithm 1 generalises the algorithm in
(Calvanese et al. 2010) for computing so-called Bold
Evolution Semantics for DL-Lite ontologies.

Infinite Languages: Inexpressibility
Many DLs, however, are infinite in the sense of Defini-
tion 15. We next study the case where LP is infinite
and present inexpressibility results for FL0 and EL.

More precisely, we consider the case where LP is
either FL0 or EL, and where LO and LO′ coincide with
LP; for each choice of LP, we provide an LO-TBox T
and conformant constraints C for which no LP-optimal
evolution of T under C exists. We focus on the simplest
case of contraction, where C− consists of a single axiom
of the form A v B with A and B atomic concepts.

Inexpressibility for FL0. Suppose that we want to
retract axiom γ1 in our running example from the sin-
gleton TBox Tex = {γ1} while maximally preserving all
FL0-consequences of T w.r.t. Σ = sig(T ) ∪ {located}.
Clearly, the FL0-closure of T w.r.t. Σ is an infinite set
containing all axioms Arthropathy u X v JointFinding
with X an FL0-concept over Σ; in particular, the fol-
lowing axioms αk are in the closure for each k ≥ 1:

Arthropaty u ∀locatedk.JointFinding v JointFinding.

Unfortunately, inexpressibility can already be shown in
this simple setting. Intuitively, each of these axioms αk
can be “recovered” without introducing the undesired
consequence γ1; furthermore, no finite subset of these
axioms entails the remaining ones. As a result, one would
need to recover an infinite set of axioms in the closure
in order to ensure maximality.

These intuitions can be made precise as given in the
following lemma.

Lemma 17. Let Σ = {A,B,R} with A,B concepts
and R a role, let T = {A v B}, and let Λ be the
following (infinite) set of axioms:

Λ = {A u ∀Rn.Z v B | n ∈ N, Z ∈ {A,B}}.
Then, the following conditions hold:

(i) Λ ⊆ ClFL0
(T );

(ii) Λ 6|= A v B;

(iii) if a finite Γ ⊆ ClFL0
(T ) satisfies Γ 6|= A v B, then

there is a finite Γ′ ⊆ Λ s.t. Γ′ ≡ Γ; and

(iv) each α ∈ Λ satisfies Λ \ {α} 6|= α.

Lemma 17 immediately leads to an inexpressibility
result for FL0: it suffices to consider T = {A v B}
and C = (∅, T ) and use Lemma 17 to show that no
FL0-optimal evolution of T under C exists.

Theorem 18. Let LO = LO′ = LP = FL0 and let
LC = Lmin. There exists an LO-TBox T , and an LC-
constraint of the form C = (∅, {α}) with ∅ 6|= α such that
no LP-optimal LO′-evolution of T under C exists.



Inexpressibility for EL. The logic EL is not only
more useful for ontology modeling than FL0, but fortu-
nately it also behaves better in terms of expressibility of
optimal evolutions. For example, consider the retraction
of the axiom γ1 in Tex, which illustrated our inexpressibil-
ity result for FL0. The EL analogue to the FL0-axioms
αk in our example are the following axioms α′k:

Arthropaty u ∃locatedk.JointFinding v JointFinding.

As in the case of FL0, any subset of these axioms can
be included in an evolution of Tex without regaining γ1;
in contrast to the previous case, however, it suffices to
recover the following axiom, which entails all the others:

Arthropaty u ∃located.> v Joint.

Inexpressibility results for EL originate from non-trivial
interactions between cyclic axioms of the form A v ∃R.A
and of the form ∃R.B v B. The former axiomatises
existence of R-connected instances of A and entails all
axioms of the form A v ∃Rn.A; the latter axiomatises
recursion and entails ∃Rn.B v B for each n ∈ N. The
“harmful” interaction between these kinds of axioms is
formally described by the following lemma.

Lemma 19. Let T be the following EL-TBox:

T = {Z v ∃R.A, A v ∃R.A, ∃R.B v B, A v B}.

Furthermore, for each k ∈ N, let

αk = Z v ∃Rk.(A uB);

βk = Z v ∃Rk.B;

Λk = {αi | 1 ≤ i ≤ k}.

Finally, let Λ =
⋃∞
k=1 Λk and let T ′ = T \ {A v B}.

Then, the following conditions hold:

(i) Λ ⊆ ClEL(T );

(ii) T ′ ∪ Λ 6|= A v B;

(iii) If a finite Γ ⊆ ClEL(T ) satisfies T ′ ⊆ Γ and Γ 6|=
A v B, then T ′ ∪ Λk |= Γ for some k ∈ N; and

(iv) T ′ ∪ Λk 6|= βk+1 for each k ∈ N.

Lemma 19 implies that, regardless of how large a
subset Γ ⊆ ClEL(T ) we pick as the result of contract-
ing T with A v B while preserving T ′, we can always
find k ≥ 1 such that Γ 6|= βk+1 and adding βk+1 to Γ will
not make us recover the undesired entailment A v B.
The following inexpressibility result immediately follows.

Theorem 20. Let LO = LO′ = LP = EL and let
LC = Lmin. There exists an LO-TBox T , and an LC-
constraint C = (C+, {α}) with C+ ⊆ T and C+ 6|= α such
that no LP-optimal LO′-evolution of T under C exists.

Contraction in EL
Lemma 19 suggests that inexpressibility can be over-
come by constraining the structure of T ; more precisely,
one could devise sufficient conditions for precluding
in ClEL(T ) either axioms of the form A v ∃R.A or ax-
ioms of the form ∃R.B v B. The former can be achieved

vArth

vCort

vJoint

vJDvSkel

vSD

Figure 2: Graph forOex = {β1, β2, γ1, δ1, . . . , δ5}. Abbre-
viations: “SD”, “Arth”, “Skel”, “JD” and “Cort” stand
for SkeletDisorder, Arthropaty, Skeleton, JointDisorder,
and Cortisone, respectively.

with a suitable acyclicity condition; the latter involves
precluding recursion.

In this section, we study EL-contraction under each of
these alternatives. For convenience, we restrict ourselves
to EL-TBoxes in normal form. We consider w.l.o.g. the
case where C− = {α} with α ∈ Lmin; furthermore,
instead of assuming C+ = ∅, we consider a slightly more
general setting where C+ may contain a “protected”
subset of axioms in T that must survive the contraction.

In our technical results, we restrict ourselves to a
preservation language LP that is a fragment of EL, and
which we call ELc.
Definition 21. The DL ELc consists of all EL-TBoxes
containing only axioms of the form Z v ∃w.Z ′, or of the
form ∃w.Z ′ v Z, where w is a word of roles and Z,Z ′

are either atomic concepts or >.2

Essentially, ELc disallows conjunction, but allows for
arbitrarily deep nesting of existential concepts on both
the left and right hand side of axioms. Thus, ELc is an
infinite language, in the sense of Definition 15.

Although extending this preservation language with
conjunction might increase the size of the computed
optimal evolutions by an exponential factor, we believe
that ELc is a sufficiently large fragment of EL to il-
lustrate the key issues involving existence of optimal
contractions. (Note that the inexpressibility result that
follows from Lemma 19 only relies on the preservation of
the ELc entailments βk = Z v ∃Rk.B). We conjecture
that the contraction algorithms presented in this section
can be extended to the case where LP = EL, and leave
the details for future work.

Contraction in acyclic EL
We next study contraction for EL TBoxes T under a
suitable acyclicity condition.

Acyclicity Our notion of acyclicity is formulated in
terms of the canonical model IT of T , and can be
checked in polynomial time w.r.t. the size of T .

2Note that w could be the empty word, in which case we
have a subsumption between atomic concepts.



Definition 22. A normalised EL-TBox T with canoni-
cal model IT = (∆IT , ·IT ) is acyclic if the graph (V,E)
consisting of nodes V = {vA | vA ∈ ∆IT } and (directed)
edges E = {(vA, vB) | (vA, vB) ∈ RIT for some role R}
is acyclic. With δ(T ) we denote the length of the longest
path in this graph. By ELa we denote the DL consisting
of all acyclic EL TBoxes in normal form.3

Our acyclicity condition generalises the usual acyclic-
ity condition in EL-terminologies (Baader et al. 2003;
Konev, Walther, and Wolter 2008); that is, the nor-
malisation of each acyclic EL-terminology is acyclic as
in Definition 22. In particular, the positive results pre-
sented in this section could be applicable to reference
bio-medical ontologies such as Snomed and (the EL
versions of) Nci, which are acyclic terminologies.

For instance, note that the (normalisation of) example
ontology Oex = {β1, β2, γ1, δ1, . . . , δ5} about skeletal
disorders is also acyclic. The interesting fragment of the
graph corresponding to the (normalisation of) Oex as
given in Definition 22 is depicted in Figure 2.4

Acyclicity of T immediately ensures that the closure
ClEL(T ) cannot contain axioms of the form A v ∃w.A
with A atomic and w a word of atomic roles. More
generally, acyclicity of T establishes a bound on the
quantifier depth of concepts that can occur on the right-
hand-side of an axiom derived from T .

Lemma 23. Let T ∈ ELa, let A be an atomic concept
or >, and let D an arbitrary EL-concept. If T |= A v D,
then depth(D) ≤ δ(T ).

In contrast to concepts on the right-hand side of
derived axioms, the quantifier depth of concepts on the
left-hand side is not limited by acyclicity, which makes
ELa an infinite language (e.g., recursive axioms such as
∃R.B v B, which entails ∃Rn.B v B for each n ∈ N, are
allowed in T ). Adding an axiom of the form C v D to
an acyclic T where depth(C) > δ(T ), however, will not
introduce new subsumption relations between atomic
concepts in T .

Lemma 24. Let T ∈ ELa, let C and D be EL-concepts,
and assume that depth(C) > δ(T ). If T 6|= A v B with
A and B atomic concepts, then T ∪ {C v D} 6|= A v B.

The contraction algorithm Algorithm AContr (see
Algorithm 2) computes an ELc-optimal contraction T ′
of an ELa-TBox T . The algorithm works as follows.

In Step 1, a TBox Tm ⊆ T conforming to C is (non-
deterministically) selected; this ensures that the output
T ′ preserves a maximal syntactic subset of T .(Note that
existence of such Tm is ensured by the preconditions
of the algorithm). Steps 2 and 3 compute the subset
S1 ∪ S2 of ELc-axioms in ClELc(T ) of quantifier depth
at most δ(T ); clearly, S1 ∪ S2 is finite and exponential

3The a in ELa stands for “acyclic”.
4For simplicity, we did not depict in Figure 2 the nodes

corresponding to >, Disorder, Steroid, ArthropatyTest and
JointFinding, as well as the nodes corresponding to the fresh
concepts introduced by normalisation.

Algorithm 2: AContr

INPUT : T ∈ ELa, C = (C+, C−), such that
C+ ⊆ T , C− = {α} for α ∈ Lmin, and
T 6∝ C−, C+ ∝ C−

OUTPUT: EL TBox T ′

Tm := max. subset of T s.t. Tm ∝ C− & C+ ⊆ Tm;1

S1 := {α = Z1 v ∃w.Z2 | T |= α and |w| ≤ δ(T )};2

S2 := {α = ∃w.Z1 v Z2 | T |= α and |w| ≤ δ(T )};3

Sm := max. subset of S1 ∪ S2 s.t. Tm ∪ Sm ∝ C−;4

S3 := {α = ∃w.Z1 v Z2 | T |= α and5

|w| ∈ [δ(T ) + 1, 2× δ(T ) + 1]};
Return T ′ = Tm ∪ Sm ∪ S3.6

in size. In Step 4, the algorithm computes a maximal
Sm ⊆ S1∪S2 that can be added to Tm without regaining
α. At this point, Algorithm AContr needs to consider the
axioms in ClELc(T ) with concepts of quantifier depth
greater than δ(T ). By Lemma 23, no such axiom of
the form A1 v ∃w.A2 exists; however, T might entail
ELc-axioms of the form ∃w.A1 v A2 with |w| > δ(T ),
and by Lemma 24 all such axioms must also be entailed
by each optimal evolution (since they cannot make us
recover α). Even if there can be infinitely many such
axioms, Algorithm AContr only computes in Step 5 those
of quantifier depth at most 2× δ(T ) + 1, which we prove
sufficient. The intuition behind this bound is given by
the following example.

Example 25. Consider the following TBox T :

T = {A v ∃R.C, C v ∃R.B, ∃R.B v B}

Clearly, T is acyclic with δ(T ) = 2. Let us apply Algo-
rithm AContr to T , C+ = {A v ∃R.C,C v ∃R.B} and
C− = {A v B}.5 We have Tm = C+ and

S1 = Tm ∪ {C v B,A v ∃R.B};
S2 = {∃R.Z v B, ∃R2.Z v B | Z ∈ {A,B,C}};
Sm = S1 ∪ {∃R.A v B, ∃R2.A v B, ∃R2.C v B};
S3 = {∃Rk.Z v B | Z ∈ {A,B,C}, 3 ≤ k ≤ 5}.

The algorithm then returns T ′ = Tm ∪ Sm ∪ S3. To
see that T ′ is optimal, consider, for example, axiom
β = ∃R10.B v B, which follows from T . Note that we
can decompose k = 10 as a sum of numbers from 3
to 5 as follows: k = 3 × 2 + 4; since ∃R3.B v B and
∃R4.B v B are in S3, we have T ′ |= β.

The following lemma makes the intuitions in Exam-
ple 25 precise. In particular, it shows that if β = ∃w.A v
B with |w| > 2× δ(T ) + 1 follows from T , we can “de-
compose” w and derive β from axioms in S3.

Lemma 26. Let T ∈ ELa and let α = ∃w.Zn v Z0 be
an ELc-axiom with |w| > (2 × δ(T ) + 1) s.t. T |= α.

5For simplicity, we do not include in sets Si axioms that
are already entailed by Tm



Algorithm 3: NRContr

INPUT : T ∈ ELnr, C = (C+, C−), such that
C+ ⊆ T , C− = {α} for α ∈ Lmin, and
T 6∝ C−, C+ ∝ C−

OUTPUT: ELnr TBox T ′

Tm := max. subset of T s.t. Tm ∝ C− & C+ ⊆ Tm;1

Sm := max. subset of BCl(T ) s.t. Tm ∪ Sm ∝ C−;2

Return T ′ := Tm ∪ Sm.3

Then, there exists an integer ` ≥ 2, subwords u1, . . . , ul
of w, and concepts {Y0, . . . , Y`} ⊆ sig(T ) ∪ {>} where
Y` = Zn and Y0 = Z0 such that

(i) w = u1 ◦ . . . ◦ul with δ(T ) < |uj | ≤ (2× δ(T ) + 1);

(ii) T |= ∃uj .Yj v Yj−1 for each j ∈ [1, `].

We can now show the correctness of our algorithm.

Theorem 27. Algorithm AContr computes an ELc-
optimal evolution T ′ of T ∈ ELa under C. Furthermore
the size of T ′ is exponential in the size of T .

Contraction in non-recursive EL
We next study contraction for non-recursive EL-TBoxes.
The simplest non-recursive fragment of EL, which we
call ELnr, is defined as follows.

Definition 28. The DL ELnr consists of all normalised
EL-TBoxes where neither (i) > nor (ii) concepts of the
form ∃R.C occur on the left hand side of axioms.6

Note that ELnr can express cyclic axioms of the form
A v ∃R.A and hence ELnr 6⊆ ELa. Since ELa allows
for axioms with ∃R.C on any side, we also have ELa 6⊆
ELnr. Furthermore, the normalisation of an EL-TBox
T satisfying properties (i) and (ii) in Definition 28
leads to a TBox in ELnr. Note also that ELnr is an
infinite language, e.g., the ontology {A v ∃R.A} entails
infinitely many axioms of the form A v ∃Rn.A for
n ∈ N.

The contraction algorithm We describe algorithm
NRContr (see Algorithm 3), which computes an ELc-
optimal contraction T ′ of a TBox T ∈ ELnr.

Step 1 is identical to Step 1 in Algorithm AContr. In
Step 2, Algorithm NRContr computes a maximal subset
of axioms in the basic closure of T that can be added
to Tm without recovering the undesired entailment α.
The basic closure of any EL-TBox contains only ELnr-
axioms, so the output T ′ is an ELnr-TBox; furthermore,
the basic closure is of size polynomial in the size of T
(and hence so is the output T ′). We next illustrate the
intuition behind this algorithm with an example.

Example 29. Consider the following ELnr-TBox:

T = {Z v ∃R.A, A v ∃R.A, A v B}.

We apply NRContr to T , C+ = {Z v ∃R.A,A v ∃R.A},
and C− = {A v B}. We then have that Tm = C+ and

6The nr in ELnr stands for “non-recursive”.

|T \ Tm|
|Sm| |Sm ∩ Lmin| Time (s) # of

(max/avg/min) (max/avg/min) (avg) tests

1 150/24/0 52/5/0 135 52
2 282/76/7 96/24/0 217 51
3 616/206/9 195/70/0 176 51
4 822/447/92 257/138/26 169 39
5 826/530/281 281/162/75 165 42

Table 1: Summary of experimental results

Sm = {Z v ∃R.B,A v ∃R.B}; hence, the algorithm
returns T ′ = Tm ∪ Sm.7

To see that T ′ is ELc-optimal, we make two observa-
tions. First, a TBox T ∈ ELnr cannot entail ELc-axioms
of the form ∃w.C v C, unless C = >, which are then
tautological; note that ELnr does not allow for > on
the l.h.s. of axioms, and hence T |= > v C implies
C = >. Second, although T entails infinitely many ax-
ioms αk = A v ∃Rk.B for k ∈ N, these are entailed by
axioms A v ∃R.A and A v ∃R.B, which are in T ′.

These intuitions can be made precise, and we can then
show correctness of our contraction algorithm.8

Theorem 30. Algorithm NRContr computes an ELc-
optimal evolution T ′ of T ∈ ELnr under C. Furthermore
the size of T ′ is polynomial in the size of T .

Experiments
We have implemented an optimised version of Algo-
rithm 1 for the particular case of contraction for a
TBox T and an Lmin-axiom α (i.e., where C+ ⊆ T
and C− = {α}). Concerning the preservation language,
we have chosen the (finite) language that extends Lmin

with all axioms of the form D v E, with D and E
(possibly complex) subconcepts occurring in T .

In this setting, Step 2 in Algorithm 1 amounts to
computing a syntactic repair Tm of T for α. Our imple-
mentation uses the reasoner HermiT (Motik, Shearer,
and Horrocks 2009) and the OWL API facility for com-
puting justifications (Kalyanpur et al. 2007).

We have applied our algorithm to a fragment of
Snomed with 6802 atomic concepts. In each test, we
have selected an entailed subsumption relationship α at
random and computed the corresponding contraction;
we have recorded the size (number of axioms) in T \ Tm
(Step 2 in Algorithm 1), the size of Sm (Step 4 Algo-
rithm 1), the size of the Lmin-subset of Sm and the time
overhead w.r.t. computing a syntactic repair (i.e., the
computation time for Steps 3-5 in Algorithm 1).

Table 1 summarises the obtained results. Since there
is a clear correlation between the number of axioms
deleted by the syntactic repair (i.e., |T \ Tm|) and the
number of recovered entailments (i.e., |Sm|), we have
grouped our tests according to |T \ Tm|.

7For simplicity, we do not include in Sm axioms that
follow already from Tm.

8www.inf.unibz.it/˜zheleznyakov/krfull.pdf



LO = LO′ C− ∈ Lmin LP Evol. size

FL0 {α} FL0 Inexpressible
EL {α} EL Inexpressible
ELa {α} ELc Exponential
ELnr {α} ELc Polynomial

Table 2: Size of computed optimal evolutions, where α
is an atomic subsumption of the form A v B

Note that Sm contains surprisingly many axioms, es-
pecially when considering syntactic repairs that involve
the deletion of several axioms from T . To estimate the
degree of redundacy in Sm we have checked for each
axiom α ∈ Sm whether Tm ∪ (Sm \ {α}) |= α and found
that in more than 95% of cases such entailment does not
hold, and hence α is likely to be non-redundant. Thus,
a purely syntactic approach to contraction would result
in a substantial and unnecessary loss of information; as
shown in the table, such loss of information is already
significant if we consider Lmin as preservation language.

Finally, note that the computation of optimal con-
tractions implies an overhead of 2-4 minutes on average.
Moreover, this overhead does not depend on the size
of Sm. These times are promising, considering that our
implementation is an early-stage prototype.

Conclusion and Future Work
We have presented a logic-based framework for ontology
evolution that can capture revision and contraction at
a fine-grained deductive level. Our framework is novel
and it opens many possibilities for future research. In
particular, many challenging problems are left open;
these include decidability of checking whether an op-
timal evolution exists, and complexity of computing
optimal evolutions, among others. The relationships be-
tween the problem of computing optimal evolutions and
other relevant reasoning problems, such as computing
the logical difference between DL ontologies (Konev,
Walther, and Wolter 2008), also need to be explored.

We have studied contraction for the DLs FL0 and EL
and shown that, in general, optimal contractions cannot
be expressed using finitely many axioms. Note that one
could potentially overcome these inexpressibility results
by allowing the “target” language LO′ of the evolution
O′ to be a more powerful than the language LO in which
the original ontology O is expressed; however, on the
one hand, LO′ might have much less favourable compu-
tational properties than LO and, on the other hand, it
might not be possible to perform further contractions
on the evolved ontology O′. Furthermore, we conjecture
that the inexpressibility results presented in this paper
for LO = EL and LO = FL0 hold even if LO′ is an
expressive DL such as SHIQ (Horrocks, Sattler, and
Tobies 2000).

We have devised sufficient conditions for existence
of finite optimal contractions and proposed suitable
contraction algorithms for such cases (see Table 2 for a

summary of our results). We are currently working on
relaxing these sufficient conditions and extending them
towards EL++ (the DL underpinning the OWL 2 EL
profile), and we are also investigating the applicability
of our framework to the contraction of ABox assertions.

To test the feasibility of our approach in practice, we
have performed contraction experiments on a fragment
of Snomed using finite preservation languages. Our re-
sults suggest that syntactic approaches to contraction
(i.e., ontology repair techniques) lead to a significant
and unnecessary loss of (non-redundant) information. Al-
though from a practical point of view, users may intend
to recover only a part of all this missing information,
understanding the impact of changes is important in
ontology modeling (Konev, Walther, and Wolter 2008;
Jiménez-Ruiz et al. 2011), and knowing which entail-
ments could be “harmlessly” regained can be very valu-
able. Finally, we are planning to integrate our imple-
mentation in the ContentCVS ontology versioning
system (Jiménez-Ruiz et al. 2011) and to make our con-
traction algorithms for EL practical by making them
more “goal oriented” as well as by exploiting ontology
modularisation techniques (Cuenca Grau et al. 2008a).
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Proofs

In this section we present all the proofs that are missing
in the paper. We start with two propositions on EL
canonical models that are used to prove other results.

Proposition 31. Let T be a normalised EL-TBox.
Then, IT |= T .

Proof. We show that IT satisfies each α in T . We have
the following cases (A,A1, A2, and B are atomic con-
cepts or > and R is an atomic role):

• α = A v B. Since α ∈ T we have T |= α. Let
vX ∈ AIT ; by the definition of IT , we have that
T |= X v A; since T |= α, we then have T |= X v B
and again by the definition of IT we have vX ∈ BIT ,
as required.

• Let α = A v ∃R.B. Since α ∈ T we have T |= α.
Let vX ∈ AIT ; by the definition of IT , we have that
T |= X v A; since T |= α, we then have T |= X v
∃R.B. Again by the definition of IT we have that
(vX , vB) ∈ RIT and vB ∈ BIT , so vX ∈ (∃R.B)IT ,
as required.

• Let α = A1 u A2 v B. Since α ∈ T we have T |= α.

Let vX ∈ (A1uA2)IT ; then, vX ∈ AIT1 and vX ∈ AIT2 .
By the definition of IT , we have T |= X v A1 and
T |= X v A2 and hence T |= X v A1 u A2. Since
T |= α, we have T |= X v B and again by the
definition of IT we have vX ∈ BIT , as required.

• Let α = ∃R.A v B. Since α ∈ T we have T |= α.
Let vX ∈ (∃R.A)IT . Then, there exists vY such that
(vX , vY ) ∈ RIT and vY ∈ AIT . By the definition of
IT , we have T |= X v ∃R.Y and T |= Y v A. Hence,
T |= X v ∃R.A; but then, since T |= α, we have
X v B and again by the definition of IT we have
vX ∈ BIT , as required.

Proposition 32. Let A be an atomic concept or >, let
C be an EL-concept, and let T be a normalised EL-TBox.
Then, T |= A v C if and only if vA ∈ CIT .

Proof. One direction is trivial: assume that T |= A v C;
then, since IT is a model of T , we have IT |= A v C
and since vA ∈ AIT , we have vA ∈ CIT , as required.

For the other direction, we shall assume that vA ∈
CIT and show that T |= A v C by induction on the
structure of C. For the base case, assume that C is
atomic or >; then the definition of canonical model tells
us that vA ∈ CIT implies T |= A v C, as required. For
the induction step, we have the following two cases:

• Let C = C1 u C2; by assumption, vA ∈ CIT and
by the semantics of conjunction, we have vA ∈ CIT1

and vA ∈ CIT2 . By the induction hypothesis, we have
T |= A v C1 and T |= A v C2; but then, T |= A v
C1 u C2, as required.

IR1 :=
A v A

IR2 :=
A v >

CR1 :=
A v B B v C ∈ T

A v C

CR2 :=
A v B A v C B u C v D ∈ T

A v D

CR3 :=
A v B B v ∃R.C ∈ T

A v ∃R.C

CR4 :=
A v ∃R.B B v C ∃R.C v D ∈ T

A v D

Table 3: Rules for reasoning in EL

• Let C = ∃R.D; by assumption, vA ∈ CIT and by
the semantics of existential quantification, there must
exist vB ∈ ∆IT such that (vA, vB) ∈ RIT and vB ∈
DIT . By the induction hypothesis, T |= B v D.
Furthermore, by the definition of canonical model, we
have (vA, vB) ∈ RIT if and only if T |= A v ∃R.B.
But then, since T |= A v ∃R.B and T |= B v D, we
have T |= A v ∃R.D and consequently, T |= A v C,
as required.

Subsumption between atomic concepts w.r.t. a nor-
malised EL TBox is characterised deductively by the
Gentzen-style calculus specified by the rules in Table
3, where all concepts occurring in the rules are either
atomic or >. Given an EL-TBox T and atomic concepts
A,B in sig(T ), we have T |= A v B iff A v B can be
derived by application of the rules in Table 3.

Semantic Constraints

Proof of Proposition 2. If C is LO′-conformant, there
exists an O′ ∈ LO′ s.t. O′ ∝ C; thus, O′ ∝ C+ and
O′ ∝ C−. If O′ is satisfiable, then O′ ∝ C+ immediately
implies that C+ is satisfiable. Moreover, O′ ∝ C− implies
C+ ∝ C−. Indeed, O′ ∝ C− implies that O′ 6|= α for
each α ∈ C−. If C+ 6∝ C−, then for some α ∈ C−,
C+ |= α. This entailment together with O′ ∝ C+ imply
that O′ |= α, with contradicts to O′ ∝ C−. If O′ is
unsatisfiable, then it implies any axiom and consequently
O′ ∝ C− implies that C− = ∅,

We now show the other direction by taking O′ =
C+ and show that it conforms to C. Indeed, if C+ is
satisfiable and C+ ∝ C−, then clearly O′ ∝ C. If C− = ∅,
then every ontology conforms it, thus O′ ∝ C.

The Notion of an Evolution

Proof of Proposition 4. If EvolLO′(O, C) is non-empty,
then C is clearly LO′-conformant. To show the other
direction, assume that C is LO′-conformant. By Propo-
sition 2, we have that two cases. The first case is when
C+ is satisfiable and C+ ∝ C−. Now take O′ = C+.



Clearly O′ ∈ LO′ (this gives Condition 1 of Definition
3), O′ ∝ C (this gives Condition 2 of Definition 3), and
by taking O1 = ∅ we have O1 ∪ C+ |= O′ (this gives
Condition 3 of Definition 3). The second case is when
C− = ∅. Take O′ = C+ again. Clearly, O′ ∈ LO′ Condi-
tions 1 and 2 of Definition 3 are satisfied. Condition 3
is again satisfied by taking O1 = ∅.

No Evolution

Proof of Proposition 8. Since O ∝ C, we clearly have
that O ∈ EvolLO′(O, C). Take an arbitrary O′ ∈
EvolLO′(O, C) Since O ∝ C, we have O |= C+; but then,
by Condition 3 in Definition 3, we also have that O |= O′
and hence O LP-entails O′ for arbitrary LP . This imme-
diately implies that O is LP-optimal for any LP (and
so is any ontology in [O]).

Assume that O′ is LP-optimal; since O |= O′ and
O ∝ C, we have that O′ ∪ O ∝ C and hence O′ ∪ O ∈
EvolLO′(O, C); but then, optimality of O′ implies that
O ⊆ O′ and O′ LP-entails O; thus, O′ ∈ [O].

Revision

In order to prove Theorem 10 we need the following
lemma.

Lemma 33. Let LO = LO′ and LC ⊆ LO. Let O ∈
LO and C be an LC-constraint. If O ∪ C+ is satisfiable
and (O ∪ C+) ∝ C−, then for each DL LP it holds
[O ∪ C+] = {O′ | O′ ∈ EvolLO′(O, C) and optimal}.

Proof. We fist show thatO∪C+ ∈ EvolLO′(O, C). Indeed
O ∪ C+ belongs to LO′, conforms C, and by taking
O1 = O we have O1 ∪ C+ |= O ∪ C+.

To conclude the proof it is enough to show that for
every DL LP and every O′ ∈ EvolLO′(O, C) it holds that
(O∪C+) ≥LP O′. Indeed, O∪C+ clearly LP-entails O′,
moreover, O′ ∩ O ⊆ O, while (O ∪ C+) ∩ O = O.

Proof of Theorem 10.
R1 It trivially holds since O′ ∈ LO′ and LO = LO′.
R2 It holds because O ∗ C+ is an element of

EvolLO′(O, C), and hence it satisfies the constraints.
R3 If C+ is unsatisfiable, then O ∪ C+ entails every on-

tology, thus, the postulate holds. Otherwise, it holds
due to Condition 3 of Definition 3 and transitivity
of the first-order entailment relation.

R4 Since O ∗ (C+, ∅) is in EvolLO′(O, C), we have O ∗
(C+, ∅) |= C+. By Lemma 33. O ∗ (C+, ∅) ∈ [O],
thus O ∩ (O ∗ (C+, ∅)) = O and consequently O ⊆
O ∗ (C+, ∅). Thus O ∗ (C+, ∅) |= O.

R5 This follows from Condition 3 of Definition 3.
R6 It trivially holds by the definition of “∗”.

Contraction

Proof of Theorem 12.
C1 It trivially holds since O′ ∈ LO′ and LO = LO′.

C2 Holds due monotonicity of first-order logics and
due to Condition 3, Definition 3, sine C+ = ∅ is
satisfiable.

C3 The directionO |= O÷(∅, C−) follows from postulate
C2. We next show that O ÷ (∅, C−) |= O. Since
O ∝ C− and C+ = ∅, we have O ∝ C; furthermore,
O ÷ (∅, C−) belongs to EvolLO′(O, C) and it is LP-
optimal by the definition of ÷. But then, we can
apply Proposition 8 and obtain that O ÷ (∅, C−) ∈
[O]. Hence, O ⊆ O ÷ (∅, C−) and O ÷ (∅, C−) |= O,
as required.

C4 Trivially holds since O ÷ (∅, C−) belongs to
EvolLO′(O, (∅, C+)), and hence conforms to C−.

C6 It trivially holds by the definition of “÷”.

Syntactic Repair

Proof of Proposition 14. Clearly, O′ ∈ EvolLO′(O, C):
O′ ∈ LO,O′ conforms to C− and hence to C andO |= O′
because O′ ⊆ O. Let us assume by contradiction that
[O′′] �∅ [O′] for some O′′ ∈ EvolLO′(O, C).

Since [O′′] �∅ [O′] we have O′′ ≥∅ O′ which means
that O′ ∩ O ⊆ O′′ ∩ O (note that since LP is empty,
condition 1 in Definition 5 is ineffectual. Furthermore,
O′′ 6∈ [O′], which means that O′′ must contain an axiom
β ∈ O\O′; but then, Condition 2 in Definition 13 ensures
that O′′ does not conform to C, which contradicts our
assumption that O′′ ∈ EvolLO′(O, C).

Finite Preservation Languages

Proof of Theorem 16. First, note that since LC ∪ LP ∪
LO ⊆ LO′, entailment in LO′ is decidable, and LP be
finite and computable, Algorithm 1 can be implemented
so that it terminates on all inputs. Clearly, the algorithm
can terminate only either in Step 1, or in Step 5.

Suppose that the algorithm terminates in Step 1.
Then, C+ is unsatisfiable and the algorithm returns
O′ = O∪C+. Since LO∪LC ⊆ LO′, we have that O′ is
an LO′-ontology and hence Condition 1 in Definition 3
holds. Since C is LO′-conformant, Proposition 2 implies
that C− = ∅; hence, O′ ∝ C and Condition 2 in Defini-
tion 3 holds. Finally, Condition 3 is not applicable and
hence O′ ∈ EvolLO′(O, C). Furthermore, O′ is clearly
LP-optimal regardless of LP as it contains O and it
entails all other ontologies.

Suppose now that the algorithm terminates in Step 5.
Then, C+ is satisfiable. Since C is LO′-conformant,
Proposition 2 implies that C+ ∝ C−. Hence, ontology
Om as defined in Step 1 of the algorithm clearly exists
(it could be empty in the extreme case).

Since LP is finite we have that set S1 from Step 3 is
finite and so is its subset Sm. Since LC ∪ LO ∪ LP ⊆
LO′ we have that O′ is an LO′-ontology and hence
Condition 1 in Definition 3 holds. Furthermore, O′ ∝ C,
so O′ satisfies Condition 2 in Definition 3. Since C+ is
satisfiable we also need to show that Condition 3 holds.
To this end, take O1 = Om ∪ Sm; clearly, O1 ∪ C+ = O′
is satisfiable. Furthermore, O |= O1 since O |= Om,



O |= Sm; Finally, O1 ∪ C+ = O′; hence, Condition 3
holds and O′ ∈ EvolLO′(O, C).

Assume by contradiction that O′ is not LP-optimal;
then, there exists O′′ ∈ EvolLO′(O, C) such that one of
the following conditions holds:

(i) O′ ∩ O ⊂ O′′ ∩ O, or
(ii) O′ ∩ S1 ⊂ O′′ ∩ S1

Maximality of O′ required in (i) Steps 2 or (ii) Step 4
ensures that (i) O′′ is unsatisfiable, in which case
O′′ /∈ EvolLO′(O, C) or (ii) O′′ 6∝ C and again O′′ /∈
EvolLO′(O, C), which yields a contradiction.

Inexpressibility for FL0
Before proving the lemma, we introduce a convenient
normal form for FL0 concepts (Baader et al. 2003).

Any FL0 concept can be transformed into an equiva-
lent one that is a conjunction of concepts of the form
∀w.A with w a word over the alphabet of all atomic
roles.9 Furthermore, we write the concept ∀w1.A u
. . . u ∀wk.A as ∀W.A, where W is the set of words
W = {w1, . . . , wk} (the concept ∀∅.A is taken as equiva-
lent to >). Using these notational conventions, any FL0

concept C containing atomic concepts A1, . . . , Ak can
be rewritten in the form ∀W1.A1 u . . .u ∀Wk.Ak, where
the Wi are finite sets of words of atomic roles.

Proof of Lemma 17.
Item (i). Clearly, Λ ⊆ ClFL0

(T ) since T entails any
axiom of the form A u X v B with X an arbitrary
FL0-concept.

Item (ii). Let I = (∆I , ·I) be the interpretation with
domain ∆I = {ci}∞i=1 and interpretation function

AI = {c1}, BI = ∅, RI = {〈ci, ci+1〉}∞i=1.

Clearly, I 6|= A v B. We show that I |= Λ, which
proves Item (ii). Let α ∈ Λ be an axiom of the form
Au∀Rn.Z v B. Note that (∀Rn.Z)I = ∅ for each n ≥ 1
and Z ∈ {A,B}; but then, (Au∀Rn.Z)I = ∅ and hence
I |= α, as required.

Item (iii). Let Γ be a finite subset of ClFL0
(T ) such

that Γ 6|= A v B. We can assume w.l.o.g. that Γ does
not contain tautological axioms. Let α be an arbitrary
axiom in Γ; since Γ does not contain tautologies, we can
assume w.l.o.g. that α is of the form A uX v B, with
X an arbitrary FL0-concept over Σ.

We can transform X into normal form and obtain
a logically equivalent concept X ′ of the form ∀U1.A u
∀U2.B with U1 and U2 finite sets of words over R. Since
Γ 6|= A v B, we have that U1 and U2 cannot be empty at
the same time. Furthermore, since α is non-tautological,
we can assume that U2 and U1 do not contain the empty
word ε. Hence, there must exist some word w = Rk

with k ≥ 1 in either U1 or U2. But then, the axiom
β = A u ∀Rk.Z v B belongs to Λ and clearly β |= α

9Note that an atomic concept A can be expressed as ∀ε.A,
where ε is the empty word.

(as α extends β with additional conjuncts on the l.h.s
of the subsumption), and hence Λ |= α.

Item (iv). Let α be of the form Au∀Rn.Z v B. Assume
that Z = A (the case where Z = B is even simpler).
Consider the interpretation I defined in the proof of
Item 2, and let I ′ = (∆I

′
, ·I′) be the interpretation with

domain ∆I
′

= ∆I , and interpretation function:

AI
′

= {c1, cn}, BI
′

= BI , RI
′

= RI .

We have the following:
• I ′ 6|= α; indeed, (∀Rn.A)I

′
= {c1} and hence (A u

∀Rn.Z)I
′

= {c1}, whereas BI
′

= ∅.
• I ′ |= Λ \ {α}. Consider an axiom β ∈ Λ \ {α} of the

form β = Au∀Rm.Z. Since m ≥ 1, we have that cn 6∈
(∀Rm.Z)I

′
; furthermore, since β 6= α we have that

either m 6= n or Z = B and hence c1 6∈ (∀Rm.Z)I
′
.

Hence, (A u ∀Rm.Z)I
′

= ∅ and I ′ |= β, as required.

Proof of Theorem 18. Let T = {A v B} and C =
(∅, T ). Assume an optimal evolution T ′ exists. Since
T ′ ∝ C−, we have T ′ 6|= A v B; hence, T ′ ∩ T = ∅.
Hence, T ′ is a finite maximal subset of ClFL0(T ) s.t.
T ′ 6|= A v B.

Based on Lemma 17 we can conclude: Item (iii) im-
plies existence of a finite Γ′ such that Γ′ ≡ T ′ and
Γ′ ⊆ Λ. Since Λ is an infinite set and Γ′ is finite,
there exists α ∈ Λ \ Γ′; furthermore, by Item (i), we
have α ∈ ClFL0

(T ). The monotonicity of first-order
logic and Item (iv) imply Γ′ 6|= α, and since Γ′ |= T ′
we have T ′ 6|= α. Monotonicity and Item (ii) imply
Γ′ ∪ {α} 6|= A v B. Again, since Γ′ |= T ′, we have
T ′ ∪ {α} 6|= A v B, which contradicts maximality of T ′
and hence T ′ cannot be optimal.

Inexpressibility for EL
Proof of Lemma 19.
Item (i). Clearly, Λ ⊆ ClEL(T ) since T entails A v B
and every axiom of the form Z v ∃Rk.A.

Item (ii). Let I = (∆I , ·I) be the interpretation with the
domain ∆I = {c, d, e} and the interpretation function:

ZI = {c}, AI = {d, e}, BI = {c, e},
RI = {〈c, d〉, 〈c, e〉, 〈d, d〉, 〈e, e〉}.

Clearly, I 6|= A v B; furthermore, I satisfies the three
axioms Z v ∃R.A, A v ∃R.A, and ∃R.B v B, and
hence I |= T ′. Finally, it is also straightforward to see
that I |= αk for each k ≥ 1 and hence I |= Λ.

Item (iii). Let Γ be a finite subset of ClEL(T ) such that
T ′ ⊆ Γ and Γ 6|= A v B. Let β be an arbitrary axiom
in Γ. We analyse the possible structure of β (we don’t
consider the types of obvious axioms that are either
entailed by T ′, or not entailed by T ):
• β = Z v C, with C an arbitrary EL-concept. It can

be checked by induction on the structure of C that
T ′ ∪ Λk |= β with k the quantifier depth of C.



• β = A v C, with C an arbitrary EL-concept. It can be
checked that C cannot mention B; otherwise, because
of axiom ∃R.B v B, we would have Γ |= A v B.
Hence, C can only mention R and A and in that case
we have T ′ |= β and the condition clearly holds.
• β = AuC v B with C an arbitrary EL-concept. If C

mentions B then we can check that T ′ |= β. Indeed,
if C = B, then β is a tautology and if C mentions
B at quantifier depth k, then we have T ′ |= C v
∃Rk.B and hence because of axiom ∃R.B v B we have
T ′ |= β. Finally, if C only mentions R and A, then
T ′ |= A v C and hence Γ |= A v B, contradicting
our assumption.

• β = ∃Rk.A v B for some k ≥ 1. Then, Γ |= A v B,
contradicting our assumption.
Thus, the only relevant case is when β = Z v C, with

C an arbitrary EL-concept. We can then consider all
axioms in Γ of that form and pick k to be the maximum
quantifier depth of the corresponding C in each of those
axioms. Then, T ′ ∪ Λk |= Γ, as required.

Item (iv). Fix k ≥ 1 and define I ′ = (∆I
′
, ·I′)

be the interpretation with the domain ∆I
′

=
{c, d1, . . . , dk, dk+1} and the interpretation function:

ZI
′

= {c}, AI
′

= ∆I
′
\ {c}, BI

′
= ∆I

′
\ {dk+1},

RI
′

= {〈c, d1〉} ∪ {〈di, di+1〉}ki=1 ∪ {〈dk+1, dk+1〉}.

Clearly, I ′ |= T ′ and I ′ |= Λk; however, I ′ 6|= βk+1, as
required.

Proof of Theorem 20. Let T and T ′ be as in Lemma
19, and let C = (T ′, {A v B}). Assume an optimal
evolution To exists. Clearly, To ∩ T = T ′ since T ′ is the
maximal subset of T conforming to C. Because To is an
evolution, we also have To 6|= A v B, and To is finite;
furthermore, T |= To and hence To ⊆ ClEL(T ).

Based on Lemma 19, Item (iii) implies T ′ ∪ Λk |= To
for some k ≥ 1. Item (i) and the facts that αk+1 ∈ Λ
and αk+1 |= βk+1 imply βk+1 ∈ ClEL(T ). The mono-
tonicity of first-order logic together with Item (iv) imply
To 6|= βk+1. Finally, monotonicity and Item (ii), imply
To ∪ {αk} 6|= A v B, thus, To is not maximal, which
contradicts optimality of To.

Contraction in acyclic EL
Proof of Lemma 23. Assume that T |= A v D and let
d = depth(D). By Proposition 32, we have that vA ∈
DIT , where IT is the canonical model of T . Since vA ∈
DIT and d = depth(D) there must exist distinct domain
elements u1, . . . ud ∈ ∆IT and atomic roles R1, . . . , Rd ∈
sig(D) such that u1 = vA and 〈ui, ui+1〉 ∈ RITi for each
1 ≤ i ≤ d− 1; this implies existence of a path of length
d in the graph corresponding to IT . Hence, since T is
acyclic and δ(T ) is the length of the longest path in the
corresponding graph, we have d ≤ δ(T ), as required.

Proof of Lemma 24. Since depth(C) > δ(T ), Lemma 23
ensures that T 6|= Z v C for each concept Z ∈ sig(T ) ∪
{T }. Hence, by Proposition 32, CIT = ∅, where IT is

the canonical model of T , and therefore IT |= C v F
for any EL concept F , in particular, for F = D. Thus,
IT |= T ∪ {C v D}.

Suppose that T ∪ {C v D} |= A v B. Since IT |=
T ∪ {C v D}, we conclude that IT |= A v B, and
by Proposition 32, T |= A v B, which contradicts the
assumption that T 6|= A v B. Therefore, T ∪ {C v
D} 6|= A v B.

In order to prove Lemma 26 we need the following
lemma.

Lemma 34. Let T be a normalised EL TBox and n ∈ N.
For each 1 ≤ i ≤ n, let Ri ∈ sig(T ) be roles, and Z0, Zn
concepts in sig(T ) ∪ {>}. Let α be the axiom:

α = ∃R1.∃R2 . . . ∃Rn. Zn v Z0.

If T |= α, then there exist concepts {Z1, . . . , Zn} ⊆
sig(T ) ∪ {>} such that

T |= ∃Ri. Zi v Zi−1 for every i ∈ [1, n].

Proof of Lemma 34. Let Y0 be a fresh atomic concept
not in sig(T ) and let β be the following axiom:

β = Y0 v ∃R1 . . . ∃Rn.Zn
The normalisation Nβ of the EL axiom β leads to the
following axioms, where Yi 6∈ sig(T ) ∪ {Y0} for each
1 ≤ i ≤ n− 1 and Yk 6= Yj for k 6= j:

Yi−1 v ∃Ri.Yi, for 1 ≤ i ≤ n− 1, and Yn−1 v ∃Rn.Zn.

Clearly, T |= α implies T ∪Nβ |= Y0 v Z0. We will use
it together with the following claim.

CLAIM (♦): Let j ∈ [0, n − 1] and Uj ∈ sig(T ) ∪ {>}
be a concept such that:

T ∪Nβ |= Yj v Uj .

Then, there exists a concept Vj ∈ sig(T ) ∪ {>} s.t.

T ∪Nβ |= Yj+1 v Vj and T ∪Nβ |= ∃Rj+1.Vj v Uj .

Proof of (♦). If T |= > v Uj , then the claim is
trivial: simply take Vj = >. Clearly, T |= Yj+1 v > and
T ∪Nβ |= ∃Rj .> v >.

Now assume that T ∪Nβ |= Yj v Uj , where T 6|= > v
Uj . By construction, (Yj v Uj) /∈ T ∪Nβ , thus Yj v Uj
is derived from T ∪ Nβ . Let D be such a derivation.
The only way to derive a subsumption between atomic
concepts in EL is using the derivation rules CR1, CR2,
or CR4. Moreover, the only GCI in T ∪Nβ mentioning Yj
is Yj v ∃Rj+1. Yj+1. Thus, the rule CR4 should appear
at least once in D (i.e., it should have been applied at
least once in the derivation of Yj v Uj). For the rule
CR4 to be applicable, there must exist a concept Vj
such that

T ∪Nβ |= Yj+1 v Vj and (∃Rj+1.Vj v Uj) ∈ T ∪Nβ .

The last inclusion together with the observation that
no formula of the form ∃Rj+1.Vj v Uj belongs to Nβ ,



implies that (∃Rj+1.Vj v Uj) ∈ T . Thus Vj ∈ sig(T )
and we conclude the proof of the claim.

Since T |= α by the Lemma’s assumption, we have
that T ∪Nβ |= Y0 v Z0. By applying Claim (♦) (n− 1)
times, and at each j-th application taking Uj , Vj to
be Zj , Zj+1, respectively, we conclude the existence of
concepts {Z1, . . . , Zn−1} ⊆ sig(T ) ∪ {>} such that

T ∪Nβ |= ∃Rj . Zj v Zj−1 for every j ∈ [1, n− 1].

It remains to show that T ∪Nβ |= ∃Rn. Zn v Zn−1.
From Claim (♦) we imply that Yn−1 v Zn−1 can be
derived from T ∪Nβ . Assume that D is such a derivation
of. Since the only axiom of T ∪Nβ that contains Yn−1 is
Yn−1 v ∃Rn. Zn, the derivation should contain at least
one application of CR4. Thus, there exist U and W such
that

T ∪Nβ |= Zn v U and (∃Rn. U vW ) ∈ T ∪Nβ ,

where

T ∪Nβ |= Yn−1 vW and T ∪Nβ |= W v Zn−1.

From these for inclusions once can easily derive that
∃R.U v Zn−1, and consequently, ∃R.Zn v Zn−1. Thus
T ∪Nβ |= ∃R.Zn v Zn−1.

Since T ∪ Nβ is a conservative extension of T , the
entailment T ∪ Nβ |= ∃R.Zi v Zi−1 together with
{Zi−1, Zi} ⊆ sig(T ) ∪ {>} imply that T |= ∃R.Zi v
Zi−1 which concludes the proof.

We are ready to prove Lemma 26

Proof of Lemma 26. Since T |= α, Lemma 34 ensures
that there exist roles Ri ∈ sig(T ) and concepts Zi ∈
sig(T ) ∪ {>} for 1 ≤ i ≤ n− 1 such that

T |= ∃Ri.Zi v Zi−1, where 1 ≤ i ≤ n.

Take ` = b n
δ(T )+1c; clearly, ` ≥ 2. For each 2 ≤ j ≤ `

take uj such that |uj | = δ(T )+1. Clearly, δ(T ) < |u1| ≤
(2× δ(T ) + 1). Finally, pick each Yj for 1 ≤ j ≤ Y`−1 to

be Zkj where kj =
∑j
i=1 |ui|.

And our main theorem.

Proof of Theorem 27. First, note that T ′ is an evolution
of T under C: Sm ∪ S3 is finite and so is T ′, moreover,
T |= T ′ and T ′ conforms to C. Now assume that T ′
is not optimal. Then, since Tm is already a maximal
subset of T conforming to the constraints, there must
exist an ELc axiom β such that T |= β, but T ′ 6|=
β, and T ′ ∪ {β} 6|= A v B.We distinguish the following
two cases (i) β is of the form Z v ∃w.Z ′, (ii) β is of the
form ∃w.Z ′ v Z.

In Case (i), since T |= β and T is acyclic, Lemma 23
ensures that |w| ≤ δ(T ). Thus, β ∈ S1. Due to T ′ 6|= β,
β 6∈ Sm. Thus, Sm∪{β} ⊆ S1∪S2 and Tm∪ (Sm∪{β})
conforms to C−, which contradicts maximality of Sm.

In Case (ii), if |w| ≤ (2× δ(T ) + 1), then β ∈ S1 ∪S3
and again the maximality of Sm ensures that T ′ |= β and
thus gives a contradiction. Therefore, |w| > (2×|δ(T )|+

1). Since T |= β and T is acyclic, Lemma 26 ensures the
existence of ` ∈ N, concepts {Y1, . . . , Y`} ⊆ sig(T )∪{>},
subwords u1, . . . , u` of w such that for each j ∈ [1, `]
the axioms γj = (∃uj . Yj v Yj−1) satisfy the conditions
of the lemma. Since δ(T ) < |uj | ≤ (2× δ(T ) + 1) and
T |= ∃uj . Yj v Yj−1, we have that each γj ∈ S3. Since T
is acyclic, so is the (normalisation of) T ′, with the same
maximum depth δ(T ). Furthermore, since T ′ 6|= A v B
and γj has quantifier depth greater than δ(T ), we have
that the Lemma 24 ensures T ′ ∪ {γj} 6|= A v B.

Hence, the maximality of Sm ensures that T ′ |= γj
for each j ∈ [1, `] and thus T ′ |= β, as required.

Finally, to see the size of T ′, observe that the number
of axioms in S1∪S2∪S3 bounded by 2×ρ2×δ(T )+1, where
ρ is the number of atomic roles in sig(T ); furthermore,
each axiom is S1 ∪ S2 ∪ S3 is of size linear in δ(T ).

Contraction in non-recursive EL: LP = ELc
In order to prove Theorem 30, we need the following
lemmas.

Lemma 35. Let T be a normalised EL-TBox. For each
1 ≤ i ≤ n, let Ri be atomic roles in sig(T ); let Zn and
Z0 be concepts in sig(T )∪{>}, and let γ be the following
axiom:

γ = Z0 v ∃R1.∃R2 . . . ∃Rn.Zn
If T |= γ, then there exist concepts Zi ∈ sig(T ) ∪ {>}
for 1 ≤ i ≤ n−1 such that the following conditions hold:

T |= Zi−1 v ∃Ri.Zi 1 ≤ i ≤ n
Proof. Let Y0 be a fresh atomic concept not in sig(T )
and let β be the following axiom:

β = ∃R1 . . . ∃Rn.Zn v Y0
The normalisation Nβ of β ∈ EL leads to the following
axioms, where Yi 6∈ sig(T ) for each 1 ∈ [1, n− 1]:

∃Ri.Yi v Yi−1 for 1 ≤ i ≤ n− 1, and ∃Ri.Zn v Yn−1
We then have T |= γ if and only if T ∪Nβ |= Z0 v Y0.
We show the following claim (♦):

CLAIM (♦): Let 0 ≤ j ≤ n − 1 and assume that T ∪
Nβ |= Zj v Yj for some Zj ∈ sig(T )∪ {>}. Then, there
exists Zj+1 ∈ sig(T )∪ {>} such that T ∪Nβ |= Zj+1 v
Yj+1 and T ∪Nβ |= Zj v ∃Rj+1.Zj+1.

Proof of (♦). Assume that T ∪ Nβ |= Zj v Yj ,
where Zj ∈ sig(T ) ∪ {>}. In the EL-algorithm a new
subsumption between atomic concepts can only be de-
rived using rules CR1, CR2 or CR4. Since Yj 6∈ sig(T ),
only rule CR4 can be applied. Furthermore, the only
GCI in T ∪ Nβ mentioning Yj on the right hand side
is ∃Rj+1.Yj+1 v Yj , so for the rule to be applicable
it must be the case that some Zj+1 ∈ sig(T ) ∪ {>}
exists such that T ∪ Nβ |= Zj v ∃Rj+1.Zj+1 and
T ∪ Nβ |= Zj+1 v Yj+1, as required. The claim is
proved.

Since T |= γ by the Lemma’s assumption, we have
that T ∪ Nβ |= Z0 v Y0. By applying (♦) n times



we clearly have that concepts Zi ∈ sig(T ) ∪ {>} for
1 ≤ i ≤ n− 1 must exist

T ∪Nβ |= Zi−1 v ∃Ri.Zi 1 ≤ i ≤ n

But then, the lemma immediately holds by the fact that
T ∪Nβ is a conservative extension of T .

Lemma 36. Let T ∈ ELnr, let Z ∈ sig(T ) ∪ {>}, let
Z0 ∈ sig(T ), and let α be an ELc-axiom of either of the
following forms, where w is a word of atomic roles from
sig(T ) such that |w| ≥ 1:

1. α = > v Z0; or

2. α = > v ∃w.Z; or

3. α = ∃w.Z v Z0.

Then T 6|= α.

Proof. Since T ∈ ELnr, each axiom in T is of one of
the following forms, where A,A1 and A2 are atomic
concepts and B is either atomic or >:

(Ax1) A v B.

(Ax2) A1 uA2 v B.

(Ax3) A v ∃R.B

Let IT be the canonical model of T . We consider three
cases, depending on the shape of the ELc-axiom α.

1. Let α = > v Z0. Consider the following interpreta-
tion I ′ = (∆I

′
, ·I′).

- ∆I
′

= ∆IT ∪ {u} with u 6∈ ∆IT .

- XI
′

= XIT for each symbol X ∈ sig(T )

Clearly, I ′ 6|= α since u ∈ >I′ but u 6∈ ZI
′

0 . Fur-
thermore, we show that I ′ |= T , which immediately
implies that T 6|= α.

• Let β ∈ T be of the form Ax1; if B = >, I ′ trivially
satisfies β, so let B be atomic. Let vX ∈ AI

′
. Since

A is atomic, we have AI
′

= AIT ; since IT |= T , we
have vX ∈ BIT ; since B is atomic, the definition of
I ′ ensures that vX ∈ BI

′
, as required.

• Let β ∈ T be of the form Ax2; if B = >, I ′ trivially
satisfies β, so let B be atomic. Let vX ∈ (A1uA2)I

′
;

hence, vX ∈ AI
′

1 and vX ∈ AI
′

2 ; since A1 and A2

are atomic, we have vX ∈ AIT1 and vX ∈ AIT2 and
hence vX ∈ (A1 u A2)IT ; since IT |= β, we have

vX ∈ BIT and since B is atomic, we have vX ∈ BI
′
,

as required.

• Let β ∈ T be of the form Ax3. Let vX ∈ AI
′
. Since

A is atomic, we have AI
′

= AIT ; since IT |= T ,
we have that there exists vY ∈ ∆IT such that
(vX , vY ) ∈ RIT and vY ∈ BIT . By the definition of

I ′, we have (vX , vY ) ∈ RI′ . Now, if B = >, then

clearly vY ∈ >I
′

and I ′ |= β; if B is atomic, then

the definition of I ′ ensures that vY ∈ BI
′

and again
I ′ |= β, as required.

2. Let α = > v ∃w.Z0. Consider the same interpreta-
tion I ′ as in the previous case. Clearly, I ′ 6|= α since

u ∈ >I′ but u 6∈ (∃w.Z)I
′
. Since I ′ |= T , we again

have T 6|= α.

3. Let α = ∃w.Z v Z0 and let w = R1 . . . Rn. Consider
the interpretation I ′′ = (∆I

′′
, ·I′′) defined as follows:

- ∆I
′′

= ∆IT ∪ {u1, . . . , un} with ui 6∈ ∆IT for all
1 ≤ i ≤ n.

- AI
′′

= AIT for each concept A ∈ sig(T )

- RI
′′

= RIT for each role R ∈ sig(T ) not in w.

- For each Ri in w with Ri 6= Rn, we have

RI
′′

i = RITi ∪ {(uj , uj+1) | Rj = Ri}

- RI
′′

n = RITn ∪ {(uj , uj+1) | Rj = Rn} ∪ {(un, vZ)}

Clearly, I ′′ 6|= α since u1 ∈ (∃w.Z)I
′′

but u1 6∈ ZI
′′

0 .
The proof for I ′′ |= T is identical to the one for
I ′ |= T and hence T 6|= α, as required.

We finally proceed to show Theorem 30.

Proof of Theorem 30. Let T be an ELnr-TBox, let
C+ ⊆ T , let C− = {A v B}, and let T ′, Tm and Sm be
as in Algorithm NRContr.

First, note that T ′ is an evolution of T under C.
Clearly, T ′ ∝ C− and C+ ⊆ T ′ and hence T ′ ∝ C;
furthermore, T |= T ′.

To show ELc-optimality, it suffices to show the follow-
ing claim for an arbitrary ELc-axiom α.

CLAIM: If T |= α and T ′ ∪ {α} 6|= C−, then T ′ |= α.

Assume that T |= α and T ′∪{α} 6|= C−. Since T |= α,
we have that α cannot be of any of the forms given in
Lemma 36; furthermore, T ′ entails all tautological EL-
axioms. So, we are left with the following cases according
to the structure of α:

1. Let α = Z v Z0, where Z and Z0 are atomic. This
yields that α ∈ BCl(T ); but then, maximality of Sm
implies that α ∈ Sm and hence T ′ |= α, as required.

2. Let α = Z0 v ∃w.Zn, with Z0 atomic, Zn atomic
or >, and w = R1 . . . Rn with n ≥ 1. Since T |= α,
Lemma 35 implies existence of concepts Zi ∈ sig(T )∪
{>} for 1 ≤ i ≤ n − 1 such that for axioms αi =
Zi−1 v ∃Ri.Zi it holds that T |= αi for each 1 ≤
i ≤ n. Note that all these axioms belong to BCl(T ).
Furthermore, by Lemma 36 each concept Zi for 1 ≤
i ≤ n− 1 is different from >.
We next show that for each 1 ≤ i ≤ n, we have
T ′ ∪ {αi} 6|= A v B, which implies by maximality
of Sm that {α1, . . . , αn} ⊆ T ′ and hence T ′ |= α.
We prove by contradiction. Pick αi and assume that
T ′∪{αi} |= A v B. Then there is a derivation D that
witnesses the entailment and uses the rules IR1-IR2
and CR1-CR4 in Figure 3. Clearly, αi should occur as
a premise in this derivation at least once, (otherwise



T ′ |= A v B). There are two rules that allow for
axiom of the form αi to be in the premises: CR3 and
CR4. Application of CR3 does not derive subsumption
of atomic concepts, as it is in the case of A v B. Thus,
the rule CR4 should have been applied at least once
in D. The application of the rule requires that the set
T ′ ∪ {αi} contains an axiom of the form ∃R.C v D,
which is impossible because T ′ ∈ ELnr. We thus
obtain a contradiction.


