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1. Introduction1

With the wide-spread adoption of ontological modeling by means of the W3C-2

specified OWL Web Ontology Language [2], description logics (DLs, [3, 4])3

have developed into one of the most popular family of formalisms employed for4

knowledge representation and reasoning [5, 6, 7, 8]. For application scenarios5

where scalability of reasoning is of utmost importance, specific tractable sublan-6

guages (the so-called profiles [9]) of OWL have been put into place, among them7

OWL 2 EL which in turn is based on DLs of the EL family [10, 11].8

In view of the practical deployment of OWL and its profiles [12, 13, 14], non-9

standard reasoning services for supporting modeling activities gain in importance.10

An example of such reasoning services supporting knowledge engineers in differ-11

ent tasks is that of uniform interpolation: given a theory using a certain vocabu-12

lary, and a subset of “relevant terms” of that vocabulary, find a theory (referred to13

as a uniform interpolant, short: UI) that uses only the relevant terms and gives rise14

to the same consequences (expressible via relevant terms) as the original theory.15

Intuitively, this provides a view on the ontology where all irrelevant (asserted as16

well as implied) statements have been filtered out.17

Uniform interpolation has many applications within ontology engineering. For18

instance, it can help ontology engineers understand existing ontological specifi-19

cations by visualizing implicit dependencies between relevant concepts and roles,20

as used, for instance, for interactive ontology revision [15]. In particular for un-21

derstanding and developing complex knowledge bases, e.g., those consisting of22

general concept inclusions (GCIs), appropriate tool support of this kind would be23

beneficial. Another application of uniform interpolation is ontology reuse: given24

an ontology that is to be reused in a different scenario, most likely not all as-25

pects of this ontology are relevant to the new usage requirements. In combination26

with module extraction, uniform interpolation can be used to reduce the amount27

of irrelevant information within an ontology employed in a new context.28

For DL-Lite, the problem of uniform interpolation has been investigated [16,29

17] and a tight exponential bound on the size of uniform interpolants has been30

shown. Lutz and Wolter [18] propose an approach to uniform interpolation in31

expressive description logics such as ALC featuring general terminologies show-32

ing a tight triple-exponential bound on the size of uniform interpolants. For the33

lightweight description logic EL, the problem of uniform interpolation has, how-34

ever, not been solved. To the best of our knowledge, the only existing approach35

[19] to uniform interpolation in EL is restricted to terminologies containing each36

concept symbol at most once on the left-hand side of concept inclusions and ad-37
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ditionally satisfying particular acyclicity conditions which are sufficient, but not38

necessary for the existence of a uniform interpolant. Recently, Lutz, Seylan and39

Wolter [20] proposed an EXPTIME procedure for deciding, whether a finite uni-40

form EL interpolant exists for a particular general terminology and a particular41

set of relevant terms. However, the authors do not address the actual computation42

of such a uniform interpolant. Up to now, also the bounds on the size of uniform43

EL interpolants have remained unknown.44

In this paper, we propose a worst-case-optimal approach to computing a finite45

uniform EL interpolant for a general terminology. We compute uniform inter-46

polants by rewriting the terminology, i.e., exchanging explicitly given axioms by47

other axioms which are logically entailed. Since our rewriting approach operates48

on the syntactic structure of terminologies, the task can be significantly facilitated49

by converting the terminology into a simplified form in a semantics-preserving50

way. For this purpose, we make use of a normalization strategy, wherein fresh51

vocabulary elements are introduced in order to obtain a syntactically simple ter-52

minology that provides for vocabulary elements finite sets of so-called subsumees53

and subsumers. We show via a proof-theoretic analysis that this representation54

does indeed capture all consequences of the initial terminology expressed using55

the set of relevant terms.56

This specific normalized form can then be transformed into regular tree gram-57

mars, whose corresponding tree languages are used to represent (possibly infinite)58

sets of consequences. We show that certain finite subsets of the languages gen-59

erated by these grammars can be transformed into a uniform EL interpolant of at60

most triple exponential size, if such a finite uniform EL interpolant exists for the61

given terminology and a set of terms. Further, we show that, in the worst-case, no62

shorter interpolants exist, thereby establishing tight bounds on the size of uniform63

interpolants in EL.64

The paper is structured as follows: In Section 2, we recall the necessary pre-65

liminaries on EL and regular tree languages/grammars. In Section 3, we introduce66

a calculus for deriving general subsumptions in EL terminologies, which is used67

as a major tool in the proofs of this work. Section 4 formally introduces the notion68

of inseparability and defines the task of uniform interpolation. Section 5 demon-69

strates that the smallest uniform interpolants in EL can be triple exponential in the70

size of the original knowledge base. In the first part of Section 6, we show that71

applying flattening to terminologies simplifies tracking of entailed subsumption72

dependencies. In Section 6.2, we introduce regular tree grammars representing73

subsumees and subsumers of concept symbols, which are the basis for comput-74

ing uniform EL interpolants as shown in Section 6.3. In the same section, we75
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also show the upper bound on the size of uniform interpolants. After giving an76

overview of related work in Section 7, we summarize the contributions in Sec-77

tion 8 and discuss some ideas for future work. This is a revised and extended78

version of our previous paper [1], containing a more detailed argumentation, ex-79

amples and the full proofs.80

2. Preliminaries81

In this section, we formally introduce the description logic EL, and recall82

some of its well-known properties. Furthermore, we introduce tree grammars,83

which we will later use as a formal tool to represent infinite sets of EL concept84

expressions.85

2.1. The Description Logic EL86

Let NC and NR be countably infinite and mutually disjoint sets called concept
symbols and role symbols, respectively. EL concepts C are defined by

C ::= A | > | C u C | ∃r.C

whereA and r range overNC andNR, respectively. In the following, we use sym-87

bols A,B to denote concept symbols (i.e., concepts from NC) or > and C,D,E88

to denote arbitrary concepts. We use the term simple concept to refer to a simpler89

form of EL concepts defined by Cs ::= A | ∃r.A, where A and r range over90

NC ∪ {>} and NR, respectively.91

A terminology or TBox consists of concept inclusion axioms C v D and92

concept equivalence axioms C ≡ D, the latter used as a shorthand for the mutual93

inclusion C v D and D v C.1 The signature of an EL concept C, an axiom94

α or a TBox T , denoted by sig(C), sig(α) or sig(T ), respectively, is the set of95

concept and role symbols occurring in it. To distinguish between the set of concept96

symbols and the set of role symbols, we use sigC(·) and sigR(·), respectively.97

Further, we use sub(T ) to denote the set of all subformulae of concepts in T .98

For a concept C, let the role depth of C (denoted by d(C)) be the maximal99

nesting depth of existential restrictions within C. For instance, d(∃r.(∃s.AuB)u100

1While knowledge bases in general can also include a specification of individuals with the
corresponding concept and role assertions (ABox), in this paper we do not consider ABoxes, but
concentrate on TBoxes.
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∃s.B) = 2. For a TBox T , the role depth is given by d(T ) = max{d(C) |101

C ∈sub(T )}.102

Next, we recall the semantics of the DL constructs introduced above, which103

is defined by the means of interpretations. An interpretation I is given by a set104

∆I , called the domain, and an interpretation function ·I assigning to each concept105

A ∈ NC a subset AI of ∆I and to each role r ∈ NR a subset rI of ∆I × ∆I .106

The interpretation of> is fixed to ∆I . The interpretation of arbitrary EL concepts107

is defined inductively via (C u D)I = CI ∩ DI and (∃r.C)I = {x | (x, y) ∈108

rI and y ∈ CI for some y}. An interpretation I satisfies an axiom C v D if109

CI ⊆ DI . I is a model of a TBox T , if it satisfies all axioms in T . We say that110

T entails an axiom α (in symbols, T |= α), if α is satisfied by all models of T .111

The deductive closure of a TBox T is the set of all axioms entailed by T . For two112

arbitrary EL concepts C,D such that T |= C v D, we call C a subsumee of D113

and D a subsumer of C.114

2.2. Model-Theoretic Properties of EL Concepts115

In the following, we provide some results concerning model-theoretic proper-116

ties of EL concept expressions, which are essentially common knowledge. Nev-117

ertheless, to make the paper self-contained, we include the proofs in the appendix.118

We first define pointed interpretations as well as homomorphisms between them.119

Moreover we define the notion of a characteristic interpretation of an EL concept120

expression. Intuitively, a concept’s characteristic interpretation describes a partial121

model with one distinguished element which represents necessary and sufficient122

conditions for a domain element to be an instance of this concept.123

Definition 1. A pointed interpretation is a pair (I, x) with x ∈ ∆I . Given two124

pointed interpretations (I1, x1) and (I2, x2), a homomorphism from (I1, x1) to125

(I2, x2) is a mapping ϕ : ∆I1 → ∆I2 such that126

• ϕ(x1) = x2,127

• x ∈ AI1 implies ϕ(x) ∈ AI2 for all A ∈ NC ,128

• (x, y) ∈ rI1 implies (ϕ(x), ϕ(y)) ∈ rI2 for all r ∈ NR.129

Given an EL concept expression C, we define its characteristic pointed inter-130

pretation (IC , xC) inductively over the structure of C as follows:131

• For A ∈ NC ∪ {>} we let ∆IA = {xA} with132
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– AIA = {xA},133

– BIA = ∅ for all B ∈ NC \ {A}, and134

– rIA = ∅ for all r ∈ NR.135

• For C = C1 u C2, we define ∆IC = {xC} ∪
⋃
ι∈{1,2}(∆ICι \ {xCι}) × {ι}136

with137

– AIC = {xC | xC1 ∈ AIC1 or xC2 ∈ AIC2} ∪ ⋃
ι∈{1,2}(AICι \ {xCι})×138

{ι} for all A ∈ NC , and139

– rIC = {(xC , (y, ι)) | (xCι , y) ∈ rICι} ∪ ⋃
ι∈{1,2}{((y, ι), (y′, ι)) |140

(y, y′) ∈ rICι , y 6= xCι} for all r ∈ NR.141

• For C = ∃r.C ′, we define ∆IC = {xC} ∪∆IC′ with142

– AIC = AIC′ for all A ∈ NC , and143

– (r′)IC = {(xC , xC′) | r′ = r} ∪ (r′)IC′ for all r′ ∈ NR.144

The subsequent lemma shows that characteristic interpretations indeed charac-145

terize EL concept membership via the existence of appropriate homomorphisms.146

Lemma 1 (structurality of validity of EL concepts). For any EL concept expres-147

sion C and any interpretation I = (∆I , ·I) and x ∈ ∆I it holds that x ∈ CI if148

and only if there is a homomorphism from (IC , xC) to (I, x).149

The next lemma shows that EL concept subsumption in the absence of ter-150

minological background knowledge can as well be characterized via homomor-151

phisms between characteristic interpretations.152

Lemma 2 (Structurality of EL concept subsumption). Let C and C ′ be two EL153

concept expressions. Then ∅ |= C v C ′ if and only if there is a homomorphism154

from (I ′C , x′C) to (IC , xC).155

The proofs of both lemmas can be found in Appendix A.156

2.3. Regular Tree Grammars157

We briefly recall the basics of tree languages and regular tree grammars. A158

ranked alphabet is a pair (F , Arity) where F is a finite set and Arity is a mapping159

from F into N. We use superscripts to denote the arity > 0 of alphabet symbols,160

e.g., f 2(g1(a), a). The set of ground terms over the alphabet F (which are also161
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simply referred to as trees) is denoted by T (F). Let Xn be a set of n variables.162

Then, T (F ,Xn) denotes the set of terms over the alphabet F and the set of vari-163

ables Xn. A term C ∈ T (F ,Xn) containing each variable from Xn at most once164

is called a context.165

Example 1. Let F = {f 2, g1, a} with non-zero arities of symbols denoted by166

the subscripts and X, Y two variables. Terms f 2(g1(a), X), f 2(g1(Y ), X) and167

f 2(Y,X) are contexts obtained by replacing terminal symbols within the term168

f 2(g1(a), a) with a variable. The term f 2(g1(X), X) is not a context, since it169

contains the variable X more than once.170

A regular tree grammar G = (S,N ,F , R) is composed of a start symbol171

S, a set N of non-terminal symbols (non-terminal symbols have arity 0) with172

S ∈ N , a ranked alphabet F of terminal symbols with a fixed arity such that173

F ∩ N = ∅, and a set R of derivation rules of the form N → β where N is174

a non-terminal from N and β is a term from T (F ∪ N ). The ranked alphabet175

F ∪ N is considered to be disjoint from the set of variables Xn. Given a regular176

tree grammar G = (S,N ,F , R), the derivation relation→G associated to G is a177

relation on terms from T (F ∪ N ) such that s →G t if and only if there is a rule178

N → α ∈ R and there is a context C such that s = C[N/X] and t = C[α/X],179

where X is a variable from Xn. The subset of T (F ∪N ) which can be generated180

by successive derivations starting with the start symbol is denoted by Lu(G) =181

{s ∈ T (F ∪ N ) | S →+
G s} where →+

G is the transitive closure of →G. We182

omit the subscriptG when the grammarG is clear from the context. The language183

generated by G denoted by L(G) = T (F)∩Lu(G). For the purpose of this paper,184

we also consider commutative associative closure L∗u(G) and L∗(G) of Lu(G) and185

L(G), respectively.186

Example 2. Let G = (A, {A,B}, {f 2, g1, a, b}, R) with R given by the following187

derivation rules:188

• A→ f 2(B,A) | a189

• B → g1(A) | b190

Then, f 2(g1(a), a) ∈ L(G), sinceA→ f 2(B,A)→ f 2(B, a)→ f 2(g1(A), a)→191

f 2(g1(a), a). While f 2(a, g1(a)) is not in L(G), it is contained in L∗(G) due to192

commutativity of f 2.193

For further details on regular tree grammars, we refer the reader, for instance,194

to [21].195
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3. A Gentzen-Style Proof System for EL196

The aim of this section is to provide a proof-theoretic calculus that is sound197

and complete for general subsumption in EL. We will use this calculus in the198

subsequent sections to prove particular properties of TBoxes of a certain form in199

the context of consequence-preserving rewriting. The Gentzen-style calculus for200

EL is shown in Fig. 1 and is a variation of the calculus given by Hofmann [22].201

C v C
(AX)

C v >
(AXTOP)

D v E

C uD v E
(ANDL)

C v E C v D

C v D u E
(ANDR)

C v D

∃r.C v ∃r.D
(EX)

C v E E v D

C v D
(CUT)

Figure 1: Gentzen-style proof system for general EL terminologies with C, D, E arbitrary concept
expressions.

The calculus operates on sequents. A sequent is of the form C v D, where202

C,D are EL concepts. The rules depicted in Fig. 1 can be used to derive new203

sequents from sequents that have already been derived. For instance, if we have204

derived the sequent C v D, we can derive the sequent ∃r.C v ∃r.D using rule205

(EX). A derivation (or proof ) of a sequent C v D is a finite tree with whose206

nodes are labeled with sequents. The tree root is labeled with the sequent C v D.207

Within the tree, a parent node is always labeled by the conclusion of a proof rule208

from Fig. 1 whose antecedent(s) are the labels of the child nodes. The leaves209

of a derivation are either labeled by axioms from T or conclusions of (AX) or210

(AXTOP). We use the notation T ` C v D to indicate that there is a derivation211

of C v D. In our calculus, we assume commutativity of conjunction for con-212

venience. Fig. 2 shows an example derivation of the sequent ∃r.C1 v C2 in our213

calculus w.r.t. the EL TBox Te = {∃r.C1 v C1 u C2}.214
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∃r.C1 v C1 u C2

(AX)
C2 v C2 (ANDL)

C1 u C2 v C2 (CUT)∃r.C1 v C2

Figure 2: Example derivation of ∃r.C1 v C2 from Te.

We show that the above calculus is sound and complete for subsumptions be-215

tween arbitrary EL concepts.216

Lemma 3 (Soundness and Completeness). Let T be an arbitrary EL TBox, C,D217

EL concepts. Then T |= C v D, iff T ` C v D.218

Proof. While the soundness of the proof system (if-direction) can be easily ver-219

ified for each rule separately, the proof of completeness is more sophisticated.220

Analogously to other proof-theoretic approaches [11, 23], we show the only-if-221

direction of the lemma by constructing a model I for T wherein only the GCIs222

derivable from T are valid. The construction of the model is rather standard (a223

similar construction is, e.g., given by Lutz and Wolter [24]). The model is defined224

as follows:225

• ∆I is the set of elements δC where C is an EL concept expression;226

• AI := {δC ∈ ∆I | T ` C v A}, where A ranges over concept symbols;227

• rI := {(δC , δD) ∈ ∆I × ∆I | T ` C v ∃r.D} where r ranges over role228

symbols.229

We will show that the following claim holds for I:230

For all δE ∈ ∆I and EL concepts F it holds that δE ∈ F I iff T ` E v F . (*)231

232

This claim can be exploited in two ways: First, we use it to show that I is in-233

deed a model of T . Let C v D ∈ T and consider an arbitrary concept expression234

G with δG ∈ CI . Via (*) we obtain T ` G v C. Further, T ` C v D due235

to C v D ∈ T . Thus we can derive T ` G v D via (CUT) and consequently,236

applying (*) again, we obtain δG ∈ DI . Thereby modelhood of I with respect to237

T has been proved.238

Second, we use (*) to show that I is a counter-model for all GCIs not derivable239

from T as follows: Assume T 6` C v D. From T ` C v C and (*) we derive240
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δC ∈ CI . From T 6` C v D and (*) we obtain δC 6∈ DI . Hence we get CI 6⊆ DI241

and therefore I 6|= C v D.242

It remains to prove (*). This is done by an induction over the structure of the243

concept expression F . There are two base cases:244

• for F = >, the claim trivially follows from (AXTOP),245

• for a concept symbol F , it is a direct consequence of the definition of our246

model (F I := {δC ∈ ∆I | T ` C v F}).247

we now consider the cases where F is a complex concept expression248

• for F = C1 u . . . u Cn, we note that δE ∈ F I exactly if δE ∈ CIi for all249

i ∈ {1 . . . n}. By induction hypothesis, this means T ` E v Ci for all250

i ∈ {1 . . . n}. Finally, observe that {E v Ci | 1 ≤ i ≤ n} and E v251

C1 u . . . u Cn can be mutually derived from each other:252

– {E v Ci | 1 ≤ i ≤ n} ` E v C1 u . . . u Cn is a straightforward253

consequence of (ANDR);254

– To derive E v C1 u . . . u Cn ` {E v Ci | 1 ≤ i ≤ n}, we first255

derive C1 u . . . u Cn v Ci from Ci v Ci (obtained using (AX)) by256

applying (ANDL) multiple times. Since T ` E v C1 u . . . u Cn, we257

can apply (CUT) (with E v C1 u . . . u Cn as the left antecedent and258

C1 u . . . u Cn v Ci as the right antecedent) to derive E v Ci.259

• for F = ∃r.G, we prove the two directions separately. First assuming δE ∈260

F I we must find (δE, δH) ∈ rI for some H with δH ∈ GI . This implies261

both T ` E v ∃r.H (by the definition of the model) and T ` H v G262

(via the induction hypothesis). From the latter, we can deduce T ` ∃r.H v263

∃r.G by (EX) and consequently T ` E v ∃r.G. For the other direction,264

note that by definition, T ` E v ∃r.G implies (δE, δG) ∈ rI . On the other265

hand, we get T ` G v G by (AX) and therefore δG ∈ GI by the induction266

hypothesis which yields us δE ∈ F I .267

Alternatively, the completeness of the calculus could be shown by a reduction268

to the calculus of Hofmann [22].269

10



4. Uniform Interpolation270

Uniform interpolation has many potential applications in ontology engineering271

due to its ability to reduce the amount of irrelevant information within a terminol-272

ogy while preserving all relevant consequences given the set of relevant signature273

elements. The task of computing terminologies with such properties is not triv-274

ial. For instance, it is not sufficient to simply eliminate axioms containing only275

irrelevant entities, since it can change the meaning of the relevant entities and276

cause a loss of relevant information. Example 3 demonstrates the effect of such277

an elimination.278

Example 3. Consider the terminology T given by

Ai+1 v Ai 0 ≤ i ≤ 3 (1)
A4 v ∃r.A4 (2)

If we are only interested in entities A1, A4, r, then we might consider to eliminate279

all axioms except for those that contain at least one relevant entity, obtaining280

T ′ = T r {A3 v A2}. However, in this way we would lose the information281

about the connection between the relevant entities, for instance A4 v A1, A4 v282

∃r.A1, A4 v ∃r.∃r.A1, .... Indeed, T ′ does not entail any of these statements.283

Thus, by omitting axioms based only on the absence of relevant entities can lead284

to a loss of relevant information.285

In typical ontology reuse scenarios, it is required to preserve the meaning of286

the relevant entities while computing a terminology that contains as little irrelevant287

information as possible. We say that the meaning of relevant entities is preserved,288

if every logical statement that follows from the original terminology and contains289

only relevant entities also follows from the resulting terminology. The logical290

foundation for such a preservation of relevant consequences can be defined using291

the notion of inseparability. Two terminologies, T1 and T2, are inseparable w.r.t.292

a signature Σ if they have the same Σ-consequences, i.e., consequences whose293

signatures are subsets of Σ. Depending on the particular application requirements,294

the expressivity of those Σ-consequences can vary from subsumption axioms and295

concept assertions to conjunctive queries. In the following, we consider concept-296

inseparability of general EL terminologies as given, for instance, in [17, 19, 18]:297

Definition 2. Let T1 and T2 be two general EL terminologies and Σ a signature.298

T1 and T2 are concept-inseparable w.r.t. Σ, in symbols T1 ≡ELΣ T2, if for all EL299
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concepts C,D with sig(C)∪ sig(D) ⊆ Σ it holds that T1 |= C v D, iff T2 |= C v300

D.301

Due to its usefulness for different ontology engineering tasks, concept-insepa-302

rability has been investigated by different authors in the last decade. For instance,303

in the context of ontology reuse, the notion of inseparability can be used to derive304

a terminology that is inseparable from the initial terminology and is using only305

terms from Σ. This is an established non-standard reasoning task called forgetting306

or uniform interpolation.307

Definition 3. Given a signature Σ and a terminology T , the task of uniform308

interpolation is to determine a terminology T ′ with sig(T ′) ⊆ Σ such that T ≡ELΣ309

T ′. T ′ is also called a uniform Σ-interpolant of T .310

For the TBox T in Example 3, one possible uniform Σ-interpolant for Σ =311

{A1, A4, r} would be TΣ = {A4 v A1, A4 v ∃r.A4}. We see that, by intro-312

ducing a shortcut axiom A4 v A1, we preserve all relevant logical consequences313

(those expressed using Σ) while eliminating all other logical consequences, e.g.,314

Ai+1 v Ai for 0 ≤ i ≤ 3.315

In practice, uniform interpolants are required to be finite, i.e., expressible by316

a finite set of finite axioms using only the language constructs of a particular DL.317

It is well-known (e.g., see [19]) that, in the presence of cyclic concept inclusions,318

a finite uniform EL Σ-interpolant might not exist for a particular terminology T319

and a particular Σ.320

Example 4. Consider the terminology T = {A′ v A,A v A′′, A v ∃r.A,∃s.A v321

A} and let Σ = {s, r, A′, A′′}. As consequences, we obtain infinite sequences322

A′ v ∃r.∃r.∃r....A′′ and ∃s.∃s.∃s....A′ v A′′ which contain nested existential323

quantifiers of unbounded depth. Those sequences cannot be finitely axiomatized,324

using only signature elements from Σ.325

Lutz, Seylan and Wolter [20] give an EXPTIME procedure for deciding if a326

finite uniform EL interpolant exists. In the following, we extend the results and327

show that, if a finite uniform EL interpolant exists for the given terminology and328

signature, then there exists a uniform EL interpolant of at most triple exponen-329

tial size. Further, we show that, in the worst-case, no shorter interpolants exist,330

thereby establishing tight bounds on the size of uniform interpolants in EL.331

12



5. Lower Bound332

In this section we will establish the lower bound for the size of uniform in-333

terpolants of EL terminologies, in case they exist. It is interesting that, while334

deciding the existence of uniform interpolants in EL [20] is one exponential less335

complex than the same decision problem for the more complex logic ALC [18],336

the size of uniform interpolants remains triple-exponential. An intuitive reason for337

this rather unexpected result can be seen in the unavailability of disjunction, which338

would allow for a more succinct representation of the interpolants. We show this339

lower bound by means of a sequence of terminologies (obtained by a slight mod-340

ification of the corresponding example given in [27] originally demonstrating a341

double exponential lower bound in the context of conservative extensions).342

We start with an intuitive explanation of what the terminology is supposed to343

express. Assume, given some n ∈ N we want to label domain elements with344

natural numbers 0 . . . 2n− 1 according to the following scheme: domain elements345

belonging to the concepts A1 or A2 are labeled with 0. Further, whenever we find346

a domain element δ that is linked via an r-role to an `-labeled domain element347

δ1 and linked via an s-role to an `-labeled domain element δ2, then δ will be348

labeled with `+ 1 (provided ` < 2n − 1). Finally, we stipulate that every domain349

element labeled with 2n − 1 will belong to the concept B. In order to encode this350

labeling scheme in a knowledge base whose size is polynomial in n, we encode351

the number-labels in a binary way as a conjunction of n concepts. Thereby, the352

concept symbols Xi, Xi represent the ith bit of `’s binary representation being353

clear or set.354
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Definition 4. The EL TBox Tn for a natural number n is given by

A1 v X0 u ... uXn−1 (3)

A2 v X0 u ... uXn−1 (4)
l

σ∈{r,s}

∃σ.(Xi uX0 u ... uXi−1) v Xi i < n (5)

l

σ∈{r,s}

∃σ.(Xi uX0 u ... uXi−1) v Xi i < n (6)

l

σ∈{r,s}

∃σ.(Xi uXj) v Xi j < i < n (7)

l

σ∈{r,s}

∃σ.(Xi uXj) v Xi j < i < n (8)

X0 u ... uXn−1 v B (9)

In the above TBox, Axiom (5) ensures that a clear bit will be set in the succes-355

sor number, if all lower bits are already set. The subsequent Axiom (6) ensures356

that a set bit will be clear in the successor number, if all lower bits are also set.357

Axioms (7) and (8) ensure that in all other cases, bits are not toggled. For instance,358

Axiom (7) states that, if any of the bits lower than i is clear, then bit i will remain359

clear also in the successor number.360

If we now consider sets Ci of concept descriptions inductively defined by C0 =361

{A1, A2}, Ci+1 = {∃r.C1 u ∃s.C2 | C1, C2 ∈ Ci}, then we find that |Ci+1| = |Ci|2362

and consequently |Ci| = 2(2i). Thus, the set C2n−1 contains triply exponentially363

many different concepts, each of which is doubly exponential in the size of Tn364

(intuitively, we obtain concepts having the shape of binary trees of exponential365

depth, thus having doubly exponentially many leaves, each of which can be A1366

or A2, which gives rise to triply exponentially many different such trees). Then367

we will show that for each concept C ∈ C2n−1 it holds that Tn |= C v B and368

that there cannot be a smaller uniform interpolant with respect to the signature369

Σ = {A1, A2, B, r, s} than the one containing all these GCIs.370

Based on the above definition, we now prove the following result.371

Theorem 1. There exists a sequence of EL TBoxes and a fixed signature Σ such372

that for each TBox (Tn) within this sequence the following hold:373

• the size of Tn is at most polynomial in n and374
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• the size of the smallest uniform interpolant of Tn with respect to Σ is at least375

2(2(2n−1)).376

Proof. Obviously, the size of Tn is polynomially bounded by n. We now consider377

sets Ck of concepts defined above. Since |Ck| = 2(2k), we find that the set C2n−1378

contains triply exponentially many different concepts, each of which is doubly379

exponential in the size of Tn.380

Obviously, for any k, every concept description from Ck contains only signa-381

ture elements from A1, A2, r, s.382

It is rather straightforward to check that Tn |= C v B holds for each concept383

C ∈ C2n−1: by induction on k, we can show that for any C ∈ Ck with k < 2n it384

holds that Tn |= C v Y k
0 u . . . u Y k

n−1 with385

Y k
i =

{
Xi if b k2i cmod 2 = 1
Xi if b k2i cmod 2 = 0 ,

i.e., Y k
i indicates the ith bit of the number k in binary encoding. Then, C v B386

follows via the last axiom of Tn.387

Toward the claimed triple-exponential lower bound, we now show that every388

uniform interpolant of Tn for Σ = {A1, A2, B, r, s} must contain for each C ∈389

C2n−1 a GCI of the form C v B′ with B′ = B or B′ = B u F for some F (where390

we consider structural variants – i.e., concept expressions whose characteristic391

interpretations are isomorphic – as syntactically equal). Toward a contradiction,392

we assume that this is not the case, i.e., there is a uniform interpolant T ′ and a393

C ∈ C2n−1 where C v B′ 6∈ T ′ for any B′ containing B as a (top-level) conjunct.394

Yet, C v B must be a consequence of T ′, since it is a consequence of of Tn395

containing only signature elements from Σ and T ′ is a uniform interpolant of Tn396

w.r.t. Σ by assumption. Therefore, there must be a derivation of it. Looking at the397

derivation calculus from the last section, the last derivation step must be (ANDL)398

or (CUT). We can exclude (ANDL) since neither ∃r.C ′ v B nor ∃s.C ′ v B399

is the consequence of T ′ for any C ′ ∈ C2n−2 (which can be easily shown by400

providing appropriate witness models of T ′). Consequently, the last derivation401

step must be an application of (CUT), i.e., there must be a concept E 6= C such402

that T ′ |= C v E and T ′ |= E v B. Without loss of generality, we assume403

that we consider a derivation tree where the subtree deriving C v E has minimal404

depth.405

We now distinguish two cases: either E contains B as a conjunct or not.406

• First we assume E = E ′ uB, i.e. the (CUT) rule was used to derive C v B407
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fromC v E ′uB andE ′uB v B. The former cannot be contained in T ′ by408

assumption, hence it must have been derived itself. We can exclude (ANDR)409

due to the minimality of the proof. Again, it cannot have been derived via410

(ANDL) for the same reasons as given above, which again leaves (CUT) as411

the only possible derivation rule for obtaining C v E ′ u B. Thus, there412

must be some concept G with T ′ |= C v G and T ′ |= G v E ′ u B. Once413

more, we distinguish two cases: either G contains B as a conjunct or not.414

– If G contains B as a conjunct, i.e., G = G′ u B, the derivation of415

C v E was not depth-minimal since there is a better proof where416

C v B is derived from C v G′ u B and G′ u B v B via (CUT).417

Hence we have a contradiction.418

– IfG does not containB as a conjunct, the original derivation ofC v E419

was not depth-minimal since we can construct a better one that derives420

C v B directly fromC v G andG v B (the latter being derived from421

G v E ′ uB via (ANDR)).422

• Now assume E does not contain B as a conjunct.423

We construct a specific interpretation (∆, ·I) as follows (ε denoting the424

empty word):425

– ∆ = {w | w ∈ {r, s}∗, length(w) < 2n}426

– We define an auxiliary function χ associating a concept expression427

to each domain element: we let χ(ε) = C (with ε being the empty428

word) and, for every wr,ws ∈ ∆ with χ(w) = ∃r.C1 u ∃s.C2, we let429

χ(wr) = C1 and χ(ws) = C2.430

– the concepts and roles are interpreted as follows:431

∗ AIι = {w | χ(w) = Aι} for ι ∈ {1, 2}432

∗ BI = {ε}433

∗ XIi = {w | b length(w)
2i cmod 2 = 0} for i < n434

∗ Xi
I = {w | b length(w)

2i cmod 2 = 1} for i < n435

∗ rI = {〈w,wr〉 | wr ∈ ∆}436

∗ sI = {〈w,ws〉 | ws ∈ ∆}437

It is straightforward to check that I is a model of Tn. Furthermore using438

descending induction on the length of w, we can show that for every w ∈ ∆439
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it holds that w ∈ (χ(w))I , thus, in particular, ε ∈ CI . Consequently, due to440

our assumption, ε ∈ EI must hold. Now we observe that the restriction of441

I to the signature elements A1, A2, r, s is isomorphic to IC (with xC corre-442

sponding to ε). On the other hand, as ε ∈ EI we find by Lemma 1 that there443

must be a homomorphism from (IE, xE) to (I, ε) and hence to (IC , xC),444

thus we can invoke Lemma 2 to deduce that E is a proper “structural super-445

concept” of C, i.e., ∅ |= C v E and ∅ 6|= E v C must hold.446

We now obtain Ẽ by enriching E as follows: starting from k = 0 and
iteratively incrementing k up to 2n− 1, every subconcept G of E satisfying
∅ |= G v C ′ for some C ′ ∈ Ck is substituted by GuY k

0 u . . .uY k
n−1 where,

as before,

Y k
i =

{
Xi if b k2i cmod 2 = 1
Xi if b k2i cmod 2 = 0 ,

i.e., Y k
i indicates the ith bit of the number k in binary encoding.447

Then, Ẽ’s characteristic pointed interpretation (I
Ẽ
, x

Ẽ
) satisfies that I

Ẽ
is448

a model of Tn (following from structural induction on subconcepts of Ẽ)449

and its root individual x
Ẽ

is in the extension of Ẽ. Still, we find x
Ẽ
6∈450

CIẼ for the following reason: C does only contain signature elements from451

{A1, A2, B, r, s}, and the restriction of (I
Ẽ
, x

Ẽ
) to these signature elements452

is isomorphic to (IE, xE), therefore x
Ẽ
∈ CI

Ẽ
iff xE ∈ CIE . The latter453

is however not the case as this would imply by Lemma 1 that there is a454

homomorphism from (IC , xC) to (IE, xE) and consequently, via Lemma 2455

∅ |= E v C, contradicting our above finding.456

Yet, the root individual x
Ẽ

cannot satisfy any other concept expression457

C ′′ from C2n−1 \ {C} either, since this, via ∅ |= E v C ′′, would imply458

∅ |= C v C ′′ which is not the case (by induction on k one can show459

that there cannot be a homomorphism between the characteristic pointed460

interpretations of any two distinct concepts from any Ck). In particular,461

we note that x
Ẽ
6∈ BIẼ . Thus, we have found a model of Tn witnessing462

Tn 6|= E v B, contradicting our assumption that T ′ |= E v B.463

464

Hence we have found a class Tn of TBoxes giving rise to uniform EL inter-465

polants of triple-exponential size in terms of the original TBox.466
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6. Upper Bound467

Now we discuss the upper bound on the size of uniform EL interpolants as468

well as their computation. Since, for a TBox T and a signature Σ, there are in469

general infinitely many Σ-consequences, in the following, we aim at identifying470

a subset of such consequences, the deductive closure of which contains the whole471

set. Interestingly, there exists a bound on the role depth of Σ-consequences such472

that, for the set TΣ,N of all Σ-consequences of T with the maximal role depth N473

the following holds: either TΣ,N is a uniform EL interpolant of T with respect474

to Σ or such a finite uniform EL interpolant of T does not exist. This is an easy475

consequence of results obtained by Lutz, Seylan and Wolter [20] while investigat-476

ing the problem of existence of uniform EL interpolants (proof can be found in477

Appendix B).478

Lemma 4 (Reformulation of Lemma 55 from [20] ). Let T be an EL TBox, Σ a479

signature. The following statements are equivalent:480

1. There exists a uniform EL Σ-interpolant of T .481

2. There exists a uniform EL Σ-interpolant T ′ of T for which holds d(T ′) ≤482

24·(|sub(T )|) + 1.483

However, an upper bound on the role depth is only sufficient for showing a484

non-elementary upper bound on the size of uniform interpolants for the following485

reasons. There are 2n many different conjunctions of n different conjuncts, and,486

accordingly, for each role, 2m many different existential restrictions of depth i+ 1487

if m is the number of existential restrictions of depth i. Moreover, for any role488

depth i, we can find a TBox such that i is the corresponding maximal role depth.489

Subsequently, the upper bound on the role depth does not suffice to obtain an upper490

bound for the number i of exponents bounding the size of the uniform interpolant.491

In order to obtain a tight upper bound, we need to further narrow down the492

subset of Σ-consequences required to obtain a uniform interpolant. To this end,493

we show the following:494

• If we “flatten” terminologies, i.e., we reduce the maximal role depth of T495

to 1 by recursively introducing fresh concept symbols for all subconcepts496

occurring in T , it is sufficient to consider the Σ-consequences stating sub-497

sumees and subsumers of all concept symbols referenced by the flattened498

terminology T ′ in order to preserve all consequences;499
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• Lemma 4 can be transferred to flattened TBoxes such that it is sufficient to500

consider subsumees and subsumers of role depth 24·(|sub(T ′)|) + 1 in order to501

preserve all consequences of T ;502

• There is a particular type of subsumees and subsumers that do not add any503

consequences to the deductive closure, which we call weak subsumees and504

subsumers. These are subsumees obtained by adding arbitrary conjuncts to505

arbitrary subconcepts of other subsumees and, accordingly, subsumers ob-506

tained from other subsumers by omitting conjuncts from arbitrary subcon-507

cepts. When included into the uniform interpolant, weak subsumees and508

subsumers have a negative impact on its size. Given the exponential bound509

on the role depth, each concept has non-elementary many weak subsumees.510

Since weak subsumers and subsumees do not add any new consequences,511

we can safely exclude them.512

We show that, in case a finite uniform EL interpolant of T with respect to Σ513

exists, there are at most triple-exponentially many such non-weak subsumers and514

subsumees of role depth up to 24·(|sub(T )|) + 1. Moreover, we show that each of515

them is of at most double-exponential size.516

6.1. Flattening517

Recall that we want to compute the uniform interpolant of a TBox T by rewrit-518

ing the latter, ensuring that the part of the deductive closure of T consisting of519

Σ-consequences is preserved throughout the rewriting process. Since rewriting520

operates on the syntactic structure of T , it is desirable that the syntactic struc-521

ture has a close relation to the deductive closure of T such that we can easily522

manipulate the deductive closure via changes of the syntactic structure. As in523

other syntax-based approaches ([11, 23, 19], we decompose complex axioms into524

syntactically simple ones. We refer to this process as flattening: assigning a tem-525

porary concept symbol to each complex subconcept occurring in T , so that the526

terminology can be represented without nested expressions, namely using only527

axioms of the form A v B, A ≡ B1 u . . . u Bn, and A ≡ ∃r.B, where A and528

B(i) are concept symbols or > and r is a role. For this purpose, we introduce a529

minimal required set of fresh concept symbols ND with exactly on equivalence530

axiom A′ ≡ C ′ for each A′ ∈ ND, where C ′ is equivalent to a subconcept of T531

replaced by A′.532

In what follows, we assume terminologies to be flattened and all concepts533

symbols from ND to be in sigC(T ) r Σ. W.l.o.g., we also assume that EL con-534

cepts do not contain any equivalent concepts in conjunctions and that whenever535
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several concept symbols are equivalent in T , all their occurrences have been re-536

placed by a single representative of the corresponding equivalence class. Concept537

symbols from Σ are preferred to be selected as representatives. Note that this is538

a preprocessing step that can be performed in polynomial time as EL allows for539

polytime reasoning. The following lemma postulates the close semantic relation540

between a TBox and its flattening.541

Lemma 5 (Model-conservativity). Any EL TBox T can be rewritten into a flat-542

tened TBox T ′ so that each model of T ′ is a model of T and each model of T can543

be extended into a model of T ′.544

As a result of flattening, each TBox T can be represented as a subsumee/-545

subsumer relation pair – a pair of binary relations 〈P Tw , P Tv 〉 on concept ex-546

pressions where P Tw relates concept symbols B ∈ sigC(T ) to their subsumees547

({C | C ./ B ∈ T , ./∈ {≡,v}}), and P Tv relates concept symbols to their sub-548

sumers ({C | B ./ C ∈ T , ./∈ {≡,v}}). If T is clear from the context, we549

simply write 〈Pw, Pv〉. In turn, each subsumee/subsumer relation pair has a cor-550

responding representation by means of a TBox. For the computation of uniform551

interpolants, we would like to restrict the signature of the resulting TBox con-552

structed from a subsumee/subsumer relation pair. As we will show later on, for the553

computation of uniform interpolants we use only Σ-subsumees and Σ-subsumers.554

To ensure that the resulting TBox only contains symbols from Σ, we addition-555

ally avoid references to concept symbols not from Σ by forming subsumptions556

between their subsumees and subsumers directly.557

Definition 5. Let T be an EL TBox and Σ a signature. Further, let 〈Pw, Pv〉 be a
subsumee/subsumer relation pair for T . Then,

M(Pw, Pv,Σ) = {C v A | A ∈ Σ, (A,C) ∈ Pw} ∪
{A v D | A ∈ Σ, (A,D) ∈ Pv} ∪
{C v D | there exists A /∈ Σ,

(A,C) ∈ Pw, (A,D) ∈ Pv}.

In the next subsection, we represent the corresponding subsumee/subsumer558

relation pair of a classified, flattened TBox T as a pair of regular tree grammars559

on ranked trees (with concept symbols interpreted as non-terminals and ∃r,u as560

functions). We show that all non-weak subsumees and subsumers entailed by T561

can be generated by these grammars. To this end, we now analyse the derivation of562
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subsumptions in flattened TBoxes by means of the deduction calculus introduced563

in Section 3.564

First, we consider the derivation of subsumees. We use the auxiliary function565

Pre : sigC(T ) → 22sigC (T )
which allows us for any concept symbol A to refer to566

its subsumees of the form B1u ...uBn, where B(i) are concept symbols. For each567

such conjunction, the set of its conjuncts is an element of Pre.568

Definition 6. Let T be an EL TBox and A ∈ sigC(T ). Pre(A) is the smallest set569

with the following properties:570

• {A} ∈ Pre(A).571

• For each K ∈ Pre(A) and each B ∈ K, if there is T |= B′ v B, then also572

(K/{B}) ∪ {B′} ∈ Pre(A).573

• For each K ∈ Pre(A) and each B ∈ K, if there is B ≡ B1 u ...uBn ∈ T ,574

then also (K/{B}) ∪ {B1, ..., Bn} ∈ Pre(A).575

We can show the following closure property of Pre.576

Lemma 6. Let T be an EL TBox and A ∈ sigC(T ). For each K ∈ Pre(A), each577

B ∈ K and each M ∈ Pre(B), we have (K/{B}) ∪M ∈ Pre(A).578

The above lemma can be shown by an easy induction over the derivation of M579

from B.580

In essence, the lemma below implies that, in case of flattened terminologies581

explicitly containing all elements of Pre, we can derive all subsumees of a con-582

cept by (1) applying the rule (EX) to construct existential restrictions from two583

concepts in a subsumption relation and/or (2) replacing concepts occurring within584

subsumees by their subsumees.585

Lemma 7. Let T be a flattened EL TBox andC,D two EL concepts with sig(C)∪
sig(D) ⊆ sig(T ) such that T |= C v D. Let

C =
l

1≤j≤n
Aj u

l

1≤k≤m

∃rk.Ek

where Aj are concept symbols, rk are role symbols and Ek are arbitrary EL con-586

cepts. Then, for all conjuncts Di of D, the following is true: If Di is a concept587

symbol, there is a set M ∈ Pre(Di) of concept symbols from sigC(T ) such that at588

least one of the conditions [A1]-[A2] holds for each B ∈M :589

(A1) There is an Aj in C such that Aj = B.590
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(A2) There are rk, Ek and there exists B′ ∈ sigC(T ) such that T |= Ek v B′591

and B ≡ ∃rk.B′ ∈ T .592

If Di = ∃r′.D′ for a role r′ and an EL concept D′, at least one of the conditions593

[A3]-[A4] holds:594

(A3) There are rk, Ek such that rk = r′ and T |= Ek v D′.595

(A4) There is B ∈ sigC(T ) such that T |= B v ∃r′.D′ and T |= C v B and for596

C v B at least one of the conditions [A1]-[A2] holds.597

Proof. We apply induction on the length of the proof. We start with the last ap-598

plied rule and show for each possibility that the lemma holds. Rules AXTOP,AX599

and the case C ./ D ∈ T are the basis of induction, since each proof begins with600

one of them.601

(C ./ D ∈ T ) In the case that C v D ∈ T or C ≡ D ∈ T , the lemma holds due602

to the flattening. Axioms within T can have the following form:603

• C,D ∈ sigC(T ). In this case, {C} ∈ Pre(D). Therefore, condition604

[A1] holds.605

• C ∈ sigC(T ), D = D1 u ... uDm with D1, ..., Dm ∈ sigC(T ). In this606

case, for each Di with 1 ≤ i ≤ m holds {C} ∈ Pre(Di). Therefore,607

condition [A1] holds for each Di.608

• C ∈ sigC(T ), D = ∃r′.D′ with D′ ∈ sigC(T ). This case corresponds609

to the condition [A4].610

(AXTOP) Since the conjunction is empty in case D = >, the lemma holds.611

(AX) Since C = D, for each Di there is a conjunct Ci of C with Ci = Di. If Di612

is a concept symbol, condition [A1] of the lemma holds. Otherwise, [A3].613

(EX) If EX was the last applied rule, then Di = ∃rk.D′ and T ` Dk v D′.614

Therefore, [A3] of the lemma holds.615

(ANDL) Assume that C ′ u C ′′ = C such that C ′ v D is the antecedent. By616

induction hypothesis, the lemma holds for C ′ v D. Since all conjuncts of617

C ′ are also conjuncts of C, the lemma holds also for C v D.618

(ANDR) Assume that D = D1 u D2, therefore, C v D1 and C v D2 is the619

antecedent. By induction hypothesis, the lemma holds for both, C v D1620

and C v D2. Since all conjuncts of D are from either D1 or D2, the lemma621

also holds for C v D.622
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(CUT) By induction hypothesis, the lemma holds for both elements of the an-623

tecedent, C v C1 and C1 v D. Let C1 =
d

1≤p≤r Ap u
d

1≤s≤t ∃r′s.E ′s.624

1. Assume that Di is a concept symbol. Then, there is M1 ∈ Pre(Di)625

such that [A1] or [A2] holds for eachBu ∈M1. We now consider each626

C v Bu and distinguish three cases, in one of which [A2] holds. In627

the remaining two cases, we can obtain Mnew by replacing Bu within628

M1 by the elements of some M ′
u ∈ Pre(Bu) such that [A1] or [A2]629

holds for each B′ ∈Mnew and C v B′:630

A1 Assume that there is a conjunct Ap of C1 with Ap = B1. Then, by631

induction hypothesis, for C v Ap, there is M ′
u ∈ Pre(Ap) such632

that [A1] or [A2] holds for each B′ ∈ M ′
u. We can replace Bu633

within M1 by the elements of M ′
u.634

A2 Assume that forBu there are r′s, E
′
s and there existsB′ ∈ sigC(T )635

such that T |= E ′s v B′ and B ≡ ∃r′s.B′ ∈ T . Then, for C v636

∃r′s.E ′s either [A3] or [A4] can hold:637

-(A3) There are rk, Ek such that rk = r′s and T |= Ek v E ′s. Then638

[A2] holds for C v Bu, since T |= Ek v B′ and B ≡639

∃rk.B′ ∈ T .640

-(A4) There is B′′ ∈ sigC(T ) such that T |= B′′ v ∃r′s.E ′s, T |=641

C v B′′ and there is a set M ′
u ∈ Pre(B′′) such that for each642

element B′ of M ′
u at least one of the conditions [A1]-[A2]643

holds with respect to C v B′.644

Let MA1 be the set of all such Bu ∈ M1 for which [A1] holds and645

let MA4 be the set of all such Bu ∈ M1 for which [A2] holds and646

for C v ∃r′s.E ′s [A4] holds. Now we replace each Bu within M1 by647

the elements of the corresponding set M ′
u ∈ Pre(Bu) that we have648

specified above and obtain Mnew = M1 \ (MA1 ∪ MA4) ∪ ⋃{M ′
u |649

Bu ∈MA1 ∪MA4}. Clearly, Mnew ∈ Pre(Di) and [A1] or [A2] holds650

for each B′ ∈ Mnew with respect to C v B′, i.e., the lemma holds for651

C v Di.652

2. Assume that Di = ∃r′.D′. Then, [A3] or [A4] hold.653

A3 There are r′s, E
′
s such that r′ = r′s and T |= E ′s v D′. Then, for654

C v ∃r′s.E ′s one of [A3], [A4] holds:655

-(A3) There are rk, Ek such that rk = r′s and T |= Ek v E ′s. Then656

[A3] holds for C v Di, since T |= Ek v D′ and rk = r′.657

-(A4) There is a concept symbol B′′ such that T |= B′′ v ∃r′s.E ′s,658

T |= C v B′′ and there is a set M ′′ ∈ Pre(B′′) of concept659
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symbols such that at least one of the conditions [A1]-[A2]660

holds for each element B′ of M ′′ and C v B′. Since T |=661

B′′ v Di, [A4] holds for T |= C v Di.662

A4 There is a concept symbol B such that T |= B v ∃r′.D′, T |=663

C1 v B and there is a set M1 ∈ Pre(B) such that at least one of664

the conditions [A1]-[A2] holds for each elementBu ofM1 and for665

C1 v Bu. The argumentation is the same as for 1 (Di is a concept666

symbol). We consider each C v Bu and distinguish three cases,667

in one of which [A2] holds. In the remaining two cases, we can668

obtain Mnew by replacing Bu within M1 by the elements of some669

M ′
u ∈ Pre(Bu) such that [A1] or [A2] holds for each B′ ∈ Mnew670

and C v B′. Therefore, there is M1 ∈ Pre(B) such that either671

[A1] or [A2] holds for each Bu ∈ M1. Then, [A4] holds for672

C v Di.673

The above lemma is focused on the derivation of subsumees. For the com-674

putation of uniform interpolants, we additionally need to show that, in flattened675

terminologies, every subsumption relation with an concept symbol and its sub-676

sumer being an existential restriction is derived from an equivalence axiom of the677

form B1 ≡ ∃r.B2 ∈ T .678

Lemma 8. Let T be a flattened EL TBox, A ∈ sigC(T ) and r ∈ sigR(T ). Let C679

be an EL concept such that T |= A v ∃r.C. Then, there are B1, B2 ∈ sigC(T )680

with B1 ≡ ∃r.B2 ∈ T such that T |= A v B1, T |= B2 v C.681

Proof. Lemma 16 [27] states that for a general EL TBox T with T |= C1 v682

∃r.C2, where C1, C2 are EL-concepts one of the following holds:683

• there is a conjunct ∃r.C ′ of C1 such that T |= C ′ v C2;684

• there is a subconcept ∃r.C ′ of T such that T |= C1 v ∃r.C ′ and T |= C ′ v685

C2;686

The first condition does not hold in this lemma, since A is a concept symbol.687

Moreover, since in our case T is flattened, for each subconcept ∃r.C ′ of T con-688

taining an existential restriction holds: there is an concept symbol B2 ∈ sigC(T )689

such that B2 = C ′ and there is an axiom of the form B1 ≡ ∃r.B2 ∈ T with690

B1 ∈ sigC(T ). Additionally, from the above Lemma 16 follows T |= A v ∃r.B2691

and T |= B2 v C. Since T |= B1 ≡ ∃r.B2, it follows that also T |= A v B1.692

693
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6.2. Grammar Representation of Subsumees and Subsumers694

In this section, we show how, for a signature Σ, the sets of Σ-subsumees695

and Σ-subsumers of each concept symbol in a flattened EL TBox T can be696

described as languages generated by regular tree grammars on ranked ordered697

trees. In our definition of grammars, we uniquely represent each concept sym-698

bol A ∈ sigC(T ) by a non-terminal nA (and denote the set of all non-terminals699

by N T = {nx|x ∈ sigC(T ) ∪ {>}}). In what follows, we use the ranked700

alphabet F = (sigC(T ) ∩ Σ) ∪ {>} ∪ {∃r1 | r ∈ sigR(T ) ∩ Σ} ∪ {ui |701

2 ≤ i ≤ |sigC(T )|}, where > and concept symbols in sigC(T ) ∩ Σ are con-702

stants, ∃r1 for r ∈ sigR(T ) ∩ Σ are unary functions and ui are functions of703

the arity 2 ≤ i ≤ |sigC(T )|. Due to flattening, |sigC(T )| is the highest arity704

of conjunctions that can occur in our TBox. In the following, it will be con-705

venient to simply write u and ∃r if the arity of the corresponding function is706

clear from the context. Clearly, every EL concept C with sig(C) ⊆ Σ and at707

most |sigC(T )| conjuncts in each subconcept has a unique representation by the708

means of the above functions. We denote such a term representation of C using709

F by tC . For a term t, we denote its concept representation by Ct. Additionally,710

we use a substitution function σT ,F : {C | sig(C) ⊆ sig(T )} → T (F ,N T )711

with σT ,F(C) = tC{n>/>, nB1/B1, ..., nBn/Bn}, where B1, ..., Bn are all con-712

cept symbols occurring in C. If the TBox and the set of non-terminals are clear713

from the context, we will denote such a representation of a concept C simply by714

σ(C).715

As mentioned above, weak subsumees and subsumers are not required in order716

to obtain a uniform EL interpolant. In fact, including weak subsumees into our717

definition of the grammars would lead to a non-elementary upper bound on the718

generated language despite the bounded role depth. Also weak subsumers lead to719

an exponential blow-up in the size of the corresponding grammar. Thus, we avoid720

generating weak subsumees and subsumers by the corresponding grammars.721

Definition 7. Let T be a flattened EL TBox, Σ a signature. Further, for each722

B ∈ sigC(T ) ∪ {>}, let Rw be given by723

(GL1) nB → B if B ∈ Σ ∪ {>},724

(GL2) nB → nB′ for all B′ ∈ sigC(T ) ∪ {>} with T |= B′ v B, B 6= B′725

(GL3) nB → u(nB1 , ..., nBn) for all B ≡ B1 u . . . uBn ∈ T ,726

(GL4) nB → ∃r(nB′) for all B ≡ ∃r.B′ ∈ T with r ∈ sigR(T ) ∩ Σ.727
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Let Rv be given for all B ∈ sigC(T ) ∪ {>} by728

(GR1) nB → B if B ∈ Σ ∪ {>},729

(GR2) nB → nB′ if B 6= B′ and either B′ = > or B′ is the only concept symbol730

such that T |= B v B′,731

(GR3) nB → u(nB1 , ..., nBn) if {B1, . . . , Bn} = {B′ ∈ sigC(T ) | T |= B′ w732

B} and n ≥ 2,733

(GR4) nB → ∃r(nB′) for all B ≡ ∃r.B′ ∈ T with r ∈ sigR(T ) ∩ Σ.734

For every A ∈ sigC(T ), the regular tree grammar Gw(T ,Σ, A) is given by735

(nA,N T ,F , Rw). Likewise, the regular tree grammar Gv(T ,Σ, A) is given by736

(nA,N T , F , Rv).737

We denote the set of tree grammars {Gw(T ,Σ, A) | A∈sigC(T )} by Gw(T ,Σ)738

and the set {Gv(T ,Σ, A) | A∈sigC(T )} by Gv(T ,Σ). For the construction of739

grammars the following result holds.740

Theorem 2. Let T be a flattened EL TBox and let Σ be a signature. Gw(T ,Σ) and741

Gv(T ,Σ) can be computed from T in polynomial time and are at most polynomial742

in the size of T .743

Proof. Flattening and classification can be done all together in polynomial time744

[11] and yield an at most polynomial result. From this result, the grammars are745

constructed in polynomial time.746

The following example demonstrates the grammar construction.747

Example 5. Let T = {A1 v ∃rA2,∃rB1 u B3 v B2, A2 v B1}. In order
to flatten the given TBox, we introduce fresh concept names for ∃rA2,∃rB1 and
B′1 uB3 to obtain T ′:

A1 v A′2 A2 v B1

B′2 v B2 B′1 uB3 ≡ B′2
∃rB1 ≡ B′1 ∃rA2 ≡ A′2

Let Σ = sig(T ) r {B1}. Then, we introduce terminals for each concept symbol
from Σ and the > concept according to (GL1) and (GR1):

nA1→A1 nA2→A2 nB2→B2 n>→> (10)
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If we only use subsumees given before the classification of T ′, we obtain the
following set of transitions Rw for generating subsumees of concept symbols:

nA′2→nA1 nB1→nA2 (11)

nB2→nB′2 nB′2→u (nB′1 , nB3) (12)

nB′1→∃r(nB1) nA′2→∃r(nA2) (13)

We see that the subsumee ∃r.A2 u B3 of B2 is not generated by the above set of
transitions. If we classify T ′ before constructing the grammar, we obtain addi-
tionally

nB′1→nA′2 nB′1→nB′2 nB3→nB′2 nB′1→nA1 (14)

Accordingly, Rv is given by Rules 10,13 and, additionally

nA1→n> nA2→n> nB1→n> nB2→n> (15)
nB3→n> nA′2→n> nB′1→n> nB′2→n> (16)

nA1→nA′2 nA2→nB1 nA′2→nB′1 (17)

nB′2→u (nB′1 , nB3 , nB2) (18)

In the above example, we can generate all non-weak subsumees using the748

complete grammar construction, i.e., after including the results of classification in749

addition to transitions representing explicitly given subsumptions. For instance,750

the subsumee ∃r.A2 uB3 of B2 can be generated using the first additional rule in751

14 as follows: nB2→nB′2→ u (nB′1 , nB3)→ u (nA′2 , nB3)→ u (∃r(nA1), nB3)→ u752

(∃r(A1), B3).753

We now consider various properties of the above grammars that are of interest754

for the computation of uniform interpolants. The following theorem states that755

the grammars derive only terms representing Σ-subsumees and Σ-subsumers of756

the corresponding concept symbol.757

Theorem 3. Let T be a flattened EL TBox, Σ a signature and A ∈ sigC(T ).758

1. For each t ∈ L(Gw(T ,Σ, A))∪L(Gv(T ,Σ, A)) it holds that sig(Ct) ⊆ Σ.759

2. For each t ∈ L(Gw(T ,Σ, A)) it holds that T |= Ct v A.760

3. For each t ∈ L(Gv(T ,Σ, A)) it holds that T |= A v Ct.761
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Proof. 1. It is easy to check given Definition 7 that the grammars derive only762

terms containing concept symbols and roles from Σ, since nB → B only763

if B ∈ Σ ∪ {>} and nB → ∃r(t′) only if r ∈ Σ. Therefore, for any A ∈764

sigC(T ) and any t ∈ L(Gv(T ,Σ, A)) ∪ L(Gw(T ,Σ, A)) holds sig(Ct) ⊆765

Σ.766

2. We use an easy induction on the maximal nesting depth of functions in t767

using the rules given in Definition 7:768

• Assume that Ct is a concept symbol B or >. The term B can only769

be derived from nA by n empty transitions (GL2), and, once nB is770

derived, the rule (GL1). Let B1, ..., Bn be such that nA → nB1 →771

... → nBn → nB. Then, by Definition 7, for each pair Bi, Bi+1 holds772

T |= Bi w Bi+1, for Bn, B holds T |= Bn w B and for A,B1 holds773

T |= A w B1. It follows that also T |= A w B.774

• Assume that t = ∃r(t′) for some term t′. Then, the derivation of t775

from nA starts with n empty transitions (GL2) such that nB′ for some776

B′ ∈ sigC(T )∪{>} is derived, and a subsequent application of (GL4)777

such that nB for some B ∈ sigC(T ) ∪ {>} is derived. As argued778

above about the applications of empty transitions, T |= A w B′ holds.779

Moreover, By Definition 7 (GL4) holds B′ ≡ ∃r.B ∈ T , and, there-780

fore, T |= A w ∃r.B. Let C ′ = Ct′ . Then, by induction hypothesis,781

T |= B w C ′. Therefore, T |= A w ∃r.C ′, while ∃r.C ′ = Ct.782

• Assume that t = u(t1, ..., tn) for a set of terms t1, ..., tn. Then, the783

derivation of t from nA starts with m empty transitions (GL2) such784

that nB′ for some B′ ∈ sigC(T ) ∪ {>} is derived, and a subse-785

quent application of (GL3) such that we derive u(nB1 , ..., nBn), where786

ti ∈ L(Gw(T ,Σ, nBi)) for 1 ≤ i ≤ n. As argued above about the787

applications of empty transitions, T |= A w B′ holds. Let Ci =788

Cti . By induction hypothesis, T |= Bi w Ci. By Definition 7,789

B′ ≡ B1 u ... u Bn ∈ T . Therefore, T |= B′ w C1 u ... u Cn790

and T |= A w C1 u ... u Cn with C1 u ... u Cn = Ct.791

3. The proof of soundness of Gv(T ,Σ)) can be done in the same manner, i.e.,792

by induction on the maximal nesting depth of functions in t:793

• Assume that Ct is a concept symbol B or >. The term B can only794

be derived from nA by n empty transitions (GR2), and, once nB is795

derived, the rule (GR1). Let B1, ..., Bn be such that nA → nB1 →796

... → nBn → nB. Then, by Definition 7, for each pair Bi, Bi+1 holds797
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T |= Bi v Bi+1, for Bn, B holds T |= Bn v B and for A,B1 holds798

T |= A v B1. It follows that also T |= A v B with Ct = B.799

• Assume that t = ∃r(t′) for some term t′. Then, the derivation of t from800

nA starts with n empty transitions (GR2) such that nB′ for some B′ ∈801

sigC(T )∪{>} is derived, and a subsequent application of a non-empty802

transition (GR4) such that ∃r.nB for some B ∈ sigC(T ) ∪ {>} is803

derived. As argued above about the applications of empty transitions,804

T |= A v B′ holds. Moreover, By Definition 7, it holds that T |=805

B′ ≡ ∃r.B, and, therefore, T |= A v ∃r.B. Let C ′ = Ct′ . By806

induction hypothesis, T |= B v C ′. Therefore, T |= A v ∃r.C ′ with807

Ct = ∃r.C ′.808

• Assume that t = u(t1, ..., tn) for a set of terms t1, ..., tn. Then, the809

derivation of t from nA starts with m empty transitions (GR2) such810

that nB′ for some B′ ∈ sigC(T ) ∪ {>} is derived, and a subsequent811

application of (GR3) such that we derive u(nB1 , ..., nBn), where ti ∈812

L(Gw(T ,Σ, nBi)) for 1 ≤ i ≤ n and n ≥ 2. As argued above about813

the applications of empty transitions, T |= A v B′ holds. Let Ci =814

Cti . By induction hypothesis, T |= Bi v Ci. By Definition 7, T |=815

B′ v B1u ...uBn. Therefore, T |= B′ v C1u ...uCn and T |= A v816

C1 u ... u Cn with C1 u ... u Cn = Ct.817

To be able to show completeness of the grammars, we first show that the com-818

mutative associative closure of the generated Gw language contains all elements819

of Pre.820

Lemma 9. Let T be flattened EL TBox and Σ a signature. LetG = Gw(T ,Σ, A))821

and, for a concept symbolA, letK ∈ Pre(A). Then, σ(
d
B∈K B) ∈ L∗u(Gw(T ,Σ, A))).822

Proof. The lemma can be shown by an easy induction on the depth of derivation823

of K from A. We distinguish three cases for the last derivation step.824

• If K = {A}, then the lemma is a direct consequence of Definition 7 (GL1).825

• Assume that K has been obtained from K ′ ∈ Pre(A) by replacing some B826

by someB′ such that T |= B′ v B. By induction hypothesis, σ(
d
B′′∈K′ B

′′) ∈827

L∗u(Gw(T ,Σ, A))). By Definition 7 (GL2), we have nB → nB′ ∈ Rw.828

Thus, also σ(
d
B∈K B) ∈ L∗u(Gw(T ,Σ, A))).829
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• Assume that K has been obtained from K ′ ∈ Pre(A) by replacing some830

B by some B1, . . . , Bn such that B ≡ B1 u ... u Bn ∈ T . By induc-831

tion hypothesis, σ(
d
B′′∈K′ B

′′) ∈ L∗u(Gw(T ,Σ, A))). By Definition 7832

(GL3), we have nB → u(nB1 , ..., nBn) ∈ Rw. Thus, also σ(
d
B∈K B) ∈833

L∗u(Gw(T ,Σ, A))).834

As discussed above, grammars do not guarantee to capture weak subsumees835

and subsumers. Therefore, we obtain the following result for the completeness of836

the grammars.837

Theorem 4. Let T be a flattened EL TBox, Σ a signature andA a concept symbol.838

1. For each C with sig(C) ⊆ Σ such that T |= C v A there is a concept839

C ′ with tC′ ∈ L∗(Gw(T ,Σ, A)) such that C can be obtained from C ′ by840

adding arbitrary conjuncts to arbitrary subconcepts.841

2. For each C with sig(C) ⊆ Σ such that T |= A v C there is a concept842

C ′ with tC′ ∈ L∗(Gv(T ,Σ, A)) such that C can be obtained from C ′ by843

removing > conjuncts from arbitrary subconcepts.844

Proof. The theorem is proved by induction on the role depth of C using the prop-
erties of the flattening, for instance, stated in Lemmas 7, in addition to Definition
7 and Lemma 9. Let

C =
l

1≤j≤n
Aj u

l

1≤k≤m

∃rk.Ek

where Aj are concept symbols, rk are role symbols and Ek are arbitrary EL con-845

cepts. W.l.o.g., we can assume that all Aj are pairwise different.846

1. We prove the first claim as follows:847

• Assume role depth = 0. Then, C is a conjunction of concept symbols,848

i.e., C =
d

1≤j≤nAj . By Lemma 7, there is a set M ′ ∈ Pre(A) of849

concept symbols such that, for each B ∈ M ′, there is an Aj with850

Aj = B. By Lemma 9, σ(
d
B∈M ′ B) ∈ L∗u(Gw(T ,Σ, A))). Since851

each B ∈ M ′ is in Σ, by Definition 7 (GL1), nB → B ∈ Rw. It852

follows that tC ∈ L∗(Gw(T ,Σ, A)).853

• Assume that the role depth is greater than 0. As in the case above, there854

is a set M ′ ∈ Pre(A) of concept symbols such that, for each B ∈M ′,855

[A1] or [A2] holds. Let M ′
1 be the subset of M ′ where [A1] holds,856

i.e., M ′
1 = M ′ ∩ {A1, ...An}, and let M ′

2 = M ′ \M ′
1. In accordance857

with this separation of M ′ into M ′
1 and M ′

2, we can also identify the858
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two corresponding sub-conjunctions of C: Let C ′1 =
d
B∈M ′1

B, and859

C ′2 =
d

1≤f≤p ∃r′f .E ′f such that for each f there is a corresponding860

Bf ∈M ′
2.861

For each f it holds that there exists a concept symbol B′f with T |=862

E ′f v B′f and Bf ≡ ∃r.B′f ∈ T . By induction hypothesis, for each863

f there exists a concept E ′′f such that tE′′
f
∈ L∗(Gw(T ,Σ, B′f )) and864

E ′f can be obtained from E ′′f by adding arbitrary conjuncts to arbitrary865

subconcepts. By Definition 7 (GL4), nBf → ∃r′f (nB′f ) ∈ R
w. There-866

fore, ∃r′f (tE′′f ) ∈ L∗(Gw(T ,Σ, Bf )) and ∃r′f .E ′f can be obtained from867

∃r′f .E ′′f by adding arbitrary conjuncts to arbitrary subconcepts.868

Since each B ∈ M ′
1 is in Σ, we have nB → B ∈ Rw by Definition869

7 (GL1). By Lemma 9, σ(
d
B∈M ′ B) ∈ L∗u(Gw(T ,Σ, A))). Thus, we870

obtain a concept expression C ′′ =
d
B∈M ′1

B u
d
Bf∈M ′2

∃r′f .E ′′f with871

tC′′ ∈ L∗(Gw(T ,Σ, A)) such that C can be obtained from it by adding872

arbitrary conjuncts to arbitrary subconcepts.873

2. We proceed with showing that for each such general C with sig(C) ⊆ Σ874

such that T |= A v C there is a conceptC ′ such that tC′ ∈ L∗(Gv(T ,Σ, A))875

andC can be obtained fromC ′ by removing> conjuncts from arbitrary sub-876

concepts. For each Aj , we know that T |= A v Aj and Aj ∈ Σ ∪ {>}. By877

Definition 7 (GR1) nAj → Aj ∈ Rv for all Aj . Assume a role depth 0.878

• Assume that n = 1, i.e., C = A1, and assume that A1 is the only879

concept symbol such that T |= A v A1. By Definition 7 (GR2)880

nA → nA1 ∈ Rv. Thus, tC ∈ L∗(Gv(T ,Σ, A)).881

• Assume that there are more than one concept symbol Ai such that882

T |= A v Ai. By Definition 7 (GR3), nA → u(nA1 , ..., nAx) ∈ Rv883

for some x ≥ n. By Definition 7 (GR2), there is nAi → n> ∈ Rv884

for all Ai. By applying (GR1) for all Aj and nAi → n>, n> → > for885

all i > n, we obtain a term tCuC′ , where C ′ is a conjunction of x − n886

concepts >. Thus, the theorem holds for role depth 0.887

Assume a role depth > 0. For each ∃rk.Ek, it follows from Lemma 8 that888

there are Bk, B
′′
k ∈ sigC(T ) with Bk ≡ ∃rk.B′′k ∈ T such that T |= A v889

Bk, T |= B′′k v Ek. By Definition 7 (GR4), nBk → ∃rk(nB′′k ) ∈ Rv. By in-890

duction hypothesis, there is a conceptE ′k such that tE′
k
∈ L∗(Gv(T ,Σ, B′′k))891

and Ek can be obtained from E ′k by removing > conjuncts from arbitrary892

subconcepts.893
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• Assume that there is the only one concept symbol B′ such that T |=894

A v B′. Then, C = ∃r1.E1 and B1 = B′. By Definition 7 (GR2)895

nA → nB′ ∈ Rv. Thus, t∃r1.E′1
∈ L(Gv(T ,Σ, A)) and ∃r1.E1 can896

be obtained from ∃r1.E
′
1 by removing> conjuncts from arbitrary sub-897

concepts.898

• Assume that there are more than one concept symbol B′ such that899

T |= A v B′. By Definition 7 (GR3), nA → u(nB′1 , ..., nB′x) ∈ R
v

900

for some x ≥ n+m such thatB′j = Aj for 1 ≤ j ≤ n andB′n+k = Bk901

for 1 ≤ k ≤ m. By Definition 7 (GR2), there is nB′i → n> ∈ Rv902

for all B′i. Now, we derive the term tC′′uC′ from nA by first applying903

nA → u(nB′1 , ..., nB′x) and then proceeding as follows:904

– from eachB′i with i > n+m, we derive> by applying nB′i → n>,905

n> → >;906

– from each B′j = Aj with 1 ≤ j ≤ n, we derive Aj by applying907

nB′j → Aj;908

– from each B′n+k = Bk with 1 ≤ k ≤ m, we derive t∃rk.E′k .909

We obtain a term tC′′uC′ ∈ L∗(Gv(T ,Σ, A)), where C ′ is a conjunc-910

tion of concepts > and C ′′ =
d

1≤j≤nAj u
d

1≤k≤m ∃rk.E ′k. Clearly,911

C can be obtained from C ′′ by removing > conjuncts from arbitrary912

subconcepts. Thus, C can be obtained from C ′′ u C ′ by removing >913

conjuncts from arbitrary subconcepts.914

6.3. From Grammars to Uniform Interpolants915

Now we show that, as a consequence of Lemma 4 and Theorem 4, in case916

a finite uniform interpolant exists, we can construct it from the subsumees and917

subsumers of maximal depth N = 24·|sub(T )| + 1 generated by the grammars918

Gw(T ,Σ),Gv(T ,Σ). Given the grammars, the corresponding subsumee/sub-919

sumer relation pair 〈Lw, Lv〉 is given by L./ = {(A,C) | tC ∈ L(G./(T ,Σ, A)),920

d(C) ≤ N} for ./∈ {w,v} and A ∈ sigC(T ). Note that, if all subsumees and921

subsumers are using only concepts and roles from Σ (follows from Theorem 3),922

then sig(M(Lw, Lv,Σ)) ⊆ Σ. We obtain the following result concerning the size923

of uniform EL Σ-interpolants:924

Theorem 5. Let T be a flattened version of an EL TBox Tnf and Σ a signature925

with Σ ∩ sig(T ) ⊆ sig(Tnf ). For N = 24·|sub(Tnf )| + 1, ./∈ {w,v} and A ∈926

sigC(T ), let L./(A) = {C | tC ∈ L(G./(T ,Σ, A)), d(C) ≤ N}. The following927

statements are equivalent:928
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1. There exists a uniform EL Σ-interpolant of Tnf .929

2. M(Lw, Lv,Σ) ≡ELΣ Tnf930

3. There exists a uniform EL Σ-interpolant T ′ of Tnf with |T ′| ∈ O(222|Tnf | ).931

Proof. We prove the implications 1 ⇒ 2 and 2 ⇒ 3. All other implications are932

either trivial or follow from the others. For convenience, let TΣ denote the TBox933

M(Lw, Lv,Σ).934

1⇒ 2: First, note that the statement TΣ ≡ELΣ Tnf follows from Lemma 5 and the935

fact that Σ ∩ sig(T ) ⊆ sig(Tnf ). Thus, it is sufficient to prove TΣ ≡ELΣ T .936

By Definition 2, the statement TΣ ≡ELΣ T consists of two directions: (1) for937

all EL concepts C,D with sig(C) ∪ sig(D) ⊆ Σ holds TΣ |= C v D ⇒938

T |= C v D and (2) for all EL concepts C,D with sig(C) ∪ sig(D) ⊆ Σ939

holds TΣ |= C v D ⇐ T |= C v D.940

(1) The first direction follows from Theorem 3 and Definition 5. Theorem941

3 ensures that the subsumee/subsumer relation pair 〈Lw, Lv〉 does not942

contain any subsumees or subsumers not being entailed by T and that943

it consists only of symbols from Σ ∪ {>}. Definition 5 ensures that944

TΣ does not contain any concepts that do not occur in 〈Lw, Lv〉.945

(2) For the second direction, assume that there exists a uniform EL Σ-
interpolant of Tnf and, subsequently, T . Then, by Lemma 4, there
exists a uniform EL Σ-interpolant T ′ of Tnf and T with d(T ′) ≤ N .
It is sufficient to show that for each C v D ∈ T ′ holds TΣ |= C v D.
Assume that C v D ∈ T ′. We prove by induction on maximal role
depth of C,D that also TΣ |= C v D. Let D =

d
1≤i≤lDi and

C =
l

1≤j≤n
Aj u

l

1≤k≤m

∃rk.Ek

where Aj are concept symbols, rk are role symbols and Ek are arbi-946

trary EL concepts. Clearly, T |= C v D, iff T |= C v Di for all i947

with 1 ≤ i ≤ l.948

• If Di is a concept symbol, then, it follows from Theorem 4 that949

there is a concept C ′ such that tC′ ∈ L∗(Gw(T , Σ, A)) and C can950

be obtained from C ′ by adding arbitrary conjuncts to arbitrary951

subconcepts. Since d(C) ≤ N , also d(C ′) ≤ N . Therefore,952

TΣ |= C v Di.953
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• If Di = ∃r.D′ for some r,D′, then, by Lemma 7, one of the954

following is true:955

(A3) There are rk, Ek in C such that rk = r and T |= Ek v D′.956

Since d(Ek) < N and d(D′) < N , by induction hypothesis957

holds TΣ |= Ek v D′. It follows that TΣ |= ∃rk.Ek v Di and958

TΣ |= C v Di.959

(A4) There is a concept symbol B ∈ sigC(T ) such that T |= B v960

∃r.D′ and T |= C v B. Then,961

– it follows from Theorem 4 that there is a concept C ′1 such962

that tC′1 ∈ L
∗(Gw(T , Σ, A)) and C can be obtained from963

C ′1 by and adding arbitrary conjuncts to arbitrary subcon-964

cepts. Since d(C) ≤ N , also d(C ′1) ≤ N . Therefore,965

(B,C ′′1 ) ∈ Lw for some associative commutative variant966

C ′′1 of C ′1.967

– it follows from Theorem 4 that there is a concept C ′2 such968

that tC′2 ∈ L∗(Gv(T ,Σ, B)) and ∃r.D′ can be obtained969

from C ′2 by removing > conjuncts from arbitrary subcon-970

cepts. Since d(∃r.D′) ≤ N , also d(C ′2) ≤ N and it follows971

that (B,C ′′2 ) ∈ Lv for some associative commutative vari-972

ant C ′′2 of C ′2.973

By Definition 5, C ′′1 v C ′′2 ∈ TΣ, and, therefore, TΣ |= C v974

Di.975

2⇒ 3: Observe that G1,G2 have n = |sigC(T )| non-terminals and n is also the976

maximal arity of u. Now we consider the stepwise generation of terms in977

L(Gw(T ,Σ, A)) and L(Gv(T ,Σ, A)). Initially, terms are given by tran-978

sitions. Assume that m is the maximal number of transitions in G1,G2,979

where is polynomial in n. Each of these outgoing transitions has at most n980

occurring non-terminals. For a term t of role depth x, we can obtain a term981

of the role depth x+ 1 by first applying transition rules of type GL1-GL3 (982

GR1-GR3 in case of subsumer terms) to replace non-terminals n by terms t′983

and then applying transitions of type GL4 (GR4). In case of subsumees, we984

can assume that it is sufficient to consider terms t′ with a maximal function985

depthm (maximal number of transitions), since a repeated application of the986

same transition of type GL3 generates a weak subsumee that is not required987

for the construction of the uniform interpolant. The total maximal depth of988

function nestings in subsumee terms is thenN ·m. In case of subsumers, the989
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term of the role depth x+ 1 is obtained by applying at most one rule of type990

GR3 for each non-terminal, since the corresponding conjunctions in GR3991

contain all non-terminals that can be obtained by infinitely many successive992

applications of GR1-GR3. The total maximal depth of function nestings in993

subsumer terms is then N · 2. Given the maximal function depth N ·m, the994

maximal arity n of functions and the number n of different non-terminals,995

we obtain at most nnN·m different terms. Since in N ∈ O(2n), the size of996

terms is in O(22n) while the number of terms is in O(222n ).997

These complexity results correspond to the size and number of axioms in Example998

4 used to demonstrate the triple-exponential lower bound.999

7. Related Work1000

In addition to the already discussed results on uniform interpolation in de-1001

scription logics [19, 18, 20, 28, 29, 16, 17], in this section we discuss the work on1002

inseparability and conservative extensions. The latter two notions form the foun-1003

dation for module extraction, e.g., [30, 17, 26], and decomposition of ontologies1004

into modules, e.g., [31, 32, 33]. The notion of a conservative extension is defined1005

using inseparability: A TBox T1 is called a Σ-conservative extension of a TBox1006

T2 if T1 is Σ-inseparable from T2 and T1 ⊆ T2.1007

Ghilardi, Lutz and Wolter [34] investigate modularity of ontologies based on1008

concept-inseparability. They show that deciding if a subontology is a module in1009

the description logic ALC is 2EXPTIME-complete. In a subsequent work, Lutz,1010

Walter and Wolter [35] show that the same problem is 2EXPTIME-complete for1011

ALCQI, but undecidable for ALCQIO. The authors also investigate a stronger1012

notion of inseparability and conservative extensions defined directly on models1013

instead of entailed consequences: given two TBoxes T1 and T2, T1 is a model-1014

conservative extension of T2 iff for every model I of T2, there exists a model1015

of T1 which can be obtained from I by modifying the interpretation of symbols1016

in sig(T1) \ sig(T2) while leaving the interpretation of symbols in sig(T2) fixed.1017

The authors show that the corresponding problem based on the latter notion is1018

undecidable for ALC.1019

In a more recent work, Konev, Lutz, Walter and Wolter [26] consider the de-1020

cidability of the above problem based on model-conservative extensions for ALC1021

under different additional restrictions, e.g., restriction of the relevant signature to1022

concept names, and obtain complexity results ranging from Πp
2 to undecidable.1023

Further, the authors consider the problem for acyclic EL terminologies. It is in-1024

teresting that, in contrast to acyclic ALC terminologies, for which the problem1025
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remains undecidable, for acyclic EL terminologies the complexity goes down to1026

PTIME. In a later work [36], the above authors present a full complexity picture1027

for ALC and its common extensions. They investigate a broad range of query1028

languages (languages in which the relevant consequences are expressed), start-1029

ing with the language allowing for expressing inconsistency only and ending with1030

Second Order Logic. More recently, Lutz and Wolter [27] show that the above no-1031

tion of model-conservative extensions is undecidable also for such a lightweight1032

logic as EL.1033

Kontchakov, Wolter and Zakharyaschev [37] investigate the above decision1034

problem for two representatives of the DL-Lite family of description logics as1035

ontology languages and existential Σ-queries as a query language. They show1036

that, for DL-Litehorn, the problem is CONP-complete, and for DL-Litebool Πp
2-1037

complete.1038

The high complexity results for already rather simple logics have lead to a1039

development of alternative ways to extract modules not requiring checking insep-1040

arability. For instance, Cuenca Grau, Horocks, Kazakov and Sattler [30], propose1041

a tractable algorithm for computing modules from OWL DL ontologies based on1042

the notion of syntactic locality [38] that defines the locality of an axiom on the1043

syntactic level, i.e., states syntactic conditions for the potential logical relevance1044

of axioms. It is guaranteed that the extracted module preserves all relevant conse-1045

quences, but the obtained modules are not necessarily minimal.1046

8. Summary and Outlook1047

In this article, we have discussed the task of uniform interpolation, which1048

guarantees a preservation of the relevant subset of the deductive closure while1049

eliminating all references to irrelevant entities.1050

We provided an approach to computing uniform interpolants of general EL1051

terminologies based on proof theory and regular tree languages. Moreover, we1052

showed that, if a finite uniform EL interpolant exists, then there exists one of at1053

most triple exponential size in terms of the original TBox, and that, in the worst-1054

case, no shorter interpolant exists, thereby establishing a tight triple exponential1055

bound. This is an important foundational insight, since it reveals the effect of1056

structure sharing in the basic logic EL.1057

The result brings about some insights when it comes to the practical appli-1058

cability of uniform interpolation for module extraction and related tasks. In or-1059

der to prevent a triple exponential blowup in the worst-case, we need to impose1060

restrictions on rewriting, in that certain signature elements are kept even if not1061
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considered relevant. For instance, in [39], we obtain first, preliminary results in1062

this direction. We show that, despite the worst-case triple exponential blowup,1063

uniform interpolation can be very useful as a basis for rewriting aiming at an1064

elimination of irrelevant information from ontologies.1065

On the other hand, the results of this article reveal the potential of structure1066

sharing for improving the conciseness of ontologies. By introducing a reverse op-1067

eration to uniform interpolation, namely the elimination of structural redundancy1068

from ontologies via vocabulary extension, we maybe able to “compress” ontolo-1069

gies in a semantics-preserving way, obtaining up to triple-exponentially more con-1070

cise representations of EL ontologies in the best case. This raises a new practi-1071

cally relevant research question, which is particularly interesting for improving1072

reasoning efficiency.1073
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Appendix A. Model-Theoretic Properties of EL Concepts1077

In Section 2, we characterize EL concept membership and EL concept sub-1078

sumption in the absence of terminological background knowledge. In this section,1079

we include the according proofs.1080

Lemma 1. For any EL concept expression C and any interpretation I = (∆I , ·I)1081

and x ∈ ∆I it holds that x ∈ CI if and only if there is a homomorphism from1082

(IC , xC) to (I, x).1083

Proof. We prove both directions by structural induction over C.1084

We start with the if-direction, letting ϕ be the homomorphism from (IC , xC)1085

to (I, x):1086

• For C = >, the case is trivial.1087

• For C = A ∈ NC , we find xA ∈ AIA , therefore the existence of the homo-1088

morphism ensures that x = ϕ(xA) ∈ AI .1089

• For C = C1 u C2, we find that ϕι : ∆ICι → ∆I defined by

ϕι(y) =
{
x if y = xCι
ϕ(y′) if y = (y′, ι)
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for ι ∈ {1, 2} are homomorphisms from (IC1 , xC1) to (I, x) and (IC2 , xC2)1090

to (I, x), respectively. Invoking the induction hypothesis, we conclude that1091

x ∈ CI1 as well as x ∈ CI2 and thus x ∈ CI1 ∩ CI2 = (C1 u C2)I .1092

• Considering C = ∃r.C1, we find that ϕ′ = ϕ|∆IC1 is a homomorphism from1093

(IC1 , xC1) to (I, ϕ(xC1)). Invoking the induction hypothesis, we conclude1094

ϕ′(xC1) = ϕ(xC1) ∈ CI1 . On the other hand, by construction of IC we1095

find (xC , xC1) ∈ rIC and thus, since ϕ is a homomorphism (x, ϕ(xC1) =1096

(ϕ(xC), ϕ(xC1) ∈ rI . Together, this allows to conclude x ∈ (∃r.C1)I .1097

We proceed with the only-if direction.1098

• For C = >, the case is trivial.1099

• For C = A ∈ NC , the mapping ϕ = {xA 7→ x} is the required homomor-1100

phism since by assumption it holds that x ∈ AI .1101

• For C = C1uC2, we have by assumption x ∈ CI = CI1 ∩CI2 therefore x ∈
CI1 and x ∈ CI2 . Invoking the induction hypothesis we find homomorphisms
ϕ1 from (IC1 , xC1) to (I, x) and ϕ2 from (IC2 , xC2) to (I, x). Consequently,
by construction of IC , the mapping ϕ : ∆IC to∆I defined by

ϕ(y) =


x if y = xC
ϕ1(y′) if y = (y′, 1)
ϕ2(y′) if y = (y′, 2)

is a homomorphism from (IC , xC) to (I, x).1102

• For C = ∃r.C1, we find by assumption x ∈ (∃r.C1)I thus there exists an1103

x′ ∈ ∆I with (x, x′) ∈ rI and x′ ∈ CI1 . Invoking the induction hypothesis,1104

we find a homomorphism ϕ′ from (IC1 , xC1) to (I, x′). Consequently the1105

mapping ϕ : ∆IC → ∆I with ϕ = ϕ′ ∪ {xC 7→ x} is a homomorphism1106

from (IC , xC) to (I, x).1107

1108

Lemma 2. Let C and C ′ be two EL concept expressions. Then ∅ |= C v C ′ if1109

and only if there is a homomorphism from (I ′C , x′C) to (IC , xC).1110

Proof. For the if-direction, letϕ be the homomorphism from (I ′C , x′C) to (IC , xC).1111

Now let I be an interpretation and pick an arbitrary x ∈ ∆I with x ∈ CI . By1112
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Lemma 1, there exists a homomorphism ϕ′ from (IC , xC) to (I, x). Then ϕ′ ◦ϕ is1113

a homomorphism from (IC′ , xC′) to (I, x) and by the other direction of Lemma 1,1114

we can conclude x ∈ C ′. Thus CI ⊆ C ′I for all interpretations I and therefore1115

∅ |= C v C ′.1116

For the only-if-direction, assume ∅ |= C v C ′. Now consider the pointed inter-1117

pretation (IC , xC). As the identity on ∆IC is a homomorphism from (IC , xC) to1118

itself, we use Lemma 1 to conclude xC ∈ CIC . By ∅ |= C v C ′ we can infer that1119

xC ∈ C ′IC . Invoking the if-direction of Lemma 1, we find that there must be a1120

homomorphism from (I ′C , x′C) to (IC , xC).1121

Appendix B. EL Automata1122

In this appendix section, we recall core notions on EL automata [20] before1123

giving the proof of Lemma 4.1124

Definition 11 [20]. An EL automaton (EA) is a tuple A = (Q,P,ΣN ,ΣE, δ),1125

where Q is a finite set of bottom up states, P is a finite set of top down states,1126

ΣN ⊆ NC is the finite node alphabet, ΣE ⊆ NR is the finite edge alphabet, and δ1127

is a set of transitions of the following form:1128

true → q p → p1 (B.1)
A → q p → 〈r〉p1 (B.2)

q1 ∧ . . . ∧ qn → q p → A (B.3)
〈r〉q1 → q p → false (B.4)

q → p (B.5)

where q, q1, ..., qn range over Q, p, p1 range over P , A ranges over ΣN , and r1129

ranges over ΣE .1130

Definition 12 [20]. Let I be an interpretation and A = (Q,P,ΣN ,ΣE, δ) an EA.1131

A run of A on I is a map ρ : δ → 2Q∪P such that for all d ∈ ∆I , we have:1132

1. if true → q ∈ δ, then q ∈ ρ(d);1133

2. if A→ q ∈ δ, and d ∈ AI , then q ∈ ρ(d);1134

3. if q1, ..., qn ∈ ρ(d) and q1 ∧ . . . ∧ qn → q ∈ δ, then q ∈ ρ(d);1135

4. if (d, e) ∈ rI , q1 ∈ ρ(e) and 〈r〉q1 → q ∈ δ, then q ∈ ρ(d);1136

5. if q ∈ ρ(d) and q → p ∈ δ, then p ∈ ρ(d);1137
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6. if p ∈ ρ(d) and p→ p1 ∈ δ, then p1 ∈ ρ(d);1138

7. if p ∈ ρ(d) and p→ 〈r〉p1 ∈ δ, then there is an (d, e) ∈ rI with p1 ∈ ρ(e);1139

8. if p ∈ ρ(d) and p→ A ∈ δ, then d ∈ AI;1140

9. if p→ false ∈ δ, then p 6∈ ρ(d).1141

The following Proposition specifies how the corresponding EA A for any1142

TBox T can be constructed such that TΣ(A) ≡ELΣ T for any Σ.1143

Construction from Proposition 13 [20] Let T be a TBox, s(T ) subconcepts of T1144

and A = (Q,P, sigC(T ), sigR(T ), δ) with Q = {qC |C ∈ s(T )}, P = {pC |C ∈1145

s(T )} and δ given by1146

• true → q> if > ∈ s(T );1147

• A→ qA and qA → pA for all A ∈ sigC(T );1148

• qC ∧ qD → qCuD;1149

• 〈r〉qC → q∃r.C and q∃r.C → 〈r〉pC for all ∃r.C ∈ s(T );1150

• qC → qD for all C,D ∈ s(T ) with T |= C v D;1151

• pA → A for all A ∈ sigC(T );1152

• p∃r.C → 〈r〉pC for all ∃r.C ∈ s(T );1153

• pC → pD for all C,D ∈ s(T ) with T |= C v D;1154

• p⊥ → false if ⊥ ∈ s(T ).1155

An EA A is said to entail a subsumption C v D if every model accepted by1156

A satisfies C v D. Subsequently, an EA A and a TBox T are EL Σ-inseparable,1157

in symbols A ≡ELΣ T , if A |= C v D iff T |= C v D for all EL Σ-inclusions1158

C v D. Further, for a signature Σ, TΣ(A) = {C v D | A |= C v D, sig(C) ∪1159

sig(D) ⊆ Σ}. For a natural number m, T mΣ (A) = {C v D | C v D ∈1160

TΣ(A), d(C) ≤ m and d(D) ≤ m}.1161

Excerpt from Lemma 55 [20]. LetA be an EA andMA = 2|P∪Q|. The following1162

conditions are equivalent:1163

1. There exists k > M2
A + 1 such that T M

2
A+1

Σ 6|= T kΣ ;1164

4. There does not exists an EL TBox T with A ≡ELΣ T .1165
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Lemma 4. Let T be an EL TBox, Σ a signature. The following statements are1166

equivalent:1167

1. There exists a uniform EL Σ-interpolant of T .1168

2. There exists a uniform EL Σ-interpolant T ′ of T for which holds d(T ′) ≤1169

24·(|sub(T )|) + 1.1170

Proof. Assume that a uniform ELΣ-interpolant of T exists and letM = 2(2·|sub(T )|).1171

Then, by Lemma 55 [20], there is no k > M2 + 1 such that T M2+1
Σ (A) 6|= T kΣ (A),1172

where A is the corresponding EL automaton for T . Then T M2+1
Σ (A) |= TΣ(A).1173

Therefore, T M2+1
Σ (A) ≡ELΣ T , i.e., T M2+1

Σ (A) is a uniform EL Σ-interpolant T ′1174

of T with d(T ′) ≤M2 + 1. We can replace M2 + 1 by 24·(|sub(T )|) + 1 and obtain1175

d(T ′) ≤ 24·(|sub(T )|) + 1.1176
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