
Hardware Security for Device Authentication

in the Smart Grid

Andrew J. Paverd and Andrew P. Martin

Department of Computer Science, University of Oxford, UK
{andrew.paverd,andrew.martin}@cs.ox.ac.uk

Abstract. Secure communication between devices is a key aspect of
smart grid security. In the future smart home environment, various smart
devices, appliances and energy management systems will communicate
with each other via the home network. In order to achieve mutual au-
thentication, each device will have a private cryptographic key which
must be protected against theft or misuse. Current mechanisms for pro-
tecting such keys exist but generally require interaction with the user.
This makes them unsuitable for the smart grid context due to the high
degree of automation involved in the smart grid. To address this chal-
lenge, we have designed, implemented and tested a system that provides
hardware security for device private keys using Trusted Computing tech-
nologies. Using DRTM late-launch functionality, our system ensures that
the private key is only available within a protected trusted environment
on a specific device. Preliminary implementation and testing has demon-
strated that our system can operate successfully in unattended environ-
ments such as the smart grid.

1 Introduction

In the various visions of the future smart grid, it is universally acknowledged that
residential customers will be a key aspect of the overall system, especially since
the residential sector accounts for more than a quarter of final energy consump-
tion in Europe [1]. The widely-cited NIST Framework and Roadmap for Smart
Grid Interoperability Standards [2] defines the residential Customer domain as
one of the seven primary domains in the smart grid conceptual reference model
as shown in Fig. 1. The future smart home environment will generally include
a smart meter, an Energy Services Interface (ESI), and an Energy Management
System (EMS). Naturally, it will also include various smart devices, appliances
and other customer equipment. The communication between these systems will
be important for facilitating automated energy management within the home.

Due to the nature of the communicated information, the provision of se-
cure communication functionality is a primary requirement of the smart grid.
This is particularly important in the home environment where communication
often takes place over wireless networks or the public Internet. Secure commu-
nication usually requires mutual authentication of the communicating entities.
The widely-used Transport Layer Security protocol (TLS) provides this using

J. Cuellar (Ed.): SmartGridSec 2012, LNCS 7823, pp. 72–84, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Hardware Security for Device Authentication in the Smart Grid 73

Fig. 1. Customer Domain from the NIST Conceptual Reference Model [2]

asymmetric cryptography and a Public Key Infrastructure (PKI). This approach
could facilitate secure device authentication in the smart grid by providing each
device with a unique private key [3,4]. However, on general purpose computa-
tional systems such as PCs, the security of this private key could be threatened
by malicious software (malware) or unauthorized access. Therefore, a suitable
mechanism is required for protecting these device private keys.

One of the key features of the smart grid is that it will ultimately facili-
tate automated management of energy consuming devices and systems. In the
home environment, smart devices will report their current state and power con-
sumption information to the EMS which will deactivate or reactivate specific
devices based on varying energy prices or demand response signals. This in-
herently means that smart grid systems must be designed to function without
requiring user interaction since a user may not always be present. This poses
a particular challenge for the protection of private cryptographic keys because
existing mainstream approaches for protecting keys have not been designed to
support unattended operation.

This paper provides two main contributions: Firstly, we show that the prob-
lem of protecting device private keys in the smart grid context is not adequately
solved using existing mainstream approaches because of the automated nature of
the smart grid. Secondly, we demonstrate that this problem can be solved using
Trusted Computing and we present an architecture and proof of concept imple-
mentation for achieving this. This paper is organized as follows: Section 2 dis-
cusses existing approaches for protecting private keys and provides background
information on Trusted Computing. Section 3 specifies the security and privacy



74 A.J. Paverd and A.P. Martin

requirements as well as the functional requirements for a solution to this prob-
lem. We present the architectural design of our system in Section 4 and evaluate
our proof of concept implementation in Section 5. Section 6 summarizes related
work and Section 7 presents our conclusions.

2 Background

2.1 Existing Approaches

There are currently four main approaches for protecting device private keys:

No Specific Security. The most basic option is to simply store the key unen-
crypted so that it can be used at any time. The major vulnerability of this type
of approach is that the key is not protected from any malware or unauthorized
access to the device. There are cases in which this vulnerability is not applicable
such as some embedded systems which are incapable of running malware and do
not support remote access. However, for most devices in the smart home, these
threats pose a serious risk to unprotected private keys.

Software Obfuscation. Software obfuscation techniques allow for a crypto-
graphic key to be hidden within a specific software binary. Although the key is
not encrypted, the obfuscation increases the work required to find and obtain
the key since the attacker must usually reverse engineer the software binary. In
this approach, the same obfuscated key will be shared by all systems running the
specific software binary. This key is usually used as a master key to encrypt a
key store containing the device’s unique private key. However it is acknowledged
that software obfuscation provides only limited security [5]. If the obfuscation is
circumvented, the private keys of all devices would become vulnerable. Assuming
this breach is detected, it would necessitate the replacement of the obfuscated
key across all devices.

Encryption with a User Secret. The most common approach is to encrypt
private keys with a user-supplied secret such as a password or PIN. When re-
quired, the user enters this secret and the key is temporarily decrypted into
volatile memory. However, whilst in this decrypted state, the key can still be
compromised by an attacker exploiting vulnerabilities in the OS or the applica-
tion using the key. Instead of decrypting the key every time it is required, some
key manager systems allow the user to decrypt the key once at startup and then
keep it in volatile memory for future use. However, this still requires an initial
user interaction and increases the window of vulnerability for application or OS
exploitation. The user-supplied secret is also vulnerable to social engineering at-
tacks which could ultimately compromise the security of the key. In the smart
grid context, private keys would be used to authenticate devices rather than
users so ideally the protection of these keys should not involve the user.



Hardware Security for Device Authentication in the Smart Grid 75

Hardware Security for Private Keys. The third main approach involves the
use of specialized security hardware such as a smart card or Hardware Security
Module (HSM) to protect private keys. There are a variety of solutions of this
type but most follow the principle that the private key can only be accessed by
the HSM. If implemented correctly, this type of approach virtually eliminates the
possibility of an attacker obtaining the private key. When required, the HSM uses
this key for cryptographic operations and outputs the result. However, systems
of this type require additional security mechanisms to ensure that requests do
not originate from an attacker. For example, smart cards generally require the
user to enter a PIN to confirm an operation. A more sophisticated approach
for protecting information using hardware security has been provided by the
Trusted Computing Group (TCG) as explained in the next subsection.

2.2 Trusted Computing

The Trusted Computing Group (TCG) has defined various technologies and pro-
cesses that are collectively known as Trusted Computing (TC). Many of these
are based on the Trusted Platform Module (TPM), a standards-based crypto-
graphic co-processor [6]. At present, the TPM is integrated into the majority
of business-focussed PCs as a discrete hardware module. It is envisioned that a
TPM could also be included in future smart devices and home appliances.

The TPM allows a system to create a record of its software state using a set of
secure Platform Configuration Registers (PCRs) on the TPM. Each PCR stores
a SHA-1 hash value which can not be directly written but can be extended by
the TPM by concatenating the existing value with the new input and storing the
hash of the result. In TCG terminology, software can be measured by computing
the hash of the complete software element and extending it into a PCR. For
a measured boot, every piece of software is measured by the preceding software
before being executed. This forms a chain of trust starting from the platform’s
initial startup.

The TPM provides secure storage using a unique asymmetric Storage Root
Key (SRK) of which the private part never leaves the TPM. The SRK can
encrypt any number of symmetric keys which can in turn encrypt data. In this
way it is possible to bind data to a specific platform based on the SRK. It is also
possible to seal data to a specific software state in which case the TPM will not
decrypt the data unless the PCRs match some predefined value.

TC provides another potential solution to the original problem of protecting
device private keys. After a measured boot, the TPM can seal the device private
key to a specific secure software state. However, the current TCG approach to
sealed storage has various shortcomings [7]. For example, the installation of a
patch or update results in a different set of PCR values and so would prevent the
TPM from unsealing data. To address this challenge, an alternative approach has
been implemented by major microprocessor vendors in the form of a Dynamic
Root of Trust for Measurement (DRTM).



76 A.J. Paverd and A.P. Martin

2.3 Dynamic Root of Trust for Measurement

The concept of a late-launch allows the system to startup in an unmeasured state
and then transition into a measured state [8]. This is said to provide a Dynamic
Root of Trust for Measurement (DRTM) which can be used as a trust anchor for
subsequent operations. The Flicker research project [9] uses this capability to
provide an isolated and protected execution environment on modern x86 plat-
forms. When invoked, Flicker suspends the host OS and initiates a late-launch
using a special CPU instruction. This resets a subset of the PCRs (known as
the Dynamic PCRs), disables Direct Memory Access (DMA) and partially re-
sets the CPU. Flicker then executes a Piece of Application Logic (PAL) which
is a small section of code provided by an application. Due to the partial CPU
reset, this PAL is unaffected by any software which was executed on the system
before the late-launch. The PAL can therefore be said to execute in a Trusted
Execution Environment (TEE). Flicker allows any application to perform cer-
tain operations within this TEE by encapsulating the operations as a PAL. By
using late-launch and the dynamic PCRs, Flicker also makes it possible to seal
and unseal data within a specific PAL irrespective of the overall state of the
host system. However, the functionality of a PAL is inherently limited because
the PAL should not use any libraries or hardware drivers from the host OS
since these may have been compromised before the late-launch. Once the PAL
has completed execution, the memory used by the PAL is cleared and the host
OS is resumed from its suspended state. The PCRs are also extended with a
well-known value to indicate that the TEE is no longer active.

3 Security, Privacy and Functional Requirements

As introduced in Section 1, secure communication between devices is an impor-
tant aspect of smart grid security. In the smart home environment, each smart
device will have a unique private key that is used for mutual authentication
[3,4]. In this context, the primary goal of an attacker would be to intercept
or modify network communication or to impersonate a legitimate device. This
could be part of a cyber-physical attack which, if successful, could have serious
consequences in the smart grid environment. Assuming that it is infeasible to
break the cryptographic protocols themselves, the attacker would try to obtain
a device’s private key in order to carry out this attack. On general-purpose sys-
tems such as PCs, it is already the case that the security of this key could be
threatened by malware or unauthorized access. Additionally, since this key is a
form of strong device identification, a secondary attacker objective might be to
misuse the device private key in order to identify the device to an unauthorized
third party. For example, signatures from this key could be used for tracking
the device or its user and thus constitutes a threat to user privacy. Therefore,
a mechanism is required for protecting the device private key. Furthermore, in
order to be used in the smart grid environment, this mechanism must be able to
operate without requiring user interaction. Based on this context, the mechanism
for protecting device private keys must satisfy the following requirements.



Hardware Security for Device Authentication in the Smart Grid 77

Security & Privacy Requirements

SR-1: The device private key can only be used on a specific physical
device or system.

SR-2: The device private key can only be used by a specific set of
software applications.

SR-3: The device private key can only be used for authenticating the
device to authorized network end-points.

Functional Requirements

FR-1: The mechanism must facilitate the use of the private key in
the standard TLS handshake protocol.

FR-2: After the key initialization phase, the mechanism must not
require further interaction with the user.

Based on the above requirements, it can be seen that the existing mainstream
approaches for protecting device private keys are not well suited for use in a smart
grid environment. Whilst it is possible to satisfy the functional requirements
by simply storing the key in unencrypted form, this leaves the key vulnerable
to being compromised by malware or unauthorized access to the system and
therefore does not fulfil any of the security requirements. Using obfuscation
techniques to protect the key would satisfy the functional requirements and SR-2
provided the obfuscation is not compromised. In this approach, the applications
must be trusted to not violate SR-1 and SR-3. Encrypting the key with a user-
supplied secret satisfies SR-1 and potentially SR-2 and SR-3 since the user should
only provide the secret to trusted applications for purposes of authenticating to
authorized network end-points. However, due to the required user interaction,
this type of approach does not satisfy FR-2 and therefore cannot be widely
used in an automated smart grid environment. The use of hardware security
could theoretically satisfy all the security, privacy and functional requirements.
However, previous systems of this type have not fully achieved this objective
in a practical manner. For example, a key can be bound to a specific platform
(SR-1) but this does not restrict the use of the key (SR-2 & SR-3). Sealing the
key to a specific platform state fulfils all the requirements but is arguably not
yet practical on unmanaged systems in the home environment due to the various
shortcomings of sealed storage [7].

4 System Architecture

Based on the defined requirements, we have designed a system to protect device
private keys in the smart grid context. The fundamental concept is that the
device private key can only be used from within a trusted execution environment
(TEE). For our proof of concept implementation, this TEE is provided by the
open-source Flicker project [9] described in Section 2.3. Our system has two
main phases of operation: the key initialization phase and the TLS handshake.



78 A.J. Paverd and A.P. Martin

4.1 Key Initialization

The objective of the key initialization phase is to generate the device private key
within the trusted environment and to establish restrictions on the use of this
key. This process must take place before the device connects to the network.

In order to restrict the use of the device private key to specific applications,
we use the Linux Integrity Measurement Architecture (IMA) subsystem [10].
With IMA activated, the Linux kernel computes a measurement hash of each
software application before it is run and stores this measurement in a secure
log. The use of IMA for identifying specific applications has been described by
Bugiel and Ekberg [11]. In a similar manner, our system uses IMA to specify a
trusted application that may use the device private key. The hash measurement
of this application is obtained from the IMA subsystem and provided as input to
the trusted environment. Additionally the user can input a Certificate Authority
(CA) certificate that will be used to restrict the use of the key.

As shown in Fig. 2a, when the system switches to the trusted environment,
the dynamic PCRs are reset and the measurement of the PAL is implicitly
extended into one of these PCRs. The PAL then extends the PCRs with the hash
measurement of the specified application and the hash of the CA certificate. The
PAL generates the asymmetric key pair of which the private part is the device
private key. The PAL also generates a symmetric key and encrypts the device
private key using AES. The AES key is then sealed by the TPM using the SRK
and the current PCR values. This intermediate AES step is necessary because
the device key is too large to be sealed directly by the TPM.

Once the PAL has completed its execution, all secrets are erased from memory
and the PCRs are extended with well-known values. The PAL outputs both the
AES key and the device private key as encrypted data structures which can
be safely stored in non-volatile memory. The generated public key is output to
the host environment to be included in the device certificate. The end result
of the key initialization phase is that a device private key has been generated
and encrypted within the trusted environment. This private key can only be
decrypted or used by the same physical TPM and only by the same trusted
environment since the PCR values must match their predefined state.

4.2 TLS Handshake Protocol

In a mutually authenticated TLS handshake, the client proves its identity by
using its private key to sign a digest of the preceding handshake messages and
sends this to the server as the ‘client verify’ message. Fig. 2b shows how our sys-
tem is integrated into this handshake protocol. We present our system from the
perspective of the client device in the TLS handshake but the same architecture
could be used on the server.

Before the trusted environment is launched, the preceding messages from the
TLS handshake are provided as input for the PAL. This input causes the Flicker
system to query the IMA subsystem for the measurement hash of the appli-
cation that supplied the input. In contrast to the key initialization phase, this



Hardware Security for Device Authentication in the Smart Grid 79

TPM

Application hash

Seal AES key

TEE PAL

Sealed key

Dynamic PCR reset

Extend PCRs

Generate AES key

Encrypt private key

AES key

DRTM late launch

Generate key pair

Resume host OS

CA certi cate hash

(a) Key Initialization Process

TPM

Application hash

TEE PAL

Dynamic PCR reset

Extend PCRs

DRTM late launch

Resume host OS

CA certi cate hash

Parse server certi cate

Verify server signature

Unseal AES key Sealed key

AES key

Decrypt private key

Sign HS digest

(b) Enhanced TLS Handshake Protocol

Fig. 2. Sequences of interaction between the TEE and the TPM

application hash is automatically input to the PAL and so cannot be modified
by external applications.

When the system initiates the late-launch procedure, the same series of mea-
surement steps is performed as in the key initialization phase. The dynamic
PCRs are reset, and one of these PCRs is extended with the measurement hash
of the PAL, the application hash and the hash of the supplied CA certificate.
The PAL does not need to check the application hash or CA certificate because
if these differ from the key initialization phase, the PCR values will be different
and the TPM will not unseal the required key.

The PAL will check that the end-point to which the connection is being es-
tablished has provided a certificate signed by this CA. The server certificate is
sent to the client before the late-launch and so it can be parsed from the list
of previous handshake messages within the trusted environment. Additionally,
the server’s certificate is used to verify the server’s signature in the handshake
messages. If both of these verification steps are successful, the PAL can be sure
that the digest it will sign is part of a TLS handshake with a permitted network
end-point.

If the PCR values are correct, the TPM can unseal the AES key from the
sealed key data structure and use it to decrypt the device private key. The
TLS handshake digest is then signed using the private key. Once the trusted
environment returns control to the host OS, the signature from the Flicker output
is sent to the server to complete the handshake according to the standard TLS
protocol.



80 A.J. Paverd and A.P. Martin

5 Proof of Concept Implementation and Evaluation

We have implemented a proof of concept version of this system by modifying
the PolarSSL TLS library1 and the Flicker system [9]. Flicker was modified
to interface with the IMA subsystem to obtain the measurement hash value
of the application that provides input to the TEE. PolarSSL was modified to
initiate the late-launch of the TEE whenever the private key is required. We used
the OpenVPN-NL application2 to demonstrate that our system can successfully
establish a secure communication channel between devices without requiring
user interaction.

5.1 Performance Evaluation

We obtained performance benchmarks for our system using a Dell Optiplex 990
desktop system with an Intel Core i5-2400 CPU running at 3.10 GHz and a ver-
sion 1.2 TPM. Table 1 shows the average times and standard deviations of the
various operations in the TLS handshake phase of the system (averaged over
3000 measurements). By far the longest operation is the unsealing of the AES
key. This is the only operation for which the TPM itself is required to perform
an asymmetric cryptographic operation. All other asymmetric cryptography is
performed by the main application processor within the trusted environment.
Since the TPM is not usually implemented as a high-performance device it has
been noted that this type of TPM operation usually incurs a high performance
cost [9,11]. Although it is important to minimize the time required for system
execution, in the context of an unattended system, the only requirement is that
the time taken should be within acceptable limits for completing the TLS hand-
shake. This is achievable as demonstrated by the use of this proof of concept
system with the OpenVPN-NL application.

Table 1. Benchmarks of various operations

Operation Time (ms) [Std Dev]

Extend PCR 8.96 [0.02]

Verify server certificate 0.30 [0.00]

Verify server signature 0.23 [0.00]

Unseal AES key 956.57 [0.30]

Decrypt RSA key 0.02 [0.00]

Sign TLS digest 2.09 [0.00]

Total PAL time 982.91 [3.48]

1 http://polarssl.org/
2 https://openvpn.fox-it.com/

http://polarssl.org/
https://openvpn.fox-it.com/


Hardware Security for Device Authentication in the Smart Grid 81

5.2 Security Evaluation

A potential vulnerability of this system is that the Integrity Measurement Ar-
chitecture (IMA) subsystem is not part of the trusted execution environment.
In order to identify the application requesting use of the key, this subsystem
depends on various components of the host OS including the file-system and
process management subsystem. This dependency is necessary to bridge the se-
mantic gap between the trusted environment and the host OS. It is possible that
the IMA subsystem could be compromised by sophisticated malware or unau-
thorized access at the highest level of privilege. However, even in this worst-case
scenario, the attacker would be able to misuse key but would not be able to
obtain the key since it is protected by the trusted environment. Although this
type of attack would break SR-2, the trusted execution environment and the
TPM would still enforce SR-1 and SR-3.

The security properties provided by the trusted execution environment and
the TPM itself could be compromised by an attacker who has direct physical
access to the device. However, this would require sophisticated hardware tools
and techniques such as eavesdropping on the hardware communication bus be-
tween the CPU and the TPM. It is assumed that for an attacker to have this
level of physical access, the device must be in the attacker’s possession and so
its private key should anyway be revoked by the home network.

6 Related Work

In the AutHoNe project, Kinkelin et al. [12] have described how a non-migratable
TPM key could be used as the private key of the Home CA. Since this key is not
sealed to a particular platform state, the user is required to enter a PIN before the
key can be used. They also recognize the possibility that malware could misuse
this key and suggest that the Home CA should be run in a trustworthy execution
environment. Similarly, Kuntze et al. [13] have described a system for using
non-migratable TPM keys for device identification in smart grid environments.
However, their system does not perform any verification when the key is used.

One of the examples presented by McCune et al. [9] is that Flicker could be
used to protect the private key of a CA. In a similar manner to our system, the
key was sealed using the TPM and the signing operation took place within the
trusted environment. However, no verification was done on either the requesting
application or the information being signed. Since unauthorized use of the system
could be rectified at a later stage, the focus of the Flicker example was on the
minimization of the TCB size and the attestation of the PAL to a third-party.
Our system differs in that the primary focus is on preventing any unauthorized
use of the private key and automating the process of using this key.

Bugiel and Ekberg [11] have developed an application specific implementa-
tion of a Mobile Trusted Module (MTM). Their implementation is also based



82 A.J. Paverd and A.P. Martin

on Flicker and uses IMA for application identification. Although their system
provides a wider variety of functionality, this increases the size and complexity of
the components which are executed in the trusted environment. In contrast, our
system is designed to perform a specific operation and so can include additional
verification procedures to achieve the security and privacy requirements.

Various solutions have been proposed using a TC measured boot process and
virtualization to separate the TCB from untrusted applications. The TruWallet
system by Gajek et al. [14] provides a means of securely storing users’ web au-
thentication credentials by using a security kernel to isolate the Wallet function-
ality from the untrusted OS and web browser. Cesena et al. [15] have proposed a
similar approach by using a sealing proxy which is again part of the static TCB.

A TPM Engine has been developed for OpenSSL3. This engine supports the
generation of TPM keys and the use of these keys in an SSL or TLS handshake.
However, since it does not include a trusted execution environment, the OpenSSL
TPM Engine does not support the verification procedures used in our system.

Goldman et al. [16] as well as Gasmi et al. [17] have presented tangentially re-
lated work about the combination of TC technologies and TLS communication.
Goldman et al. [16] provide a solution for linking TCG attestation to secure tun-
nel endpoints to ensure the integrity of the endpoint and prevent relay attacks.
Gasmi et al. [17] take this further and provide an implementation proposal for
the combination of TC technologies and the TLS protocol. However, both of
these systems depend on static roots of trust and so are arguably less practical
for use on unmanaged home devices and appliances.

7 Conclusion

Secure communication between devices is a critical aspect of smart grid security,
particularly in the smart home environment. In the smart home, each device
would have a unique private cryptographic key used for device authentication.
These keys must therefore be protected against theft or misuse. Although various
mechanisms exist for protecting private keys, most of these require interaction
with the user and so are not suitable for use in the smart grid environment
due to the level of automation required. We have proposed a system architec-
ture for protecting device private keys in this context using Trusted Computing
technologies. In our system, the private key never leaves the trusted execution
environment and can only be used by a predefined set of applications. In order
to address potential privacy concerns arising from this type of strong device
authentication, our system ensures that the key can only be used to establish
connections to authorized network end-points. We have developed a proof of
concept implementation of our system and demonstrated that our architecture
satisfies the defined security, privacy and functional requirements. Overall, the
architecture and proof of concept implementation presented in this work are
promising steps towards protecting device private keys and achieving secure
communication in the smart grid.

3 https://github.com/ThomasHabets/openssl-tpm-engine

https://github.com/ThomasHabets/openssl-tpm-engine


Hardware Security for Device Authentication in the Smart Grid 83

Acknowledgements. The research described in this paper was conducted as
part of the Future Home Networks and Services project at the University of
Oxford, funded by British Telecommunications. The first author has also received
funding from the Foreign and Commonwealth Office of the United Kingdom as
a Chevening Scholar.

References

1. European Commission: Eurostat: Final Energy Consumption, by Sector (2010)
2. National Institute of Standards and Technology (NIST): NIST Special Publication

1108R2: NIST Framework and Roadmap for Smart Grid Interoperability Stan-
dards, Release 2.0. Technical report (2012)

3. Baumeister, T.: Adapting PKI for the smart grid. In: 2011 IEEE International Con-
ference on Smart Grid Communications (SmartGridComm), pp. 249–254 (2011)

4. Metke, A.R., Ekl, R.L.: Security Technology for Smart Grid Networks. IEEE Trans-
actions on Smart Grid 1(1), 99–107 (2010)

5. Nützel, J., Beyer, A.: How to Increase the Security of Digital Rights Management
SystemsWithout Affecting Consumer’s Security. In: Müller, G. (ed.) ETRICS 2006.
LNCS, vol. 3995, pp. 368–380. Springer, Heidelberg (2006)

6. Trusted Computing Group: TPM Main Specifications Part 1: Design principles,
Part 2: TPM structures, Part 3: Commands. Version 1.2, Revision 116 (2011)

7. Kühn, U., Kursawe, K., Lucks, S., Sadeghi, A.-R., Stüble, C.: Secure data man-
agement in trusted computing. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS,
vol. 3659, pp. 324–338. Springer, Heidelberg (2005)

8. Intel: Intel Trusted Execution Technology (Intel TXT): Measured Launch Envi-
ronment Developer’s Guide. Technical report (2011)

9. McCune, J.M., Parno, B.J., Perrig, A., Reiter, M.K., Isozaki, H.: Flicker: an exe-
cution infrastructure for TCB minimization. In: Eurosys 2008 Proceedings of the
3rd ACM SIGOPS/EuroSys European Conference on Computer Systems, vol. 42,
pp. 315–328 (April 2008)

10. Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and implementation of a
TCG-based integrity measurement architecture. In: Proceedings of the 13th Con-
ference on USENIX Security Symposium, vol. 13. USENIX Association (2004)

11. Bugiel, S., Ekberg, J.E.: Implementing an application-specific credential platform
using late-launched mobile trusted module. In: Proceedings of the Fifth ACM
Workshop on Scalable Trusted Computing, STC 2010, pp. 21–30. ACM Press,
New York (2010)

12. Kinkelin, H., Holz, R., Niedermayer, H., Mittelberger, S., Carle, G.: On Using
TPM for Secure Identities in Future Home Networks. In: Security in NGNs and
the Future Internet, vol. 3, pp. 1–13 (January 2010)

13. Kuntze, N., Rudolph, C., Bente, I., Vieweg, J., von Helden, J.: Interoperable de-
vice identification in Smart-Grid environments. In: 2011 IEEE Power and Energy
Society General Meeting, pp. 1–7. IEEE (July 2011)

14. Gajek, S., Löhr, H., Sadeghi, A.R., Winandy, M.: TruWallet: trustworthy and
migratable wallet-based web authentication. In: Proceedings of the 2009 ACM
Workshop on Scalable Trusted Computing, STC 2009, pp. 19–28. ACM (2009)



84 A.J. Paverd and A.P. Martin

15. Cesena, E., Ramunno, G., Vernizzi, D.: Secure storage using a sealing proxy. In:
Proceedings of the 1st European Workshop on System Security, EUROSEC 2008,
pp. 27–34. ACM Press, New York (2008)

16. Goldman, K., Perez, R., Sailer, R.: Linking remote attestation to secure tunnel
endpoints. In: Proceedings of the First ACM Workshop on Scalable Trusted Com-
puting, STC 2006, pp. 21–24. ACM Press, New York (2006)

17. Gasmi, Y., Sadeghi, A.R., Stewin, P., Unger, M., Asokan, N.: Beyond secure chan-
nels. In: Proceedings of the 2007 ACM Workshop on Scalable Trusted Computing,
STC 2007, pp. 30–40. ACM Press, New York (2007)


	Hardware Security for Device Authenticationin the Smart Grid
	Introduction
	Background
	Existing Approaches
	Trusted Computing
	Dynamic Root of Trust for Measurement

	Security, Privacy and Functional Requirements
	System Architecture
	Key Initialization
	TLS Handshake Protocol

	Proof of Concept Implementation and Evaluation
	Performance Evaluation
	Security Evaluation

	Related Work
	Conclusion
	References




