(Non-)Succinctness of Uniform Interpolants of General Terminologies in the Description Logic $\mathcal{E} \mathcal{L}^{\star \pi}$

Nadeschda Nikitina ${ }^{\text {a,** }}$, Sebastian Rudolph ${ }^{\text {b }}$
${ }^{a}$ Oxford University, Department of Computer Science Wolfson Building, Parks Road, Oxford, OX1 3QD, UK
Tel.: +44 (1865) 610747, Fax: +44 (1865) 283531
${ }^{b}$ Technische Universität Dresden, Fakultät Informatik Nöthnitzer Straße 46, Dresden, 01062, Germany
Tel.: +49 (351) 463 38516, Fax: +49 (351) 46332827

Abstract

$\mathcal{E} \mathcal{L}$ is a popular description logic, used as a core formalism in large existing knowledge bases. Uniform interpolants of knowledge bases are of high interest, e.g. in scenarios where a knowledge base is supposed to be partially reused. However, to the best of our knowledge no procedure has yet been proposed that computes uniform $\mathcal{E} \mathcal{L}$ interpolants of general $\mathcal{E L}$ terminologies. Up to now, also the bound on the size of uniform $\mathcal{E} \mathcal{L}$ interpolants has remained unknown. In this article, we propose an approach to computing a finite uniform interpolant for a general $\mathcal{E L}$ terminology if it exists. Further, we show that, if such a finite uniform $\mathcal{E} \mathcal{L}$ interpolant exists, then there exists one that is at most triple exponential in the size of the original TBox, and that, in the worst-case, no smaller interpolants exist, thereby establishing tight worst-case bounds on their size.

Keywords: Ontologies, Knowledge Representation, Automated Reasoning, Description Logis, Uniform Interpolation, Forgetting, $\mathcal{E} \mathcal{L}$

[^0]
1. Introduction

With the wide-spread adoption of ontological modeling by means of the W3Cspecified OWL Web Ontology Language [2], description logics (DLs, [3, 4]) have developed into one of the most popular family of formalisms employed for knowledge representation and reasoning [5, 6, 7, 8]. For application scenarios where scalability of reasoning is of utmost importance, specific tractable sublanguages (the so-called profiles [9]) of OWL have been put into place, among them OWL 2 EL which in turn is based on DLs of the $\mathcal{E} \mathcal{L}$ family [10, 11].

In view of the practical deployment of OWL and its profiles [12, 13, 14], nonstandard reasoning services for supporting modeling activities gain in importance. An example of such reasoning services supporting knowledge engineers in different tasks is that of uniform interpolation: given a theory using a certain vocabulary, and a subset of "relevant terms" of that vocabulary, find a theory (referred to as a uniform interpolant, short: UI) that uses only the relevant terms and gives rise to the same consequences (expressible via relevant terms) as the original theory. Intuitively, this provides a view on the ontology where all irrelevant (asserted as well as implied) statements have been filtered out.

Uniform interpolation has many applications within ontology engineering. For instance, it can help ontology engineers understand existing ontological specifications by visualizing implicit dependencies between relevant concepts and roles, as used, for instance, for interactive ontology revision [15]. In particular for understanding and developing complex knowledge bases, e.g., those consisting of general concept inclusions (GCIs), appropriate tool support of this kind would be beneficial. Another application of uniform interpolation is ontology reuse: given an ontology that is to be reused in a different scenario, most likely not all aspects of this ontology are relevant to the new usage requirements. In combination with module extraction, uniform interpolation can be used to reduce the amount of irrelevant information within an ontology employed in a new context.

For DL-Lite, the problem of uniform interpolation has been investigated [16, 17] and a tight exponential bound on the size of uniform interpolants has been shown. Lutz and Wolter [18] propose an approach to uniform interpolation in expressive description logics such as $\mathcal{A} \mathcal{L C}$ featuring general terminologies showing a tight triple-exponential bound on the size of uniform interpolants. For the lightweight description $\operatorname{logic} \mathcal{E} \mathcal{L}$, the problem of uniform interpolation has, however, not been solved. To the best of our knowledge, the only existing approach [19] to uniform interpolation in $\mathcal{E} \mathcal{L}$ is restricted to terminologies containing each concept symbol at most once on the left-hand side of concept inclusions and ad-
ditionally satisfying particular acyclicity conditions which are sufficient, but not necessary for the existence of a uniform interpolant. Recently, Lutz, Seylan and Wolter [20] proposed an ExpTiME procedure for deciding, whether a finite uniform $\mathcal{E} \mathcal{L}$ interpolant exists for a particular general terminology and a particular set of relevant terms. However, the authors do not address the actual computation of such a uniform interpolant. Up to now, also the bounds on the size of uniform $\mathcal{E} \mathcal{L}$ interpolants have remained unknown.

In this paper, we propose a worst-case-optimal approach to computing a finite uniform $\mathcal{E} \mathcal{L}$ interpolant for a general terminology. We compute uniform interpolants by rewriting the terminology, i.e., exchanging explicitly given axioms by other axioms which are logically entailed. Since our rewriting approach operates on the syntactic structure of terminologies, the task can be significantly facilitated by converting the terminology into a simplified form in a semantics-preserving way. For this purpose, we make use of a normalization strategy, wherein fresh vocabulary elements are introduced in order to obtain a syntactically simple terminology that provides for vocabulary elements finite sets of so-called subsumees and subsumers. We show via a proof-theoretic analysis that this representation does indeed capture all consequences of the initial terminology expressed using the set of relevant terms.

This specific normalized form can then be transformed into regular tree grammars, whose corresponding tree languages are used to represent (possibly infinite) sets of consequences. We show that certain finite subsets of the languages generated by these grammars can be transformed into a uniform $\mathcal{E L}$ interpolant of at most triple exponential size, if such a finite uniform $\mathcal{E} \mathcal{L}$ interpolant exists for the given terminology and a set of terms. Further, we show that, in the worst-case, no shorter interpolants exist, thereby establishing tight bounds on the size of uniform interpolants in $\mathcal{E} \mathcal{L}$.

The paper is structured as follows: In Section 2, we recall the necessary preliminaries on $\mathcal{E} \mathcal{L}$ and regular tree languages/grammars. In Section 3, we introduce a calculus for deriving general subsumptions in $\mathcal{E} \mathcal{L}$ terminologies, which is used as a major tool in the proofs of this work. Section 4 formally introduces the notion of inseparability and defines the task of uniform interpolation. Section 5 demonstrates that the smallest uniform interpolants in $\mathcal{E} \mathcal{L}$ can be triple exponential in the size of the original knowledge base. In the first part of Section 6, we show that applying flattening to terminologies simplifies tracking of entailed subsumption dependencies. In Section 6.2, we introduce regular tree grammars representing subsumees and subsumers of concept symbols, which are the basis for computing uniform $\mathcal{E} \mathcal{L}$ interpolants as shown in Section 6.3. In the same section, we
also show the upper bound on the size of uniform interpolants. After giving an overview of related work in Section 7, we summarize the contributions in Section 8 and discuss some ideas for future work. This is a revised and extended version of our previous paper [1], containing a more detailed argumentation, examples and the full proofs.

2. Preliminaries

In this section, we formally introduce the description $\operatorname{logic} \mathcal{E} \mathcal{L}$, and recall some of its well-known properties. Furthermore, we introduce tree grammars, which we will later use as a formal tool to represent infinite sets of $\mathcal{E} \mathcal{L}$ concept expressions.

2.1. The Description Logic $\mathcal{E} \mathcal{L}$

Let N_{C} and N_{R} be countably infinite and mutually disjoint sets called concept symbols and role symbols, respectively. $\mathcal{E} \mathcal{L}$ concepts C are defined by

$$
C::=A|\top| C \sqcap C \mid \exists r . C
$$

where A and r range over N_{C} and N_{R}, respectively. In the following, we use symbols A, B to denote concept symbols (i.e., concepts from N_{C}) or \top and C, D, E to denote arbitrary concepts. We use the term simple concept to refer to a simpler form of $\mathcal{E} \mathcal{L}$ concepts defined by $C_{s}::=A \mid \exists r . A$, where A and r range over $N_{C} \cup\{T\}$ and N_{R}, respectively.

A terminology or TBox consists of concept inclusion axioms $C \sqsubseteq D$ and concept equivalence axioms $C \equiv D$, the latter used as a shorthand for the mutual inclusion $C \sqsubseteq D$ and $D \sqsubseteq C .{ }^{1}$ The signature of an $\mathcal{E} \mathcal{L}$ concept C, an axiom α or a TBox \mathcal{T}, denoted by $\operatorname{sig}(C), \operatorname{sig}(\alpha)$ or $\operatorname{sig}(\mathcal{T})$, respectively, is the set of concept and role symbols occurring in it. To distinguish between the set of concept symbols and the set of role symbols, we use $\operatorname{sig}_{C}(\cdot)$ and $\operatorname{sig}_{R}(\cdot)$, respectively. Further, we use $\operatorname{sub}(\mathcal{T})$ to denote the set of all subformulae of concepts in \mathcal{T}.

For a concept C, let the role depth of C (denoted by $d(C)$) be the maximal nesting depth of existential restrictions within C. For instance, $d(\exists r .(\exists s . A \sqcap B) \sqcap$

[^1]$\exists s . B)=2$. For a TBox \mathcal{T}, the role depth is given by $d(\mathcal{T})=\max \{d(C) \mid$ $C \in \operatorname{sub}(\mathcal{T})\}$.

Next, we recall the semantics of the DL constructs introduced above, which is defined by the means of interpretations. An interpretation \mathcal{I} is given by a set $\Delta^{\mathcal{I}}$, called the domain, and an interpretation function ${ }^{\mathcal{I}}$ assigning to each concept $A \in N_{C}$ a subset $A^{\mathcal{I}}$ of $\Delta^{\mathcal{I}}$ and to each role $r \in N_{R}$ a subset $r^{\mathcal{I}}$ of $\Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$. The interpretation of T is fixed to $\Delta^{\mathcal{I}}$. The interpretation of arbitrary $\mathcal{E} \mathcal{L}$ concepts is defined inductively via $(C \sqcap D)^{\mathcal{I}}=C^{\mathcal{I}} \cap D^{\mathcal{I}}$ and $(\exists r . C)^{\mathcal{I}}=\{x \mid(x, y) \in$ $r^{\mathcal{I}}$ and $y \in C^{\mathcal{I}}$ for some $\left.y\right\}$. An interpretation \mathcal{I} satisfies an axiom $C \sqsubseteq D$ if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}} . \mathcal{I}$ is a model of a TBox \mathcal{T}, if it satisfies all axioms in \mathcal{T}. We say that \mathcal{T} entails an axiom α (in symbols, $\mathcal{T} \models \alpha$), if α is satisfied by all models of \mathcal{T}. The deductive closure of a TBox \mathcal{T} is the set of all axioms entailed by \mathcal{T}. For two arbitrary $\mathcal{E L}$ concepts C, D such that $\mathcal{T} \models C \sqsubseteq D$, we call C a subsumee of D and D a subsumer of C.

2.2. Model-Theoretic Properties of $\mathcal{E L}$ Concepts

In the following, we provide some results concerning model-theoretic properties of $\mathcal{E} \mathcal{L}$ concept expressions, which are essentially common knowledge. Nevertheless, to make the paper self-contained, we include the proofs in the appendix. We first define pointed interpretations as well as homomorphisms between them. Moreover we define the notion of a characteristic interpretation of an $\mathcal{E} \mathcal{L}$ concept expression. Intuitively, a concept's characteristic interpretation describes a partial model with one distinguished element which represents necessary and sufficient conditions for a domain element to be an instance of this concept.

Definition 1. A pointed interpretation is a pair (\mathcal{I}, x) with $x \in \Delta^{\mathcal{I}}$. Given two pointed interpretations $\left(\mathcal{I}_{1}, x_{1}\right)$ and $\left(\mathcal{I}_{2}, x_{2}\right)$, a homomorphism from $\left(\mathcal{I}_{1}, x_{1}\right)$ to $\left(\mathcal{I}_{2}, x_{2}\right)$ is a mapping $\varphi: \Delta^{\mathcal{I}_{1}} \rightarrow \Delta^{\mathcal{I}_{2}}$ such that

- $\varphi\left(x_{1}\right)=x_{2}$,
- $x \in A^{\mathcal{I}_{1}}$ implies $\varphi(x) \in A^{\mathcal{I}_{2}}$ for all $A \in N_{C}$,
- $(x, y) \in r^{\mathcal{I}_{1}}$ implies $(\varphi(x), \varphi(y)) \in r^{\mathcal{I}_{2}}$ for all $r \in N_{R}$.

Given an $\mathcal{E} \mathcal{L}$ concept expression C, we define its characteristic pointed interpretation $\left(\mathcal{I}_{C}, x_{C}\right)$ inductively over the structure of C as follows:

- For $A \in N_{C} \cup\{T\}$ we let $\Delta^{\mathcal{I}_{A}}=\left\{x_{A}\right\}$ with

$$
\begin{aligned}
& \quad-A^{\mathcal{I}_{A}}=\left\{x_{A}\right\}, \\
& \quad-B^{\mathcal{I}_{A}}=\emptyset \text { for all } B \in N_{C} \backslash\{A\} \text {, and } \\
& \quad-r^{\mathcal{I}_{A}}=\emptyset \text { for all } r \in N_{R} . \\
& \text { - } \\
& \text { For } C=C_{1} \sqcap C_{2} \text {, we define } \Delta^{\mathcal{I}_{C}}=\left\{x_{C}\right\} \cup \bigcup_{\iota \in\{1,2\}}\left(\Delta^{\mathcal{I}_{C_{\iota}}} \backslash\left\{x_{C_{\iota}}\right\}\right) \times\{\iota\} \\
& \text { with } \\
& \quad-A^{\mathcal{I}_{C}}=\left\{x_{C} \mid x_{C_{1}} \in A^{\mathcal{I}_{C_{1}}} \text { or } x_{C_{2}} \in A^{\mathcal{I}_{C_{2}}}\right\} \cup \bigcup_{\iota \in\{1,2\}}\left(A^{\mathcal{I}_{C_{\iota}}} \backslash\left\{x_{C_{\iota}}\right\}\right) \times \\
& \quad\{\iota\} \text { for all } A \in N_{C}, \text { and } \\
& \quad-r^{\mathcal{I}_{C}}=\left\{\left(x_{C},(y, \iota)\right) \mid\left(x_{C_{\iota}}, y\right) \in r^{\mathcal{I}_{C_{\iota}}}\right\} \cup \bigcup_{\iota \in\{1,2\}}\left\{\left((y, \iota),\left(y^{\prime}, \iota\right)\right) \mid\right. \\
& \\
& \left.\quad\left(y, y^{\prime}\right) \in r^{\mathcal{I}_{C_{\iota}}}, y \neq x_{C_{\iota}}\right\} \text { for all } r \in N_{R} . \\
& \text { - For } C=\exists r . C^{\prime}, \text { we define } \Delta^{\mathcal{I}_{C}}=\left\{x_{C}\right\} \cup \Delta^{\mathcal{I}_{C^{\prime}}} \text { with } \\
& \quad-A^{\mathcal{I}_{C}}=A^{\mathcal{I}_{C^{\prime}}} \text { for all } A \in N_{C}, \text { and } \\
& \quad-\left(r^{\prime}\right)^{\mathcal{I}_{C}}=\left\{\left(x_{C}, x_{C^{\prime}}\right) \mid r^{\prime}=r\right\} \cup\left(r^{\prime}\right)^{\mathcal{I}_{C^{\prime}}} \text { for all } r^{\prime} \in N_{R .} .
\end{aligned}
$$

The subsequent lemma shows that characteristic interpretations indeed characterize $\mathcal{E} \mathcal{L}$ concept membership via the existence of appropriate homomorphisms.

Lemma 1 (structurality of validity of $\mathcal{E} \mathcal{L}$ concepts). For any $\mathcal{E} \mathcal{L}$ concept expression C and any interpretation $\mathcal{I}=\left(\Delta^{\mathcal{I}},,^{\mathcal{I}}\right)$ and $x \in \Delta^{\mathcal{I}}$ it holds that $x \in C^{\mathcal{I}}$ if and only if there is a homomorphism from $\left(\mathcal{I}_{C}, x_{C}\right)$ to (\mathcal{I}, x).

The next lemma shows that $\mathcal{E} \mathcal{L}$ concept subsumption in the absence of terminological background knowledge can as well be characterized via homomorphisms between characteristic interpretations.

Lemma 2 (Structurality of $\mathcal{E} \mathcal{L}$ concept subsumption). Let C and C^{\prime} be two $\mathcal{E} \mathcal{L}$ concept expressions. Then $\emptyset \models C \sqsubseteq C^{\prime}$ if and only if there is a homomorphism from $\left(\mathcal{I}_{C}^{\prime}, x_{C}^{\prime}\right)$ to $\left(\mathcal{I}_{C}, x_{C}\right)$.

The proofs of both lemmas can be found in Appendix A.

2.3. Regular Tree Grammars

We briefly recall the basics of tree languages and regular tree grammars. A ranked alphabet is a pair (\mathcal{F}, Arity) where \mathcal{F} is a finite set and Arity is a mapping from \mathcal{F} into \mathbb{N}. We use superscripts to denote the arity >0 of alphabet symbols, e.g., $f^{2}\left(g^{1}(a), a\right)$. The set of ground terms over the alphabet \mathcal{F} (which are also
simply referred to as trees) is denoted by $T(\mathcal{F})$. Let \mathcal{X}_{n} be a set of n variables. Then, $T\left(\mathcal{F}, \mathcal{X}_{n}\right)$ denotes the set of terms over the alphabet \mathcal{F} and the set of variables \mathcal{X}_{n}. A term $C \in T\left(\mathcal{F}, \mathcal{X}_{n}\right)$ containing each variable from \mathcal{X}_{n} at most once is called a context.

Example 1. Let $\mathcal{F}=\left\{f^{2}, g^{1}\right.$,a\} with non-zero arities of symbols denoted by the subscripts and X, Y two variables. Terms $f^{2}\left(g^{1}(a), X\right), f^{2}\left(g^{1}(Y), X\right)$ and $f^{2}(Y, X)$ are contexts obtained by replacing terminal symbols within the term $f^{2}\left(g^{1}(a), a\right)$ with a variable. The term $f^{2}\left(g^{1}(X), X\right)$ is not a context, since it contains the variable X more than once.

A regular tree grammar $G=(S, \mathcal{N}, \mathcal{F}, R)$ is composed of a start symbol S, a set \mathcal{N} of non-terminal symbols (non-terminal symbols have arity 0) with $S \in \mathcal{N}$, a ranked alphabet \mathcal{F} of terminal symbols with a fixed arity such that $\mathcal{F} \cap \mathcal{N}=\emptyset$, and a set R of derivation rules of the form $N \rightarrow \beta$ where N is a non-terminal from \mathcal{N} and β is a term from $T(\mathcal{F} \cup \mathcal{N})$. The ranked alphabet $\mathcal{F} \cup \mathcal{N}$ is considered to be disjoint from the set of variables \mathcal{X}_{n}. Given a regular tree grammar $G=(S, \mathcal{N}, \mathcal{F}, R)$, the derivation relation \rightarrow_{G} associated to G is a relation on terms from $T(\mathcal{F} \cup \mathcal{N})$ such that $s \rightarrow_{G} t$ if and only if there is a rule $N \rightarrow \alpha \in R$ and there is a context C such that $s=C[N / X]$ and $t=C[\alpha / X]$, where X is a variable from \mathcal{X}_{n}. The subset of $T(\mathcal{F} \cup \mathcal{N})$ which can be generated by successive derivations starting with the start symbol is denoted by $L_{u}(G)=$ $\left\{s \in T(\mathcal{F} \cup \mathcal{N}) \mid S \rightarrow_{G}^{+} s\right\}$ where \rightarrow_{G}^{+}is the transitive closure of \rightarrow_{G}. We omit the subscript G when the grammar G is clear from the context. The language generated by G denoted by $L(G)=T(\mathcal{F}) \cap L_{u}(G)$. For the purpose of this paper, we also consider commutative associative closure $L_{u}^{*}(G)$ and $L^{*}(G)$ of $L_{u}(G)$ and $L(G)$, respectively.

Example 2. Let $G=\left(A,\{A, B\},\left\{f^{2}, g^{1}, a, b\right\}, R\right)$ with R given by the following derivation rules:

- $A \rightarrow f^{2}(B, A) \mid a$
- $B \rightarrow g^{1}(A) \mid b$

Then, $f^{2}\left(g^{1}(a), a\right) \in L(G)$, since $A \rightarrow f^{2}(B, A) \rightarrow f^{2}(B, a) \rightarrow f^{2}\left(g^{1}(A), a\right) \rightarrow$ $f^{2}\left(g^{1}(a), a\right)$. While $f^{2}\left(a, g^{1}(a)\right)$ is not in $L(G)$, it is contained in $L^{*}(G)$ due to commutativity of f^{2}.

For further details on regular tree grammars, we refer the reader, for instance, to [21].

3. A Gentzen-Style Proof System for $\mathcal{E} \mathcal{L}$

The aim of this section is to provide a proof-theoretic calculus that is sound and complete for general subsumption in $\mathcal{E} \mathcal{L}$. We will use this calculus in the subsequent sections to prove particular properties of TBoxes of a certain form in the context of consequence-preserving rewriting. The Gentzen-style calculus for $\mathcal{E} \mathcal{L}$ is shown in Fig. 1 and is a variation of the calculus given by Hofmann [22].

$$
\begin{gathered}
\overline{C \sqsubseteq C}(\mathrm{Ax}) \quad \overline{C \sqsubseteq \top}(\mathrm{AxTop}) \\
\frac{D \sqsubseteq E}{C \sqcap D \sqsubseteq E}(\mathrm{ANDL}) \\
\frac{C \sqsubseteq E \quad C \sqsubseteq D}{C \sqsubseteq D \sqcap E}(\mathrm{ANDR}) \\
\frac{C \sqsubseteq D}{\exists r \cdot C \sqsubseteq \exists r \cdot D}(\mathrm{Ex}) \\
\frac{C \sqsubseteq E \quad E \sqsubseteq D}{C \sqsubseteq D}(\mathrm{CuT})
\end{gathered}
$$

Figure 1: Gentzen-style proof system for general $\mathcal{E} \mathcal{L}$ terminologies with C, D, E arbitrary concept expressions.

The calculus operates on sequents. A sequent is of the form $C \sqsubseteq D$, where C, D are $\mathcal{E} \mathcal{L}$ concepts. The rules depicted in Fig. 1 can be used to derive new sequents from sequents that have already been derived. For instance, if we have derived the sequent $C \sqsubseteq D$, we can derive the sequent $\exists r . C \sqsubseteq \exists r . D$ using rule (Ex). A derivation (or proof) of a sequent $C \sqsubseteq D$ is a finite tree with whose nodes are labeled with sequents. The tree root is labeled with the sequent $C \sqsubseteq D$. Within the tree, a parent node is always labeled by the conclusion of a proof rule from Fig. 1 whose antecedent(s) are the labels of the child nodes. The leaves of a derivation are either labeled by axioms from \mathcal{T} or conclusions of (AX) or (AxTop). We use the notation $\mathcal{T} \vdash C \sqsubseteq D$ to indicate that there is a derivation of $C \sqsubseteq D$. In our calculus, we assume commutativity of conjunction for convenience. Fig. 2 shows an example derivation of the sequent $\exists r . C_{1} \sqsubseteq C_{2}$ in our calculus w.r.t. the $\mathcal{E L}$ TBox $\mathcal{T}_{e}=\left\{\exists r . C_{1} \sqsubseteq C_{1} \sqcap C_{2}\right\}$.

$$
\frac{\exists r . C_{1} \sqsubseteq C_{1} \sqcap C_{2} \quad \frac{\overline{C_{2} \sqsubseteq C_{2}}(\mathrm{Ax})}{C_{1} \sqcap C_{2} \sqsubseteq C_{2}}(\text { (ANDL) }}{\exists r \cdot C_{1} \sqsubseteq C_{2}} \text { (CUT) }
$$

Figure 2: Example derivation of $\exists r . C_{1} \sqsubseteq C_{2}$ from \mathcal{T}_{e}.

We show that the above calculus is sound and complete for subsumptions between arbitrary $\mathcal{E} \mathcal{L}$ concepts.

Lemma 3 (Soundness and Completeness). Let \mathcal{T} be an arbitrary $\mathcal{E} \mathcal{L}$ TBox, C, D $\mathcal{E} \mathcal{L}$ concepts. Then $\mathcal{T} \models C \sqsubseteq D$, iff $\mathcal{T} \vdash C \sqsubseteq D$.

Proof. While the soundness of the proof system (if-direction) can be easily verified for each rule separately, the proof of completeness is more sophisticated. Analogously to other proof-theoretic approaches [11, 23], we show the only-ifdirection of the lemma by constructing a model \mathcal{I} for \mathcal{T} wherein only the GCIs derivable from \mathcal{T} are valid. The construction of the model is rather standard (a similar construction is, e.g., given by Lutz and Wolter [24]). The model is defined as follows:

- $\Delta^{\mathcal{I}}$ is the set of elements δ_{C} where C is an $\mathcal{E} \mathcal{L}$ concept expression;
- $A^{\mathcal{I}}:=\left\{\delta_{C} \in \Delta^{\mathcal{I}} \mid \mathcal{T} \vdash C \sqsubseteq A\right\}$, where A ranges over concept symbols;
- $r^{\mathcal{I}}:=\left\{\left(\delta_{C}, \delta_{D}\right) \in \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \mid \mathcal{T} \vdash C \sqsubseteq \exists r . D\right\}$ where r ranges over role symbols.

We will show that the following claim holds for \mathcal{I} :
For all $\delta_{E} \in \Delta^{\mathcal{I}}$ and $\mathcal{E} \mathcal{L}$ concepts F it holds that $\delta_{E} \in F^{\mathcal{I}}$ iff $\mathcal{T} \vdash E \sqsubseteq F$.
This claim can be exploited in two ways: First, we use it to show that \mathcal{I} is indeed a model of \mathcal{T}. Let $C \sqsubseteq D \in \mathcal{T}$ and consider an arbitrary concept expression G with $\delta_{G} \in C^{\mathcal{I}}$. Via (*) we obtain $\mathcal{T} \vdash G \sqsubseteq C$. Further, $\mathcal{T} \vdash C \sqsubseteq D$ due to $C \sqsubseteq D \in \mathcal{T}$. Thus we can derive $\mathcal{T} \vdash G \sqsubseteq D$ via (CUT) and consequently, applying $(*)$ again, we obtain $\delta_{G} \in D^{\mathcal{I}}$. Thereby modelhood of \mathcal{I} with respect to \mathcal{T} has been proved.

Second, we use (${ }^{*}$) to show that \mathcal{I} is a counter-model for all GCIs not derivable from \mathcal{T} as follows: Assume $\mathcal{T} \nvdash C \sqsubseteq D$. From $\mathcal{T} \vdash C \sqsubseteq C$ and (*) we derive
$\delta_{C} \in C^{\mathcal{I}}$. From $\mathcal{T} \nvdash C \sqsubseteq D$ and $\left(^{*}\right)$ we obtain $\delta_{C} \notin D^{\mathcal{I}}$. Hence we get $C^{\mathcal{I}} \nsubseteq D^{\mathcal{I}}$ and therefore $\mathcal{I} \not \vDash C \sqsubseteq D$.

It remains to prove $\left(^{*}\right)$. This is done by an induction over the structure of the concept expression F. There are two base cases:

- for $F=\mathrm{T}$, the claim trivially follows from (AxTOP),
- for a concept symbol F, it is a direct consequence of the definition of our $\operatorname{model}\left(F^{\mathcal{I}}:=\left\{\delta_{C} \in \Delta^{\mathcal{I}} \mid \mathcal{T} \vdash C \sqsubseteq F\right\}\right)$.
we now consider the cases where F is a complex concept expression
- for $F=C_{1} \sqcap \ldots \sqcap C_{n}$, we note that $\delta_{E} \in F^{\mathcal{I}}$ exactly if $\delta_{E} \in C_{i}^{\mathcal{I}}$ for all $i \in\{1 \ldots n\}$. By induction hypothesis, this means $\mathcal{T} \vdash E \sqsubseteq C_{i}$ for all $i \in\{1 \ldots n\}$. Finally, observe that $\left\{E \sqsubseteq C_{i} \mid 1 \leq i \leq n\right\}$ and $E \sqsubseteq$ $C_{1} \sqcap \ldots \sqcap C_{n}$ can be mutually derived from each other:
- $\left\{E \sqsubseteq C_{i} \mid 1 \leq i \leq n\right\} \vdash E \sqsubseteq C_{1} \sqcap \ldots \sqcap C_{n}$ is a straightforward consequence of (ANDR);
- To derive $E \sqsubseteq C_{1} \sqcap \ldots \sqcap C_{n} \vdash\left\{E \sqsubseteq C_{i} \mid 1 \leq i \leq n\right\}$, we first derive $C_{1} \sqcap \ldots \sqcap C_{n} \sqsubseteq C_{i}$ from $C_{i} \sqsubseteq C_{i}$ (obtained using (Ax)) by applying (ANDL) multiple times. Since $\mathcal{T} \vdash E \sqsubseteq C_{1} \sqcap \ldots \sqcap C_{n}$, we can apply (CUT) (with $E \sqsubseteq C_{1} \sqcap \ldots \sqcap C_{n}$ as the left antecedent and $C_{1} \sqcap \ldots \sqcap C_{n} \sqsubseteq C_{i}$ as the right antecedent) to derive $E \sqsubseteq C_{i}$.
- for $F=\exists r . G$, we prove the two directions separately. First assuming $\delta_{E} \in$ $F^{\mathcal{I}}$ we must find $\left(\delta_{E}, \delta_{H}\right) \in r^{\mathcal{I}}$ for some H with $\delta_{H} \in G^{\mathcal{I}}$. This implies both $\mathcal{T} \vdash E \sqsubseteq \exists r . H$ (by the definition of the model) and $\mathcal{T} \vdash H \sqsubseteq G$ (via the induction hypothesis). From the latter, we can deduce $\mathcal{T} \vdash \exists r . H \sqsubseteq$ $\exists r . G$ by (Ex) and consequently $\mathcal{T} \vdash E \sqsubseteq \exists r . G$. For the other direction, note that by definition, $\mathcal{T} \vdash E \sqsubseteq \exists r . G$ implies $\left(\delta_{E}, \delta_{G}\right) \in r^{\mathcal{I}}$. On the other hand, we get $\mathcal{T} \vdash G \sqsubseteq G$ by (Ax) and therefore $\delta_{G} \in G^{\mathcal{I}}$ by the induction hypothesis which yields us $\delta_{E} \in F^{\mathcal{I}}$.

Alternatively, the completeness of the calculus could be shown by a reduction to the calculus of Hofmann [22].

4. Uniform Interpolation

Uniform interpolation has many potential applications in ontology engineering due to its ability to reduce the amount of irrelevant information within a terminology while preserving all relevant consequences given the set of relevant signature elements. The task of computing terminologies with such properties is not trivial. For instance, it is not sufficient to simply eliminate axioms containing only irrelevant entities, since it can change the meaning of the relevant entities and cause a loss of relevant information. Example 3 demonstrates the effect of such an elimination.

Example 3. Consider the terminology \mathcal{T} given by

$$
\begin{array}{ll}
A_{i+1} \sqsubseteq A_{i} & 0 \leq i \leq 3 \\
A_{4} \sqsubseteq \exists r . A_{4} & \tag{2}
\end{array}
$$

If we are only interested in entities A_{1}, A_{4}, r, then we might consider to eliminate all axioms except for those that contain at least one relevant entity, obtaining $\mathcal{T}^{\prime}=\mathcal{T} \backslash\left\{A_{3} \sqsubseteq A_{2}\right\}$. However, in this way we would lose the information about the connection between the relevant entities, for instance $A_{4} \sqsubseteq A_{1}, A_{4} \sqsubseteq$ $\exists r . A_{1}, A_{4} \sqsubseteq \exists r . \exists r . A_{1}, \ldots$. Indeed, \mathcal{T}^{\prime} does not entail any of these statements. Thus, by omitting axioms based only on the absence of relevant entities can lead to a loss of relevant information.

In typical ontology reuse scenarios, it is required to preserve the meaning of the relevant entities while computing a terminology that contains as little irrelevant information as possible. We say that the meaning of relevant entities is preserved, if every logical statement that follows from the original terminology and contains only relevant entities also follows from the resulting terminology. The logical foundation for such a preservation of relevant consequences can be defined using the notion of inseparability. Two terminologies, \mathcal{T}_{1} and \mathcal{T}_{2}, are inseparable w.r.t. a signature Σ if they have the same Σ-consequences, i.e., consequences whose signatures are subsets of Σ. Depending on the particular application requirements, the expressivity of those Σ-consequences can vary from subsumption axioms and concept assertions to conjunctive queries. In the following, we consider conceptinseparability of general $\mathcal{E} \mathcal{L}$ terminologies as given, for instance, in [17, 19, 18]:

Definition 2. Let \mathcal{T}_{1} and \mathcal{T}_{2} be two general $\mathcal{E} \mathcal{L}$ terminologies and Σ a signature. \mathcal{T}_{1} and \mathcal{T}_{2} are concept-inseparable w.r.t. Σ, in symbols $\mathcal{T}_{1} \equiv{ }_{\Sigma}^{\mathcal{E} \mathcal{L}} \mathcal{T}_{2}$, if for all $\mathcal{E} \mathcal{L}$
concepts C, D with $\operatorname{sig}(C) \cup \operatorname{sig}(D) \subseteq \Sigma$ it holds that $\mathcal{T}_{1} \models C \sqsubseteq D$, iff $\mathcal{T}_{2} \models C \sqsubseteq$ D.

Due to its usefulness for different ontology engineering tasks, concept-inseparability has been investigated by different authors in the last decade. For instance, in the context of ontology reuse, the notion of inseparability can be used to derive a terminology that is inseparable from the initial terminology and is using only terms from Σ. This is an established non-standard reasoning task called forgetting or uniform interpolation.

Definition 3. Given a signature Σ and a terminology \mathcal{T}, the task of uniform interpolation is to determine a terminology \mathcal{T}^{\prime} with $\operatorname{sig}\left(\mathcal{T}^{\prime}\right) \subseteq \Sigma$ such that $\mathcal{T} \equiv \sum_{\Sigma}^{\mathcal{L}}$ $\mathcal{T}^{\prime} . \mathcal{T}^{\prime}$ is also called a uniform Σ-interpolant of \mathcal{T}.

For the TBox \mathcal{T} in Example 3, one possible uniform Σ-interpolant for $\Sigma=$ $\left\{A_{1}, A_{4}, r\right\}$ would be $\mathcal{T}_{\Sigma}=\left\{A_{4} \sqsubseteq A_{1}, A_{4} \sqsubseteq \exists r . A_{4}\right\}$. We see that, by introducing a shortcut axiom $A_{4} \sqsubseteq A_{1}$, we preserve all relevant logical consequences (those expressed using Σ) while eliminating all other logical consequences, e.g., $A_{i+1} \sqsubseteq A_{i}$ for $0 \leq i \leq 3$.

In practice, uniform interpolants are required to be finite, i.e., expressible by a finite set of finite axioms using only the language constructs of a particular DL. It is well-known (e.g., see [19]) that, in the presence of cyclic concept inclusions, a finite uniform $\mathcal{E} \mathcal{L} \Sigma$-interpolant might not exist for a particular terminology \mathcal{T} and a particular Σ.

Example 4. Consider the terminology $\mathcal{T}=\left\{A^{\prime} \sqsubseteq A, A \sqsubseteq A^{\prime \prime}, A \sqsubseteq \exists r . A, \exists s . A \sqsubseteq\right.$ $A\}$ and let $\Sigma=\left\{s, r, A^{\prime}, A^{\prime \prime}\right\}$. As consequences, we obtain infinite sequences $A^{\prime} \sqsubseteq \exists r . \exists r . \exists r . . . A^{\prime \prime}$ and $\exists s . \exists s . \exists s . \ldots . A^{\prime} \sqsubseteq A^{\prime \prime}$ which contain nested existential quantifiers of unbounded depth. Those sequences cannot be finitely axiomatized, using only signature elements from Σ.

Lutz, Seylan and Wolter [20] give an ExpTime procedure for deciding if a finite uniform $\mathcal{E L}$ interpolant exists. In the following, we extend the results and show that, if a finite uniform $\mathcal{E} \mathcal{L}$ interpolant exists for the given terminology and signature, then there exists a uniform $\mathcal{E} \mathcal{L}$ interpolant of at most triple exponential size. Further, we show that, in the worst-case, no shorter interpolants exist, thereby establishing tight bounds on the size of uniform interpolants in $\mathcal{E} \mathcal{L}$.

5. Lower Bound

In this section we will establish the lower bound for the size of uniform interpolants of $\mathcal{E} \mathcal{L}$ terminologies, in case they exist. It is interesting that, while deciding the existence of uniform interpolants in $\mathcal{E L}$ [20] is one exponential less complex than the same decision problem for the more complex logic $\mathcal{A L C}$ [18], the size of uniform interpolants remains triple-exponential. An intuitive reason for this rather unexpected result can be seen in the unavailability of disjunction, which would allow for a more succinct representation of the interpolants. We show this lower bound by means of a sequence of terminologies (obtained by a slight modification of the corresponding example given in [27] originally demonstrating a double exponential lower bound in the context of conservative extensions).

We start with an intuitive explanation of what the terminology is supposed to express. Assume, given some $n \in \mathbb{N}$ we want to label domain elements with natural numbers $0 \ldots 2^{n}-1$ according to the following scheme: domain elements belonging to the concepts A_{1} or A_{2} are labeled with 0 . Further, whenever we find a domain element δ that is linked via an r-role to an ℓ-labeled domain element δ_{1} and linked via an s-role to an ℓ-labeled domain element δ_{2}, then δ will be labeled with $\ell+1$ (provided $\ell<2^{n}-1$). Finally, we stipulate that every domain element labeled with $2^{n}-1$ will belong to the concept B. In order to encode this labeling scheme in a knowledge base whose size is polynomial in n, we encode the number-labels in a binary way as a conjunction of n concepts. Thereby, the concept symbols $X_{i}, \overline{X_{i}}$ represent the $i^{\text {th }}$ bit of ℓ 's binary representation being clear or set.

Definition 4. The $\mathcal{E L}$ TBox \mathcal{T}_{n} for a natural number n is given by

$$
\begin{gather*}
A_{1} \sqsubseteq \overline{X_{0}} \sqcap \ldots \sqcap \overline{X_{n-1}} \tag{3}\\
A_{2} \sqsubseteq \overline{X_{0}} \sqcap \ldots \sqcap \overline{X_{n-1}} \tag{4}\\
\prod_{\sigma \in\{r, s\}} \exists \sigma \cdot\left(\overline{X_{i}} \sqcap X_{0} \sqcap \ldots \sqcap X_{i-1}\right) \sqsubseteq X_{i} \quad i<n \tag{5}\\
\prod_{\sigma \in\{r, s\}} \exists \sigma \cdot\left(X_{i} \sqcap X_{0} \sqcap \ldots \sqcap X_{i-1}\right) \sqsubseteq \overline{X_{i}} \quad i<n \tag{6}\\
\prod_{\sigma \in\{r, s\}} \exists \sigma \cdot\left(\overline{X_{i}} \sqcap \overline{X_{j}}\right) \sqsubseteq \overline{X_{i}} j<i<n \tag{7}\\
\prod_{\sigma \in\{r, s\}} \exists \sigma \cdot\left(X_{i} \sqcap \overline{X_{j}}\right) \sqsubseteq X_{i} j<i<n \tag{8}\\
X_{0} \sqcap \ldots \sqcap X_{n-1} \sqsubseteq B \tag{9}
\end{gather*}
$$

In the above TBox, Axiom (5) ensures that a clear bit will be set in the successor number, if all lower bits are already set. The subsequent Axiom (6) ensures that a set bit will be clear in the successor number, if all lower bits are also set. Axioms (7) and (8) ensure that in all other cases, bits are not toggled. For instance, Axiom (7) states that, if any of the bits lower than i is clear, then bit i will remain clear also in the successor number.

If we now consider sets \mathcal{C}_{i} of concept descriptions inductively defined by $\mathcal{C}_{0}=$ $\left\{A_{1}, A_{2}\right\}, \mathcal{C}_{i+1}=\left\{\exists r . C_{1} \sqcap \exists s . C_{2} \mid C_{1}, C_{2} \in \mathcal{C}_{i}\right\}$, then we find that $\left|\mathcal{C}_{i+1}\right|=\left|\mathcal{C}_{i}\right|^{2}$ and consequently $\left|\mathcal{C}_{i}\right|=2^{\left(2^{2}\right)}$. Thus, the set $\mathcal{C}_{2^{n}-1}$ contains triply exponentially many different concepts, each of which is doubly exponential in the size of \mathcal{T}_{n} (intuitively, we obtain concepts having the shape of binary trees of exponential depth, thus having doubly exponentially many leaves, each of which can be A_{1} or A_{2}, which gives rise to triply exponentially many different such trees). Then we will show that for each concept $C \in \mathcal{C}_{2^{n}-1}$ it holds that $\mathcal{T}_{n} \models C \sqsubseteq B$ and that there cannot be a smaller uniform interpolant with respect to the signature $\Sigma=\left\{A_{1}, A_{2}, B, r, s\right\}$ than the one containing all these GCIs.

Based on the above definition, we now prove the following result.
Theorem 1. There exists a sequence of $\mathcal{E} \mathcal{L}$ TBoxes and a fixed signature Σ such that for each TBox $\left(\mathcal{T}_{n}\right)$ within this sequence the following hold:

- the size of \mathcal{T}_{n} is at most polynomial in n and
- the size of the smallest uniform interpolant of \mathcal{T}_{n} with respect to Σ is at least $2^{\left(2^{\left(2^{n}-1\right)}\right)}$.

Proof. Obviously, the size of \mathcal{T}_{n} is polynomially bounded by n. We now consider sets \mathcal{C}_{k} of concepts defined above. Since $\left|\mathcal{C}_{k}\right|=2^{\left(2^{k}\right)}$, we find that the set $\mathcal{C}_{2^{n}-1}$ contains triply exponentially many different concepts, each of which is doubly exponential in the size of \mathcal{T}_{n}.

Obviously, for any k, every concept description from \mathcal{C}_{k} contains only signature elements from A_{1}, A_{2}, r, s.

It is rather straightforward to check that $\mathcal{T}_{n} \models C \sqsubseteq B$ holds for each concept $C \in \mathcal{C}_{2^{n}-1}$: by induction on k, we can show that for any $C \in \mathcal{C}_{k}$ with $k<2^{n}$ it holds that $\mathcal{T}_{n} \models C \sqsubseteq Y_{0}^{k} \sqcap \ldots \sqcap Y_{n-1}^{k}$ with

$$
Y_{i}^{k}=\left\{\begin{array}{l}
X_{i} \text { if }\left\lfloor\frac{k}{\left.2^{i^{2}}\right\rfloor \bmod 2=1}\right. \\
\overline{X_{i}} \text { if }\left\lfloor\frac{k}{2^{i}}\right\rfloor \bmod 2=0
\end{array},\right.
$$

i.e., Y_{i}^{k} indicates the i th bit of the number k in binary encoding. Then, $C \sqsubseteq B$ follows via the last axiom of \mathcal{T}_{n}.

Toward the claimed triple-exponential lower bound, we now show that every uniform interpolant of \mathcal{T}_{n} for $\Sigma=\left\{A_{1}, A_{2}, B, r, s\right\}$ must contain for each $C \in$ $\mathcal{C}_{2^{n}-1}$ a GCI of the form $C \sqsubseteq B^{\prime}$ with $B^{\prime}=B$ or $B^{\prime}=B \sqcap F$ for some F (where we consider structural variants - i.e., concept expressions whose characteristic interpretations are isomorphic - as syntactically equal). Toward a contradiction, we assume that this is not the case, i.e., there is a uniform interpolant \mathcal{T}^{\prime} and a $C \in \mathcal{C}_{2^{n}-1}$ where $C \sqsubseteq B^{\prime} \notin \mathcal{T}^{\prime}$ for any B^{\prime} containing B as a (top-level) conjunct.

Yet, $C \sqsubseteq B$ must be a consequence of \mathcal{T}^{\prime}, since it is a consequence of of \mathcal{T}_{n} containing only signature elements from Σ and \mathcal{T}^{\prime} is a uniform interpolant of \mathcal{T}_{n} w.r.t. Σ by assumption. Therefore, there must be a derivation of it. Looking at the derivation calculus from the last section, the last derivation step must be (ANDL) or (CUT). We can exclude (ANDL) since neither $\exists r . C^{\prime} \sqsubseteq B$ nor $\exists s . C^{\prime} \sqsubseteq B$ is the consequence of \mathcal{T}^{\prime} for any $C^{\prime} \in \mathcal{C}_{2^{n}-2}$ (which can be easily shown by providing appropriate witness models of \mathcal{T}^{\prime}). Consequently, the last derivation step must be an application of (CUT), i.e., there must be a concept $E \neq C$ such that $\mathcal{T}^{\prime} \models C \sqsubseteq E$ and $\mathcal{T}^{\prime} \models E \sqsubseteq B$. Without loss of generality, we assume that we consider a derivation tree where the subtree deriving $C \sqsubseteq E$ has minimal depth.

We now distinguish two cases: either E contains B as a conjunct or not.

- First we assume $E=E^{\prime} \sqcap B$, i.e. the (CuT) rule was used to derive $C \sqsubseteq B$
from $C \sqsubseteq E^{\prime} \sqcap B$ and $E^{\prime} \sqcap B \sqsubseteq B$. The former cannot be contained in \mathcal{T}^{\prime} by assumption, hence it must have been derived itself. We can exclude (ANDR) due to the minimality of the proof. Again, it cannot have been derived via (ANDL) for the same reasons as given above, which again leaves (CUT) as the only possible derivation rule for obtaining $C \sqsubseteq E^{\prime} \sqcap B$. Thus, there must be some concept G with $\mathcal{T}^{\prime} \models C \sqsubseteq G$ and $\mathcal{T}^{\prime} \models G \sqsubseteq E^{\prime} \sqcap B$. Once more, we distinguish two cases: either G contains B as a conjunct or not.
- If G contains B as a conjunct, i.e., $G=G^{\prime} \sqcap B$, the derivation of $C \sqsubseteq E$ was not depth-minimal since there is a better proof where $C \sqsubseteq B$ is derived from $C \sqsubseteq G^{\prime} \sqcap B$ and $G^{\prime} \sqcap B \sqsubseteq B$ via (CuT). Hence we have a contradiction.
- If G does not contain B as a conjunct, the original derivation of $C \sqsubseteq E$ was not depth-minimal since we can construct a better one that derives $C \sqsubseteq B$ directly from $C \sqsubseteq G$ and $G \sqsubseteq B$ (the latter being derived from $G \sqsubseteq E^{\prime} \sqcap B$ via (ANDR)).
- Now assume E does not contain B as a conjunct.

We construct a specific interpretation $\left(\Delta,{ }^{\mathcal{I}}\right)$ as follows (ϵ denoting the empty word):

- $\Delta=\left\{w \mid w \in\{r, s\}^{*}\right.$, length $\left.(w)<2^{n}\right\}$
- We define an auxiliary function χ associating a concept expression to each domain element: we let $\chi(\epsilon)=C$ (with ϵ being the empty word) and, for every $w r, w s \in \Delta$ with $\chi(w)=\exists r . C_{1} \sqcap \exists s . C_{2}$, we let $\chi(w r)=C_{1}$ and $\chi(w s)=C_{2}$.
- the concepts and roles are interpreted as follows:
* $A_{\iota}^{\mathcal{I}}=\left\{w \mid \chi(w)=A_{\iota}\right\}$ for $\iota \in\{1,2\}$
* $B^{\mathcal{I}}=\{\epsilon\}$
* $X_{i}^{\mathcal{I}}=\left\{w \left\lvert\,\left\lfloor\frac{\operatorname{length}(w)}{2^{i}}\right\rfloor \bmod 2=0\right.\right\}$ for $i<n$
* $\bar{X}_{i}^{\mathcal{I}}=\left\{w \left\lvert\,\left\lfloor\frac{\operatorname{length}(w)}{2^{i}}\right\rfloor \bmod 2=1\right.\right\}$ for $i<n$
* $r^{\mathcal{I}}=\{\langle w, w r\rangle \mid w r \in \Delta\}$
$* s^{\mathcal{I}}=\{\langle w, w s\rangle \mid w s \in \Delta\}$
It is straightforward to check that \mathcal{I} is a model of \mathcal{T}_{n}. Furthermore using descending induction on the length of w, we can show that for every $w \in \Delta$
it holds that $w \in(\chi(w))^{\mathcal{I}}$, thus, in particular, $\epsilon \in C^{\mathcal{I}}$. Consequently, due to our assumption, $\epsilon \in E^{\mathcal{I}}$ must hold. Now we observe that the restriction of \mathcal{I} to the signature elements A_{1}, A_{2}, r, s is isomorphic to \mathcal{I}_{C} (with x_{C} corresponding to ϵ). On the other hand, as $\epsilon \in E^{\mathcal{I}}$ we find by Lemma 1 that there must be a homomorphism from $\left(\mathcal{I}_{E}, x_{E}\right)$ to (\mathcal{I}, ϵ) and hence to $\left(\mathcal{I}_{C}, x_{C}\right)$, thus we can invoke Lemma 2 to deduce that E is a proper "structural superconcept" of C, i.e., $\emptyset \models C \sqsubseteq E$ and $\emptyset \not \models E \sqsubseteq C$ must hold.
We now obtain \widetilde{E} by enriching E as follows: starting from $k=0$ and iteratively incrementing k up to $2^{n}-1$, every subconcept G of E satisfying $\emptyset \models G \sqsubseteq C^{\prime}$ for some $C^{\prime} \in \mathcal{C}_{k}$ is substituted by $G \sqcap Y_{0}^{k} \sqcap \ldots \sqcap Y_{n-1}^{k}$ where, as before,

$$
Y_{i}^{k}=\left\{\begin{array}{l}
X_{i} \text { if }\left\lfloor\frac{k}{2^{2}}\right\rfloor \bmod 2=1 \\
\overline{X_{i}} \text { if }\left\lfloor\frac{k}{2^{i}}\right\rfloor \bmod 2=0
\end{array},\right.
$$

i.e., Y_{i}^{k} indicates the i th bit of the number k in binary encoding.

Then, \widetilde{E} 's characteristic pointed interpretation $\left(\mathcal{I}_{\widetilde{E}}, x_{\widetilde{E}}\right)$ satisfies that $\mathcal{I}_{\widetilde{E}}$ is a model of \mathcal{T}_{n} (following from structural induction on subconcepts of \widetilde{E}) and its root individual $x_{\widetilde{E}}$ is in the extension of \widetilde{E}. Still, we find $x_{\widetilde{E}} \notin$ $C^{\mathcal{I}_{\widetilde{E}}}$ for the following reason: C does only contain signature elements from $\left\{A_{1}, A_{2}, B, r, s\right\}$, and the restriction of $\left(\mathcal{I}_{\widetilde{E}}, x_{\widetilde{E}}\right)$ to these signature elements is isomorphic to $\left(\mathcal{I}_{E}, x_{E}\right)$, therefore $x_{\widetilde{E}} \in C_{\mathcal{I}_{\widetilde{E}}}$ iff $x_{E} \in C^{\mathcal{I}_{E}}$. The latter is however not the case as this would imply by Lemma 1 that there is a homomorphism from $\left(\mathcal{I}_{C}, x_{C}\right)$ to $\left(\mathcal{I}_{E}, x_{E}\right)$ and consequently, via Lemma 2 $\emptyset \models E \sqsubseteq C$, contradicting our above finding.
Yet, the root individual $x_{\widetilde{E}}$ cannot satisfy any other concept expression $C^{\prime \prime}$ from $\mathcal{C}_{2^{n}-1} \backslash\{C\}$ either, since this, via $\emptyset \models E \sqsubseteq C^{\prime \prime}$, would imply $\emptyset \models C \sqsubseteq C^{\prime \prime}$ which is not the case (by induction on k one can show that there cannot be a homomorphism between the characteristic pointed interpretations of any two distinct concepts from any \mathcal{C}_{k}). In particular, we note that $x_{\widetilde{E}} \notin B^{\mathcal{I}_{\widetilde{E}}}$. Thus, we have found a model of \mathcal{T}_{n} witnessing $\mathcal{T}_{n} \not \models E \sqsubseteq B$, contradicting our assumption that $\mathcal{T}^{\prime} \models E \sqsubseteq B$.

Hence we have found a class \mathcal{T}_{n} of TBoxes giving rise to uniform $\mathcal{E} \mathcal{L}$ interpolants of triple-exponential size in terms of the original TBox.

6. Upper Bound

Now we discuss the upper bound on the size of uniform $\mathcal{E} \mathcal{L}$ interpolants as well as their computation. Since, for a $\operatorname{TBox} \mathcal{T}$ and a signature Σ, there are in general infinitely many Σ-consequences, in the following, we aim at identifying a subset of such consequences, the deductive closure of which contains the whole set. Interestingly, there exists a bound on the role depth of Σ-consequences such that, for the set $\mathcal{T}_{\Sigma, N}$ of all Σ-consequences of \mathcal{T} with the maximal role depth N the following holds: either $\mathcal{T}_{\Sigma, N}$ is a uniform $\mathcal{E} \mathcal{L}$ interpolant of \mathcal{T} with respect to Σ or such a finite uniform $\mathcal{E} \mathcal{L}$ interpolant of \mathcal{T} does not exist. This is an easy consequence of results obtained by Lutz, Seylan and Wolter [20] while investigating the problem of existence of uniform $\mathcal{E} \mathcal{L}$ interpolants (proof can be found in Appendix B).
Lemma 4 (Reformulation of Lemma 55 from [20]). Let \mathcal{T} be an $\mathcal{E} \mathcal{L}$ TBox, Σa signature. The following statements are equivalent:

1. There exists a uniform $\mathcal{E} \mathcal{L} \Sigma$-interpolant of \mathcal{T}.
2. There exists a uniform $\mathcal{E} \mathcal{L} \Sigma$-interpolant \mathcal{T}^{\prime} of \mathcal{T} for which holds $d\left(\mathcal{T}^{\prime}\right) \leq$ $2^{4 \cdot(|\operatorname{sub}(\mathcal{T})|)}+1$.

However, an upper bound on the role depth is only sufficient for showing a non-elementary upper bound on the size of uniform interpolants for the following reasons. There are 2^{n} many different conjunctions of n different conjuncts, and, accordingly, for each role, 2^{m} many different existential restrictions of depth $i+1$ if m is the number of existential restrictions of depth i. Moreover, for any role depth i, we can find a TBox such that i is the corresponding maximal role depth. Subsequently, the upper bound on the role depth does not suffice to obtain an upper bound for the number i of exponents bounding the size of the uniform interpolant.

In order to obtain a tight upper bound, we need to further narrow down the subset of Σ-consequences required to obtain a uniform interpolant. To this end, we show the following:

- If we "flatten" terminologies, i.e., we reduce the maximal role depth of \mathcal{T} to 1 by recursively introducing fresh concept symbols for all subconcepts occurring in \mathcal{T}, it is sufficient to consider the Σ-consequences stating subsumees and subsumers of all concept symbols referenced by the flattened terminology \mathcal{T}^{\prime} in order to preserve all consequences;
- Lemma 4 can be transferred to flattened TBoxes such that it is sufficient to consider subsumees and subsumers of role depth $2^{4 \cdot\left(\left|\operatorname{sub}\left(\mathcal{T}^{\prime}\right)\right|\right)}+1$ in order to preserve all consequences of \mathcal{T};
- There is a particular type of subsumees and subsumers that do not add any consequences to the deductive closure, which we call weak subsumees and subsumers. These are subsumees obtained by adding arbitrary conjuncts to arbitrary subconcepts of other subsumees and, accordingly, subsumers obtained from other subsumers by omitting conjuncts from arbitrary subconcepts. When included into the uniform interpolant, weak subsumees and subsumers have a negative impact on its size. Given the exponential bound on the role depth, each concept has non-elementary many weak subsumees. Since weak subsumers and subsumees do not add any new consequences, we can safely exclude them.

We show that, in case a finite uniform $\mathcal{E} \mathcal{L}$ interpolant of \mathcal{T} with respect to Σ exists, there are at most triple-exponentially many such non-weak subsumers and subsumees of role depth up to $2^{4 \cdot(|\operatorname{sub}(\mathcal{T})|)}+1$. Moreover, we show that each of them is of at most double-exponential size.

6.1. Flattening

Recall that we want to compute the uniform interpolant of a TBox \mathcal{T} by rewriting the latter, ensuring that the part of the deductive closure of \mathcal{T} consisting of Σ-consequences is preserved throughout the rewriting process. Since rewriting operates on the syntactic structure of \mathcal{T}, it is desirable that the syntactic structure has a close relation to the deductive closure of \mathcal{T} such that we can easily manipulate the deductive closure via changes of the syntactic structure. As in other syntax-based approaches ([11, 23, 19], we decompose complex axioms into syntactically simple ones. We refer to this process as flattening: assigning a temporary concept symbol to each complex subconcept occurring in \mathcal{T}, so that the terminology can be represented without nested expressions, namely using only axioms of the form $A \sqsubseteq B, A \equiv B_{1} \sqcap \ldots \sqcap B_{n}$, and $A \equiv \exists r . B$, where A and $B_{(i)}$ are concept symbols or \top and r is a role. For this purpose, we introduce a minimal required set of fresh concept symbols N_{D} with exactly on equivalence axiom $A^{\prime} \equiv C^{\prime}$ for each $A^{\prime} \in N_{D}$, where C^{\prime} is equivalent to a subconcept of \mathcal{T} replaced by A^{\prime}.

In what follows, we assume terminologies to be flattened and all concepts symbols from N_{D} to be in $\operatorname{sig}_{C}(\mathcal{T}) \backslash \Sigma$. W.l.o.g., we also assume that $\mathcal{E} \mathcal{L}$ concepts do not contain any equivalent concepts in conjunctions and that whenever
several concept symbols are equivalent in \mathcal{T}, all their occurrences have been replaced by a single representative of the corresponding equivalence class. Concept symbols from Σ are preferred to be selected as representatives. Note that this is a preprocessing step that can be performed in polynomial time as $\mathcal{E L}$ allows for polytime reasoning. The following lemma postulates the close semantic relation between a TBox and its flattening.

Lemma 5 (Model-conservativity). Any $\mathcal{E} \mathcal{L} \operatorname{TBox} \mathcal{T}$ can be rewritten into a flattened TBox \mathcal{T}^{\prime} so that each model of \mathcal{T}^{\prime} is a model of \mathcal{T} and each model of \mathcal{T} can be extended into a model of \mathcal{T}^{\prime}.

As a result of flattening, each TBox \mathcal{T} can be represented as a subsumee/subsumer relation pair - a pair of binary relations $\left\langle P_{\beth}^{\mathcal{I}}, P_{\sqsubseteq}^{\mathcal{T}}\right\rangle$ on concept expressions where $P_{\beth}^{\mathcal{T}}$ relates concept symbols $B \in \operatorname{sig}_{C}(\mathcal{T})$ to their subsumees ($\{C \mid C \bowtie B \in \mathcal{T}, \bowtie \in\{\equiv, \sqsubseteq\}\}$), and $P_{\sqsubseteq}^{\mathcal{T}}$ relates concept symbols to their subsumers $(\{C \mid B \bowtie C \in \mathcal{T}, \bowtie \in\{\equiv, \sqsubseteq\} \overline{\}})$. If \mathcal{T} is clear from the context, we simply write $\left\langle P_{\sqsupseteq}, P_{\sqsubseteq}\right\rangle$. In turn, each subsumee/subsumer relation pair has a corresponding representation by means of a TBox. For the computation of uniform interpolants, we would like to restrict the signature of the resulting TBox constructed from a subsumee/subsumer relation pair. As we will show later on, for the computation of uniform interpolants we use only Σ-subsumees and Σ-subsumers. To ensure that the resulting TBox only contains symbols from Σ, we additionally avoid references to concept symbols not from Σ by forming subsumptions between their subsumees and subsumers directly.

Definition 5. Let \mathcal{T} be an $\mathcal{E} \mathcal{L}$ TBox and Σ a signature. Further, let $\left\langle P_{\sqsupseteq}, P_{\sqsubseteq}\right\rangle$ be a subsumee/subsumer relation pair for \mathcal{T}. Then,

$$
\begin{aligned}
\mathrm{M}\left(P_{\sqsupseteq}, P_{\sqsubseteq}, \Sigma\right)= & \left\{C \sqsubseteq A \mid A \in \Sigma,(A, C) \in P_{\sqsupseteq}\right\} \cup \\
& \left\{A \sqsubseteq D \mid A \in \Sigma,(A, D) \in P_{\sqsubseteq}\right\} \cup \\
& \{C \sqsubseteq D \mid \text { there exists } A \notin \Sigma, \\
& \left.(A, C) \in P_{\sqsupseteq},(A, D) \in P_{\sqsubseteq}\right\} .
\end{aligned}
$$

In the next subsection, we represent the corresponding subsumee/subsumer relation pair of a classified, flattened TBox \mathcal{T} as a pair of regular tree grammars on ranked trees (with concept symbols interpreted as non-terminals and $\exists r, \sqcap$ as functions). We show that all non-weak subsumees and subsumers entailed by \mathcal{T} can be generated by these grammars. To this end, we now analyse the derivation of
subsumptions in flattened TBoxes by means of the deduction calculus introduced in Section 3.

First, we consider the derivation of subsumees. We use the auxiliary function Pre : $\operatorname{sig}_{C}(\mathcal{T}) \rightarrow 2^{2^{\text {sig }} C_{C}(\mathcal{T})}$ which allows us for any concept symbol A to refer to its subsumees of the form $B_{1} \sqcap \ldots \sqcap B_{n}$, where $B_{(i)}$ are concept symbols. For each such conjunction, the set of its conjuncts is an element of Pre.
Definition 6. Let \mathcal{T} be an $\mathcal{E L}$ TBox and $A \in \operatorname{sig}_{C}(\mathcal{T}) . \operatorname{Pre}(A)$ is the smallest set with the following properties:

- $\{A\} \in \operatorname{Pre}(A)$.
- For each $K \in \operatorname{Pre}(A)$ and each $B \in K$, if there is $\mathcal{T} \models B^{\prime} \sqsubseteq B$, then also $(K /\{B\}) \cup\left\{B^{\prime}\right\} \in \operatorname{Pre}(A)$.
- For each $K \in \operatorname{Pre}(A)$ and each $B \in K$, if there is $B \equiv B_{1} \sqcap \ldots \sqcap B_{n} \in \mathcal{T}$, then also $(K /\{B\}) \cup\left\{B_{1}, \ldots, B_{n}\right\} \in \operatorname{Pre}(A)$.

We can show the following closure property of Pre.
Lemma 6. Let \mathcal{T} be an $\mathcal{E L}$ TBox and $A \in \operatorname{sig}_{C}(\mathcal{T})$. For each $K \in \operatorname{Pre}(A)$, each $B \in K$ and each $M \in \operatorname{Pre}(B)$, we have $(K /\{B\}) \cup M \in \operatorname{Pre}(A)$.

The above lemma can be shown by an easy induction over the derivation of M from B.

In essence, the lemma below implies that, in case of flattened terminologies explicitly containing all elements of Pre, we can derive all subsumees of a concept by (1) applying the rule (Ex) to construct existential restrictions from two concepts in a subsumption relation and/or (2) replacing concepts occurring within subsumees by their subsumees.

Lemma 7. Let \mathcal{T} be a flattened $\mathcal{E} \mathcal{L}$ TBox and C, D two $\mathcal{E} \mathcal{L}$ concepts with $\operatorname{sig}(C) \cup$ $\operatorname{sig}(D) \subseteq \operatorname{sig}(\mathcal{T})$ such that $\mathcal{T} \models C \sqsubseteq D$. Let

$$
C=\prod_{1 \leq j \leq n} A_{j} \sqcap \prod_{1 \leq k \leq m} \exists r_{k} \cdot E_{k}
$$

where A_{j} are concept symbols, r_{k} are role symbols and E_{k} are arbitrary $\mathcal{E} \mathcal{L}$ concepts. Then, for all conjuncts D_{i} of D, the following is true: If D_{i} is a concept symbol, there is a set $M \in \operatorname{Pre}\left(D_{i}\right)$ of concept symbols from $\operatorname{sig}_{C}(\mathcal{T})$ such that at least one of the conditions [A1]-[A2] holds for each $B \in M$:
(A1) There is an A_{j} in C such that $A_{j}=B$.
(A2) There are r_{k}, E_{k} and there exists $B^{\prime} \in \operatorname{sig}_{C}(\mathcal{T})$ such that $\mathcal{T} \models E_{k} \sqsubseteq B^{\prime}$ and $B \equiv \exists r_{k} \cdot B^{\prime} \in \mathcal{T}$.

If $D_{i}=\exists r^{\prime}$. D^{\prime} for a role r^{\prime} and an $\mathcal{E} \mathcal{L}$ concept D^{\prime}, at least one of the conditions [A3]-[A4] holds:
(A3) There are r_{k}, E_{k} such that $r_{k}=r^{\prime}$ and $\mathcal{T} \models E_{k} \sqsubseteq D^{\prime}$.
(A4) There is $B \in \operatorname{sig}_{C}(\mathcal{T})$ such that $\mathcal{T} \models B \sqsubseteq \exists r^{\prime} . D^{\prime}$ and $\mathcal{T} \models C \sqsubseteq B$ and for $C \sqsubseteq B$ at least one of the conditions [A1]-[A2] holds.

Proof. We apply induction on the length of the proof. We start with the last applied rule and show for each possibility that the lemma holds. Rules AxTop, Ax and the case $C \bowtie D \in \mathcal{T}$ are the basis of induction, since each proof begins with one of them.
$(C \bowtie D \in \mathcal{T})$ In the case that $C \sqsubseteq D \in \mathcal{T}$ or $C \equiv D \in \mathcal{T}$, the lemma holds due to the flattening. Axioms within \mathcal{T} can have the following form:

- $C, D \in \operatorname{sig}_{C}(\mathcal{T})$. In this case, $\{C\} \in \operatorname{Pre}(D)$. Therefore, condition [A1] holds.
- $C \in \operatorname{sig}_{C}(\mathcal{T}), D=D_{1} \sqcap \ldots \sqcap D_{m}$ with $D_{1}, \ldots, D_{m} \in \operatorname{sig}_{C}(\mathcal{T})$. In this case, for each D_{i} with $1 \leq i \leq m$ holds $\{C\} \in \operatorname{Pre}\left(D_{i}\right)$. Therefore, condition [A1] holds for each D_{i}.
- $C \in \operatorname{sig}_{C}(\mathcal{T}), D=\exists r^{\prime} . D^{\prime}$ with $D^{\prime} \in \operatorname{sig}_{C}(\mathcal{T})$. This case corresponds to the condition [A4].
(AxTop) Since the conjunction is empty in case $D=\top$, the lemma holds.
(Ax) Since $C=D$, for each D_{i} there is a conjunct C_{i} of C with $C_{i}=D_{i}$. If D_{i} is a concept symbol, condition [A1] of the lemma holds. Otherwise, [A3].
(Ex) If Ex was the last applied rule, then $D_{i}=\exists r_{k} \cdot D^{\prime}$ and $\mathcal{T} \vdash D_{k} \sqsubseteq D^{\prime}$. Therefore, [A3] of the lemma holds.
(AndL) Assume that $C^{\prime} \sqcap C^{\prime \prime}=C$ such that $C^{\prime} \sqsubseteq D$ is the antecedent. By induction hypothesis, the lemma holds for $C^{\prime} \sqsubseteq D$. Since all conjuncts of C^{\prime} are also conjuncts of C, the lemma holds also for $C \sqsubseteq D$.
(ANDR) Assume that $D=D_{1} \sqcap D_{2}$, therefore, $C \sqsubseteq D_{1}$ and $C \sqsubseteq D_{2}$ is the antecedent. By induction hypothesis, the lemma holds for both, $C \sqsubseteq D_{1}$ and $C \sqsubseteq D_{2}$. Since all conjuncts of D are from either D_{1} or D_{2}, the lemma also holds for $C \sqsubseteq D$.
(Cut) By induction hypothesis, the lemma holds for both elements of the antecedent, $C \sqsubseteq C_{1}$ and $C_{1} \sqsubseteq D$. Let $C_{1}=\prod_{1 \leq p \leq r} A_{p} \sqcap \prod_{1 \leq s \leq t} \exists r_{s}^{\prime} . E_{s}^{\prime}$.

1. Assume that D_{i} is a concept symbol. Then, there is $M_{1} \in \operatorname{Pre}\left(D_{i}\right)$ such that [A1] or [A2] holds for each $B_{u} \in M_{1}$. We now consider each $C \sqsubseteq B_{u}$ and distinguish three cases, in one of which [A2] holds. In the remaining two cases, we can obtain $M_{\text {new }}$ by replacing B_{u} within M_{1} by the elements of some $M_{u}^{\prime} \in \operatorname{Pre}\left(B_{u}\right)$ such that [A1] or [A2] holds for each $B^{\prime} \in M_{\text {new }}$ and $C \sqsubseteq B^{\prime}$:
A1 Assume that there is a conjunct A_{p} of C_{1} with $A_{p}=B_{1}$. Then, by induction hypothesis, for $C \sqsubseteq A_{p}$, there is $M_{u}^{\prime} \in \operatorname{Pre}\left(A_{p}\right)$ such that [A1] or [A2] holds for each $B^{\prime} \in M_{u}^{\prime}$. We can replace B_{u} within M_{1} by the elements of M_{u}^{\prime}.
A2 Assume that for B_{u} there are $r_{s}^{\prime}, E_{s}^{\prime}$ and there exists $B^{\prime} \in \operatorname{sig}_{C}(\mathcal{T})$ such that $\mathcal{T} \models E_{s}^{\prime} \sqsubseteq B^{\prime}$ and $B \equiv \exists r_{s}^{\prime} . B^{\prime} \in \mathcal{T}$. Then, for $C \sqsubseteq$ $\exists r_{s}^{\prime} \cdot E_{s}^{\prime}$ either [A3] or [A4] can hold:
-(A3) There are r_{k}, E_{k} such that $r_{k}=r_{s}^{\prime}$ and $\mathcal{T} \models E_{k} \sqsubseteq E_{s}^{\prime}$. Then [A2] holds for $C \sqsubseteq B_{u}$, since $\mathcal{T} \models E_{k} \sqsubseteq B^{\prime}$ and $B \equiv$ $\exists r_{k} . B^{\prime} \in \mathcal{T}$.
-(A4) There is $B^{\prime \prime} \in \operatorname{sig}_{C}(\mathcal{T})$ such that $\mathcal{T} \models B^{\prime \prime} \sqsubseteq \exists r_{s}^{\prime} \cdot E_{s}^{\prime}, \mathcal{T} \models$ $C \sqsubseteq B^{\prime \prime}$ and there is a set $M_{u}^{\prime} \in \operatorname{Pre}\left(B^{\prime \prime}\right)$ such that for each element B^{\prime} of M_{u}^{\prime} at least one of the conditions [A1]-[A2] holds with respect to $C \sqsubseteq B^{\prime}$.
Let $M_{A 1}$ be the set of all such $B_{u} \in M_{1}$ for which [A1] holds and let $M_{A 4}$ be the set of all such $B_{u} \in M_{1}$ for which [A2] holds and for $C \sqsubseteq \exists r_{s}^{\prime}$. E_{s}^{\prime} [A4] holds. Now we replace each B_{u} within M_{1} by the elements of the corresponding set $M_{u}^{\prime} \in \operatorname{Pre}\left(B_{u}\right)$ that we have specified above and obtain $M_{\text {new }}=M_{1} \backslash\left(M_{A 1} \cup M_{A 4}\right) \cup \bigcup\left\{M_{u}^{\prime} \mid\right.$ $\left.B_{u} \in M_{A 1} \cup M_{A 4}\right\}$. Clearly, $M_{\text {new }} \in \operatorname{Pre}\left(D_{i}\right)$ and [A1] or [A2] holds for each $B^{\prime} \in M_{\text {new }}$ with respect to $C \sqsubseteq B^{\prime}$, i.e., the lemma holds for $C \sqsubseteq D_{i}$.
2. Assume that $D_{i}=\exists r^{\prime} . D^{\prime}$. Then, [A3] or [A4] hold.

A3 There are r_{s}^{\prime}, E_{s}^{\prime} such that $r^{\prime}=r_{s}^{\prime}$ and $\mathcal{T} \models E_{s}^{\prime} \sqsubseteq D^{\prime}$. Then, for $C \sqsubseteq \exists r_{s}^{\prime}$. E_{s}^{\prime} one of [A3], [A4] holds:
-(A3) There are r_{k}, E_{k} such that $r_{k}=r_{s}^{\prime}$ and $\mathcal{T} \models E_{k} \sqsubseteq E_{s}^{\prime}$. Then [A3] holds for $C \sqsubseteq D_{i}$, since $\mathcal{T} \models E_{k} \sqsubseteq D^{\prime}$ and $r_{k}=r^{\prime}$.
-(A4) There is a concept symbol $B^{\prime \prime}$ such that $\mathcal{T} \models B^{\prime \prime} \sqsubseteq \exists r_{s}^{\prime}$. E_{s}^{\prime}, $\mathcal{T} \models C \sqsubseteq B^{\prime \prime}$ and there is a set $M^{\prime \prime} \in \operatorname{Pre}\left(B^{\prime \prime}\right)$ of concept
symbols such that at least one of the conditions [A1]-[A2] holds for each element B^{\prime} of $M^{\prime \prime}$ and $C \sqsubseteq B^{\prime}$. Since $\mathcal{T} \models$ $B^{\prime \prime} \sqsubseteq D_{i}$, [A4] holds for $\mathcal{T} \models C \sqsubseteq D_{i}$.
A4 There is a concept symbol B such that $\mathcal{T} \models B \sqsubseteq \exists r^{\prime} . D^{\prime}, \mathcal{T} \models$ $C_{1} \sqsubseteq B$ and there is a set $M_{1} \in \operatorname{Pre}(B)$ such that at least one of the conditions [A1]-[A2] holds for each element B_{u} of M_{1} and for $C_{1} \sqsubseteq B_{u}$. The argumentation is the same as for 1 (D_{i} is a concept symbol). We consider each $C \sqsubseteq B_{u}$ and distinguish three cases, in one of which [A2] holds. In the remaining two cases, we can obtain $M_{\text {new }}$ by replacing B_{u} within M_{1} by the elements of some $M_{u}^{\prime} \in \operatorname{Pre}\left(B_{u}\right)$ such that [A1] or [A2] holds for each $B^{\prime} \in M_{\text {new }}$ and $C \sqsubseteq B^{\prime}$. Therefore, there is $M_{1} \in \operatorname{Pre}(B)$ such that either [A1] or [A2] holds for each $B_{u} \in M_{1}$. Then, [A4] holds for $C \sqsubseteq D_{i}$.

The above lemma is focused on the derivation of subsumees. For the computation of uniform interpolants, we additionally need to show that, in flattened terminologies, every subsumption relation with an concept symbol and its subsumer being an existential restriction is derived from an equivalence axiom of the form $B_{1} \equiv \exists r . B_{2} \in \mathcal{T}$.

Lemma 8. Let \mathcal{T} be a flattened $\mathcal{E} \mathcal{L}$ TBox, $A \in \operatorname{sig}_{C}(\mathcal{T})$ and $r \in \operatorname{sig}_{R}(\mathcal{T})$. Let C be an $\mathcal{E L}$ concept such that $\mathcal{T} \models A \sqsubseteq \exists r$.C. Then, there are $B_{1}, B_{2} \in \operatorname{sig}_{C}(\mathcal{T})$ with $B_{1} \equiv \exists r . B_{2} \in \mathcal{T}$ such that $\mathcal{T} \models A \sqsubseteq B_{1}, \mathcal{T} \models B_{2} \sqsubseteq C$.

Proof. Lemma 16 [27] states that for a general $\mathcal{E} \mathcal{L}$ TBox \mathcal{T} with $\mathcal{T} \models C_{1} \sqsubseteq$ $\exists r . C_{2}$, where C_{1}, C_{2} are $\mathcal{E} \mathcal{L}$-concepts one of the following holds:

- there is a conjunct $\exists r . C^{\prime}$ of C_{1} such that $\mathcal{T} \models C^{\prime} \sqsubseteq C_{2}$;
- there is a subconcept $\exists r . C^{\prime}$ of \mathcal{T} such that $\mathcal{T} \models C_{1} \sqsubseteq \exists r . C^{\prime}$ and $\mathcal{T} \models C^{\prime} \sqsubseteq$ C_{2};

The first condition does not hold in this lemma, since A is a concept symbol. Moreover, since in our case \mathcal{T} is flattened, for each subconcept $\exists r . C^{\prime}$ of \mathcal{T} containing an existential restriction holds: there is an concept symbol $B_{2} \in \operatorname{sig}_{C}(\mathcal{T})$ such that $B_{2}=C^{\prime}$ and there is an axiom of the form $B_{1} \equiv \exists r . B_{2} \in \mathcal{T}$ with $B_{1} \in \operatorname{sig}_{C}(\mathcal{T})$. Additionally, from the above Lemma 16 follows $\mathcal{T} \models A \sqsubseteq \exists r . B_{2}$ and $\mathcal{T} \models B_{2} \sqsubseteq C$. Since $\mathcal{T} \models B_{1} \equiv \exists r . B_{2}$, it follows that also $\mathcal{T} \models A \sqsubseteq B_{1}$.

6.2. Grammar Representation of Subsumees and Subsumers

In this section, we show how, for a signature Σ, the sets of Σ-subsumees and Σ-subsumers of each concept symbol in a flattened $\mathcal{E} \mathcal{L}$ TBox \mathcal{T} can be described as languages generated by regular tree grammars on ranked ordered trees. In our definition of grammars, we uniquely represent each concept symbol $A \in \operatorname{sig}_{C}(\mathcal{T})$ by a non-terminal \mathfrak{n}_{A} (and denote the set of all non-terminals by $\mathcal{N}^{\mathcal{T}}=\left\{\mathfrak{n}_{x} \mid x \in \operatorname{sig}_{C}(\mathcal{T}) \cup\{T\}\right\}$). In what follows, we use the ranked alphabet $\mathcal{F}=\left(\operatorname{sig}_{C}(\mathcal{T}) \cap \Sigma\right) \cup\{T\} \cup\left\{\exists r^{1} \mid r \in \operatorname{sig}_{R}(\mathcal{T}) \cap \Sigma\right\} \cup\left\{\square^{i} \mid\right.$ $\left.2 \leq i \leq\left|\operatorname{sig}_{C}(\mathcal{T})\right|\right\}$, where T and concept symbols in $\operatorname{sig}_{C}(\mathcal{T}) \cap \Sigma$ are constants, $\exists r^{1}$ for $r \in \operatorname{sig}_{R}(\mathcal{T}) \cap \Sigma$ are unary functions and \sqcap^{i} are functions of the arity $2 \leq i \leq\left|\operatorname{sig}_{C}(\mathcal{T})\right|$. Due to flattening, $\left|\operatorname{sig}_{C}(\mathcal{T})\right|$ is the highest arity of conjunctions that can occur in our TBox. In the following, it will be convenient to simply write \sqcap and $\exists r$ if the arity of the corresponding function is clear from the context. Clearly, every $\mathcal{E} \mathcal{L}$ concept C with $\operatorname{sig}(C) \subseteq \Sigma$ and at most $\left|\operatorname{sig}_{C}(\mathcal{T})\right|$ conjuncts in each subconcept has a unique representation by the means of the above functions. We denote such a term representation of C using \mathcal{F} by t_{C}. For a term t, we denote its concept representation by C_{t}. Additionally, we use a substitution function $\sigma_{\mathcal{T}, \mathcal{F}}:\{C \mid \operatorname{sig}(C) \subseteq \operatorname{sig}(\mathcal{T})\} \rightarrow T\left(\mathcal{F}, \mathcal{N}^{\mathcal{T}}\right)$ with $\sigma_{\mathcal{T}, \mathcal{F}}(C)=t_{C}\left\{\mathfrak{n}_{\top} / \top, \mathfrak{n}_{B_{1}} / B_{1}, \ldots, \mathfrak{n}_{B_{n}} / B_{n}\right\}$, where B_{1}, \ldots, B_{n} are all concept symbols occurring in C. If the TBox and the set of non-terminals are clear from the context, we will denote such a representation of a concept C simply by $\sigma(C)$.

As mentioned above, weak subsumees and subsumers are not required in order to obtain a uniform $\mathcal{E} \mathcal{L}$ interpolant. In fact, including weak subsumees into our definition of the grammars would lead to a non-elementary upper bound on the generated language despite the bounded role depth. Also weak subsumers lead to an exponential blow-up in the size of the corresponding grammar. Thus, we avoid generating weak subsumees and subsumers by the corresponding grammars.
Definition 7. Let \mathcal{T} be a flattened $\mathcal{E} \mathcal{L}$ TBox, Σ a signature. Further, for each $B \in \operatorname{sig}_{C}(\mathcal{T}) \cup\{\top\}$, let $R \sqsupseteq$ be given by
(GL1) $\mathfrak{n}_{B} \rightarrow B$ if $B \in \Sigma \cup\{\top\}$,
(GL2) $\mathfrak{n}_{B} \rightarrow \mathfrak{n}_{B^{\prime}}$ for all $B^{\prime} \in \operatorname{sig}_{C}(\mathcal{T}) \cup\{\top\}$ with $\mathcal{T} \models B^{\prime} \sqsubseteq B, B \neq B^{\prime}$
(GL3) $\mathfrak{n}_{B} \rightarrow \sqcap\left(\mathfrak{n}_{B_{1}}, \ldots, \mathfrak{n}_{B_{n}}\right)$ for all $B \equiv B_{1} \sqcap \ldots \sqcap B_{n} \in \mathcal{T}$,
(GL4) $\mathfrak{n}_{B} \rightarrow \exists r\left(\mathfrak{n}_{B^{\prime}}\right)$ for all $B \equiv \exists r . B^{\prime} \in \mathcal{T}$ with $r \in \operatorname{sig}_{R}(\mathcal{T}) \cap \Sigma$.

Let $R \sqsubseteq$ be given for all $B \in \operatorname{sig}_{C}(\mathcal{T}) \cup\{T\}$ by
(GR1) $\mathfrak{n}_{B} \rightarrow B$ if $B \in \Sigma \cup\{\top\}$,
(GR2) $\mathfrak{n}_{B} \rightarrow \mathfrak{n}_{B^{\prime}}$ if $B \neq B^{\prime}$ and either $B^{\prime}=\top$ or B^{\prime} is the only concept symbol such that $\mathcal{T} \models B \sqsubseteq B^{\prime}$,
$(\mathbf{G R 3}) \mathfrak{n}_{B} \rightarrow \sqcap\left(\mathfrak{n}_{B_{1}}, \ldots, \mathfrak{n}_{B_{n}}\right)$ if $\left\{B_{1}, \ldots, B_{n}\right\}=\left\{B^{\prime} \in \operatorname{sig}_{C}(\mathcal{T}) \mid \mathcal{T} \models B^{\prime} \sqsupseteq\right.$ $B\}$ and $n \geq 2$,
(GR4) $\mathfrak{n}_{B} \rightarrow \exists r\left(\mathfrak{n}_{B^{\prime}}\right)$ for all $B \equiv \exists r . B^{\prime} \in \mathcal{T}$ with $r \in \operatorname{sig}_{R}(\mathcal{T}) \cap \Sigma$.
For every $A \in \operatorname{sig}_{C}(\mathcal{T})$, the regular tree grammar $G^{\sqsupseteq}(\mathcal{T}, \Sigma, A)$ is given by $\left(\mathfrak{n}_{A}, \mathcal{N}^{\mathcal{T}}, \mathcal{F}, R^{\sqsupseteq}\right)$. Likewise, the regular tree grammar $G^{\sqsubseteq}(\mathcal{T}, \Sigma, A)$ is given by $\left(\mathfrak{n}_{A}, \mathcal{N}^{\mathcal{T}}, \mathcal{F}, R^{\sqsubseteq}\right)$.

We denote the set of tree grammars $\left\{G^{\sqsupseteq}(\mathcal{T}, \Sigma, A) \mid A \in \operatorname{sig}_{C}(\mathcal{T})\right\}$ by $\mathbb{G}^{\sqsupseteq}(\mathcal{T}, \Sigma)$ and the set $\left\{G^{\sqsubseteq}(\mathcal{T}, \Sigma, A) \mid A \in \operatorname{sig}_{C}(\mathcal{T})\right\}$ by $\mathbb{G}^{\sqsubseteq}(\mathcal{T}, \Sigma)$. For the construction of grammars the following result holds.
Theorem 2. Let \mathcal{T} be a flattened $\mathcal{E} \mathcal{L}$ TBox and let Σ be a signature. $\mathbb{G}^{\sqsupset}(\mathcal{T}, \Sigma)$ and $\mathbb{G} \sqsubseteq(\mathcal{T}, \Sigma)$ can be computed from \mathcal{T} in polynomial time and are at most polynomial in the size of \mathcal{T}.

Proof. Flattening and classification can be done all together in polynomial time [11] and yield an at most polynomial result. From this result, the grammars are constructed in polynomial time.

The following example demonstrates the grammar construction.
Example 5. Let $\mathcal{T}=\left\{A_{1} \sqsubseteq \exists r A_{2}, \exists r B_{1} \sqcap B_{3} \sqsubseteq B_{2}, A_{2} \sqsubseteq B_{1}\right\}$. In order to flatten the given TBox, we introduce fresh concept names for $\exists r A_{2}, \exists r B_{1}$ and $B_{1}^{\prime} \sqcap B_{3}$ to obtain \mathcal{T}^{\prime} :

$$
\begin{aligned}
A_{1} \sqsubseteq A_{2}^{\prime} & A_{2} \sqsubseteq B_{1} \\
B_{2}^{\prime} \sqsubseteq B_{2} & B_{1}^{\prime} \sqcap B_{3} \equiv B_{2}^{\prime} \\
\exists r B_{1} \equiv B_{1}^{\prime} & \exists r A_{2} \equiv A_{2}^{\prime}
\end{aligned}
$$

Let $\Sigma=\operatorname{sig}(\mathcal{T}) \backslash\left\{B_{1}\right\}$. Then, we introduce terminals for each concept symbol from Σ and the \top concept according to (GL1) and (GR1):

$$
\begin{equation*}
\mathfrak{n}_{A_{1}} \rightarrow A_{1} \quad \mathfrak{n}_{A_{2}} \rightarrow A_{2} \quad \mathfrak{n}_{B_{2}} \rightarrow B_{2} \quad \mathfrak{n}_{\top} \rightarrow \top \tag{10}
\end{equation*}
$$

If we only use subsumees given before the classification of \mathcal{T}^{\prime}, we obtain the following set of transitions $R \sqsupseteq$ for generating subsumees of concept symbols:

$$
\begin{align*}
\mathfrak{n}_{A_{2}^{\prime}} \rightarrow \mathfrak{n}_{A_{1}} & \mathfrak{n}_{B_{1}} \rightarrow \mathfrak{n}_{A_{2}} \tag{11}\\
\mathfrak{n}_{B_{2}} \rightarrow \mathfrak{n}_{B_{2}^{\prime}} & \mathfrak{n}_{B_{2}^{\prime}} \rightarrow \sqcap\left(\mathfrak{n}_{B_{1}^{\prime}}, \mathfrak{n}_{B_{3}}\right) \tag{12}\\
\mathfrak{n}_{B_{1}^{\prime}} \rightarrow \exists r\left(\mathfrak{n}_{B_{1}}\right) & \mathfrak{n}_{A_{2}^{\prime}} \rightarrow \exists r\left(\mathfrak{n}_{A_{2}}\right) \tag{13}
\end{align*}
$$

We see that the subsumee $\exists r . A_{2} \sqcap B_{3}$ of B_{2} is not generated by the above set of transitions. If we classify \mathcal{T}^{\prime} before constructing the grammar, we obtain additionally

$$
\begin{equation*}
\mathfrak{n}_{B_{1}^{\prime}} \rightarrow \mathfrak{n}_{A_{2}^{\prime}} \quad \mathfrak{n}_{B_{1}^{\prime}} \rightarrow \mathfrak{n}_{B_{2}^{\prime}} \quad \mathfrak{n}_{B_{3}} \rightarrow \mathfrak{n}_{B_{2}^{\prime}} \quad \mathfrak{n}_{B_{1}^{\prime}} \rightarrow \mathfrak{n}_{A_{1}} \tag{14}
\end{equation*}
$$

Accordingly, R^{\sqsubseteq} is given by Rules 10,13 and, additionally

$$
\begin{array}{clll}
\mathfrak{n}_{A_{1}} \rightarrow \mathfrak{n}_{\top} & \mathfrak{n}_{A_{2}} \rightarrow \mathfrak{n}_{\top} & \mathfrak{n}_{B_{1}} \rightarrow \mathfrak{n}_{\top} & \mathfrak{n}_{B_{2}} \rightarrow \mathfrak{n}_{\top} \\
\mathfrak{n}_{B_{3}} \rightarrow \mathfrak{n}_{\top} & \mathfrak{n}_{A_{2}^{\prime}} \rightarrow \mathfrak{n}_{\top} & \mathfrak{n}_{B_{1}^{\prime}} \rightarrow \mathfrak{n}_{\top} & \mathfrak{n}_{B_{2}^{\prime}} \rightarrow \mathfrak{n}_{\top} \\
& \\
& \tag{18}\\
& \mathfrak{n}_{A_{1}} \rightarrow \mathfrak{n}_{A_{2}^{\prime}} & \mathfrak{n}_{A_{2}} \rightarrow \mathfrak{n}_{B_{1}} & \mathfrak{n}_{A_{2}^{\prime}} \rightarrow \mathfrak{n}_{B_{1}^{\prime}} \\
& \mathfrak{n}_{B_{2}^{\prime}} \rightarrow \Pi\left(\mathfrak{n}_{B_{1}^{\prime}}, \mathfrak{n}_{B_{3}}, \mathfrak{n}_{B_{2}}\right)
\end{array}
$$

In the above example, we can generate all non-weak subsumees using the complete grammar construction, i.e., after including the results of classification in addition to transitions representing explicitly given subsumptions. For instance, the subsumee $\exists r . A_{2} \sqcap B_{3}$ of B_{2} can be generated using the first additional rule in 14 as follows: $\mathfrak{n}_{B_{2}} \rightarrow \mathfrak{n}_{B_{2}^{\prime}} \rightarrow \Pi\left(\mathfrak{n}_{B_{1}^{\prime}}, \mathfrak{n}_{B_{3}}\right) \rightarrow \Pi\left(\mathfrak{n}_{A_{2}^{\prime}}, \mathfrak{n}_{B_{3}}\right) \rightarrow \sqcap\left(\exists r\left(\mathfrak{n}_{A_{1}}\right), \mathfrak{n}_{B_{3}}\right) \rightarrow \sqcap$ $\left(\exists r\left(A_{1}\right), B_{3}\right)$.

We now consider various properties of the above grammars that are of interest for the computation of uniform interpolants. The following theorem states that the grammars derive only terms representing Σ-subsumees and Σ-subsumers of the corresponding concept symbol.

Theorem 3. Let \mathcal{T} be a flattened $\mathcal{E L}$ TBox, Σ a signature and $A \in \operatorname{sig}_{C}(\mathcal{T})$.

1. For each $t \in L\left(G^{\sqsupseteq}(\mathcal{T}, \Sigma, A)\right) \cup L\left(G G^{\sqsubseteq}(\mathcal{T}, \Sigma, A)\right)$ it holds that $\operatorname{sig}\left(C_{t}\right) \subseteq \Sigma$.
2. For each $t \in L\left(G^{\sqsupseteq}(\mathcal{T}, \Sigma, A)\right)$ it holds that $\mathcal{T} \models C_{t} \sqsubseteq A$.
3. For each $t \in L(G \sqsubseteq(\mathcal{T}, \Sigma, A))$ it holds that $\mathcal{T} \models A \sqsubseteq C_{t}$.

Proof. 1. It is easy to check given Definition 7 that the grammars derive only terms containing concept symbols and roles from Σ, since $\mathfrak{n}_{B} \rightarrow B$ only if $B \in \Sigma \cup\{T\}$ and $\mathfrak{n}_{B} \rightarrow \exists r\left(t^{\prime}\right)$ only if $r \in \Sigma$. Therefore, for any $A \in$ $\operatorname{sig}_{C}(\mathcal{T})$ and any $t \in L\left(G^{\sqsubseteq}(\mathcal{T}, \Sigma, A)\right) \cup L\left(G^{\sqsupseteq}(\mathcal{T}, \Sigma, A)\right)$ holds $\operatorname{sig}\left(C_{t}\right) \subseteq$ Σ.
2. We use an easy induction on the maximal nesting depth of functions in t using the rules given in Definition 7:

- Assume that C_{t} is a concept symbol B or \top. The term B can only be derived from \mathfrak{n}_{A} by n empty transitions (GL2), and, once \mathfrak{n}_{B} is derived, the rule (GL1). Let B_{1}, \ldots, B_{n} be such that $\mathfrak{n}_{A} \rightarrow \mathfrak{n}_{B_{1}} \rightarrow$ $\ldots \rightarrow \mathfrak{n}_{B_{n}} \rightarrow \mathfrak{n}_{B}$. Then, by Definition 7, for each pair B_{i}, B_{i+1} holds $\mathcal{T} \models B_{i} \sqsupseteq B_{i+1}$, for B_{n}, B holds $\mathcal{T} \models B_{n} \sqsupseteq B$ and for A, B_{1} holds $\mathcal{T} \models A \sqsupseteq B_{1}$. It follows that also $\mathcal{T} \models A \sqsupseteq B$.
- Assume that $t=\exists r\left(t^{\prime}\right)$ for some term t^{\prime}. Then, the derivation of t from \mathfrak{n}_{A} starts with n empty transitions (GL2) such that $\mathfrak{n}_{B^{\prime}}$ for some $B^{\prime} \in \operatorname{sig}_{C}(\mathcal{T}) \cup\{\top\}$ is derived, and a subsequent application of (GL4) such that \mathfrak{n}_{B} for some $B \in \operatorname{sig}_{C}(\mathcal{T}) \cup\{T\}$ is derived. As argued above about the applications of empty transitions, $\mathcal{T} \models A \sqsupseteq B^{\prime}$ holds. Moreover, By Definition 7 (GL4) holds $B^{\prime} \equiv \exists r . B \in \mathcal{T}$, and, therefore, $\mathcal{T} \models A \sqsupseteq \exists r . B$. Let $C^{\prime}=C_{t^{\prime}}$. Then, by induction hypothesis, $\mathcal{T} \models B \sqsupseteq C^{\prime}$. Therefore, $\mathcal{T} \models A \sqsupseteq \exists r . C^{\prime}$, while $\exists r . C^{\prime}=C_{t}$.
- Assume that $t=\sqcap\left(t_{1}, \ldots, t_{n}\right)$ for a set of terms t_{1}, \ldots, t_{n}. Then, the derivation of t from \mathfrak{n}_{A} starts with m empty transitions (GL2) such that $\mathfrak{n}_{B^{\prime}}$ for some $B^{\prime} \in \operatorname{sig}_{C}(\mathcal{T}) \cup\{T\}$ is derived, and a subsequent application of (GL3) such that we derive $\sqcap\left(\mathfrak{n}_{B_{1}}, \ldots, \mathfrak{n}_{B_{n}}\right)$, where $t_{i} \in L\left(G^{\sqsupseteq}\left(\mathcal{T}, \Sigma, \mathfrak{n}_{B_{i}}\right)\right)$ for $1 \leq i \leq n$. As argued above about the applications of empty transitions, $\mathcal{T} \models A \sqsupseteq B^{\prime}$ holds. Let $C_{i}=$ $C_{t_{i}}$. By induction hypothesis, $\mathcal{T} \models B_{i} \sqsupseteq C_{i}$. By Definition 7, $B^{\prime} \equiv B_{1} \sqcap \ldots \sqcap B_{n} \in \mathcal{T}$. Therefore, $\mathcal{T} \models B^{\prime} \sqsupseteq C_{1} \sqcap \ldots \sqcap C_{n}$ and $\mathcal{T} \models A \sqsupseteq C_{1} \sqcap \ldots \sqcap C_{n}$ with $C_{1} \sqcap \ldots \sqcap C_{n}=C_{t}$.

3. The proof of soundness of $\mathbb{G} \sqsubseteq(\mathcal{T}, \Sigma))$ can be done in the same manner, i.e., by induction on the maximal nesting depth of functions in t :

- Assume that C_{t} is a concept symbol B or \top. The term B can only be derived from \mathfrak{n}_{A} by n empty transitions (GR2), and, once \mathfrak{n}_{B} is derived, the rule (GR1). Let B_{1}, \ldots, B_{n} be such that $\mathfrak{n}_{A} \rightarrow \mathfrak{n}_{B_{1}} \rightarrow$ $\ldots \rightarrow \mathfrak{n}_{B_{n}} \rightarrow \mathfrak{n}_{B}$. Then, by Definition 7, for each pair B_{i}, B_{i+1} holds
$\mathcal{T} \models B_{i} \sqsubseteq B_{i+1}$, for B_{n}, B holds $\mathcal{T} \models B_{n} \sqsubseteq B$ and for A, B_{1} holds $\mathcal{T} \models A \sqsubseteq B_{1}$. It follows that also $\mathcal{T} \models A \sqsubseteq B$ with $C_{t}=B$.
- Assume that $t=\exists r\left(t^{\prime}\right)$ for some term t^{\prime}. Then, the derivation of t from \mathfrak{n}_{A} starts with n empty transitions (GR2) such that $\mathfrak{n}_{B^{\prime}}$ for some $B^{\prime} \in$ $\operatorname{sig}_{C}(\mathcal{T}) \cup\{T\}$ is derived, and a subsequent application of a non-empty transition (GR4) such that $\exists r \cdot \mathfrak{n}_{B}$ for some $B \in \operatorname{sig}_{C}(\mathcal{T}) \cup\{T\}$ is derived. As argued above about the applications of empty transitions, $\mathcal{T} \models A \sqsubseteq B^{\prime}$ holds. Moreover, By Definition 7, it holds that $\mathcal{T} \models$ $B^{\prime} \equiv \exists r . B$, and, therefore, $\mathcal{T} \models A \sqsubseteq \exists r . B$. Let $C^{\prime}=C_{t^{\prime}}$. By induction hypothesis, $\mathcal{T} \models B \sqsubseteq C^{\prime}$. Therefore, $\mathcal{T} \models A \sqsubseteq \exists r . C^{\prime}$ with $C_{t}=\exists r . C^{\prime}$.
- Assume that $t=\Pi\left(t_{1}, \ldots, t_{n}\right)$ for a set of terms t_{1}, \ldots, t_{n}. Then, the derivation of t from \mathfrak{n}_{A} starts with m empty transitions (GR2) such that $\mathfrak{n}_{B^{\prime}}$ for some $B^{\prime} \in \operatorname{sig}_{C}(\mathcal{T}) \cup\{\top\}$ is derived, and a subsequent application of (GR3) such that we derive $\sqcap\left(\mathfrak{n}_{B_{1}}, \ldots, \mathfrak{n}_{B_{n}}\right)$, where $t_{i} \in$ $L\left(G^{\sqsupseteq}\left(\mathcal{T}, \Sigma, \mathfrak{n}_{B_{i}}\right)\right)$ for $1 \leq i \leq n$ and $n \geq 2$. As argued above about the applications of empty transitions, $\mathcal{T} \models A \sqsubseteq B^{\prime}$ holds. Let $C_{i}=$ $C_{t_{i}}$. By induction hypothesis, $\mathcal{T} \models B_{i} \sqsubseteq C_{i}$. By Definition 7, $\mathcal{T} \models$ $B^{\prime} \sqsubseteq B_{1} \sqcap \ldots \sqcap B_{n}$. Therefore, $\mathcal{T} \models B^{\prime} \sqsubseteq C_{1} \sqcap \ldots \sqcap C_{n}$ and $\mathcal{T} \models A \sqsubseteq$ $C_{1} \sqcap \ldots \sqcap C_{n}$ with $C_{1} \sqcap \ldots \sqcap C_{n}=C_{t}$.

To be able to show completeness of the grammars, we first show that the commutative associative closure of the generated G^{\sqsupseteq} language contains all elements of Pre.

Lemma 9. Let \mathcal{T} be flattened $\mathcal{E} \mathcal{L}$ TBox and Σ a signature. Let $G=G \sqsupseteq(\mathcal{T}, \Sigma, A))$ and, for a concept symbol A, let $K \in \operatorname{Pre}(A)$. Then, $\left.\sigma\left(\prod_{B \in K} B\right) \in L_{u}^{*}\left(G^{\sqsupseteq}(\mathcal{T}, \Sigma, A)\right)\right)$.

Proof. The lemma can be shown by an easy induction on the depth of derivation of K from A. We distinguish three cases for the last derivation step.

- If $K=\{A\}$, then the lemma is a direct consequence of Definition 7 (GL1).
- Assume that K has been obtained from $K^{\prime} \in \operatorname{Pre}(A)$ by replacing some B by some B^{\prime} such that $\mathcal{T} \models B^{\prime} \sqsubseteq B$. By induction hypothesis, $\sigma\left(\prod_{B^{\prime \prime} \in K^{\prime}} B^{\prime \prime}\right) \in$ $\left.L_{u}^{*}\left(G^{\sqsupseteq}(\mathcal{T}, \Sigma, A)\right)\right)$. By Definition 7 (GL2), we have $\mathfrak{n}_{B} \rightarrow \mathfrak{n}_{B^{\prime}} \in R^{\sqsupseteq}$. Thus, also $\left.\sigma\left(\prod_{B \in K} B\right) \in L_{u}^{*}\left(G^{\sqsupseteq}(\mathcal{T}, \Sigma, A)\right)\right)$.
- Assume that K has been obtained from $K^{\prime} \in \operatorname{Pre}(A)$ by replacing some B by some B_{1}, \ldots, B_{n} such that $B \equiv B_{1} \sqcap \ldots \sqcap B_{n} \in \mathcal{T}$. By induction hypothesis, $\left.\sigma\left(\prod_{B^{\prime \prime} \in K^{\prime}} B^{\prime \prime}\right) \in L_{u}^{*}\left(G^{\sqsupseteq}(\mathcal{T}, \Sigma, A)\right)\right)$. By Definition 7 (GL3), we have $\mathfrak{n}_{B} \rightarrow \Pi\left(\mathfrak{n}_{B_{1}}, \ldots, \mathfrak{n}_{B_{n}}\right) \in R^{\sqsupseteq}$. Thus, also $\sigma\left(\prod_{B \in K} B\right) \in$ $\left.L_{u}^{*}\left(G^{\sqsupseteq}(\mathcal{T}, \Sigma, A)\right)\right)$.

As discussed above, grammars do not guarantee to capture weak subsumees and subsumers. Therefore, we obtain the following result for the completeness of the grammars.
Theorem 4. Let \mathcal{T} be a flattened $\mathcal{E} \mathcal{L}$ TBox, Σ a signature and A a concept symbol.

1. For each C with $\operatorname{sig}(C) \subseteq \Sigma$ such that $\mathcal{T} \models C \sqsubseteq A$ there is a concept C^{\prime} with $t_{C^{\prime}} \in L^{*}\left(G^{\sqsupseteq}(\mathcal{T}, \Sigma, A)\right)$ such that C can be obtained from C^{\prime} by adding arbitrary conjuncts to arbitrary subconcepts.
2. For each C with sig $(C) \subseteq \Sigma$ such that $\mathcal{T} \models A \sqsubseteq C$ there is a concept C^{\prime} with $t_{C^{\prime}} \in L^{*}\left(G^{\sqsubseteq}(\mathcal{T}, \Sigma, A)\right)$ such that C can be obtained from C^{\prime} by removing \top conjuncts from arbitrary subconcepts.

Proof. The theorem is proved by induction on the role depth of C using the properties of the flattening, for instance, stated in Lemmas 7, in addition to Definition 7 and Lemma 9. Let

$$
C=\prod_{1 \leq j \leq n} A_{j} \sqcap \prod_{1 \leq k \leq m} \exists r_{k} \cdot E_{k}
$$

where A_{j} are concept symbols, r_{k} are role symbols and E_{k} are arbitrary $\mathcal{E} \mathcal{L}$ concepts. W.l.o.g., we can assume that all A_{j} are pairwise different.

1. We prove the first claim as follows:

- Assume role depth $=0$. Then, C is a conjunction of concept symbols, i.e., $C=\prod_{1 \leq j \leq n} A_{j}$. By Lemma 7, there is a set $M^{\prime} \in \operatorname{Pre}(A)$ of concept symbols such that, for each $B \in M^{\prime}$, there is an A_{j} with $A_{j}=B$. By Lemma 9, $\left.\sigma\left(\prod_{B \in M^{\prime}} B\right) \in L_{u}^{*}\left(G^{\sqsupseteq}(\mathcal{T}, \Sigma, A)\right)\right)$. Since each $B \in M^{\prime}$ is in Σ, by Definition 7 (GL1), $\mathfrak{n}_{B} \rightarrow B \in R^{\sqsupseteq}$. It follows that $t_{C} \in L^{*}\left(G^{\sqsupseteq}(\mathcal{T}, \Sigma, A)\right)$.
- Assume that the role depth is greater than 0 . As in the case above, there is a set $M^{\prime} \in \operatorname{Pre}(A)$ of concept symbols such that, for each $B \in M^{\prime}$, [A1] or [A2] holds. Let M_{1}^{\prime} be the subset of M^{\prime} where [A1] holds, i.e., $M_{1}^{\prime}=M^{\prime} \cap\left\{A_{1}, \ldots A_{n}\right\}$, and let $M_{2}^{\prime}=M^{\prime} \backslash M_{1}^{\prime}$. In accordance with this separation of M^{\prime} into M_{1}^{\prime} and M_{2}^{\prime}, we can also identify the
two corresponding sub-conjunctions of C : Let $C_{1}^{\prime}=\prod_{B \in M_{1}^{\prime}} B$, and $C_{2}^{\prime}=\prod_{1 \leq f \leq p} \exists r_{f}^{\prime} . E_{f}^{\prime}$ such that for each f there is a corresponding $B_{f} \in M_{2}^{\prime}$.
For each f it holds that there exists a concept symbol B_{f}^{\prime} with $\mathcal{T} \models$ $E_{f}^{\prime} \sqsubseteq B_{f}^{\prime}$ and $B_{f} \equiv \exists r . B_{f}^{\prime} \in \mathcal{T}$. By induction hypothesis, for each f there exists a concept $E_{f}^{\prime \prime}$ such that $t_{E_{f}^{\prime \prime}} \in L^{*}\left(G^{\sqsupseteq}\left(\mathcal{T}, \Sigma, B_{f}^{\prime}\right)\right)$ and E_{f}^{\prime} can be obtained from $E_{f}^{\prime \prime}$ by adding arbitrary conjuncts to arbitrary subconcepts. By Definition 7 (GL4), $\mathfrak{n}_{B_{f}} \rightarrow \exists r_{f}^{\prime}\left(\mathfrak{n}_{B_{f}^{\prime}}\right) \in R \sqsupseteq$. Therefore, $\exists r_{f}^{\prime}\left(t_{E_{f}^{\prime \prime}}\right) \in L^{*}\left(G^{\sqsupseteq}\left(\mathcal{T}, \Sigma, B_{f}\right)\right)$ and $\exists r_{f}^{\prime} . E_{f}^{\prime}$ can be obtained from $\exists r_{f}^{\prime} . E_{f}^{\prime \prime}$ by adding arbitrary conjuncts to arbitrary subconcepts.
Since each $B \in M_{1}^{\prime}$ is in Σ, we have $\mathfrak{n}_{B} \rightarrow B \in R^{\sqsupseteq}$ by Definition 7 (GL1). By Lemma 9, $\left.\sigma\left(\prod_{B \in M^{\prime}} B\right) \in L_{u}^{*}\left(G^{\sqsupseteq}(\mathcal{T}, \Sigma, A)\right)\right)$. Thus, we obtain a concept expression $C^{\prime \prime}=\prod_{B \in M_{1}^{\prime}} B \sqcap \prod_{B_{f} \in M_{2}^{\prime}} \exists r_{f}^{\prime}$. $E_{f}^{\prime \prime}$ with $t_{C^{\prime \prime}} \in L^{*}\left(G^{\sqsupseteq}(\mathcal{T}, \Sigma, A)\right)$ such that C can be obtained from it by adding arbitrary conjuncts to arbitrary subconcepts.

2. We proceed with showing that for each such general C with $\operatorname{sig}(C) \subseteq \Sigma$ such that $\mathcal{T} \models A \sqsubseteq C$ there is a concept C^{\prime} such that $t_{C^{\prime}} \in L^{*}(G \sqsubseteq(\mathcal{T}, \Sigma, A))$ and C can be obtained from C^{\prime} by removing \top conjuncts from arbitrary subconcepts. For each A_{j}, we know that $\mathcal{T} \models A \sqsubseteq A_{j}$ and $A_{j} \in \Sigma \cup\{T\}$. By Definition 7 (GR1) $\mathfrak{n}_{A_{j}} \rightarrow A_{j} \in R \sqsubseteq$ for all A_{j}. Assume a role depth 0 .

- Assume that $n=1$, i.e., $C=A_{1}$, and assume that A_{1} is the only concept symbol such that $\mathcal{T} \models A \sqsubseteq A_{1}$. By Definition 7 (GR2) $\mathfrak{n}_{A} \rightarrow \mathfrak{n}_{A_{1}} \in R^{\sqsubseteq}$. Thus, $t_{C} \in L^{*}\left(G^{\sqsubseteq}(\mathcal{T}, \Sigma, A)\right)$.
- Assume that there are more than one concept symbol A_{i} such that $\mathcal{T} \models A \sqsubseteq A_{i}$. By Definition 7 (GR3), $\mathfrak{n}_{A} \rightarrow \sqcap\left(\mathfrak{n}_{A_{1}}, \ldots, \mathfrak{n}_{A_{x}}\right) \in R \sqsubseteq$ for some $x \geq n$. By Definition 7 (GR2), there is $\mathfrak{n}_{A_{i}} \rightarrow \mathfrak{n}_{\top} \in R=$ for all A_{i}. By applying (GR1) for all A_{j} and $\mathfrak{n}_{A_{i}} \rightarrow \mathfrak{n}_{\mathrm{T}}, \mathfrak{n}_{\top} \rightarrow \top$ for all $i>n$, we obtain a term $t_{C \sqcap C^{\prime}}$, where C^{\prime} is a conjunction of $x-n$ concepts T. Thus, the theorem holds for role depth 0 .

Assume a role depth >0. For each $\exists r_{k}$. E_{k}, it follows from Lemma 8 that there are $B_{k}, B_{k}^{\prime \prime} \in \operatorname{sig}_{C}(\mathcal{T})$ with $B_{k} \equiv \exists r_{k} . B_{k}^{\prime \prime} \in \mathcal{T}$ such that $\mathcal{T} \models A \sqsubseteq$ $B_{k}, \mathcal{T} \models B_{k}^{\prime \prime} \sqsubseteq E_{k}$. By Definition 7 (GR4), $\mathfrak{n}_{B_{k}} \rightarrow \exists r_{k}\left(\mathfrak{n}_{B_{k}^{\prime \prime}}\right) \in R \sqsubseteq$. By induction hypothesis, there is a concept E_{k}^{\prime} such that $t_{E_{k}^{\prime}} \in L^{*}\left(G \sqsubseteq\left(\mathcal{T}, \Sigma, B_{k}^{\prime \prime}\right)\right)$ and E_{k} can be obtained from E_{k}^{\prime} by removing T conjuncts from arbitrary subconcepts.

- Assume that there is the only one concept symbol B^{\prime} such that $\mathcal{T} \models$ $A \sqsubseteq B^{\prime}$. Then, $C=\exists r_{1} . E_{1}$ and $B_{1}=B^{\prime}$. By Definition 7 (GR2) $\mathfrak{n}_{A} \rightarrow \mathfrak{n}_{B^{\prime}} \in R^{\sqsubseteq}$. Thus, $t_{\exists r_{1} \cdot E_{1}^{\prime}} \in L\left(G^{\sqsubseteq}(\mathcal{T}, \Sigma, A)\right)$ and $\exists r_{1}$. E_{1} can be obtained from $\exists r_{1} . E_{1}^{\prime}$ by removing T conjuncts from arbitrary subconcepts.
- Assume that there are more than one concept symbol B^{\prime} such that $\mathcal{T} \models A \sqsubseteq B^{\prime}$. By Definition 7 (GR3), $\mathfrak{n}_{A} \rightarrow \sqcap\left(\mathfrak{n}_{B_{1}^{\prime}}, \ldots, \mathfrak{n}_{B_{x}^{\prime}}\right) \in R^{\sqsubseteq}$ for some $x \geq n+m$ such that $B_{j}^{\prime}=A_{j}$ for $1 \leq j \leq n$ and $B_{n+k}^{\prime}=B_{k}$ for $1 \leq k \leq m$. By Definition 7 (GR2), there is $\mathfrak{n}_{B_{i}^{\prime}} \rightarrow \mathfrak{n}_{\top} \in R^{\sqsubset}$ for all B_{i}^{\prime}. Now, we derive the term $t_{C^{\prime \prime} \sqcap C^{\prime}}$ from \mathfrak{n}_{A} by first applying $\mathfrak{n}_{A} \rightarrow \sqcap\left(\mathfrak{n}_{B_{1}^{\prime}}, \ldots, \mathfrak{n}_{B_{x}^{\prime}}\right)$ and then proceeding as follows:
- from each B_{i}^{\prime} with $i>n+m$, we derive T by applying $\mathfrak{n}_{B_{i}^{\prime}} \rightarrow \mathfrak{n}_{\top}$, $\mathfrak{n}_{\top} \rightarrow \top$;
- from each $B_{j}^{\prime}=A_{j}$ with $1 \leq j \leq n$, we derive A_{j} by applying $\mathfrak{n}_{B_{j}^{\prime}} \rightarrow A_{j}$;
- from each $B_{n+k}^{\prime}=B_{k}$ with $1 \leq k \leq m$, we derive $t_{\exists r_{k} \cdot E_{k}^{\prime}}$.

We obtain a term $t_{C^{\prime \prime} \sqcap C^{\prime}} \in L^{*}(G \sqsubseteq(\mathcal{T}, \Sigma, A))$, where C^{\prime} is a conjunction of concepts \top and $\left.C^{\prime \prime}=\prod_{1 \leq j \leq n} A_{j} \sqcap\right\rceil_{1 \leq k \leq m} \exists r_{k} . E_{k}^{\prime}$. Clearly, C can be obtained from $C^{\prime \prime}$ by removing T conjuncts from arbitrary subconcepts. Thus, C can be obtained from $C^{\prime \prime} \sqcap C^{\prime}$ by removing \top conjuncts from arbitrary subconcepts.

6.3. From Grammars to Uniform Interpolants

Now we show that, as a consequence of Lemma 4 and Theorem 4, in case a finite uniform interpolant exists, we can construct it from the subsumees and subsumers of maximal depth $N=2^{4 \cdot|\operatorname{sub}(\mathcal{T})|}+1$ generated by the grammars $\mathbb{G} \sqsupseteq(\mathcal{T}, \Sigma), \mathbb{G} \sqsubseteq(\mathcal{T}, \Sigma)$. Given the grammars, the corresponding subsumee/subsumer relation pair $\left\langle L_{\sqsupseteq}, L_{\sqsubseteq}\right\rangle$ is given by $L_{\bowtie}=\left\{(A, C) \mid t_{C} \in L\left(G^{\bowtie(}(\mathcal{T}, \Sigma, A)\right)\right.$, $d(C) \leq N\}$ for $\bowtie \in\{\sqsupseteq, \sqsubseteq\}$ and $A \in \operatorname{sig}_{C}(\mathcal{T})$. Note that, if all subsumees and subsumers are using only concepts and roles from Σ (follows from Theorem 3), then $\operatorname{sig}\left(\mathrm{M}\left(L_{\sqsupseteq}, L_{\sqsubseteq}, \Sigma\right)\right) \subseteq \Sigma$. We obtain the following result concerning the size of uniform $\mathcal{E L} \Sigma$-interpolants:

Theorem 5. Let \mathcal{T} be a flattened version of an $\mathcal{E} \mathcal{L}$ TBox $\mathcal{T}_{n f}$ and Σ a signature with $\Sigma \cap \operatorname{sig}(\mathcal{T}) \subseteq \operatorname{sig}\left(\mathcal{T}_{n f}\right)$. For $N=2^{4 \cdot\left|\operatorname{sub}\left(\mathcal{T}_{n f}\right)\right|}+1, \bowtie \in\{\sqsupseteq, \sqsubseteq\}$ and $A \in$ $\operatorname{sig}_{C}(\mathcal{T})$, let $L_{\bowtie}(A)=\left\{C \mid t_{C} \in L\left(G^{\bowtie}(\mathcal{T}, \Sigma, A)\right), d(C) \leq N\right\}$. The following statements are equivalent:

1. There exists a uniform $\mathcal{E} \mathcal{L} \Sigma$-interpolant of $\mathcal{T}_{n f}$.
2. $\mathrm{M}\left(L_{\sqsupseteq}, L_{\sqsubseteq}, \Sigma\right) \equiv{ }_{\Sigma}^{\mathcal{E} \mathcal{L}} \mathcal{T}_{n f}$
3. There exists a uniform $\mathcal{E} \mathcal{L} \Sigma$-interpolant \mathcal{T}^{\prime} of $\mathcal{T}_{\text {nf }}$ with $\left|\mathcal{T}^{\prime}\right| \in O\left(2^{2^{2 \mathcal{T}_{n f} \mid}}\right)$.

Proof. We prove the implications $1 \Rightarrow 2$ and $2 \Rightarrow 3$. All other implications are either trivial or follow from the others. For convenience, let \mathcal{T}_{Σ} denote the TBox $\mathrm{M}\left(L_{\sqsupseteq}, L_{\sqsubseteq}, \Sigma\right)$.
$1 \Rightarrow 2$: First, note that the statement $\mathcal{T}_{\Sigma} \equiv{ }_{\Sigma}^{\mathcal{E}} \mathcal{T}_{n f}$ follows from Lemma 5 and the fact that $\Sigma \cap \operatorname{sig}(\mathcal{T}) \subseteq \operatorname{sig}\left(\mathcal{T}_{n f}\right)$. Thus, it is sufficient to prove $\mathcal{T}_{\Sigma} \equiv_{\Sigma}^{\mathcal{E} \mathcal{L}} \mathcal{T}$. By Definition 2, the statement $\mathcal{T}_{\Sigma} \equiv \sum_{\Sigma}^{\mathcal{E}} \mathcal{T}$ consists of two directions: (1) for all $\mathcal{E} \mathcal{L}$ concepts C, D with $\operatorname{sig}(C) \cup \operatorname{sig}(D) \subseteq \Sigma$ holds $\mathcal{T}_{\Sigma} \models C \sqsubseteq D \Rightarrow$ $\mathcal{T} \equiv C \sqsubseteq D$ and (2) for all $\mathcal{E} \mathcal{L}$ concepts C, D with $\operatorname{sig}(C) \cup \operatorname{sig}(D) \subseteq \Sigma$ holds $\mathcal{T}_{\Sigma} \models C \sqsubseteq D \Leftarrow \mathcal{T} \models C \sqsubseteq D$.
(1) The first direction follows from Theorem 3 and Definition 5. Theorem 3 ensures that the subsumee/subsumer relation pair $\left\langle L_{\sqsupseteq}, L_{\sqsubseteq}\right\rangle$ does not contain any subsumees or subsumers not being entailed by \mathcal{T} and that it consists only of symbols from $\Sigma \cup\{T\}$. Definition 5 ensures that \mathcal{T}_{Σ} does not contain any concepts that do not occur in $\left\langle L_{\sqsupseteq}, L_{\sqsubseteq}\right\rangle$.
(2) For the second direction, assume that there exists a uniform $\mathcal{E} \mathcal{L} \Sigma$ interpolant of $\mathcal{T}_{n f}$ and, subsequently, \mathcal{T}. Then, by Lemma 4, there exists a uniform $\mathcal{E} \mathcal{L} \Sigma$-interpolant \mathcal{T}^{\prime} of $\mathcal{T}_{n f}$ and \mathcal{T} with $d\left(\mathcal{T}^{\prime}\right) \leq N$. It is sufficient to show that for each $C \sqsubseteq D \in \mathcal{T}^{\prime}$ holds $\mathcal{T}_{\Sigma} \models C \sqsubseteq D$. Assume that $C \sqsubseteq D \in \mathcal{T}^{\prime}$. We prove by induction on maximal role depth of C, D that also $\mathcal{T}_{\Sigma} \models C \sqsubseteq D$. Let $D=\prod_{1 \leq i \leq l} D_{i}$ and

$$
C=\prod_{1 \leq j \leq n} A_{j} \sqcap \prod_{1 \leq k \leq m} \exists r_{k} \cdot E_{k}
$$

where A_{j} are concept symbols, r_{k} are role symbols and E_{k} are arbitrary $\mathcal{E} \mathcal{L}$ concepts. Clearly, $\mathcal{T} \models C \sqsubseteq D$, iff $\mathcal{T} \models C \sqsubseteq D_{i}$ for all i with $1 \leq i \leq l$.

- If D_{i} is a concept symbol, then, it follows from Theorem 4 that there is a concept C^{\prime} such that $t_{C^{\prime}} \in L^{*}\left(G^{\sqsupseteq}(\mathcal{T}, \Sigma, A)\right)$ and C can be obtained from C^{\prime} by adding arbitrary conjuncts to arbitrary subconcepts. Since $d(C) \leq N$, also $d\left(C^{\prime}\right) \leq N$. Therefore, $\mathcal{T}_{\Sigma} \models C \sqsubseteq D_{i}$.
- If $D_{i}=\exists r . D^{\prime}$ for some r, D^{\prime}, then, by Lemma 7, one of the following is true:
(A3) There are r_{k}, E_{k} in C such that $r_{k}=r$ and $\mathcal{T} \models E_{k} \sqsubseteq D^{\prime}$. Since $d\left(E_{k}\right)<N$ and $d\left(D^{\prime}\right)<N$, by induction hypothesis holds $\mathcal{T}_{\Sigma} \models E_{k} \sqsubseteq D^{\prime}$. It follows that $\mathcal{T}_{\Sigma} \models \exists r_{k} . E_{k} \sqsubseteq D_{i}$ and $\mathcal{T}_{\Sigma} \models C \sqsubseteq D_{i}$.
(A4) There is a concept symbol $B \in \operatorname{sig}_{C}(\mathcal{T})$ such that $\mathcal{T} \models B \sqsubseteq$ $\exists r . D^{\prime}$ and $\mathcal{T} \models C \sqsubseteq B$. Then,
- it follows from Theorem 4 that there is a concept C_{1}^{\prime} such that $t_{C_{1}^{\prime}} \in L^{*}\left(G^{\sqsupseteq}(\mathcal{T}, \Sigma, A)\right)$ and C can be obtained from C_{1}^{\prime} by and adding arbitrary conjuncts to arbitrary subconcepts. Since $d(C) \leq N$, also $d\left(C_{1}^{\prime}\right) \leq N$. Therefore, $\left(B, C_{1}^{\prime \prime}\right) \in L_{\sqsupseteq}$ for some associative commutative variant $C_{1}^{\prime \prime}$ of C_{1}^{\prime}.
- it follows from Theorem 4 that there is a concept C_{2}^{\prime} such that $t_{C_{2}^{\prime}} \in L^{*}\left(G^{\sqsubseteq}(\mathcal{T}, \Sigma, B)\right)$ and $\exists r . D^{\prime}$ can be obtained from C_{2}^{\prime} by removing \top conjuncts from arbitrary subconcepts. Since $d\left(\exists r . D^{\prime}\right) \leq N$, also $d\left(C_{2}^{\prime}\right) \leq N$ and it follows that $\left(B, C_{2}^{\prime \prime}\right) \in L_{\sqsubseteq}$ for some associative commutative variant $C_{2}^{\prime \prime}$ of C_{2}^{\prime}.

By Definition 5, $C_{1}^{\prime \prime} \sqsubseteq C_{2}^{\prime \prime} \in \mathcal{T}_{\Sigma}$, and, therefore, $\mathcal{T}_{\Sigma} \models C \sqsubseteq$ D_{i}.
$2 \Rightarrow 3$: Observe that $\mathbb{G}_{1}, \mathbb{G}_{2}$ have $n=\left|\operatorname{sig}_{C}(\mathcal{T})\right|$ non-terminals and n is also the maximal arity of \sqcap. Now we consider the stepwise generation of terms in $L\left(G^{\sqsupseteq}(\mathcal{T}, \Sigma, A)\right)$ and $L(G \sqsubseteq(\mathcal{T}, \Sigma, A))$. Initially, terms are given by transitions. Assume that m is the maximal number of transitions in $\mathbb{G}_{1}, \mathbb{G}_{2}$, where is polynomial in n. Each of these outgoing transitions has at most n occurring non-terminals. For a term t of role depth x, we can obtain a term of the role depth $x+1$ by first applying transition rules of type GL1-GL3 (GR1-GR3 in case of subsumer terms) to replace non-terminals \mathfrak{n} by terms t^{\prime} and then applying transitions of type GL4 (GR4). In case of subsumees, we can assume that it is sufficient to consider terms t^{\prime} with a maximal function depth m (maximal number of transitions), since a repeated application of the same transition of type GL3 generates a weak subsumee that is not required for the construction of the uniform interpolant. The total maximal depth of function nestings in subsumee terms is then $N \cdot m$. In case of subsumers, the
term of the role depth $x+1$ is obtained by applying at most one rule of type GR3 for each non-terminal, since the corresponding conjunctions in GR3 contain all non-terminals that can be obtained by infinitely many successive applications of GR1-GR3. The total maximal depth of function nestings in subsumer terms is then $N \cdot 2$. Given the maximal function depth $N \cdot m$, the maximal arity n of functions and the number n of different non-terminals, we obtain at most $n^{n^{N \cdot m}}$ different terms. Since in $N \in O\left(2^{n}\right)$, the size of terms is in $O\left(2^{2^{n}}\right)$ while the number of terms is in $O\left(2^{2^{2^{n}}}\right)$.
These complexity results correspond to the size and number of axioms in Example 4 used to demonstrate the triple-exponential lower bound.

7. Related Work

In addition to the already discussed results on uniform interpolation in description logics [19, 18, 20, 28, 29, 16, 17], in this section we discuss the work on inseparability and conservative extensions. The latter two notions form the foundation for module extraction, e.g., [30, 17, 26], and decomposition of ontologies into modules, e.g., [31, 32, 33]. The notion of a conservative extension is defined using inseparability: A TBox \mathcal{T}_{1} is called a Σ-conservative extension of a TBox \mathcal{T}_{2} if \mathcal{T}_{1} is Σ-inseparable from \mathcal{T}_{2} and $\mathcal{T}_{1} \subseteq \mathcal{T}_{2}$.

Ghilardi, Lutz and Wolter [34] investigate modularity of ontologies based on concept-inseparability. They show that deciding if a subontology is a module in the description logic $\mathcal{A L C}$ is 2ExpTime-complete. In a subsequent work, Lutz, Walter and Wolter [35] show that the same problem is 2ExpTimE-complete for $\mathcal{A L C Q I}$, but undecidable for $\mathcal{A L C Q I O}$. The authors also investigate a stronger notion of inseparability and conservative extensions defined directly on models instead of entailed consequences: given two TBoxes \mathcal{T}_{1} and $\mathcal{T}_{2}, \mathcal{T}_{1}$ is a modelconservative extension of \mathcal{T}_{2} iff for every model \mathcal{I} of \mathcal{T}_{2}, there exists a model of \mathcal{T}_{1} which can be obtained from \mathcal{I} by modifying the interpretation of symbols in $\operatorname{sig}\left(\mathcal{T}_{1}\right) \backslash \operatorname{sig}\left(\mathcal{T}_{2}\right)$ while leaving the interpretation of symbols in $\operatorname{sig}\left(\mathcal{T}_{2}\right)$ fixed. The authors show that the corresponding problem based on the latter notion is undecidable for $\mathcal{A L C}$.

In a more recent work, Konev, Lutz, Walter and Wolter [26] consider the decidability of the above problem based on model-conservative extensions for $\mathcal{A L C}$ under different additional restrictions, e.g., restriction of the relevant signature to concept names, and obtain complexity results ranging from Π_{2}^{p} to undecidable. Further, the authors consider the problem for acyclic $\mathcal{E L}$ terminologies. It is interesting that, in contrast to acyclic $\mathcal{A L C}$ terminologies, for which the problem
remains undecidable, for acyclic $\mathcal{E} \mathcal{L}$ terminologies the complexity goes down to PTime. In a later work [36], the above authors present a full complexity picture for $\mathcal{A L C}$ and its common extensions. They investigate a broad range of query languages (languages in which the relevant consequences are expressed), starting with the language allowing for expressing inconsistency only and ending with Second Order Logic. More recently, Lutz and Wolter [27] show that the above notion of model-conservative extensions is undecidable also for such a lightweight logic as $\mathcal{E} \mathcal{L}$.

Kontchakov, Wolter and Zakharyaschev [37] investigate the above decision problem for two representatives of the DL-Lite family of description logics as ontology languages and existential Σ-queries as a query language. They show that, for DL-Lite ${ }_{\text {horn }}$, the problem is CoNP-complete, and for DL-Lite ${ }_{\text {bool }} \Pi_{2^{-}}^{p}$ complete.

The high complexity results for already rather simple logics have lead to a development of alternative ways to extract modules not requiring checking inseparability. For instance, Cuenca Grau, Horocks, Kazakov and Sattler [30], propose a tractable algorithm for computing modules from OWL DL ontologies based on the notion of syntactic locality [38] that defines the locality of an axiom on the syntactic level, i.e., states syntactic conditions for the potential logical relevance of axioms. It is guaranteed that the extracted module preserves all relevant consequences, but the obtained modules are not necessarily minimal.

8. Summary and Outlook

In this article, we have discussed the task of uniform interpolation, which guarantees a preservation of the relevant subset of the deductive closure while eliminating all references to irrelevant entities.

We provided an approach to computing uniform interpolants of general $\mathcal{E} \mathcal{L}$ terminologies based on proof theory and regular tree languages. Moreover, we showed that, if a finite uniform $\mathcal{E} \mathcal{L}$ interpolant exists, then there exists one of at most triple exponential size in terms of the original TBox, and that, in the worstcase, no shorter interpolant exists, thereby establishing a tight triple exponential bound. This is an important foundational insight, since it reveals the effect of structure sharing in the basic logic $\mathcal{E} \mathcal{L}$.

The result brings about some insights when it comes to the practical applicability of uniform interpolation for module extraction and related tasks. In order to prevent a triple exponential blowup in the worst-case, we need to impose restrictions on rewriting, in that certain signature elements are kept even if not
considered relevant. For instance, in [39], we obtain first, preliminary results in this direction. We show that, despite the worst-case triple exponential blowup, uniform interpolation can be very useful as a basis for rewriting aiming at an elimination of irrelevant information from ontologies.

On the other hand, the results of this article reveal the potential of structure sharing for improving the conciseness of ontologies. By introducing a reverse operation to uniform interpolation, namely the elimination of structural redundancy from ontologies via vocabulary extension, we maybe able to "compress" ontologies in a semantics-preserving way, obtaining up to triple-exponentially more concise representations of $\mathcal{E} \mathcal{L}$ ontologies in the best case. This raises a new practically relevant research question, which is particularly interesting for improving reasoning efficiency.

Acknowledgments

This work was supported by the project ExpresST funded by the German Research Foundation (DFG).

Appendix A. Model-Theoretic Properties of $\mathcal{E} \mathcal{L}$ Concepts

In Section 2, we characterize $\mathcal{E} \mathcal{L}$ concept membership and $\mathcal{E} \mathcal{L}$ concept subsumption in the absence of terminological background knowledge. In this section, we include the according proofs.
Lemma 1. For any $\mathcal{E} \mathcal{L}$ concept expression C and any interpretation $\mathcal{I}=\left(\Delta^{\mathcal{I}}, .^{\mathcal{I}}\right)$ and $x \in \Delta^{\mathcal{I}}$ it holds that $x \in C^{\mathcal{I}}$ if and only if there is a homomorphism from $\left(\mathcal{I}_{C}, x_{C}\right)$ to (\mathcal{I}, x).

Proof. We prove both directions by structural induction over C.
We start with the if-direction, letting φ be the homomorphism from $\left(\mathcal{I}_{C}, x_{C}\right)$ to (\mathcal{I}, x) :

- For $C=\top$, the case is trivial.
- For $C=A \in N_{C}$, we find $x_{A} \in A^{\mathcal{I}_{A}}$, therefore the existence of the homomorphism ensures that $x=\varphi\left(x_{A}\right) \in A^{\mathcal{I}}$.
- For $C=C_{1} \sqcap C_{2}$, we find that $\varphi_{\iota}: \Delta^{\mathcal{I}_{C_{\iota}}} \rightarrow \Delta^{\mathcal{I}}$ defined by

$$
\varphi_{\iota}(y)=\left\{\begin{array}{lr}
x & \text { if } y=x_{C_{\iota}} \\
\varphi\left(y^{\prime}\right) & \text { if } y=\left(y^{\prime}, \iota\right)
\end{array}\right.
$$

for $\iota \in\{1,2\}$ are homomorphisms from $\left(\mathcal{I}_{C_{1}}, x_{C_{1}}\right)$ to (\mathcal{I}, x) and $\left(\mathcal{I}_{C_{2}}, x_{C_{2}}\right)$ to (\mathcal{I}, x), respectively. Invoking the induction hypothesis, we conclude that $x \in C_{1}^{\mathcal{I}}$ as well as $x \in C_{2}^{\mathcal{I}}$ and thus $x \in C_{1}^{\mathcal{I}} \cap C_{2}^{\mathcal{I}}=\left(C_{1} \sqcap C_{2}\right)^{\mathcal{I}}$.

- Considering $C=\exists r . C_{1}$, we find that $\varphi^{\prime}=\left.\varphi\right|_{\Delta^{I_{C_{1}}}}$ is a homomorphism from $\left(\mathcal{I}_{C_{1}}, x_{C_{1}}\right)$ to $\left(\mathcal{I}, \varphi\left(x_{C_{1}}\right)\right)$. Invoking the induction hypothesis, we conclude $\varphi^{\prime}\left(x_{C_{1}}\right)=\varphi\left(x_{C_{1}}\right) \in C_{1}^{\mathcal{I}}$. On the other hand, by construction of \mathcal{I}_{C} we find $\left(x_{C}, x_{C_{1}}\right) \in r^{\mathcal{I}_{C}}$ and thus, since φ is a homomorphism $\left(x, \varphi\left(x_{C_{1}}\right)=\right.$ $\left(\varphi\left(x_{C}\right), \varphi\left(x_{C_{1}}\right) \in r^{\mathcal{I}}\right.$. Together, this allows to conclude $x \in\left(\exists r . C_{1}\right)^{\mathcal{I}}$.

We proceed with the only-if direction.

- For $C=\top$, the case is trivial.
- For $C=A \in N_{C}$, the mapping $\varphi=\left\{x_{A} \mapsto x\right\}$ is the required homomorphism since by assumption it holds that $x \in A^{\mathcal{I}}$.
- For $C=C_{1} \sqcap C_{2}$, we have by assumption $x \in C^{\mathcal{I}}=C_{1}^{\mathcal{I}} \cap C_{2}^{\mathcal{I}}$ therefore $x \in$ $C_{1}^{\mathcal{I}}$ and $x \in C_{2}^{\mathcal{I}}$. Invoking the induction hypothesis we find homomorphisms φ_{1} from $\left(\mathcal{I}_{C_{1}}, x_{C_{1}}\right)$ to (\mathcal{I}, x) and φ_{2} from $\left(\mathcal{I}_{C_{2}}, x_{C_{2}}\right)$ to (\mathcal{I}, x). Consequently, by construction of \mathcal{I}_{C}, the mapping $\varphi: \Delta^{\mathcal{I}_{C}} t_{o} \Delta^{\mathcal{I}}$ defined by

$$
\varphi(y)=\left\{\begin{array}{lr}
x & \text { if } y=x_{C} \\
\varphi_{1}\left(y^{\prime}\right) & \text { if } y=\left(y^{\prime}, 1\right) \\
\varphi_{2}\left(y^{\prime}\right) & \text { if } y=\left(y^{\prime}, 2\right)
\end{array}\right.
$$

is a homomorphism from $\left(\mathcal{I}_{C}, x_{C}\right)$ to (\mathcal{I}, x).

- For $C=\exists r . C_{1}$, we find by assumption $x \in\left(\exists r . C_{1}\right)^{\mathcal{I}}$ thus there exists an $x^{\prime} \in \Delta^{\mathcal{I}}$ with $\left(x, x^{\prime}\right) \in r^{\mathcal{I}}$ and $x^{\prime} \in C_{1}^{\mathcal{I}}$. Invoking the induction hypothesis, we find a homomorphism φ^{\prime} from $\left(\mathcal{I}_{C_{1}}, x_{C_{1}}\right)$ to $\left(\mathcal{I}, x^{\prime}\right)$. Consequently the mapping $\varphi: \Delta^{\mathcal{I}_{C}} \rightarrow \Delta^{\mathcal{I}}$ with $\varphi=\varphi^{\prime} \cup\left\{x_{C} \mapsto x\right\}$ is a homomorphism from $\left(\mathcal{I}_{C}, x_{C}\right)$ to (\mathcal{I}, x).

Lemma 2. Let C and C^{\prime} be two $\mathcal{E} \mathcal{L}$ concept expressions. Then $\emptyset \models C \sqsubseteq C^{\prime}$ if and only if there is a homomorphism from $\left(\mathcal{I}_{C}^{\prime}, x_{C}^{\prime}\right)$ to $\left(\mathcal{I}_{C}, x_{C}\right)$.

Proof. For the if-direction, let φ be the homomorphism from $\left(\mathcal{I}_{C}^{\prime}, x_{C}^{\prime}\right)$ to $\left(\mathcal{I}_{C}, x_{C}\right)$. Now let \mathcal{I} be an interpretation and pick an arbitrary $x \in \Delta^{\mathcal{I}}$ with $x \in C^{\mathcal{I}}$. By

Lemma 1, there exists a homomorphism φ^{\prime} from $\left(\mathcal{I}_{C}, x_{C}\right)$ to (\mathcal{I}, x). Then $\varphi^{\prime} \circ \varphi$ is a homomorphism from $\left(\mathcal{I}_{C^{\prime}}, x_{C^{\prime}}\right)$ to (\mathcal{I}, x) and by the other direction of Lemma 1, we can conclude $x \in C^{\prime}$. Thus $C^{\mathcal{I}} \subseteq C^{\prime \mathcal{I}}$ for all interpretations \mathcal{I} and therefore $\emptyset \models C \sqsubseteq C^{\prime}$.
For the only-if-direction, assume $\emptyset \models C \sqsubseteq C^{\prime}$. Now consider the pointed interpretation $\left(\mathcal{I}_{C}, x_{C}\right)$. As the identity on $\Delta^{\mathcal{I}_{C}}$ is a homomorphism from $\left(\mathcal{I}_{C}, x_{C}\right)$ to itself, we use Lemma 1 to conclude $x_{C} \in C^{\mathcal{I}_{C}}$. By $\emptyset \models C \sqsubseteq C^{\prime}$ we can infer that $x_{C} \in C^{\prime \mathcal{I}_{C}}$. Invoking the if-direction of Lemma 1 , we find that there must be a homomorphism from $\left(\mathcal{I}_{C}^{\prime}, x_{C}^{\prime}\right)$ to $\left(\mathcal{I}_{C}, x_{C}\right)$.

Appendix B. $\mathcal{E L} \mathcal{L}$ Automata

In this appendix section, we recall core notions on $\mathcal{E} \mathcal{L}$ automata [20] before giving the proof of Lemma 4.

Definition 11 [20]. An $\mathcal{E L}$ automaton (EA) is a tuple $\mathcal{A}=\left(Q, P, \Sigma_{N}, \Sigma_{E}, \delta\right)$, where Q is a finite set of bottom up states, P is a finite set of top down states, $\Sigma_{N} \subseteq N_{C}$ is the finite node alphabet, $\Sigma_{E} \subseteq N_{R}$ is the finite edge alphabet, and δ is a set of transitions of the following form:

$$
\begin{array}{rlllll}
\text { true } & \rightarrow & q & p & \rightarrow & p_{1} \\
A & \rightarrow & q & p & \rightarrow & \langle r\rangle p 1 \\
q_{1} \wedge \ldots \wedge q_{n} & \rightarrow & q & p & \rightarrow & A \\
\langle r\rangle q 1 & \rightarrow & q & p & \rightarrow & \text { false } \\
q & \rightarrow & p & & & \tag{B.5}
\end{array}
$$

where q, q_{1}, \ldots, q_{n} range over Q, p, p_{1} range over P, A ranges over Σ_{N}, and r ranges over Σ_{E}.

Definition 12 [20]. Let \mathcal{I} be an interpretation and $\mathcal{A}=\left(Q, P, \Sigma_{N}, \Sigma_{E}, \delta\right)$ an $E A$. A run of \mathcal{A} on \mathcal{I} is a map $\rho: \delta \rightarrow 2^{Q \cup P}$ such that for all $d \in \Delta^{\mathcal{I}}$, we have:

1. if true $\rightarrow q \in \delta$, then $q \in \rho(d)$;
2. if $A \rightarrow q \in \delta$, and $d \in A^{\mathcal{I}}$, then $q \in \rho(d)$;
3. if $q_{1}, \ldots, q_{n} \in \rho(d)$ and $q_{1} \wedge \ldots \wedge q_{n} \rightarrow q \in \delta$, then $q \in \rho(d)$;
4. if $(d, e) \in r^{\mathcal{I}}, q_{1} \in \rho(e)$ and $\langle r\rangle q_{1} \rightarrow q \in \delta$, then $q \in \rho(d)$;
5. if $q \in \rho(d)$ and $q \rightarrow p \in \delta$, then $p \in \rho(d)$;
6. if $p \in \rho(d)$ and $p \rightarrow p_{1} \in \delta$, then $p_{1} \in \rho(d)$;
7. if $p \in \rho(d)$ and $p \rightarrow\langle r\rangle p_{1} \in \delta$, then there is an $(d, e) \in r^{\mathcal{I}}$ with $p_{1} \in \rho(e)$;
8. if $p \in \rho(d)$ and $p \rightarrow A \in \delta$, then $d \in A^{\mathcal{I}}$;
9. if $p \rightarrow$ false $\in \delta$, then $p \notin \rho(d)$.

The following Proposition specifies how the corresponding EA \mathcal{A} for any TBox \mathcal{T} can be constructed such that $\mathcal{T}_{\Sigma}(\mathcal{A}) \equiv{ }_{\Sigma}^{\mathcal{E}} \mathcal{T}$ for any Σ.

Construction from Proposition 13 [20] Let \mathcal{T} be a TBox, $s(\mathcal{T})$ subconcepts of \mathcal{T} and $\mathcal{A}=\left(Q, P, \operatorname{sig}_{C}(\mathcal{T}), \operatorname{sig}_{R}(\mathcal{T}), \delta\right)$ with $Q=\left\{q_{C} \mid C \in s(\mathcal{T})\right\}, P=\left\{p_{C} \mid C \in\right.$ $s(\mathcal{T})\}$ and δ given by

- true $\rightarrow q_{\top}$ if $\top \in s(\mathcal{T})$;
- $A \rightarrow q_{A}$ and $q_{A} \rightarrow p_{A}$ for all $A \in \operatorname{sig}_{C}(\mathcal{T})$;
- $q_{C} \wedge q_{D} \rightarrow q_{C \sqcap D}$;
- $\langle r\rangle q_{C} \rightarrow q_{\exists r . C}$ and $q_{\exists r . C} \rightarrow\langle r\rangle p_{C}$ for all $\exists r . C \in s(\mathcal{T})$;
- $q_{C} \rightarrow q_{D}$ for all $C, D \in s(\mathcal{T})$ with $\mathcal{T} \models C \sqsubseteq D$;
- $p_{A} \rightarrow A$ for all $A \in \operatorname{sig}_{C}(\mathcal{T})$;
- $p_{\exists r . C} \rightarrow\langle r\rangle p_{C}$ for all $\exists r . C \in s(\mathcal{T})$;
- $p_{C} \rightarrow p_{D}$ for all $C, D \in s(\mathcal{T})$ with $\mathcal{T} \models C \sqsubseteq D$;
- $p_{\perp} \rightarrow$ false if $\perp \in s(\mathcal{T})$.

An EA \mathcal{A} is said to entail a subsumption $C \sqsubseteq D$ if every model accepted by \mathcal{A} satisfies $C \sqsubseteq D$. Subsequently, an EA \mathcal{A} and a TBox \mathcal{T} are $\mathcal{E} \mathcal{L} \Sigma$-inseparable, in symbols $\mathcal{A} \equiv{ }_{\Sigma}^{\mathcal{E} \mathcal{L}} \mathcal{T}$, if $\mathcal{A} \models C \sqsubseteq D$ iff $\mathcal{T} \models C \sqsubseteq D$ for all $\mathcal{E} \mathcal{L} \Sigma$-inclusions $C \sqsubseteq D$. Further, for a signature $\Sigma, \mathcal{T}_{\Sigma}(\mathcal{A})=\{C \sqsubseteq D \mid \mathcal{A} \models C \sqsubseteq D, \operatorname{sig}(C) \cup$ $\operatorname{sig}(D) \subseteq \Sigma\}$. For a natural number $m, \mathcal{T}_{\Sigma}^{m}(\mathcal{A})=\{C \sqsubseteq D \mid C \sqsubseteq D \in$ $\mathcal{T}_{\Sigma}(\mathcal{A}), d(C) \leq m$ and $\left.d(D) \leq m\right\}$.

Excerpt from Lemma 55 [20]. Let \mathcal{A} be an $E A$ and $M_{\mathcal{A}}=2^{|P \cup Q|}$. The following conditions are equivalent:

1. There exists $k>M_{\mathcal{A}}^{2}+1$ such that $\mathcal{T}_{\Sigma}^{M_{\mathcal{A}}^{2}+1} \notin \mathcal{T}_{\Sigma}^{k}$;
2. There does not exists an $\mathcal{E} \mathcal{L}$ TBox \mathcal{T} with $\mathcal{A} \equiv \sum_{\Sigma}^{\mathcal{E} \mathcal{L}} \mathcal{T}$.

Lemma 4. Let \mathcal{T} be an $\mathcal{E} \mathcal{L}$ TBox, Σ a signature. The following statements are equivalent:

1. There exists a uniform $\mathcal{E} \mathcal{L} \Sigma$-interpolant of \mathcal{T}.
2. There exists a uniform $\mathcal{E} \mathcal{L} \Sigma$-interpolant \mathcal{T}^{\prime} of \mathcal{T} for which holds $d\left(\mathcal{T}^{\prime}\right) \leq$ $2^{4 \cdot(|s u b(\mathcal{T})|)}+1$.

1171 Proof. Assume that a uniform $\mathcal{E} \mathcal{L} \Sigma$-interpolant of \mathcal{T} exists and let $M=2^{(2 \cdot|\operatorname{sub}(\mathcal{T})|)}$. 1172 Then, by Lemma 55 [20], there is no $k>M^{2}+1$ such that $\mathcal{T}_{\Sigma}^{M^{2}+1}(\mathcal{A}) \not \vDash \mathcal{T}_{\Sigma}^{k}(\mathcal{A})$, ${ }_{1173}$ where \mathcal{A} is the corresponding $\mathcal{E} \mathcal{L}$ automaton for \mathcal{T}. Then $\mathcal{T}_{\Sigma}^{M^{2}+1}(\mathcal{A}) \models \mathcal{T}_{\Sigma}(\mathcal{A})$. 1174 Therefore, $\mathcal{T}_{\Sigma}^{M^{2}+1}(\mathcal{A}) \equiv_{\Sigma}^{\mathcal{E} \mathcal{L}} \mathcal{T}$, i.e., $\mathcal{T}_{\Sigma}^{M^{2}+1}(\mathcal{A})$ is a uniform $\mathcal{E} \mathcal{L} \Sigma$-interpolant \mathcal{T}^{\prime} ${ }_{1175}$ of \mathcal{T} with $d\left(\mathcal{T}^{\prime}\right) \leq M^{2}+1$. We can replace $M^{2}+1$ by $2^{4 \cdot(|\operatorname{sub}(\mathcal{T})|)}+1$ and obtain $d\left(\mathcal{T}^{\prime}\right) \leq 2^{4 \cdot(|\operatorname{sub}(\mathcal{T})|)}+1$.

References

[1] N. Nikitina, S. Rudolph, ExpExpExplosion: Uniform interpolation in general $\mathcal{E L}$ terminologies, in: Proceedings of the 20th European Conference on Artificial Intelligence (ECAI 2012), pp. 618-623. (Shortlisted for best student paper award).
[2] W. OWL Working Group, OWL 2 Web Ontology Language: Document Overview, W3C Recommendation, 27 October 2009. Available at http: //www.w3.org/TR/owl2-overview/.
[3] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P. Patel-Schneider (Eds.), The Description Logic Handbook: Theory, Implementation, and Applications, Cambridge University Press, second edition, 2007.
[4] S. Rudolph, Foundations of Description Logics, in: Reasoning Web. Semantic Technologies for the Web of Data - 7th International Summer School 2011, Tutorial Lectures, pp. 76-136.
[5] E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur, Y. Katz, Pellet: A practical OWL-DL reasoner, Web Semantics: Science, Services and Agents on the World Wide Web 5 (2007) pp. 51-53.
[6] R. Shearer, B. Motik, I. Horrocks, HermiT: A Highly-Efficient OWL Reasoner, in: Proceedings of the 5th International Workshop on OWL: Experiences and Directions (OWLED 2008).
[7] D. Tsarkov, I. Horrocks, FACT++ Description Logic Reasoner: System Description, in: Proceedings of the 3rd International Joint Conference on Automated Reasoning (IJCAR 2006), pp. 292-297.
[8] V. Haarslev, K. Hidde, R. Möller, M. Wessel, The RacerPro knowledge representation and reasoning system, Semantic Web 3 (2012) pp. 267-277.
[9] B. Motik, B. Cuenca Grau, I. Horrocks, Z. Wu, A. Fokoue, C. Lutz (Eds.), OWL 2 Web Ontology Language: Profiles, W3C Recommendation, 27 October 2009. Available at http://www.w3.org/TR/ owl2-profiles/.
[10] S. Brandt, Polynomial Time Reasoning in a Description Logic with Existential Restrictions, GCI Axioms, and - What Else?, in: Proceedings of the 14th European Conference on Artificial Intelligence (ECAI 2004), pp. 298-302.
[11] F. Baader, S. Brandt, C. Lutz, Pushing the $\mathcal{E} \mathcal{L}$ envelope, in: Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI 2005), pp. 364-369.
[12] M. Ashburner, Gene ontology: Tool for the unification of biology, Nature Genetics 25 (2000) pp.25-29.
[13] N. Sioutos, S. d. Coronado, M. W. Haber, F. W. Hartel, W.-L. Shaiu, L. W. Wright, NCI Thesaurus: A semantic model integrating cancer-related clinical and molecular information, Journal of Biomedical Informatics 40 (2007) pp.30-43.
[14] K. A. Spackman, K. E. Campbell, R. A. Cote, SNOMED RT: A reference terminology for health care, in: Proceedings of the AIMA Fall Symposium, pp. 640-644.
[15] N. Nikitina, S. Rudolph, B. Glimm, Reasoning-supported interactive revision of knowledge bases, in: Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI 2011), pp. 1027-1032.
[16] Z. Wang, K. Wang, R. W. Topor, J. Z. Pan, Forgetting Concepts in DLLite, in: Proceedings of the 5th European Semantic Web Conference (ESWC 2008), pp. 245-257.
[17] R. Kontchakov, F. Wolter, M. Zakharyaschev, Logic-based ontology comparison and module extraction, with an application to DL-Lite, Artificial Intelligence 174 (2010) pp.1093-1141.
[18] C. Lutz, F. Wolter, Foundations for uniform interpolation and forgetting in expressive description logics, in: Proceedings of the 22 nd International Joint Conference on Artificial Intelligence (IJCAI 2011), pp. 989-995.
[19] B. Konev, D. Walther, F. Wolter, Forgetting and uniform interpolation in large-scale description logic terminologies, in: Proceedings of the 21st International Joint Conference on Artifical Intelligence (IJCAI 2009), pp. 830835.
[20] C. Lutz, I. Seylan, F. Wolter, An Automata-Theoretic Approach to Uniform Interpolation and Approximation in the Description Logic $\mathcal{E} \mathcal{L}$, in: Proceedings of the 13th International Conference on the Principles of Knowledge Representation and Reasoning (KR 2012).
[21] H. Comon, F. Jacquemard, M. Dauchet, R. Gilleron, D. Lugiez, C. Loding, S. Tison, M. Tommasi, Tree automata techniques and applications, 2008.
[22] M. Hofmann, Proof-theoretic approach to description-logic, in: Proceedings of the 20th Annual IEEE Symposium on Logic in Computer Science (LICS 2005), pp. 229-237.
[23] Y. Kazakov, Consequence-driven reasoning for \mathcal{H} orn $\mathcal{S H} \mathcal{H}$ Q ontologies, in: Proceedings of the 21st International Joint Conference on Artifical Intelligence (IJCAI 2009), pp. 2040-2045.
[24] C. Lutz, F. Wolter, Conservative extensions in the lightweight description logic EL, in: In Proceedings of the 21st International Conference on Automated Deduction (CADE 2007), pp. 84-99.
[25] B. Cuenca Grau, I. Horrocks, Y. Kazakov, U. Sattler, Just the right amount: extracting modules from ontologies, in: Proceedings of the 16th International Conference on World Wide Web (WWW 2007), pp. 717-726.
[26] B. Konev, C. Lutz, D. Walther, F. Wolter, Semantic modularity and module extraction in description logics, in: Proceedings of the 18th European Conference on Artificial Intelligence (ECAI 2008), pp. 55-59.
[27] C. Lutz, F. Wolter, Deciding inseparability and conservative extensions in the description logic $\mathcal{E} \mathcal{L}$, Journal of Symbolic Computation 45 (2010) pp.194-228.
[28] Z. Wang, K. Wang, R. Topor, J. Z. Pan, G. Antoniou, Uniform interpolation for $\mathcal{A L C}$ revisited, in: Proceedings of the 22nd Australasian Joint Conference on Advances in Artificial Intelligence (AI 2009), pp. 528-537.
[29] Z. Wang, K. Wang, R. Topor, X. Zhang, Tableau-based forgetting in $\mathcal{A L C}$ ontologies, in: Proceedings of the 19th European Conference on Artificial Intelligence (ECAI 2010), pp. 47-52.
[30] B. Cuenca Grau, I. Horrocks, Y. Kazakov, U. Sattler, Extracting modules from ontologies: A logic-based approach, in: Proceedings of OWL: Experiences and Directions (OWLED 2007), pp. 159-186.
[31] B. Cuenca Grau, B. Parsia, E. Sirin, A. Kalyanpur, Modularity and web ontologies, in: Proceedings of the 10th International Conference on the Principles of Knowledge Representation and Reasoning (KR 2006), pp. 198-209.
[32] B. Konev, C. Lutz, D. Ponomaryov, F. Wolter, Decomposing description logic ontologies, in: Proceedings of the 12th International Conference on the Principles of Knowledge Representation and Reasoning (KR 2010), pp. 236-246.
[33] C. Del Vescovo, B. Parsia, U. Sattler, T. Schneider, The modular structure of an ontology: Atomic decomposition, in: Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI 2011), pp. 2232-2237.
[34] S. Ghilardi, C. Lutz, F. Wolter, Did i damage my ontology? a case for conservative extensions in description logics, in: Proceedings of the 10th International Conference on the Principles of Knowledge Representation and Reasoning (KR 2006), pp. 187-197.
[35] C. Lutz, D. Walther, F. Wolter, Conservative extensions in expressive description logics, in: Proceedings of the 20th International Joint Conference on Artifical Intelligence (IJCAI 2007), pp. 453-458.
[36] B. Konev, C. Lutz, D. Walther, F. Wolter, Formal properties of modularisation, in: H. Stuckenschmidt, C. Parent, S. Spaccapietra (Eds.), Modular Ontologies, Springer-Verlag, 2009, pp. 25-66.
[37] R. Kontchakov, F. Wolter, M. Zakharyaschev, Can you tell the difference between DL-Lite ontologies?, in: Proceedings of the 11th International Conference on Principles of Knowledge Representation and Reasoning (KR 2008), pp. 285-295.
[38] B. Cuenca Grau, I. Horrocks, Y. Kazakov, U. Sattler, A logical framework for modularity of ontologies, in: Proceedings of the 20th International Joint Conference on Artifical Intelligence (IJCAI 2007), pp. 298-304.
[39] N. Nikitina, B. Glimm, Hitting the sweetspot: Economic rewriting of knowledge bases, in: Proceedings of the 11th International Semantic Web Conference (ISWC 2012), pp. 394-409.

[^0]: ${ }^{4}$ This is a revised and extended version of previous work [1].

 * Corresponding Author

 Email addresses: nade jda.nikitina@cs.ox.ac.uk (Nadeschda Nikitina), sebastian.rudolph@tu-dresden.de (Sebastian Rudolph)

[^1]: ${ }^{1}$ While knowledge bases in general can also include a specification of individuals with the corresponding concept and role assertions (ABox), in this paper we do not consider ABoxes, but concentrate on TBoxes.

