
 
 
 
 

Department of Computer Science  
 
 
 

 
 
 
 
 
 
 

CS-RR-13-06 
(Updated 20/06/2013) 

 
 
 
 

 
 
 

 
 
 
 

Department of Computer Science, University of Oxford   
Wolfson Building, Parks Road, Oxford, OX1 3QD  

On Stochastic Games with Multiple Objectives 
 

Taolue Chen, Vojtěch Forejt, Marta Kwiatkowska,  
Aistis Simaitis, and Clemens Wiltsche 

 



On Stochastic Games with Multiple Objectives

Taolue Chen, Vojtěch Forejt, Marta Kwiatkowska,
Aistis Simaitis, and Clemens Wiltsche

Department of Computer Science, University of Oxford, United Kingdom

Abstract. We study two-player stochastic games, where the goal of one
player is to satisfy a formula given as a positive boolean combination of
expected total reward objectives and the behaviour of the second player
is adversarial. Such games are important for modelling, synthesis and
verification of open systems with stochastic behaviour. We show that
finding a winning strategy is PSPACE-hard in general and undecidable
for deterministic strategies. We also prove that optimal strategies, if they
exists, may require infinite memory and randomisation. However, when
restricted to disjunctions of objectives only, memoryless deterministic
strategies suffice, and the problem of deciding whether a winning strategy
exists is NP-complete. We also present algorithms to approximate the
Pareto sets of achievable objectives for the class of stopping games.

1 Introduction

Stochastic games [21] have many applications in semantics and formal verifica-
tion, and have been used as abstractions for probabilistic systems [16], and more
recently for quantitative verification and synthesis of competitive stochastic sys-
tems [7]. Two-player games, in particular, provide a natural representation of
open systems, where one player represents the system and the other its environ-
ment, in this paper referred to as Player 1 and Player 2, respectively. Stochasticity
models uncertainty or randomisation, and leads to a game where each player can
select an outgoing edge in states he controls, while in stochastic states the choice
is made according to a state-dependent probability distribution. A strategy de-
scribes which actions a player picks. A fixed pair of strategies and an initial
state determines a probability space on the runs of a game, and yields expected
values of given objective (payoff) functions. The problem is then to determine
if Player 1 has a strategy to ensure that the expected values of the objective
functions meet a given set of criteria for all strategies that Player 2 may choose.

Various objective functions have been studied, for example reachability, ω-
regular, or parity [4]. We focus here on reward functions, which are determined
by a reward structure, annotating states with rewards. A prominent example is
the reward function evaluating total reward, which is obtained by summing up
rewards for all states visited along a path. Total rewards can be conveniently used
to model consumption of resources along the execution of the system, but (with
a straightforward modification of the game) they can also be used to encode
other objective functions, such as reachability.
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Although objective functions can express various useful properties, many
situations demand considering not just the value of a single objective function,
but rather values of several such functions simultaneously. For example, we may
wish to maximise the number of successfully provided services and, at the same
time, ensure minimising resource usage. More generally, given multiple objective
functions, one may ask whether an arbitrary boolean combination of upper or
lower bounds on the expected values of these functions can be ensured (in this
paper we restrict only to positive boolean combinations, i.e. we do not allow
negations). Alternatively, one might ask to compute or approximate the Pareto
set, i.e. the set of all bounds that can be assured by exploring trade-offs. The
simultaneous optimisation of a conjunction of objectives (also known as multi-
objective, multi-criteria or multi-dimensional optimisation) is actively studied
in operations research [22] and used in engineering [18]. In verification it has
been considered for Markov decision processes (MDPs), which can be seen as
one-player stochastic games, for discounted objectives [5] and general ω-regular
objectives [9]. Multiple objectives for non-stochastic games have been studied by
a number of authors, including in the context of energy games [23] and strategy
synthesis [6].

In this paper, we study stochastic games with multi-objective queries, which
are expressed as positive boolean combinations of total reward functions with
upper or lower bounds on the expected reward to be achieved. In that way we
can, for example, give several alternatives for a valid system behaviour, such
as “the expected consumption of the system is at most 10 units of energy and
the probability of successfully finishing the operation is at least 70%, or the
expected consumption is at most 50 units, but the probability of success is at
least 99%”. Another motivation for our work is assume-guarantee compositional
verification [20], where the system satisfies a set of guarantees ϕ whenever a set
of assumptions ψ is true. This can be formulated using multi-objective queries
of the form

∧
ψ ⇒

∧
ϕ. For MDPs it has been shown how to formulate assume-

guarantee rules using multi-objective queries [9]. The results obtained in this
paper would enable us to explore the extension to stochastic games.

Contributions. We first obtain nondeterminacy by a straightforward modifi-
cation of earlier results. Then we prove the following novel results for multi-
objective stochastic games:

– We prove that, even in a pure conjunction of objectives, infinite memory and
randomisation are required for the winning strategy of Player 1, and that the
problem of finding a deterministic winning strategy is undecidable.

– For the case of a pure disjunction of objectives, we show that memoryless
deterministic strategies are sufficient for Player 1 to win, and we prove that
determining the existence of such strategies is an NP-complete problem.

– For the general case, we show that the problem of deciding whether Player 1
has a winning strategy in a game is PSPACE-hard.

– We provide Pareto set approximation algorithms for stopping games. This
result directly applies to the important class of discounted rewards for non-
stopping games, due to an off-the-shelf reduction [8].
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Related work. Multi-objective optimisation has been studied for various sub-
classes of stochastic games. For non-stochastic games, multi-dimensional ob-
jectives have been considered in [6,23]. For MDPs, multiple discounted objec-
tives [5], long-run objectives [2], ω-regular objectives [9] and total rewards [12]
have been analysed. The objectives that we study in this paper are a special
case of branching time temporal logics for stochastic games [3,1]. However, al-
ready for MDPs, such logics are so powerful that it is not decidable whether
there is an optimal controller [3]. A special case of the problem studied in this
paper is the case where the goal of Player 1 is to achieve a precise value of
the expectation of an objective function [8]. As regards applications, stochastic
games with a single objective function have been employed and implemented
for quantitative abstraction refinement for MDP models in [16]. The usefulness
of techniques for verification and strategy synthesis for stochastic games with
a single objective is demonstrated, e.g., for smart grid protocols [7]. Applica-
tions of multi-objective verification include assume-guarantee verification [17]
and controller synthesis [13] for MDPs.

2 Preliminaries

We begin this section by introducing notations used throughout the paper. We
then provide the definition of stochastic two-player games together with the
concepts of strategies and paths of the game. Finally, we introduce the objectives
that are studied in this paper.

2.1 Notation

Given a vector x ∈ Rn, we use xi to refer to its i-th component, where 1 ≤ i ≤ n,

and define the norm ‖x‖ def
=
∑n
i=1 |xi|. Given a number y ∈ R, we use x ± y to

denote the vector (x1±y, x2±y, . . . , xn±y). Given two vectors x,y ∈ Rn, the dot
product of x and y is defined by x ·y =

∑n
i=1 xi ·yi, and the comparison operator

≤ on vectors is defined to be the componentwise ordering. The sum of two sets
of vectors X,Y ⊆ Rn is defined by X + Y = {x + y |x ∈ X,y ∈ Y }. Given a

set X, we define the downward closure of X as dwc(X)
def
= {y | ∃x ∈ X .y ≤ x}

and the upward closure as up(X)
def
= {y | ∃x ∈ X .x ≤ y}. We denote by R±∞

the set R ∪ {+∞,−∞}, and we define the operations · and + in the expected
way, defining 0 · x = 0 for all x ∈ R±∞ and leaving −∞+∞ undefined. We also
define function sgn(x) : R±∞ → N to be 1 if x > 0, −1 if x < 0 and 0 if x = 0.

A discrete probability distribution (or just distribution) over a (countable) set
S is a function µ : S → [0, 1] such that

∑
s∈S µ(s) = 1. We write D(S) for the

set of all distributions over S. Let supp(µ) = {s ∈ S | µ(s) > 0} be the support
set of µ ∈ D(S). We say that a distribution µ ∈ D(S) is a Dirac distribution
if µ(s) = 1 for some s ∈ S. We represent a distribution µ ∈ D(S) on a set
S = {s1, . . . , sn} as a map [s1 7→ µ(s1), . . . , sn 7→ µ(sn)] and omit the elements
of S outside supp(µ) to simplify the presentation. If the context is clear we
sometimes identify a Dirac distribution µ with the unique element in supp(µ).
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2.2 Stochastic games

In this section we introduce turn-based stochastic two-player games.

Stochastic two-player games. A stochastic two-player game is a tuple G =
〈S, (S�, S♦, S©), ∆〉 where S is a finite set of states partitioned into sets S�,
S♦, and S©; ∆ : S × S → [0, 1] is a probabilistic transition function such that
∆(〈s, t〉) ∈ {0, 1} if s ∈ S� ∪ S♦ and

∑
t∈S ∆(〈s, t〉) = 1 if s ∈ S©.

S� and S♦ represent the sets of states controlled by players Player 1 and
Player 2, respectively, while S© is the set of stochastic states. For a state s ∈ S,

the set of successor states is denoted by ∆(s)
def
= {t ∈ S | ∆(〈s, t〉)>0}. We

assume that ∆(s) 6= ∅ for all s ∈ S. A state from which no other states except
for itself are reachable is called terminal, and the set of terminal states is denoted

by Term
def
= {s ∈ S | ∆(〈s, t〉)=1 iff s = t}.

Paths. An infinite path λ of a stochastic game G is an infinite sequence s0s1 . . .
of states such that si+1 ∈ ∆(si) for all i ≥ 0. A finite path is a finite such
sequence. For a finite or infinite path λ we write len(λ) for the number of states
in the path. For i < len(λ) we write λi to refer to the i-th state si of λ. For a
finite path λ we write last(λ) for the last state of the path. For a game G we
write Ω+

G for the set of all finite paths, and ΩG for the set of all infinite paths,
and ΩG,s for the set of infinite paths starting in state s. We denote the set of

paths that reach a state in T ⊆ S by ♦T
def
= {ω ∈ ΩG | ∃i . ωi ∈ T}.

Strategies. A strategy of Player 1 is a (partial) function π : Ω+
G→D(S), which

is defined for λ ∈ Ω+
G only if last(λ) ∈ S�, such that s ∈ supp(π(λ)) only if

∆(〈last(λ), s〉) = 1. A strategy π is a finite-memory strategy if there is a finite
automatonA over the alphabet S such that π(λ) is determined by last(λ) and the
state of A in which it ends after reading the word λ. We say that π is memoryless
if last(λ)=last(λ′) implies π(λ)=π(λ′), and deterministic if π(λ) is Dirac for all
λ ∈ Ω+

G . If π is a memoryless strategy for Player 1 then we identify it with the
mapping π : S� → D(S). A strategy σ for Player 2 is defined similarly. We denote
by Π and Σ the sets of all strategies for Player 1 and Player 2, respectively.

Probability measures. A stochastic game G, together with a strategy pair
(π, σ) ∈ Π × Σ and a starting state s, induces an infinite Markov chain on the
game (see e.g. [8]). We define the probability measure of this Markov chain by
Prπ,σG,s . The expected value of a measurable function f : Sω→R±∞ is defined as

Eπ,σG,s [f ]
def
=
∫
ΩG,s

f dPrπ,σG,s . We say that a game G is a stopping game if, for every

pair of strategies π and σ, a terminal state is reached with probability 1.

Rewards. A reward function r : S → Qn assigns a reward vector r(s) ∈ Qn to
each state s of the game G. We use ri for the function defined by ri(t) = r(t)i
for all t. We assume that for each i the reward assigned by ri is either non-
negative or non-positive for all states (we adopt this approach in order to express
minimisation problems via maximisation, as explained in the next subsection).
The analysis of more general reward functions is left for future work. We define
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the vector of total reward random variables rew(r) such that, given a path λ,
rew(r)(λ) =

∑
j≥0 r(λj).

2.3 Multi-objective queries

A multi-objective query (MQ) ϕ is a positive boolean combination (i.e. disjunc-
tions and conjunctions) of predicates (or objectives) of the form r ./ v, where r is
a reward function, v ∈ Q is a bound and ./ ∈ {≥,≤} is a comparison operator.
The validity of an MQ is defined inductively on the structure of the query: an
objective r ./ v is true in a state s of G under a pair of strategies (π, σ) if and
only if Eπ,σG,s [rew(r)] ./ v, and the truth value of disjunctions and conjunctions
of queries is defined straightforwardly. Using the definition of the reward func-
tion above, we can express the operator ≤ by using ≥, applying the equivalence
r ≤ v ≡ (−r ≥ −v). Thus, throughout the paper we often assume that MQs
only contain the operator ≥.

We say that Player 1 achieves the MQ ϕ (i.e., wins the game) in a state s if
it has a strategy π such that for all strategies σ of Player 2 the query ϕ evaluates
to true under (π, σ). An MQ ϕ is a conjunctive query (CQ) if it is a conjunction
of objectives, and a disjunctive query (DQ) if it is a disjunction of objectives.

For a MQ ϕ containing n objectives ri ./i vi for 1 ≤ i ≤ n and for x ∈ Rn
we use ϕ[x] to denote ϕ in which each ri ./i vi is replaced with ri ./i xi.

Reachability. We can enrich multi-objective queries with reachability objectives,
i.e. objectives ♦T ≥ p for a set of target states T ⊆ S, where p ∈ [0, 1] is a bound.
The objective ♦T ≥ p is true under a pair of strategies (π, σ) if Prπ,σG,s (♦T ) ≥ p,
and notions such as achieving a query are defined straightforwardly. Note that
queries containing reachability objectives can be reduced to queries with total
expected reward only (see Appendix A for a reduction). It also follows from the
construction that if all target sets contain only terminal states, the reduction
works in polynomial time.

Pareto sets. Let ϕ be an MQ containing n objectives. The vector v ∈ Rn is
a Pareto vector if and only if (a) ϕ[v − ε] is achievable for all ε > 0, and (b)
ϕ[v+ ε] is not achievable for any ε > 0. The set P of all such vectors is called a
Pareto set. Given ε > 0, an ε-approximation of a Pareto set is a set of vectors
Q satisfying that, for any w ∈ Q, there is a vector v in the Pareto set such that
‖v−w‖ ≤ ε, and for every v in the Pareto set there is a vector w ∈ Q such that
‖v −w‖ ≤ ε.

Example. Consider the game G from Figure 1 (left). It consists of one Player 1
state s0, one Player 2 state s1, six stochastic states s2, s3, s4, s5, t1 and t2, as well
as two terminal states t′1 and t′2. Outgoing edges of stochastic states are assigned
uniform distributions by convention. For the MQ ϕ1 = r1 ≥ 2

3 ∧ r2 ≥
1
6 , where

the reward functions are defined by r1(t1)=r2(t2)=1 and all other values are zero,
the Pareto set for the initial state s0 is shown in Figure 1 (centre). Hence, ϕ1 is
satisfied at s0, as ( 2

3 ,
1
6 ) is in the Pareto set. For the MQ ϕ2 = r1 ≥ 2

3∧−r2 ≥ −
1
6 ,

Figure 1 (right) illustrates the Pareto set for s0, showing that ϕ2 is not satisfied
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s0

s2 t1

t′1

s3t2

t′2
s1

s5s4

0
0
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0.2

0.4

0.4

0.6

0.6

0.8

0.8
0

0.2

0.4

0.6

0.8

0−0.2−0.4−0.6−0.8−1

Fig. 1: An example game (left), Pareto set for ϕ1 at s0 (centre), and Pareto set
for ϕ2 at s0 (right), with bounds indicated by a dot. Note that the sets are
unbounded towards −∞.

at s0. Note that ϕ1 and ϕ2 correspond to the combination of reachability and
safety objectives, i.e., ♦{t′1} ≥ 2

3 ∧ ♦{t′2} ≥ 1
6 and ♦{t′1} ≥ 2

3 ∧ ♦{t′2} ≤ 1
6 .

3 Conjunctions of Objectives

In this section we present the results for CQs. We first recall that the games are
not determined, and then show that Player 1 may require an infinite-memory ran-
domised strategy to win, while it is not decidable whether deterministic winning
strategies exist. We also provide fixpoint equations characterising the Pareto sets
of achievable vectors and their successive approximations.

Theorem 1 (Non-determinacy, optimal strategies [8]). Stochastic games
with multiple objectives are, in general, not determined, and optimal strategies
might not exist, already for CQs with two objectives.

Theorem 1 carries over from the results for precise value games, because the
problem of reaching a set of terminal states T ⊆ Term with probability precisely
p is a special case of multi-objective stochastic games and can be expressed as a
CQ ϕ = ♦T ≥ p ∧ ♦T ≤ p.

Theorem 2 (Infinite memory). An infinite-memory randomised strategy may
be required for Player 1 to win a multi-objective stochastic game with a CQ even
for stopping games with reachability objectives.

Proof. To prove the theorem we will use the example game from Figure 2. We
only explain the intuition behind the need of infinite memory here; the formal
proof is presented in Appendix B.1. First, we note that it is sufficient to consider
deterministic counter-strategies for Player 2, since, after Player 1 has proposed
his strategy, the resulting model is an MDP with finite branching [19]. Consider

the game starting in the initial state s0 and a CQ ϕ =
∧3
i=1 ♦Ti ≥

1
3 , where

the target sets T1, T2 and T3 contain states labelled 1, 2 and 3, respectively. We
note that target sets are terminal and disjoint, and for any π and σ we have that∑3
i=1 Prπ,σG,s0(♦Ti) = 1, and hence for any winning Player 1 strategy π it must be

the case that, for any σ, Prπ,σG,s0(♦Ti) = 1
3 for 1 ≤ i ≤ 3.
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s0 s1 s2 s3

s4

1 s5

2 3

s6

1 s7

2 3

s8

2 s9

1 3

s10

2 s11

1 3

step A step B

1
4

3
4

check

1
3

2
3

check

1
3

2
3

Fig. 2: Game where Player 1 requires infinite memory to win.

Let E be the set of runs which never take any transition check . The game
proceeds by alternating between the two steps A and B as indicated in Figure 2.
In step A, Player 1 chooses a probability to go to T1 from state s4, and then
Player 2 gets an opportunity to “verify” that the probability Prπ,σG,s0(♦T1|E) of

runs reaching T1 conditional on the event that no check action was taken is 1
3 . She

can do this by taking the action check and so ensuring that Prπ,σG,s0(♦T1|ΩG \E) =
1
3 . If Player 2 again does not choose to take check , the game continues in step
B, where the same happens for T2, and so on.

When first performing step A, Player 1 has to pick probability 1
3 to go to

T1. But since the probability of going from s4 to T2 is < 1
3 , when step B is

performed for the first time, Player 1 must go to T2 with probability y0 >
1
3 to

compensate for the “loss” of the probability in step A. However, this decreases
the probability of reaching T1 at step B, and so Player 1 must compensate for it
in the subsequent step A by taking probability > 1

3 of going to T1. This decreases
the probability of reaching T2 in the second step B even more (compared to first
execution of step A), for which Player 1 must compensate by picking y1 > y0 >

1
3

in the second execution of step B, and so on. So, in order to win, Player 1 has to
play infinitely many different probability distributions in states s4 and s8. Note
that, if Player 2 takes action “check”, Player 1 can always randomise in states s7
and s11 to achieve expectations exactly 1

3 for all objectives. ut

In fact, the above idea allows us to encode natural numbers together with
operations of increment and decrement, and obtain a reduction of the location
reachability problem in the two-counter machine (which is known to be unde-
cidable [15]) to the problem of deciding whether there exists a deterministic
winning strategy for Player 1 in a multi-objective stochastic game.

Theorem 3 (Undecidability). The problem whether there exists a determin-
istic winning strategy for Player 1 in a multi-objective stochastic game is unde-
cidable already for stopping games and conjunctions of reachability objectives.

Our proof is inspired by the proof of [3] which shows that the problem of existence
of a winning strategy in an MDP for a PCTL formula is undecidable. However,
the proof of [3] relies on branching time features of PCTL to ensure the counter
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Fig. 3: Increment gadget for counter j.

values of the two-counter machine are encoded correctly. Since MQs only allow
us to express combinations of linear-time properties, we need to take a different
approach, utilising ideas of Theorem 2. We present the proof idea here; for the
full proof see Appendix B.2. We encode the counter machine instructions in
gadgets similar to the ones used for the proof of Theorem 2, where Player 1 has
to change the probabilities with which he goes to the target states based on the
current value of the counter. For example, the gadget in Figure 3 encodes the
instruction to increment the counter j. The basic idea is that, if the counter value
is cj when entering the increment gadget, then in state s5 Player 1 has to assign
probability exactly 2

3·2cj to the edge 〈s5, s6〉, and then probability 2
3·2cj+1 to the

edge 〈s9, s10〉 in s9, resulting in the counter being incremented. The gadgets for
counter decrement and zero-check can be found in the appendix. The resulting
query contains six target sets. In particular, there is a conjunct ♦Tt ≥ 1, where
the set Tt is not reached with probability 1 only if the gadget representing the
target counter machine location is reached. The remaining five objectives ensure
that Player 1 updates the counter values correctly (by picking corresponding
probability distributions) and so the strategy encodes a valid computation of
the two-counter machine. Hence, the counter machine terminates if and only if
there does not exist a winning strategy for Player 1.

We note that the problem of deciding whether there is a randomised win-
ning strategy for Player 1 remains open, since the gadgets modelling decrement
instructions in our construction rely on the strategy being deterministic. Never-
theless, for stopping games, in Theorem 4 below we provide a functional that,
given a CQ ϕ, computes ε−approximations of the Pareto sets, i.e. the sets con-
taining the bounds x so that Player 1 has a winning strategy for ϕ[x − ε]. As
a corollary of the theorem, using a simple reduction (see e.g. [8]) we get an ap-
proximation algorithm for the Pareto sets in non-stopping games with (multiple)
discounted reward objectives.

Theorem 4 (Pareto set approximation). For a stopping game G and a CQ
ϕ =

∧n
i=1 ri ≥ vi, an ε−approximation of the Pareto sets for all states can be

computed in k = |S| + d|S| · ln(ε·(n·M)−1)
ln(1−δ) e iterations of the operator F : (S →
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P(Rn))→ (S → P(Rn)) defined by

F (X)(s)
def
=


dwc(conv(

⋃
t∈∆(s)Xt)+r(s)) if s ∈ S�

dwc(
⋂
t∈∆(s)Xt+r(s)) if s ∈ S♦

dwc(
∑
t∈∆(s)∆(〈s, t〉) ·Xt+r(s)) if s ∈ S©,

where the initial sets are X0
s

def
= {x ∈ Rn |x ≤ r(s)} for all s ∈ S, and M =

|S| · maxs∈S,i |ri(s)|
δ for δ = p

|S|
min and pmin being the smallest positive probability

in G.

We first explain the intuition behind the operations when r(s) = 0. For s ∈
S�, Player 1 can randomise between successor states, so any convex combination
of achievable points in Xk−1

t for the successors t ∈ ∆(s) is achievable in Xk
s ,

and so we take the convex closure of the union. For s ∈ S♦, a value in Xk
s is

achievable if it is achievable in Xk−1
s for all successors t ∈ ∆(s), and hence we

take the intersection. Finally, stochastic states s ∈ S© are like Player 1 states
with a fixed probability distribution, and hence the operation performed is the
weighted Minkowski sum. When r(s) 6= 0, the reward is added as a contribution
to what is achievable at s.

Proof (Outline). The proof, presented in Appendix B.3, consists of two parts.
First, we prove in Proposition 2 that the result of the k-th iteration of F contains
exactly the points achievable by some strategy in k steps; this is done by applying
induction on k. As the next step, we observe that, since the game is stopping,

after |S| steps the game has terminated with probability at least δ = p
|S|
min. Hence,

the maximum change to any dimension to any vector in Xk
s after k steps of the

iteration is less than M · (1− δ)b
k
|S| c. It follows that k = |S|+ d|S| · ln(ε·(n·M)−1)

ln(1−δ) e
iterations of F suffice to yield all points which are within ε from the Pareto
points for r.

4 General Multi-Objective Queries

In this section we consider the general case where the objective is expressed as
an arbitrary MQ. The nondeterminacy result from Theorem 1 carries over to
the more general MQs, and, even if we restrict to DQs, the games stay non-
determined (see Appendix C.1 for a proof). The following theorem establishes
lower complexity bounds for the problem of deciding the existence of the winning
strategy for Player 1.

Theorem 5. The problem of deciding whether there is a winning strategy for
Player 1 for an MQ ϕ is PSPACE-hard in general, and NP-hard if ϕ is a DQ.

The above theorem is proved by reductions from QBF and 3SAT, respectively
(see Appendix C.2 and Appendix C.3). The reduction from QBF is similar to
the one in [10], the major differences being that our results apply even when the
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target states are terminal, and that we need to deal with possible randomisation
of the strategies.

We now establish conditions under which a winning strategy for Player 1
exists. Before we proceed, we note that it suffices to consider MQs in conjunctive
normal form (CNF) that contain no negations, since any MQ can be converted to
CNF using standard methods of propositional logic. Before presenting the proof
of Theorem 6, we give the following reformulation of the separating hyperplane
theorem, proved in Appendix C.6.

Lemma 1. Let W ⊆ Rm±∞ be a convex set satisfying the following. For all j,
whenever there is x ∈ W such that sgn(xj) ≥ 0 (resp. sgn(xj) ≤ 0), then
sgn(yj) ≥ 0 (resp. sgn(yj) ≤ 0) for all y ∈W . Let z ∈ Rm be a point which does
not lie in the closure of up(W ). Then there is a non-zero vector x ∈ Rm such
that the following conditions hold:

1. for all 1 ≤ j ≤ m we have xj ≥ 0;
2. for all 1 ≤ j ≤ m, if there is w ∈W satisfying wj = −∞, then xj = 0; and
3. for all w ∈W , the product w · x is defined and satisfies w · x ≥ z · x.

Theorem 6. Let ψ =
∧n
i=1

∨m
j=1 qi,j ≥ ui,j be an MQ in CNF, and let π be a

strategy of Player 1. The following two conditions are equivalent.

– The strategy π achieves ψ.
– For all ε > 0 there are nonzero vectors x1, . . .xn ∈ Rm≥0, such that π achieves

the conjunctive query ϕ =
∧n
i=1 ri ≥ vi, where ri(s) = xi·(qi,1(s), . . . , qi,m(s))

and vi = xi · (ui,1−ε, . . . , ui,m−ε) for all 1 ≤ i ≤ n.

Proof (Sketch). We only present high-level intuition here, see Appendix C.4 for
the full proof. Using the separating hyperplane theorem we show that if there
exists a winning strategy for Player 1, then there exist separating hyperplanes,
one per conjunct, separating the objective vectors within each conjunct from
the set of points that Player 2 can enforce, and vice versa. This allows us to
reduce the MQ expressed in CNF into a CQ, by obtaining one reward function
per conjuct, which is constructed by weighthing the original reward function by
the characteristic vector of the hyperplane.

When we restrict to DQs only, it follows from Theorem 6 that there exists
a strategy achieving a DQ if and only if there is a strategy achieving a cer-
tain single-objective expected total reward, and hence we obtain the following
theorem.

Theorem 7 (Memoryless deterministic strategies). Memoryless determin-
istic strategies are sufficient for Player 1 to achieve a DQ.

Since memoryless deterministic strategies suffice for optimising single total re-
ward, to determine whether a DQ is achievable we can guess such a strategy for
Player 1, which uniquely determines an MDP. We can then use the polynomial
time algorithm of [9] to verify that there exists no winning Player 2 strategy.
This NP algorithm, together with Theorem 5, gives us the following corollary.
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Corollary 1. The problem whether a DQ is achievable is NP-complete.

Using Theorem 6 we can construct an approximation algorithm computing Pareto
sets for disjunctive objectives for stopping games, which performs multiple calls
to the algorithm for computing optimal value for the single-objective reward.

Theorem 8 (Pareto sets). For stopping games, given a vector r = (r1, . . . , rm)
of reward functions, an ε-approximation of the Pareto sets for disjunction of ob-

jectives for r can be computed by ( 2·m2·(M+1)
ε )m−1 calls to a NP∩coNP algorithm

computing single-objective total reward, where M is as in Theorem 4.

Proof (Sketch). By Theorem 6 and Lemma 3 (see Appendix C.6), we have that
a DQ ϕ =

∨m
j=1 rj ≥ vj is achievable if and only if there exists π and x ∈ Rm≥0

such that ∀σ ∈ Σ .Eπ,σG,s [x · rew(r)] ≥ x · v, which is a single-objective query
decidable by an NP∩coNP oracle. Given a finite set X ⊆ Rm, we can compute
values dx = supπ infσ Eπ,σG,s [x · rew(r)] for all x ∈ X, and define UX =

⋃
x∈X{p |

x · p ≤ dx}. It is not difficult to see that UX yields an under-approximation of
achievable points. Let τ = ε

2·m2·(M+1) . We argue that when we let X be the set

of all non-zero vectors x such that ‖x‖ = 1, and where all xi are of the form
τ · ki for some ki ∈ N, we obtain an ε-approximation of the Pareto set by taking
all Pareto points on UX (see Appendix C.7 for a proof).

The above approach, together with the algorithm for Pareto set approxima-
tions for CQs from Theorem 4, can be used to compute ε-approximations of the
Pareto sets for MQs expressed in CNF. The set UX would then contain tuples
of vectors, one per conjunct.

5 Conclusions

We studied stochastic games with multiple expected total reward objectives, and
analysed the complexity of the related algorithmic problems. There are several
interesting directions for future research. Probably the most obvious is settling
the question whether the problem of existence of a strategy achieving a MQ
is decidable. Further, it is natural to extend the algorithms to handle long-run
objectives containing mean-payoff or ω-regular goals, or to lift the restriction on
reward functions to allow both negative and positive rewards at the same time.
Another direction is to investigate practical algorithms for the solution for the
problems studied here, such as more sophisticated methods for the approxima-
tion of Pareto sets.
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A Reachability to expected reward

Here we present a reduction of the reachability problem to the one of expected
total reward (a similar reduction was used by Etessami et al. [9]). Note that the
presented reduction yields a game, which is exponential only in the number of
non-terminal target states. Hence, when all states in the target sets are terminal,
the reduction provides a game with polynomial number of reachable states.

Proposition 1. Given a game G = 〈S, (S�, S♦, S©), ∆〉 with a boolean com-
bination φ of n reachability predicates ♦Ti ./i vi (for 1 ≤ i ≤ n), there is a
game G′ = 〈S′, (S′�, S′♦, S′©), ∆′〉 of size O(|G| · 2n) and an MQ ϕ combining the
individual objectives ri ./i vi in the same way as in φ, such that the query ϕ is
achievable in G if and only if the query φ is achievable in G′.

Proof. We define G′ so that a reward ri of 1 is gained when a target set Ti is
visited, and so that is not possible to visit any target set twice. Formally, we let
S′ = {(s, I, J) | s ∈ S, I, J ⊆ {1, . . . , n}}, where in the partition of S′, (s, I, J)
is assigned to S′�, S′♦ or S′© if s is in S�, S♦ or S©, respectively. The transition
function ∆′ is defined by ∆′(〈(s, I, J), (s′, I ′, J ′)〉) = x whenever

– ∆(s, s′) = x;

– I ′ = I ∪ J ; and

– J ′ = {i | s ∈ Ti} \ I ′.

For all other values, ∆′ returns 0. The reward functions ri are defined by
ri(s, I, J) = 1 if i ∈ J and ri(s, I, J) = 0 otherwise for all 1 ≤ i ≤ n.

To every run s0s1 . . . in G corresponds a unique run (s0, I0, J0)(s1, I1, J1) . . .
in G′ initiated in (s0, ∅, ∅). These runs satisfy that for every 1 ≤ i ≤ n and
j ≥ 0, ri((sj , Ij , Jj)) = 1 if and only if j ≥ 1, sj−1 ∈ Ti and s` 6∈ Ti for any
` < j − 1. The result easily follows by considering the correspondence between
Player 1 strategies of G and G′. ut

B Proofs for Section 3

B.1 Proof of Theorem 2

We show that a strategy with infinite memory is needed for Player 1 to win the
game from Figure 2 for x = 1

4 , when the objective is to ensure that for all σ we
have Prπ,σG,s0(♦Ti) = 1

3 for 1 ≤ i ≤ 3.
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Let h(k) = s0(s1s2s3s0)k. Every strategy π for Player 1 determines (and is
uniquely given by) an infinite sequence of vectors

pk = (π(h(k)s4)(s4, 1), π(h(k)s4)(s4, s5) · 1

4
, π(h(k)s4)(s4, s5) · 3

4
),

qk = (π(h(k)s1s2s8)(s8, s9) · 1

2
, π(h(k)s1s2s8)(s8, 2), π(h(k)s1s2s8)(s8, s9) · 1

2
),

wk = (
1

3
,

2

3
· π(h(k)s1s6s7)(s7, 2),

2

3
· π(h(k)s1s6s7)(s7, 3)),

zk = (
2

3
· π(h(k)s1s2s3s10s11)(s11, 1),

1

3
,

2

3
· π(h(k)s1s2s3s10s11)(s11, 1)).

The intuitive interpretation of vector pk (resp. qk, wk, zk) is that it represents
the probability of reaching (T1, T2, T3) from s4 (resp. s8, s6, s10) in the k-th step
A (resp. B).

We define a winning strategy π by means of the vectors

pk = (1− 1
3·2k−1 ,

1
3·2k+1 ,

1
2k+1 ), qk = ( 1

3·2k+1 , 1− 1
3·2k ,

1
3·2k+1 ),

wk = ( 1
3 ,+

1
6 + 1

2 −
1

3·2n+2 ), 1− wk1 − wk2 ), zk = ( 2
3 −

1
3·2n+1 ,

1
3 , 1− z

k
1 − zk2 ).

as follows. First, suppose Player 2 picks a strategy σ which does not take the
check transition before the n+ 1-th visit to s0. Then the probability of the runs
that reach T1 while visiting s0 at most n+1 times is independent of σ and equal
to V (1, n) = 1

3 −
1

3·22n+1 , as can be shown by the straightforward induction on
n.

V (1, n) = V (1, n− 1) +
1

22n
· (qn1 +

1

2
· pn+1

1 )

= V (1, n− 1) +
1

22n
· ( 1

3 · 2n+1
+

1

2
(1− 1

3 · 2n
))

= V (1, n− 1) +
1

22n
· ( 1

3 · 2n+1
+

1

2
− 1

3 · 2n+1
)

= V (1, n− 1) +
1

22n+1

=
1

3
− 1

3
· 1

22n−1
+

1

22n+1

=
1

3
+
−4 + 3

3 · 22n+1

=
1

3
− 1

3 · 22n+1
.

Further, supposing Player 2 picks a strategy σ which does not take the check
transition before the n+ 1-th visit to s2, the probability of the runs that reach
T1 while visiting s2 at most n + 1 times is also independent of σ and equal to
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V (2, n) = 1
3 −

1
3·22n+2 . This is again shown by an induction on n.

V (2, n) = V (2, n− 1) +
1

22n+1
· (pn+1

2 +
1

2
qn+1
2 )

= V (2, n− 1) +
1

22n+1
· ( 1

3 · 2n+2
+

1

2
(1− 1

3 · 2n+1
))

= V (2, n− 1) +
1

22n+1
· ( 1

3 · 2n+2
+

1

2
− 1

3 · 2n+2
))

= V (2, n− 1) +
1

22n+2

=
1

3
− 1

3 · 22n
+

1

22n+2

=
1

3
+
−4 + 3

3 · 22n+2

=
1

3
− 1

3 · 22n+2
.

Now we are ready to show that π is winning by showing that probabilities
of reaching T1 and T2 are both 1

3 under any σ. By [19] it suffices to consider
deterministic strategies σ. First, consider a strategy σ which never takes any
transition labelled check . We have

Prπ,σG,s (♦T1) = lim
n→∞

V (1, n) =
1

3
,

Prπ,σG,s (♦T2) = lim
n→∞

V (2, n) =
1

3
.

For a strategy σ which picks check on the (n+1)-th visit to s1 we have

Prπ,σG,s (♦T1) = V (1, n) + wn1 =
1

3
− 1

3 · 22n+1
+

1

22n+1
· 1

3
=

1

3
,

Prπ,σG,s (♦T2) = V (2, n)− 1

22n+2
· (1− 1

3 · 2n+1
) +

1

22n+1
· wn2

=
1

3
− 1

3 · 22n+2
− 1

22n+2
· (1− 1

3 · 2n+1
) +

1

22n+1
· wn2

=
1

3
.

Finally, for a strategy σ which picks check on the (n+1)-th visit to s3 we have

Prπ,σG,s (♦T1) = V (1, n) +
1

22n+2
· 1

3 · 2n+1
+

1

22n+2
· zn1

=
1

3
− 1

3 · 22n+1
+

1

22n+2
· 1

3 · 2n+1
+

1

22n+2
· zn1

=
1

3
,

Prπ,σG,s (♦T2) = V (2, n) + zn2 =
1

3
− 1

3 · 22n+2
+

1

22n+2
· 1

3
=

1

3
.
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We have shown that σ ensures that each of the target sets T1, T2 and T3 is
reached with probability exactly 1

3 .
Now we show that there is no finite-memory strategy ensuring this. Let π̄

be a finite memory strategy, determined by vectors p̄k, q̄k, w̄i and z̄i. Since π̄
is finite memory, there must be a k such that p̄k 6= p or q̄k 6= q. Let k be the
lowest such number. There are two possibilities:

– p̄k 6= pk. Then necessarily p̄k1 6= pk1 . Also note that wk1 = w̄k1 = 1
3 . We define

the counter-strategy σ to take check on the (k+1)-th visit to s1 and get (by
minimality of k) that Prπ,σG,s (♦T1) = 1

3 + 1
22k·+1 (p̄k1 − pk1) 6= 1

3 .

– q̄k 6= qk. Then necessarily q̄k2 6= qk2 and zk1 = z̄k1 = 1
3 and so we can define

the counter-strategy σ to take check on the (k+1)-th visit to s3. We get
Prπ,σG,s (♦T2) = 1

3 + 1
22k·+1 (q̄k2 − qk2 ) 6= 1

3 .

This completes the proof.

B.2 Proof of Theorem 3

We show the undecidability of the problem via a reduction to the termination
problem of two-counter machines. The proof proceeds to establish that a two-
counter machine M does not terminate if and only if there exists a winning
strategy for the game G(M) constructed by the reduction from M.

1. Formally a two-counter machine M consists of a sequence of instructions
l1 : ins1, · · · , ln : insn, where each insi has one of the following forms:

(a) c1 := c2 := 0 and goto lj ;
(b) c1 = c1 + 1 and goto lj ;
(c) c2 = c2 + 1 and goto lj ;
(d) if c1 = 0 then goto lj else c1 = c1 − 1 and goto lk;
(e) if c2 = 0 then goto lj else c2 = c2 − 1 and goto lk;
(f) Terminate.

The state of the two-counter machine is encoded by a location l and two
counter values c1, c2 ∈ N, i.e., 〈l, c1, c2〉. Given an initial location l0 with
both counter values 0, the termination problem asks to determine whether
a terminal location lt is reached. The problem is known to be undecidable
[15].

2. Let M be a Minsky machine. We construct a game G(M) and a CQ

ϕ = ♦Ta1 ≥
1

6
∧ ♦Tb1 ≥

1

6
∧ ♦Ta2 ≥

1

6
∧ ♦Tb2 ≥

1

6
∧ ♦Tc ≥

1

3
≥ ♦Tt ≥ 1,

where Ta1 = {at1, a1}, Tb1 = {bt1, b1}, Ta2 = {at2, a2}, Tb2 = {bt2, b2}, Tc =
{ct, c}, and Tt = {at1, at2, bt1, bt2, ct}.
We define the game G(M) incrementally. For each type of instructions, we
have a corresponding gadget, i.e., Init, Terminate, Increment, and Decre-
ment, which are shown in Figure 4. In this figure, Player 1 states with double
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Fig. 4: Operations for counter j. Transition probabilities in stochastic states are
uniform unless specified otherwise. Player 1 states with doubled border contain
a gadget allowing to select arbitrary probability distributions even with deter-
ministic strategies. Self-loops in target states omitted.
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border are of the form , which allows Player 1 states to simulate
any probability distribution even with deterministic strategies.

Note that for Increment and Decrement gadgets, j ∈ {1, 2} refers to the
counter (c1 or c2) that under the operation in the instruction. Moreover we
set i = 3−j. The game G(M) is then constructed by “gluing” the instructions
together. Namely,

– for the init instruction li : c1 := c2 := 0 and goto lk, use the Init gadget
and link (int)out to (qk, op)in, where op is the operation type of lk;

– for the increment instruction li : cj := cj + 1 and goto lk, use the Incre-
ment gadget and link (qi, incj)out to (qk, op)in, where op is the operation
type of lk;

– for the decrement instruction if cj = 0 then goto lk else cj = cj − 1 and
goto lk′ , use the Decrement gadget and link (qi, decj)

=0
out to (qk, opk)in,

and link (qi, decj)
>0
out to (qk′ , opk′)in.

Note that the (init)in is also the initial state s0 of the whole game. In the
sequel we denote the winning strategy of the game G(M) by π∗.

3. First observe that, since Ta1 , Tb1 , Ta2 , Tb2 , and Tc form a partition of the
terminal states of G(M), for any pair of strategies π and σ, Prπ,σG,s0(♦Ta1) +

Prπ,σG,s0(♦Ta2)+Prπ,σG,s0(♦Tb1)+Prπ,σG,s0(♦Tb2)+Prπ,σG,s0(♦Tc) = 1. It follows that
for any winning strategy π, it must be the case that for any Player 2 strategy
σ, Prπ,σG,s0(♦Ta1) = Prπ,σG,s0(♦Ta2) = Prπ,σG,s0(♦Tb1) = Prπ,σG,s0(♦Tb2) = 1

6 and

Prπ,σG,s0(♦Tc) = 1
3 .

We then show that, in G(M), π∗ must guarantee that, under any Player 2
strategy σ, the following properties hold:

(a) For each state (qk, incj)in, (qk, decj)in, the reachability probability to
Tb1 and the reachability probability to Tb2 both must be exactly 1

6 .

(b) For each state (qk, incj)2 and (qk, decj)
>0
2 , the reachability probability

to Ta1 and the reachability probability to Ta2 both must be exactly 1
6 .

To see (a), we examine each gadget, in particular, the “out” states (qk, ?)out,
where ? ∈ {decj , incj}. Consider any two different Player 2 strategies σ1 and
σ2 which select, at (qk, ?)out, the horizontal and the vertical edge respectively.
As π∗ has to guarantee that for any Player 2 strategy the probability to reach
Tb1 is the same for σ1 and σ2 (namely 1

6 ), at (qk, ?)out, the strategy pairs
π∗, σ1 and π∗, σ2 must give the same probability to reach Tb1 as well. From
the gadget, the probability to reach Tb1 following σ2 is 1

2 ·
1
3 = 1

6 , hence the
claim. The same holds for Tb2 .

To see (b), we examine each gadget, in particular, the state labelled by
(qk, incj)1 or (qk, decj)

>0
1 . By the same argument as (a), the probability to

Ta1 must be 1
2 ·

1
3 = 1

6 . The same holds for Ta2 .

4. Below we show some properties for each gadget separately.

Init. A basic observation is that at Player 1 state s0, π must select the edge
〈s0, s1〉 with probability x = 2

3 = 2
3·20 . To see this, consider the strategy σ

for Player 2 which selects s4 at state (init)out. As the probability of reaching



20 Chen, Forejt, Kwiatkowska, Simaitis, Wiltsche

Ta1 under π∗ and σ is 1
6 , we have that

1

2
· 1

2
· (1− x) +

1

2
· 1

2
· 1

3
=

1

6
,

yielding that x = 2
3 , as desired.

By a similar argument, at state s2, for π the probability of selecting the edge
〈s2, s3〉 must be 2

3 = 2
3·20 .

Increment. A basic observation is that when the probability of selecting
edge 〈s5, s6〉 for π∗ is 2

3·2cj , then the probability of the edge 〈s9, s10〉 must

be 2
3·2cj+1 . To see this, suppose the probability of the edge 〈s9, s10〉 is x, and

consider a Player 2 strategy σ which selects the vertical edge at (qk, incj)out.
By (a), the reachability probability to Tbj must be 1

6 . This entails that

1

2
· 1

2
· 2

3 · 2cj
· 1

4
+

1

2
· 1

2
· 1

2
· (1− x) +

1

2
· 1

2
· 1

2
· 1

3
=

1

6
,

which implies that x = 2
3·2cj+1 , as desired.

Similarly, if the probability of selecting edge 〈s7, s8〉 for π∗ is 2
3·2ci , then

the probability of selecting edge 〈s11, s12〉 must be 2
3·2ci as well. To see this,

we repeat the same argument as the previous case and consider the the
reachability probability to Tbi which yields, by (a), that

1

2
· 1

2
· 2

3 · 2ci
· 1

2
+

1

2
· 1

2
· 1

2
· (1− x) +

1

2
· 1

2
· 1

2
· 1

3
=

1

6
,

where x is the probability of selecting edge 〈s11, s12〉 for π∗. This implies
that x = 2

3·2ci , as desired.
Decrement. A basic observation is that when entering the state (qk, decj)in,
suppose that π∗ selects the edge labelled by “> 0,” and that the probability
of selecting the edge 〈s13, s14〉 is 2

2cj
, then the probability of selecting edge

〈s17, s18〉 must be 2
3·2cj−1 . To see this, suppose the probability of the edge

〈s17, s18〉 is x, and consider a Player 2 strategy σ which selects the vertical
edge at (qk, decj)out. It follows that the reachability probability to Tbj must
satisfy

1

2
· 1

2
· 1

3
· 2

2cj
+

1

2
· 1

2
· 1

2
· (1− x) +

1

2
· 1

2
· 1

2
· 1

3
· = 1

6
,

which implies that x = 2
3·2cj−1 , as desired.

Similarly, suppose that π∗ selects the edge labelled by “> 0,” and that
the probability of selecting edge 〈s15, s16〉 is 2

3·2ci , then the probability of
selecting edge 〈s19, s20〉 must be 2

3·2ci as well. To see this, we we repeat the
same argument as the previous case and consider the reachability probability
to Tbi which yields

1

2
· 1

2
· 2

3 · 2ci
· 1

2
+

1

2
· 1

2
· 1

2
· 1

2
· (1− x) +

1

2
· 1

2
· 1

2
· 1

3
=

1

6
.

This implies that x = 2
3·2ci , as desired.
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5. As the next step, we shall verify that when two instructions are “glued”
together, the counter values do not change.
Init+Increment. We show that the probabilities of selecting edges 〈s5, s6〉
and 〈s7, s8〉 for π∗ must be x = 2

3 . To see this, consider the Player 2 strategy
σ which selects the vertical edge at state (qk, incj)1. Since from (init)in the
reachability to Taj must be 1

6 , we have that

1

2
· 1

2
· 1

3
+

1

2
· 1

2
· 1

2
· (1− x) +

1

2
· 1

2
· 1

2
· 1

3
=

1

6
,

which implies that x = 2
3 , as desired.

Init+Decrement. We show that at state (qk, decj)in, π∗ must choose the
edge labelled by “= 0.” To see this, suppose the opposite, i.e., π∗ chooses
the edge labelled by “> 0.” The reachability probability to Tbj is

1

2
· 1

2
· 1

3
+

1

2
· 1

2
· 1

2
· (2

3
+

1

3
· x) >

1

6
,

which contradicts (b).
Increment+Increment. The first instruction is lh : cj′ := cj′ + 1, goto
lk, and the second instruction is lk : cj := cj + 1. We show that the proba-
bility of selecting edge 〈s5, s6〉 for π∗ must be 2

3·2cj , and the probability for

edge 〈s7, s8〉 must be x = 2
3·2ci . By (b), from (qh, incj′)2 the reachability

probability to Taj must be 1
6 , which stipulates

1

2
· 1

2
· 2

3 · 2cj
· 1

2
+

1

2
· 1

2
· 1

2
· (1− x) +

1

2
· 1

2
· 1

2
· 1

3
=

1

6
,

yielding that x = 2
3·2cj , as desired.

Increment+Decrement. The first instruction is lh : cj′ := cj′ + 1, goto
lk, and the second instruction is lk : if cj = 0 · · · . If cj > 0 when executing
instruction lk, we show that π∗ must choose the edge labelled by “> 0.” As-
sume that this is not the case, and we immediately have that the probability
to reach Taj is

1

2
· 1

2
· 2

3 · 2cj+1
· 1

2
+

1

2
· 1

6
<

1

6
,

which contradicts (b). Hence, the edge labelled by “> 0” is taken. Then by
(b), from (qh, incj′)2 the probability to reach Taj must be 1

6 , which gives

1

2
· 1

2
· 2

3 · 2cj
· 1

2
+

1

2
· 1

2
· 1

2
· 2

3
+

1

2
· 1

2
· 1

2
· 1

3
· (1− x) +

1

2
· 1

2
· 1

2
· 1

3
=

1

6
,

yielding that the probability of π∗ selecting the edge 〈s13, s14 is x = 2
2cj

.
For the counter i, again by (b), from (qh, incj′)2 the probability to reach Taj
must be 1

6 , which gives

1

2
· 1

2
· 2

3 · 2ci
· 1

2
+

1

2
· 1

2
· 1

2
· 2

3
+

1

2
· 1

2
· 1

2
· (1− x) +

1

2
· 1

2
· 1

2
· 1

3
=

1

6
,
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yielding that x = 2
3·2ci , as desired.

If cj = 0 when executing instruction lk, we have that π∗ must choose the edge
labelled by = 0, by exactly the same argument as for the Init+Decrement
case.
Decrement+Decrement.
Here we verify two cases: the first case is that (qh, decj′)

=0
out is linked with

(qk, decj)in, which is the same as for the Init+Decrement case; the second
case is that (qh, decj′)

>0
out is linked with (q, decj)in, which is the same as for

the Increment+Decrement case.
Decrement+Increment.
Here we verify two cases: the first case is that (qh, decj′)

=0
out is linked with

(qk, incj)in, which is the same as for the Init+Increment case; the second
case is that (qh, decj′)

>0
out is linked with (qh, incj′)in, which is the same as for

the Increment+Increment case.
6. We are now in a position to show the main claim which establishes the

correctness of the construction, namely, that Player 1 has a winning strategy
in G(M) if and only if M does not terminate. We show two directions:
“⇐”. Suppose thatM does not terminate, then consider a Player 1 strategy
π∗ for G(M). We can pick π∗ such that it follows the counter update, i.e.,
π∗ must perform the following:
– For the Init gadget, at state s0, the probability of selecting edge 〈s0, s1〉

is 2
3 , and at state s2, the probability of selecting edge 〈s2, s3〉 is 2

3 .
– For each Increment gadget with index k, if the counter values are c1 and
c2 respectively, then
• 〈s5, s6〉 is chosen with probability 2

3·2cj ;

• 〈s7, s8〉 is chosen with probability 2
3·2ci ;

• 〈s9, s10〉 is chosen with probability 2
3·2cj+1 ; and

• 〈s11, s12〉 is chosen with probability 2
3·2ci .

– For each Decrement gadget with index k, suppose the counter values
are c1 and c2 respectively. Then, if cj = 0, then at state (qk, decj)in,
π∗ selects the edge labelled with “= 0,” and if cj > 0, then at state
(qk, decj)in, π∗ selects the edge labelled with “> 0,” and
• 〈s13, s14〉 is chosen with probability 2

2cj
;

• 〈s15, s16〉 is chosen with probability 2
3·2ci ;

• 〈s17, s18〉 is chosen with probability 2
3·2cj−1 ; and

• 〈s19, s20〉 is chosen with probability 2
3·2ci .

It is not difficult to verify that π achieves the first five objectives. Further-
more, asM does not terminate, under any σ, Tt is reached with probability
1. This is because the only way to reach terminal states a1, b1, a1, a2 or c is
by reaching the Termination gadget.
“⇒”. For the other direction, suppose that there is a winning Player 1 strat-
egy π∗. Then in order to satisfy the first five objectives, π∗ must follow
the counter update, as described above. However, in order to satisfy the last
objective, i.e. reaching Tt with probability one, π∗ must ensure that the prob-
ability to reach terminals a1, b1, a1, a2 and c is zero. This is only possible if
the Terminal gadget is never reached, implying thatM does not terminate.
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B.3 Proof of Theorem 4

We define the set of vectors than can be achieved by Player 1 strategy π in k
steps as

Rπs,k
def
= {y ∈ Rn | ∀σ ∈ Σ .Eπ,σG,s [rew≤k(r)] ≥ y},

where rew≤k(r)(λ)
def
=
∑k
j=0 r(λj), and we let Rs,k

def
=
⋃
π∈Π R

π
s,k. For all s ∈

S, let Xk
s be the k-th iteration of the functional given by the equations from

Theorem 4, starting with X0
s = {x ∈ Rn | x ≤ r(s)}.

Proposition 2. For all k ≥ 0, it is the case that Rs,k = Xk
s .

Proof. We prove the claim by induction on k. The induction hypothesis is

∀s ∈ S .
⋃
π∈Π

Rπs,k−1 = Xk−1
s ,

and we want to show that

∀s ∈ S .
⋃
π∈Π

Rπs,k = Xk
s .

– Base case. Let k = 0. We have that for all s ∈ S and all strategies π ∈ Π,

Rπs,0 = {x ∈ Rn | ∀σ ∈ Σ .Eπ,σG,s [rew≤0(r)] ≥ x}
= {x ∈ Rn |x ≤ r(s)}
= X0

s .

Hence, ∀s ∈ S .
⋃
π∈Π R

π
s,0 = X0

s .
– Induction step. Suppose the claim holds for k − 1, i.e. for all s ∈ S we

have that
⋃
π∈Π R

π
s,k−1 = Xk−1

s . We suppose w.l.o.g. that s has exactly

two successors s1 and s2. Furthermore, for ` ∈ {1, 2} we define π` to be the

strategy π conditioned on picking the edge 〈s, s`〉, i.e. π`(s` ·λ)
def
= π(s ·s` ·λ).

We now distinguish several cases for s ∈ S.

• s ∈ S�. For any π ∈ Π we have that Player 1 picks s1 with some
probability p ∈ [0, 1] and s2 with probability 1− p. Hence in s, Player 1
can achieve all points that can be achieved by some convex combination
of some points in the successors of s. This can be stated formally as

Rπs,k = dwc(
⋃

p∈[0,1]

(p×Rπ
1

s1,k−1 + (1− p)×Rπ
2

s2,k−1) + r(s)). (1)

Further, for any convex sets X` ⊆ Rn for ` ∈ {1, 2}, by the definition of
the convex hull,⋃

p∈[0,1]

(p×X1 + (1− p)×X2) = conv(
⋃
`

X`). (2)
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Now, from the induction hypothesis and the definition of Xk
s , we get

that⋃
π∈Π

Rπs,k

(1)
=
⋃
π∈Π

dwc(
⋃

p∈[0,1]

(p×Rπ
1

s1,k−1 + (1− p)×Rπ
2

s2,k−1) + r(s))

= dwc(
⋃

p∈[0,1]

⋃
π∈Π

(p×Rπ
1

s1,k−1 + (1− p)×Rπ
2

s2,k−1) + r(s))

= dwc(
⋃

p∈[0,1]

(p× (
⋃
π∈Π

Rπ
1

s1,k−1) + (1− p)× (
⋃
π∈Π

Rπ
2

s2,k−1) + r(s)))

(2)
= dwc(conv(

⋃
`∈{1,2}

⋃
π∈Π

Rπ
`

s`,k−1) + r(s))

IH
= dwc(conv(

⋃
`∈{1,2}

Xk−1
s ) + r(s))

def
= Xk

s .

• s ∈ S♦. For any π ∈ Π we have that Player 2 picks s1 with some prob-
ability p ∈ [0, 1] and s2 with probability 1 − p. Hence in s Player 1 can
only achieve points that can be achieved by any convex combination of
some points in the successors of s. This can be stated formally as

Rπs,k = dwc(
⋂

p∈[0,1]

(p×Rπ
1

s1,k−1 + (1− p)×Rπ
2

s2,k−1) + r(s)). (3)

Further, for any sets X` ⊆ Rn for ` ∈ {1, 2},⋂
p∈[0,1]

(p×X1 + (1− p)×X2) =
⋂
`

X`, (4)

which can be justified as follows:
∗ For any x ∈

⋂
p∈[0,1](p ×X1 + (1 − p)×X2), let p be either 1 or 0,

we obtain that x ∈ X1 and x ∈ X2 respectively.
∗ For x ∈ X1 ∩ X2, we have that for all p ∈ [0, 1], px ∈ p × X1 and

(1−p)x ∈ (1−p)×X2, so x = px+(1−p)x ∈ (p×X1+(1−p)×X2).
We now show that ⋃

π∈Π

⋂
`

Rπ
`

s`,k−1 =
⋂
`

⋃
π∈Π

Rπs`,k−1. (5)

∗ ⊆. Take x ∈
⋂
`∈{1,2}R

π`

s`,k−1 for some π ∈ Π. Then for any ` ∈
{1, 2}, x ∈ Rπ`

s`,k−1 ⊆
⋃
π∈Π R

π
s`,k−1. Hence x ∈

⋂
`

⋃
π∈Π R

π
s`,k−1.

∗ ⊇. Take x ∈
⋂
`

⋃
π∈Π R

π
s`,k−1. Therefore, for each ` ∈ {1, 2} have a

strategy π` such that x ∈ Rπ`

s`,k−1. We construct a strategy π from
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π1 and π2 as follows: π(s · s` · λ)
def
= π`(s` · λ) for all `. Then π` = π`,

and hence Rπ
`

s`,k−1 = Rπ`

s`,k−1. Therefore, we have that π satisfies

x ∈
⋂
`∈{1,2}R

π`

s`,k−1 and hence x ∈
⋃
π∈Π

⋂
`R

π`

s`,k−1.

Now, from the induction hypothesis and the definition of Xk
s , we get

that ⋃
π∈Π

Rπs,k
(3),(4)

=
⋃
π∈Π

dwc(
⋂
`

Rπ
`

s`,k−1 + r(s))

= dwc(
⋃
π∈Π

⋂
`

Rπs`,k−1 + r(s))

(5)
= dwc(

⋂
`

⋃
π∈Π

Rπs`,k−1 + r(s))

IH
= dwc(

⋂
`

(Xk−1
s + r(s)))

def
= Xk

s .

• s ∈ S©. We have that s` is picked with probability ∆(〈s, s`〉). Hence
in s Player 1 can achieve all points that can be achieved by the convex
combination with coefficients ∆(〈s, s`〉) of some points in the successors
of s. This can be stated formally as

Rπs,k = dwc(∆(〈s, s1〉)×Rπ
1

s1,k−1 +∆(〈s, s2〉)×Rπ
2

s2,k−1 + r(s)). (6)

Now, from the induction hypothesis and the definition of Xk
s , we get

that⋃
π∈Π

Rπs,k

(6)
=
⋃
π∈Π

dwc((∆(〈s, s1〉)×Rπ
1

s1,k−1 +∆(〈s, s2〉)×Rπ
2

s2,k−1) + r(s))

= dwc(
⋃
π∈Π

(∆(〈s, s1〉)×Rπ
1

s1,k−1 +∆(〈s, s2〉)×Rπ
2

s2,k−1) + r(s))

= dwc(∆(〈s, s1〉)×
⋃
π∈Π

Rπ
1

s1,k−1 +∆(〈s, s2〉)×
⋃
π∈Π

Rπ
2

s2,k−1 + r(s))

IH
= dwc(∆(〈s, s1〉)×Xk−1

s1 +∆(〈s, s2〉)×Xk−1
s2 + r(s))

def
= Xk

s .
ut

Proposition 3. Given a game G, an n-dimensional reward function r, and

ε > 0, after k = |S| + d|S| · ln(ε·(n·M)−1)
ln(1−δ) e iterations of the functional F from

Theorem 4, for any state s ∈ S, the set Xk
s is an ε-approximation of the Pareto

set for r of achievable points at state s, where M = |S| · maxs∈S,i |r(s)i|
δ for

δ = p
|S|
min and pmin being the smallest positive probability in G.
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Proof. From Proposition 2 we know that Xk
s = Rs,k for all k, i.e. the Pareto set

of points achievable by Player 1 in k steps is computed by k iterations of F .
From the stopping game assumption we know that after |S| steps, the game

has terminated with probability at least δ = p
|S|
min, where pmin is the minimum

positive probability in G. Hence, the maximum change to any dimension to any

vector in Xk
s after k steps of the iteration is less than M · (1 − δ)b

k
|S| c, which

is also the maximum change that any strategy can make over a strategy that is
optimal for k steps.

Hence, for ε-optimality after k steps, we need to pick a k such that ε >

n·M · (1−δ)b
k
|S| c. The factor n is because ε-optimality requires that the strategy

achieves a point that is ε-close in each of the n dimensions individually. We get
that

ε > n·M · (1− δ)b
k
|S| c ⇔ ln(ε) > ln(n·M) +

⌊ k
|S|

⌋
· ln(1− δ)

⇔ ln(ε · (n·M)−1)

ln(1− δ)
<
⌊ k
|S|

⌋
⇐ ln(ε · (n·M)−1)

ln(1− δ)
<

k

|S|
− 1

⇐ |S|+ |S| · ln(ε · (n·M)−1)

ln(1− δ)
< k

Set k = |S|+ d|S| · ln(ε·(n·M)−1)
ln(1−δ) e. Note that the Pareto set for ϕ at state s is

defined by

Rs = {y ∈ Rn | ∃π ∈ Π .∀σ ∈ Σ .Eπ,σG,s [rew(r)] ≥ y},

which is the set whose approximation we aim to compute. We have the following:

– For any point x ∈ Rs there is (by definition) a strategy π which achieves x,
i.e. for all σ we have Eπ,σG,s [rew(r)] ≥ x. Above we argued that we can find
a Player 1 strategy π that after k steps achieves a point that differs from x
by at most ε in each dimension. Hence, there is a Player 1 strategy π such
that for all Player 2 strategies σ we have that Eπ,σG,s [rew≤k(r)] ≥ x− ε, which

means that x− ε ∈ Rs,k = Xk
s .

– For any point x ∈ Xk
s = Rs,k, let π be the strategy that ensures x is achieved

in k steps, i.e. for all σ we have Eπ,σG,s [rew≤k(r)] ≥ x. Again, by the above
argument the point x achieved by π in k steps may only change by at most ε
in each dimension by any other strategy. Hence we have Eπ,σG,s [rew(r)] ≥ x−ε
for all σ, and so x− ε ∈ Rs. ut

C Proofs for Section 4

C.1 Nondeterminacy for disjunctive objectives

Theorem 9 (Nondeterminacy). Stochastic games with disjunctive objectives
are in general not determined already for two objectives.
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Proof. Consider the game G with initial state s0 shown below, where the (reach-
ability) objective for Player 1 is to reach state 1 or 2 with probability at least
3
4 .

s0 s2s1
1

2

1

2

1
2

1
2

There does not exist a Player 1 strategy π, which, for any Player 2 strategy σ
achieves this objective. To see this, consider the strategy σ for Player 2 given
by σ(s0s2) = [〈s2, 1〉 7→ 1 − η, 〈s2, 2〉 7→ η], where η = π(s0s1)[〈s1, 1〉], i.e.,
the probability that π selects the edge 〈s1, 1〉 at s1. Note that σ may depend
on π. With this Player 2 strategy, Player 1 may reach both objectives with at
most probability 1

2 , and hence neither of the objectives is satisfied. However, for
every Player 2 strategy σ, there exists a Player 1 strategy π (depending on σ)
to win this game, for example π(s0s1)[〈s1, 1〉] = 0 if σ(s0s2)[〈s2, 1〉] < 1

2 , and
π(s0s1)[〈s1, 1〉] = 1 otherwise. This ensures that the probability to reach one of
the targets is at least 3

4 . ut

C.2 PSPACE-hardness of boolean combinations of objectives

We prove the PSPACE-hardness of the problem of deciding the existence of a
winning strategy for Player 1 to achieve a boolean combination of objectives
by reduction from satisfiability of quantified boolean formula (QBF), which is
known to be PSPACE-complete. Consider QBF with n variables and m clauses

ψ = ∃x1∀x2∃x3 . . . ∀xn . c1 ∧ c2 ∧ · · · ∧ cm,

where each ci = (li1 ∨ li2 ∨ li3) and lij ∈ {x1,¬x1, . . . , xn,¬xn}. We assume that
every clause contains at most one literal for any given variable. The stochastic
game that we use in the reduction is shown in Figure 5. Consider the following
MQ

ϕ =

m∧
i=1

♦Ci ≥
1

22·n
∧ (7)∧

i={1,3,...,n−1}

(♦{pi} ≤ 0 ∨ ♦{ni} ≤ 0) (8)

where set Ci contains state x+j if clause ci of ψ contains literal xj , and state x−j
if ci contains literal ¬xj , for all j.

First observe that in order to win the game, Player 1 has to use a deterministic
strategy. This is ensured by the conjunction in (8), which makes sure that if
Player 1 has a winning strategy, then this strategy has to pick either pi or ni in
state si for all i.

We show that ψ is true if and only if Player 1 has a winning strategy for ϕ.
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x1

p1

x+1
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x−1
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x+2
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pn

x+n

nn

x−n

Fig. 5: Game illustrating PSPACE-hardness. Probabilities in stochastic states
are uniform.

For the “⇒” direction, let us assume there are functions qi : Bi−1 → B for
i ∈ {1, 3, . . . n− 1} such that for any v2, v4 . . . , vn ∈ B the formula c1 ∧ . . . ∧ cm
is satisfied under the assignment ν defined inductively by

ν(xi) =

{
qi(ν(x1), . . . , ν(xi−1)) if i ∈ {1, 3, . . . , n− 1}
vi if i ∈ {2, 4, . . . , n}

This can be directly transformed into a Player 1 strategy in the game from
Figure 5 where ?i ∈ {pi, ni}, b(pi) = 1 and b(ni) = 0:

π(x1 ?1 . . . xi−1?i−1) =

{
pi if qi(b(?1), . . . , b(?i−1)) = 1

ni otherwise.

Let σ be an arbitrary strategy for Player 2. Let us consider a path x1?1. . . xn?n
such that, for every i ∈ {1, 3, . . . n−1} we have π(x1 ?1 . . . xi) = ?i, and for every
i ∈ {2, 4, . . . n} we have σ(x1 ?1 . . . xi)(?i) ≥ 0.5. Note that such a path always
exsits since Player 2 has exactly two choices in every state it controls. By the
properties of the functions qi and by the construction of π we have that the
valuation µ which to xi assigns b(?i) satisfies every c1 ∧ . . . ∧ cm. Fix cj for
1 ≤ j ≤ m, there must be a literal which makes cj satisfied under µ, let xk be
such a variable. By the definition of the game we have that the state x+k (resp.
x−k ) is in the set Cj if cj contains xk (resp. ¬xk). Thus, Cj is reached at least
with probability

( k∏
i=1

1

2

)
·
( ∏
i∈{2,4,...e(k)}

σ(x1 ?1 . . . xi)(?i)
)
≥ 1

22·k
≥ 1

22·n

which is the probability of the path x1 ?1 . . . xkpkx
+
k (resp. x1 ?1 . . . xknkx

−
k ),

where e(k) = k if k is even and e(k) = k − 1 if k is odd.

The other direction “⇐” can be proved by directly constructing assignment
functions qi and q′i from the winning strategy π for Player 1. This can be achieved
because the winning strategy must be deterministic, as discussed above. ut
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Fig. 6: Game illustrating NP-hardness. State label “i, j” corresponds to vposi

(resp. vnegi ) if the ith variable in clause cj is positive (resp. negative).

C.3 NP-hardness of disjunctive objectives

Lemma 2. The problem of deciding the existence of the winning Player 1 strat-
egy in a stochastic game with a disjunctive objective is NP-hard.

Proof. We reduce 3SAT to the problem. Let Ψ be a 3CNF formula with clauses
c1, . . . , cn and variables x1, . . . , xm. We construct the game shown in Figure 6,
where the terminal states are vposi and vnegi for all 1 ≤ i ≤ m, corresponding
to the valuations of the variables. We further construct 2m target sets, each
a singleton containing either vposi or vnegi . We claim that there is a satisfying
assignment to Ψ if and only if there is a strategy π which reaches at least one of
the target sets with probability at least q = 1

m+1 + 1
m+1 ·

1
n ·

1
3 .

For the “⇒” direction, given a satisfying assignment µ, we define a strategy
π that goes go to vposi from vdeci if and only if µ(xi) = 1 and to vnegi otherwise,
for all i. Consider any strategy σ for Player 2, and let j be such that σ picks
uj with probability at least 1

n in wcl (such j surely exists). There must be a
literal in cj which is satisfied under µ. Let xi be a variable in this literal. If the
literal is of the form xi, then we get that the state vposi is reached on a path
winv

dec
i vposi with probability 1

m+1 and on a path winwclujv
pos
i with probability

at least 1
m+1 ·

1
n ·

1
3 , and so the objective is satisfied. Similarly, if the literal is of

the form ¬xi, we get the same line of argument, replacing vposi with vnegi .

For the “⇐” direction, we assume that π is memoryless deterministic (see The-
orem 7). Define a valuation µ by µ(xi) = 1 if and only if vposi is reached from vdeci .
Let cj be an arbitrary clause in Ψ , and consider a strategy σ which goes deter-
ministically to uj in wcl. There must be a target set T satisfying Prπ,σwin

(♦T ) ≥ q.
Fix one such set T , and suppose that T = {vposi }. This set can be reached by
the path winv

dec
i vposi and the paths starting with winwcl. Since the first path

has probability only 1
m+1 , the other paths must have a non-zero probability. But

since σ is deterministic and selects uj , there must be a path winwclujv
pos
i , which

means that the literal xi is in cj under µ. Since this literal is true under µ, cj is
satisfied. For T = {vnegi } we proceed similarly. ut
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C.4 Multiobjective queries in CNF

We present the proof of Theorem 6.
By qi and ui we denote the vectors (qi,1, . . . qi,m) and (ui,1, . . . ui,m). Fix

π ∈ Π. For the “⇒” direction, for all 1 ≤ i ≤ n define Rπs [i]
def
= {y ∈ Rm±∞ | ∃σ ∈

Σ .Eπ,σG,s [rew(qi)] = y}. Fix ε > 0 and 1 ≤ i ≤ n. Because π achieves ψ it

must also achieve
∨m
j=1 qi,j ≥ ui,j . Hence, for every y ∈ up(Rπs [i]) there is a j

satisfying yj > ui,j − ε
2 , and so ui − ε

2 6∈ R
π
s [i]. By Lemma 1, since ui − ε is not

in the closure of up(Rπs [i]), and since Rπs [i] satisfies the conditions of the lemma,
we can obtain a vector xi for up(Rπs [i]) and ui− ε. Fix any strategy σ. We have
Eπ,σG,s [rew(qi)] ∈ up(Rπs ), and it follows that

Eπ,σG,s [rew(ri)] =

∫
λ∈ΩG,s

∞∑
k=0

m∑
j=1

xi,j · qi,j(λk) dPrπ,σG,s
(∗)
=

∫
λ∈ΩG,s

m∑
j=1

xi,j ·
∞∑
k=0

qi,j(λk) dPrπ,σG,s

=

m∑
j=1

xi,j ·
∫

ΩG,s

∞∑
k=0

qi,j dPrπ,σG,s = xi · Eπ,σG,s [rew(qi)] ≥ xi · (ui − ε) = vi.

The equality marked with (∗) holds because
∑∞
k=0

∑m
j=1 xi,j ·qi,j(λk) =

∑m
j=1 xi,j ·∑∞

k=0 qi,j(λk) for almost every λ; this is true because for every j we either have
xi,j = 0, or the sum

∑∞
k=0 qi,j(λk) is strictly greater than −∞ for almost all λ.

For the “⇐” direction, for each ε > 0 we have non-zero vectors x1, . . . ,xn ∈
Rm≥0 such that π achieves ϕ. Assume for the sake of contradiction that this π
does not achieve ψ. Then there exists a Player 2 strategy σ and an index i such
that for all j we have that Eπ,σG,s [rew(qi,j)] = ui,j − τj < ui,j for some τj > 0
(and possibly τj = ∞). Now fix such a strategy σ, a corresponding index i,

and let ε =
minj τj

2 < ∞. We can pick xi such that π achieves ϕ, and hence
Eπ,σG,s [rew(ri)] ≥ xi · (ui− ε). Consequently Eπ,σG,s [rew(ri)] = xi ·Eπ,σG,s [rew(qi)] by

the same argument as above. Thus xi ·Eπ,σG,s [rew(qi)] ≥ xi · (ui−ε), and because
xi is non-zero and has no negative components, there must be a j such that
Eπ,σG,s [rew(qi,j)] ≥ ui,j − ε > uu,j − τj = Eπ,σG,s [rew(qi,j)], a contradiction. ut

C.5 Memoryless deterministic strategies for DQs

We present the proof of Theorem 7.
Assume that there exists a strategy achieving the DQ ϕ =

∨m
j=1 rj ≥ vj .

Then by Theorem 6 we know that for all ε > 0 there exists a winning strategy
πε which achieves the single objective φε = ∀σ ∈ Σ .Eπε,σ

G,s [xε · rew(r)] ≥ xε ·
(v− ε) for some xε ∈ Rm. We can assume πε is memoryless deterministic (MD),
because such strategies suffice to achieve a single-objective expected total reward
in stochastic games [11]. Define a (countable) set Γ = {k−1 | k ∈ N}. We know
that for every ε ∈ Γ there exists an MD strategy πε achieving φε. Because the
number of MD strategies if finite, there must exists some π∗, which is MD and
winning for infinitely many ε ∈ Γ . We prove that this π∗ actually achieves φε
for all ε > 0. Assume for a contradiction that there is some δ > 0 such that

∀xδ ∈ Rm≥0 .∃σ ∈ Σ .Eπ
∗,σ
G,s [xδ · rew(r)] < xδ · (v − δ). (9)
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Pick ε ∈ Γ such that ε < δ and

∃xε ∈ Rm≥0 .∀σ ∈ Σ .Eπ
∗,σ
G,s [xε · rew(r)] ≥ xε · (v − ε).

But (v − ε) > (v − δ), and hence

∀σ ∈ Σ .Eπ
∗,σ
G,s [xε · rew(r)] > xε · (v − δ),

which contradicts (9). ut

C.6 Extensions of separating hyperplane theorem

Proof of Lemma 1 Let I ⊆ {1, . . . ,m} be the set of indices such that all
w ∈W satisfy sgn(wi) ≤ 0. Let U be the closure of up(W ) ∩ Rm.

If U = ∅, then we define x by xi = 0 if i ∈ I and xi = 1 otherwise. For any
w ∈W , we have

w · x =
∑
i∈I

wi · xi +
∑
i 6∈I

wi · xi

where the left summand is 0. We argue that the right summand must be positive.
Suppose otherwise, then it must be the case that all wi for i 6∈ I are real numbers.
But then we can replace any −∞ in w by any real number, and get a vector
which by the definition of U lies in U , contradicting the property that U = ∅.

Suppose U 6= ∅. First we argue that U is convex. Let a, b ∈ U , and let
t ∈ (0, 1), we show that c := ta + (1 − t)b ∈ U . Let ā, b̄ be vectors with all
components non-negative such that a− ā and b− b̄ are in W . Then by convexity
of W the vector

t · (a− ā) + (1− t) · (b− b̄) = c− (t · ā+ (1− t)b̄)

is in W , and since we have c− (t · ā+ (1− t)b̄) ≤ c, we get that c ∈ U .
Let τ > 0 be the smallest number such that z + τ lies in the closure of U .

Denote z̄ := z + τ . By the separating hyperplane theorem [14], there is some
non-zero vector y ∈ Rm, s.t. for all w ∈ U , w · y ≥ z̄ · y.

We show that the vector y satisfies the condition 1, i.e. that all components of
y are non-negative. Assume for the sake of contradiction that for some 1 ≤ j ≤ m
we have yj < 0. Let w be any point from U . Let d = w · y− z̄ · y, and let w′ be
the vector which is obtained from w by replacing jth coordinate with wj + d+1

−yj .

Since d+1
−yj is positive and U is upwards closed in Rm±∞, we have w′ ∈ U . So

w′ · y =
∑
h

w′h · yh =
d+ 1

−yj
· yj +

∑
h

wh · yh

= −(d+ 1) +w · y = z̄ · y − 1,

which is a contradiction, since z̄ · y ≤ w′ · y.
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Let ε := z̄ · y − z · y, we have ε > 0. We define x by putting xi = yi for
i ∈ I, and xi = yi + ε

|
∑m

j=1 zj |+1 for i 6∈ I. The vector x obviously satisfies the

condition 1.
We show that x satisfies the condition 2. Let L ⊆ {1, . . . ,m} be the set of

indices such that l ∈ L if and only if there is u ∈ W with ul = −∞. Note
that L ⊆ I. Since xl = yl for all l ∈ L, it suffices to show that yl = 0 for all
l ∈ L. If L = ∅, there is nothing we need to prove. Otherwise, because W is
convex, there is a vector u ∈W with ul = −∞ for all l ∈ L, and so for arbitrary
α ∈ Rm the set U contains the vector uα defined by uαl = ul if l ∈ L and uαl = α
otherwise. Then limα→−∞ x · uα = −∞ if yl > 0 for any l ∈ L, contradicting
that y · uα ≥ y · z for all α.

Finally, we prove the condition 3. Let w ∈ W . The product w · x is defined
by the condition 2. Also,

w · x =
∑
i∈I

wi · xi +
∑
i6∈I

wi · xi

=
∑
i∈I

wi · yi +
∑
i 6∈I

wi · (yi +
ε

|
∑m
j=1 zj |+ 1

)

= w · y +
∑
i 6∈I

wi ·
ε

|
∑m
j=1 zj |+ 1

≥ w · y ≥ z̄ · y = z · y + ε

=
(∑
i∈I

zi · xi +
∑
i6∈I

zi · (xi −
ε

|
∑m
j=1 zj |+ 1

)
)

+ ε

= z · x−
(∑
i6∈I

zi
ε

|
∑m
j=1 zj |+ 1

)
+ ε

≥ z · x.

where the first inequality follows because all wi are positive for i 6∈ I.

Extension of Lemma 1 to boundary points By a modification of the proof
of Lemma 1 we can obtain the following lemma, which establishes an existence
of separating hyperplanes for points on a boundary of some set in Euclidean
space.

Lemma 3. Let W ⊆ Rm be a convex set satisfying that for all j, whenever
x ∈W and sgn(xj) ≥ 0 (resp. sgn(xj) ≤ 0), then sgn(yj) ≥ 0 (resp. sgn(yj) ≤ 0)
for all y ∈W . Let z ∈ Rm be a point which does not lie in the interior of up(W ).
Then there is a non-zero vector x ∈ Rm such that the following conditions hold:

1′. for all 1 ≤ j ≤ m we have xj ≥ 0;
3′. for all w ∈W we have w · x ≥ z · x.

Proof. We can obtain the proof by the following modifications of the proof of
Lemma 1: Since z possibly lies on the boundary of up(W ), we might get τ = 0
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and so ε = 0. Nevertheless this does not cause any problems since the part of
the proof proving condition 2 of Lemma 1 will be omitted, and the remaining
parts, proving conditions 1 and 3 carry over without any change.

C.7 Pareto set approximation

In this section we provide the proof of Theorem 8.
First, observe that for stopping games, the maximum expected reward is

a real number (i.e., M ∈ R). Hence by Theorem 6 and Lemma 3 (see Ap-
pendix C.6), we have that a DQ ϕ =

∨m
j=1 rj ≥ vj is achievable if and only if

there exists π and x ∈ Rm≥0 such that ∀σ ∈ Σ .Eπ,σG,s [x · rew(r)] ≥ x · v, which is
a single-objective query decidable by a NP∩coNP oracle.

Given a finite set X ⊆ Rm, we can compute values dx = supπ infσ Eπ,σG,s [x ·
rew(r)] for all x ∈ X, and define UX =

⋃
x∈X{p | x · p ≤ dx}. It is not difficult

to see that UX yields an under-approximation of achievable points.
Let τ = ε

2·m2·(M+1) . We argue that when we let X be the set of all non-

zero vectors x such that ‖x‖ = 1, and where all xi are of the form τ · ki for
some ki ∈ N, we obtain an ε-approximation of the Pareto set by taking all
Pareto points on UX . We show that, for any point in the Pareto set, there is
an ε-close point in UX . Consider any point p in the Pareto set and let π be
a strategy which achieves this point. Note that for some y ∈ Rm≥0 such that
‖y‖ = 1 we have p · y = dy, since otherwise p would not be a Pareto point.
Let x = argminz∈X‖z − y‖ be a vector in X, which is closest to y. Note that
dy − dx ≤ m ·M · τ and thus dx ≥ dy −m ·M · τ . For the point q = p− ε

m , we
have q · x ≤ dx because

q · x = p · x− ε

m
· x ≤ p · y + p · τ − (

ε

m
· y − ε

m
· τ ) ≤ dy+M · τ− ε

m
+m · τ

≤ dy +m · (M + 1) · τ − ε

m
≤ dy −m ·M · τ ≤ dx,

and so q ∈ UX . Since ‖p − q‖ ≤ ε, this concludes the proof. The result follows

from the fact that |X| ≤ ( 2·m2·(M+1)
ε )m−1. The other direction can be proved

similarly. ut
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