COMPUTING STABLE MODELS FOR

NONMONOTONIC EXISTENTIAL RULES

Despoina Magka, Markus Krstzsch, lan Horrocks

Department of Computer Science, University of Oxford

IJCAI, 2013

THE OWLS ARE NOT WHAT THEY SEEM

m OWL widely used for authoring biomedical ontologies

THE OWLS ARE NOT WHAT THEY SEEM

m OWL widely used for authoring biomedical ontologies

NClthesaurus
=

the Gene Ontology

THE OWLS ARE NOT WHAT THEY SEEM

m OWL widely used for authoring biomedical ontologies

NClthesawaus

the Gene Ontology

m Not marked for its ability to model cyclic structures

THE OWLS ARE NOT WHAT THEY SEEM

m OWL widely used for authoring biomedical ontologies

NClthesawaus

the Gene Ontology

m Not marked for its ability to model cyclic structures

m Such structures abound in life science (and other) domains

THE OWLS ARE NOT WHAT THEY SEEM

m OWL widely used for authoring biomedical ontologies

NCitt lesaurus

the Gene Ontology

m Not marked for its ability to model cyclic structures

m Such structures abound in life science (and other) domains

NONMONOTONIC EXISTENTIAL RULES

m Rules with nonmonotonic negation in the body and
existentials in the head

Bi! ...1 By! notBpg! ...1 notByn"# y.Hy! ...1 Hyg

NONMONOTONIC EXISTENTIAL RULES

m Rules with nonmonotonic negation in the body and
existentials in the head

Bi! ...1 By! notBpg! ...1 notByn"# y.Hy! ...1 Hyg

m Interpreted under stable model semantics

NONMONOTONIC EXISTENTIAL RULES

m Rules with nonmonotonic negation in the body and
existentials in the head

Bi! ...!1 By! notBpsq! ...! notBy"# y.Hy! ... Hg
m Interpreted under stable model semantics

m Good for representing non-tree-shaped structures

NONMONOTONIC EXISTENTIAL RULES

m Rules with nonmonotonic negation in the body and
existentials in the head

By! ...!1 By! notBpep! ... notByn"# y.Hy! ...1 Hg
m Interpreted under stable model semantics
m Good for representing non-tree-shaped structures

m Existentials allow us to infer new structures

NONMONOTONIC EXISTENTIAL RULES

m Rules with nonmonotonic negation in the body and
existentials in the head

By! ...!1 By! notBpep! ... notByn"# y.Hy! ...1 Hg
m Interpreted under stable model semantics
m Good for representing non-tree-shaped structures

m Existentials allow us to infer new structures

= Nonmonotonicity adds extra expressivity in modelling

NONMONOTONIC EXISTENTIAL RULES

m Rules with nonmonotonic negation in the body and
existentials in the head

By! ...! By! notBpeg! ...! notBym"# y.Hy! ...! Hg
m Interpreted under stable model semantics
m Good for representing non-tree-shaped structures

m Existentials allow us to infer new structures
= Nonmonotonicity adds extra expressivity in modelling

m Stable model semantics supported by many tools: DLV,
clasp, ...

CLASSIFICATION OF STRUCTURED OBJECTSI

O-H
|
H-C—H
|
H

Methanol molecule

CLASSIFICATION OF STRUCTURED OBJECTSI

O-H
|
H-C—H
|
H

Methanol molecule

methanol(x) " # &,yi.! &, hasAtom(x,y;) ! c(y1)! o(yz)!
I 23h(y)!! £, bond(y1,y) ! bond(ys, ye)

CLASSIFICATION OF STRUCTURED OBJECTSI

Cc@o S Y
O-H e
| Oh ;T
_ _ m 7777>f(m) f1(m) fa(m)
H=C-H hasAtom ’6,H1 H4 ‘
| beoiﬁaf methano1 Teszzzilol -

Methanol molecule

methanol(x) " # &,yi.! &, hasAtom(x,y;) ! c(y1)! o(yz)!
1 25h(yi)!! 2, bond(ys,yy) ! bond(yz, Ys)

CLASSIFICATION OF STRUCTURED OBJECTSI

-

Cc@o S Y
O-H e
I O h ;e
_ _ m 7777>f(m) f1(m) fa(m)
H=C-H hasAtom ’6,H1 H4 ‘
| beoiﬁaf methano1 TvsszzIill -

Methanol molecule

methanol(x) " # &,yi.! &, hasAtom(x,y;) ! c(y1)! o(yz)!
1 25h(yi)!! 2, bond(ys,yy) ! bond(yz, Ys)

I 3 hasAtom(x,z) ! c(z1)! 0(z)!
h(z3) ! bond(zy,z5)! bond(zy,z3)" organicHydroxy(x)

CLASSIFICATION OF STRUCTURED OBJECTSI

-

Qc@o
O-H J/ -
I D h / //’/
-_ -_ m T fe(m) fy(m) — fa(m)
H=C-H hasAtom ’ — H H ‘
I methano1 *‘—: _____ -
H bond

Methanol molecule

methanol(x) " # &,yi.! &, hasAtom(x,y;) ! c(y1)! o(yz)!
1€ 3h(y)! 2, bond(y,yi) ! bond(yz, ye)

I 3 hasAtom(x,z) ! c(z1)! 0(z)!
h(z3) ! bond(zq,z,)! bond(z,,z3)" organicHydroxy(x)

methanol $ organicHydroxy !

CLASSIFICATION OF STRUCTURED OBJECTSI

-

Qc@o
O-H J/ -
I D h / //’/
-_ -_ m T fe(m) = fa(m) — fa(m)
H=C-H hasAtom ’ — H H ‘
I methano1 *‘—: _____ -
H bond

Methanol molecule

methanol(x) " # &,yi.! &, hasAtom(x,y;) ! c(y1)! o(yz)!
1€ 3h(y)! 2, bond(y,yi) ! bond(yz, ye)

I 3 hasAtom(x,z) ! c(z1)! 0(z)!
h(z3) ! bond(zq,z,)! bond(z,,z3)" organicHydroxy(x)

hasAtom(x,z) ! o(z) " hasOxygen(x)

methanol $ organicHydroxy !

CLASSIFICATION OF STRUCTURED OBJECTSI

gcwo S el
O - H // /”//
: Oh ;o
— —_ m 7777>f(m) f1(m) fa(m)
H=C=-H L gt v |
| **bfofﬁa* methan01\ §::: _____ -
H organchydroxy\“_é
Methanol molecule hasOxygen

methanol(x) " # 6 Z Vi ! 1 hasAtom(x,yi) ! c(y1)! o(y2)!
! fish(yi)! | %, bond(y1,y)! bond(yz,Ys)

I 3 hasAtom(x,z) ! c(z1)! 0(z)!
h(z3) ! bond(zq,z,)! bond(z,,z3)" organicHydroxy(x)

hasAtom(x,z) ! o(z) " hasOxygen(x)

methanol $ organicHydroxy ! methanol $ hasOxygen !

CLASSIFICATION OF STRUCTURED OBJECTSI!I
O-H
|

Organic hydroxy group

CLASSIFICATION OF STRUCTURED OBJECTSI!I

O-H
|
o C e

Organic hydroxy group

organicHydroxy(x) " # 2 ,yi.! 2, hasAtom(x,y;) ! c(y1)
P o(y2) ! h(ys)! bond(yi,y2)
! bond(y2, y3)

CLASSIFICATION OF STRUCTURED OBJECTSI!I

O-H -
| DCEO /,

- C -] h / -7

Organic hydroxy group

organicHydroxy(x) " # 2 ,yi.! 2, hasAtom(x,y;) ! c(y1)
P o(y2) ! h(ys)! bond(yi,y2)
! bond(y2, y3)

CLASSIFICATION OF STRUCTURED OBJECTSI!I

O-H -
| DCEO d g

- C -] h / -7

Organic hydroxy group

organicHydroxy(x) " # 2 ,yi.! 2, hasAtom(x,y;) ! c(y1)
P o(y2) ! h(ys)! bond(yi,y2)
! bond(y2, y3)

hasAtom(x,z) ! o(z) " hasOxygen(x)

CLASSIFICATION OF STRUCTURED OBJECTSI!I

O-H .

| bcmo S
< C e (O h // ///
: h L __
hasAtom _
“bond = organicHydroxy
Organic hydroxy group hasOxygen

organicHydroxy(x) " # 2 ,yi.! 2, hasAtom(x,y;) ! c(y1)
P o(y2) ! h(ys)! bond(yi,y2)
! bond(y2, y3)

hasAtom(x,z) ! o(z) " hasOxygen(x)

organicHydroxy $ hasOxygen !

INCORRECTMODELLING

methanol(x) " # & ,yi.! &, hasAtom(x,y;)! ...

! bond(y2, Ys)
I 3 | hasAtom(x,z) ! ...!

bond(z,,z3) " organicHydroxy(x)

organicHydroxy(x) "# 2.yi.! 2, hasAtom(x,y) ! ...

I bond(y2,ys)
hasAtom(x,z) ! o(z) " hasOxygen(X)

3 hasAtom(x,z)! ...!

|NCORRECT|\/|ODELLING

methanol(x) " # 8 = 1Yi-!

' 2, hasAtom(x,y;) ! ...

! b0nd(Y2, Ye)

bond(z,,z3) " organicHydroxy(x)

organicHydroxy(x) " # 3 —1Yi-!

! | 1 hasAtom(x,y;) ! ...

I bond(y2,y3)

hasAtom(x,z) ! o(z) " hasOxygen(X)

|NCORRECT|\/|ODELLING

-

organ|cHydroxy ~—o__)

methanol $ organicHydroxy !

methanol(x) " # ¢ i 1Yi .- 1 hasAtom(x,y;) ! ...

! bond(Yz,ye)
I 3 | hasAtom(x,z) ! ...!
bond(z,,z3) " organicHydroxy(x)

organicHydroxy(x) " # 3 —q1Yi ! i lhasAtom(x,yi)!

I bond(y2,ys)
hasAtom(x,z) ! o(z) " hasOxygen(X)

|NCORRECT|\/|ODELLING

-

methahol RREES
orgamcHydroxy\ “_>
hasOxygen

methanol $ hasOxygen !

methanol(x) " # ¢ i 1Yi .- 1 hasAtom(x,y;) ! ...

! b0nd()’2d6)
I 3 | hasAtom(x,z) ! ...!

bond(z,,z3) " organicHydroxy(x)

organicHydroxy(x) " # 3 —q1Yi ! i lhasAtom(x,yi)!

I bond(y2,ys)
hasAtom(x,z) ! o(z) " hasOxygen(X)

|NCORRECT|\/|ODELLING

-

methahol RREEI S
organchydroxy\ “_> organicHydroxy
hasOxygen

methanol(x) "# 2 ,yi.! &, hasAtom(x,y;) ! ...

! b0nd()’2d6)
I 3 | hasAtom(x,z) ! ...!

bond(z,,z3) " organicHydroxy(x)
organicHydroxy(x) " # 3 ~.Yi-! | 1 hasAtom(x,y;) ! ...
! bond(yz, y3)
hasAtom(x,z) ! o(z) " hasOxygen(X)

|NCORRECT|\/|ODELLING

_ ~

methahol RREES
organchydroxy\ “_> organicHydroxy
hasOxygen hasOxygen

organicHydroxy $ hasOxygen !

methanol(x) "# 2 ,yi.! &, hasAtom(x,y;) ! ...

! bond(YZaYG)
I 3 | hasAtom(x,z) ! ...!

bond(z,,z3) " organicHydroxy(x)
organicHydroxy(x) " # 3 ~.Yi-! | 1 hasAtom(x,y;) ! ...
! bond(yz, y3)
hasAtom(x,z) ! o(z) " hasOxygen(X)

|NCORRECT|\/|ODELLING

organchydroxy\ “_> organicHydroxy
hasOxygen hasOxygen

methanol $ hasOneCarbon "

methanol(x) "# 2 ,yi.! &, hasAtom(x,y;) ! ...
! bond(YZaYG)

3 hasAtom(x,z)! ...!

bond(z,,z3) " organicHydroxy(x)
organicHydroxy(x) "# 2.yi.! 2, hasAtom(x,y) ! ...
! bond(yz, y3)
hasAtom(x,z) ! o(z) " hasOxygen(X)

REPAIR WITH AUXILIARY PREDICATES

methanol(x) " # &,y;.! 2, hasAtom(x,y;)! ...
! bond(y2, Ys)
I 3 hasAtom(x,z)! ...!
bond(z,,z3)! not gn(z1)
I notgp(zz)! notgn(zz) " organicHydroxy(x) ! rp(x)
organicHydroxy(x)! notr,(x) "# 2,y;.! 2, hasAtom(x,y;)! ...
I bond(yz2,ys) ! 2 19n(yi)
hasAtom(x,z) ! o(z) " hasOxygen(x)

REPAIR WITH AUXILIARY PREDICATES

- 3 —————
7 T -
.

m ————»] o |-fatm H fa(m | ST
methanol ~===-"__ -}~ I
organchydrOXy\“_> organicHydroxy
hasOxygen hasOxygen

methanol(x) " # &,y;.! 2, hasAtom(x,y;)! ...
! bond(y2, Ys)
I 3 hasAtom(x,z)! ...!
bond(z,,z3)! not gn(z1)
I notgp(zz)! notgn(zz) " organicHydroxy(x) ! rp(x)
organicHydroxy(x)! not rp(x) " # 3 = 1Yi- .- 1 hasAtom(x,y;) ! .
! bond(yz,ys) ! .=1gh(y.)

hasAtom(x,z) ! o(z) " hasOxygen(x)

REPAIR WITH AUXILIARY PREDICATES

- 3 —————
7 T -
.

m ————»] o |-fatm H fa(m | ST
methanol ~===-"__ -}~ I
organchydrOXy\“_> organicHydroxy
hasOxygen hasOxygen

methanol $ hasOneCarbon !

methanol(x) " # &,y;.! 2, hasAtom(x,y;)! ...
! bond(y2, Ys)
I 3 hasAtom(x,z)! ...!
bond(z,,z3)! not gn(z1)
I notgp(zz)! notgn(zz) " organicHydroxy(x) ! rp(x)
organicHydroxy(x)! not rp(x) " # 3 = 1Yi- .- 1 hasAtom(x,y;) ! .
! bond(yz,ys) ! .=1gh(y.)

hasAtom(x,z) ! o(z) " hasOxygen(x)

WHAT® THE PROBLEM?

m Reasoning is undecidable
(even fact entailment, even without not)

WHAT® THE PROBLEM?

m Reasoning is undecidable
(even fact entailment, even without not)
= many known conditions for regaining decidability
m acyclicity conditions ensure Pnite models: (super)-weak
acyclicity, joint acyclicity, aGRD, MSA, MFA, ...

WHAT® THE PROBLEM?

m Reasoning is undecidable
(even fact entailment, even without not)
= many known conditions for regaining decidability
m acyclicity conditions ensure Pnite models: (super)-weak
acyclicity, joint acyclicity, aGRD, MSA, MFA, ...

m Reasoning is hard (even for bnite models)

WHAT® THE PROBLEM?

m Reasoning is undecidable
(even fact entailment, even without not)
= many known conditions for regaining decidability
m acyclicity conditions ensure Pnite models: (super)-weak
acyclicity, joint acyclicity, aGRD, MSA, MFA, ...

m Reasoning is hard (even for bnite models)

= stable models lead to non-determinism
m stratibcation conditionsensure determinism

WHAT® THE PROBLEM?

m Reasoning is undecidable
(even fact entailment, even without not)

= many known conditions for regaining decidability
m acyclicity conditions ensure Pnite models: (super)-weak
acyclicity, joint acyclicity, aGRD, MSA, MFA, ...

m Reasoning is hard (even for bnite models)

= stable models lead to non-determinism
m stratibcation conditionsensure determinism

Stratibcation

I
Stable model uniqueness

¥

Deterministic reasoning

WHATCS OURPROBLEM?

m ————»] o |-fatm H fa(m | ST
methanol ~===-"__ -}~ I
organchydrOXy\“_> organicHydroxy
hasOxygen hasOxygen

Repaired program not stratiped

methanol(x) " # & ,y;.! 2, hasAtom(x,y;)! ...

!' bond(y2, Ys)

I 3 | hasAtom(x,z)! ...!

bond(z,,z3)! not gn(z1)

I notgp(zz)! notgp(zz) " organicHydroxy(x)! rh(x)

organicHydroxy(x)! not rn(x) " 1yI I' 2, hasAtom(x, y;) !
! bond(yz,ys) 3 .:1gh(y.)
hasAtom(x,z) ! o(z) " hasOxygen(x)

WHATCS OURPROBLEM?

m ————»] o |-fatm H fa(m | ST
methanol ~===-"__ -}~ I
organchydrOXy\“q organicHydroxy
hasOxygen hasOxygen

Repaired program not stratiped

methanol(x) " # & ,y;.! 2, hasAtom(x,y;)! ...

! bond(yz, Ys)
I 3 | hasAtom(x,z)! ...!
bond(z,, z3) !'| not gn(z1)

I notgp(zz)! noton(zz) " organicHydroxy(x)! rh(x)

organicHydroxy(x)! not rn(x) " 1yI I 2, hasAtom(x, y,) !
i= LQh(Yl)

! bond(yz,ys)!!
hasAtom(x,z) ! o(z) " hasOxygen(x)

WHATCS OURPROBLEM?

m ————»] o |-fatm H fa(m | ST
methanol ~===-"__ -}~ I
organchydrOXy\“q organicHydroxy
hasOxygen hasOxygen

Repaired program not stratiped

methanol(x) " # & ,y;.! 2, hasAtom(x,y;)! ...

! bond(yz, Ys)
I 3 | hasAtom(x,z)! ...!
bond(z,,z3)! not gn(z1)
I notgn(zz)! notgp(zz) " organicHydroxy(x) !'|rn(x)

organicHydroxy(x)!| not rp(x) ['# 3 i 1Yi- .- 1 hasAtom(x,y;) ! .
! bond(yz,ys) 3 .:1gh(y.)
hasAtom(x,z) ! o(z) " hasOxygen(x)

RESULTSOVERVIEW

R-acyclicity and R-stratibpcation conditions

m R-stratibcation ensuresstable model uniqueness
m Both coNRcomplete to check

RESULTSOVERVIEW

R-acyclicity and R-stratibpcation conditions

m R-stratibcation ensuresstable model uniqueness
m Both coNRcomplete to check

Complexity of reasoning

Fact entailment Program comp. Data comp.

R-acyclic coN2ExpTimecomplete | coNRcomplete

R-acyclic+R-stratibed 2ExpTimecomplete | PTimecomplete

RESULTSOVERVIEW

R-acyclicity and R-stratibpcation conditions

m R-stratibcation ensuresstable model uniqueness
m Both coNRcomplete to check

Complexity of reasoning

Fact entailment Program comp. Data comp.
R-acyclic coN2ExpTimecomplete | coNRcomplete
R-acyclic+R-stratibed 2ExpTimecomplete | PTimecomplete

Generalise R-acyclicity and R-stratibcation with constraints
I new conditions ! 5-complete to check

RESULTSOVERVIEW

R-acyclicity and R-stratibpcation conditions

m R-stratibcation ensuresstable model uniqueness
m Both coNRcomplete to check

Complexity of reasoning

Fact entailment Program comp. Data comp.
R-acyclic coN2ExpTimecomplete | coNRcomplete
R-acyclic+R-stratibed 2ExpTimecomplete | PTimecomplete

Generalise R-acyclicity and R-stratibcation with constraints
I new conditions ! 5-complete to check
Experiments over ChEBI with DLV

m Performance gains in DLV using R-stratiPcation
m Missing subsumptions from ChEBI ontology

10

POSITIVE RELIANCES

m Rule r, positively relies on rq (written ry % ry): there is a
situation when rq can trigger r to derive something new

POSITIVE RELIANCES

m Rule r, positively relies on rq (written ry % ry): there is a
situation when rq can trigger r to derive something new

EXAMPLE

r: I 3 | hasAtom(x, z;) !
c(z1) ! o(zp)! h(z3)!
bond(zy,z,) ! bond(z,,z3) " organicHydroxy(x)

My organicHydroxy(x) " # £,yi.! £, hasAtom(x, ;) !
c(y1) ! o(y2)! h(ys)!
bond(y1,y2)! bond(y,,ys)

10

POSITIVE RELIANCES

m Rule r, positively relies on rq (written ry % ry): there is a
situation when rq can trigger r to derive something new

EXAMPLE

r: I 3 | hasAtom(x, z;) !

c(z1) ! o(z2) ! h(z3)!
bond(z,,z,) ! bond(z,,z3) " |organicHydroxy(x)

My organicHydroxy(x) ['# £,yi.! £, hasAtom(x, ;) !
c(y1) ! o(y2)! h(ys)!
bond(ys,y2) ! bond(yz,ys)

rnd r

10

POSITIVE RELIANCES

m Rule r, positively relies on rq (written ry % ry): there is a
situation when rq can trigger r to derive something new

EXAMPLE

r: I 3 | hasAtom(x, z;) !
c(z1) ! o(zp)! h(z3)!
bond(zy,z,) ! bond(z,,z3) " organicHydroxy(x)

My organicHydroxy(x) " # £,yi.! £, hasAtom(x, ;) !
c(y1) ! o(y2)! h(ys)!
bond(y1,y2)! bond(y,,ys)

ri% ro but ro % rq

10

POSITIVE RELIANCES

m Rule r, positively relies on rq (written ry % ry): there is a
situation when rq can trigger r to derive something new

EXAMPLE

r: I 3 | hasAtom(x, z;) !
c(z1) ! o(zp)! h(z3)!
bond(zy,z,) ! bond(z,,z3) " organicHydroxy(x)

My organicHydroxy(x) " # £,yi.! £, hasAtom(x, ;) !
c(y1) ! o(y2)! h(ys)!
bond(y1,y2)! bond(y,,ys)

ri% ro but ro % rq

m NP-complete to check
(but only w.r.t. the size of the rules)

10

POSITIVE RELIANCES

m Rule r, positively relies on rq (written ry % ry): there is a
situation when rq can trigger r to derive something new

EXAMPLE

r: I 3 | hasAtom(x, z;) !
c(z1) ! o(zp)! h(z3)!
bond(zy,z,) ! bond(z,,z3) " organicHydroxy(x)

ry: organicHydroxy(x) " # 2 ,yi.! 2, hasAtom(x,y;) !
c(y1) ! o(y2)! h(ys)!
bond(y1,y2)! bond(y,,ys)
r1% ro but r2% ri

m NP-complete to check
(but only w.r.t. the size of the rules)

Y

Gy

10

11

R-ACYCLICITY

m A program is R-acyclic: there is no cycle of positive
reliances that involves a rule with an existential

m Checking R-acyclicity is coNPcomplete

m Similar to &-stratibcation[Deutsch et al., PODS, 2008];
extension of aGRD [Baget et al., RR, 2011]

11

R-ACYCLICITY

m A program is R-acyclic: there is no cycle of positive
reliances that involves a rule with an existential

m Checking R-acyclicity is coNPcomplete

m Similar to &-stratibcation[Deutsch et al., PODS, 2008];
extension of aGRD [Baget et al., RR, 2011]

m Fact entailment for R-acyclic programs

m Stable models bounded in size (double exp),
but many models possible

11

R-ACYCLICITY

m A program is R-acyclic: there is no cycle of positive
reliances that involves a rule with an existential

m Checking R-acyclicity is coNPcomplete

m Similar to &-stratibcation[Deutsch et al., PODS, 2008];
extension of aGRD [Baget et al., RR, 2011]

m Fact entailment for R-acyclic programs

m Stable models bounded in size (double exp),
but many models possible

m CON2ExpTimecomplete w.r.t. program complexity

11

R-ACYCLICITY

m A program is R-acyclic: there is no cycle of positive
reliances that involves a rule with an existential

m Checking R-acyclicity is coNPcomplete

m Similar to &-stratibcation[Deutsch et al., PODS, 2008];
extension of aGRD [Baget et al., RR, 2011]

m Fact entailment for R-acyclic programs

m Stable models bounded in size (double exp),
but many models possible

11

R-ACYCLICITY

m A program is R-acyclic: there is no cycle of positive
reliances that involves a rule with an existential

m Checking R-acyclicity is coNPcomplete

m Similar to &-stratibcation[Deutsch et al., PODS, 2008];
extension of aGRD [Baget et al., RR, 2011]

m Fact entailment for R-acyclic programs

m Stable models bounded in size (double exp),
but many models possible

m CON2ExpTimecomplete w.r.t. program complexity

m cONRcomplete w.r.t. data complexity

12

NEGATIVE RELIANCES

= Rule ry negatively relies on ry (written r1 9% r): there is a
situation when ry can inhibit the application of r»

NEGATIVE RELIANCES

= Rule ry negatively relies on ry (written r1 9% r): there is a
situation when ry can inhibit the application of r»

EXAMPLE

ri: '3, hasAtom(x,z)! c(z1)!
0(z2) ! h(zz)! bond(zy,z,)!
bond(z,,z3)! not gn(zy)!

not gn(zo) ! notgn(zz) " organicHydroxy(x) ! rn(x)

rp: organicHydroxy(x) ! notry(x) "# 2,yi.! 2, hasAtom(x,y;)
Fe(yn) ! o(yz) ! h(ys)!
bond(y1,y2) ! bond(yz,Ys)

P gn(y1) ! gn(y2)! 9n(ys)

12

NEGATIVE RELIANCES

= Rule ry negatively relies on ry (written r1 9% r): there is a
situation when ry can inhibit the application of r»

EXAMPLE

ri: '3, hasAtom(x,z)! c(z1)!
0(z2) ! h(zz)! bond(zy,z,)!
bond(z,,z3)! not gn(zy)!

not gn(zo) !

ro . organicHydroxy(x) !

not gn(z3) "

not ry(X)

rh% ro

12

organicHydroxy(x) ! | rn(x)

"# 3.y 2 hasAtom(x, ;)

P c(yr) ! o(y2)! h(ys)!
bond(y1,y2) ! bond(yz,ys)

P gn(y1) ! gn(y2)! gn(ys)

EXAMPLE

rq:

o

12

NEGATIVE RELIANCES

= Rule ry negatively relies on ry (written r1 9% r): there is a

situation when ry can inhibit the application of r»

I 3 hasAtom(x,z) ! c(z1)!

0(z2) ! h(zz)! bond(zy,z,)!

bond(z,,z3)! not gn(zy)!
not gn(zo) ! notgn(zz) " organicHydroxy(x) ! rn(x)

organicHydroxy(x) ! notr,(x) "# 2,yi.! 2, hasAtom(x, y;)
Fe(yn) ! o(yz) ! h(ys)!
bond(y1,y2) ! bond(yz,Ys)

P gn(y1) ! gn(y2)! 9n(ys)

r (%) but) % r

EXAMPLE

rq:

o

12

NEGATIVE RELIANCES

= Rule ry negatively relies on ry (written r1 9% r): there is a

situation when ry can inhibit the application of r»

I 3 hasAtom(x,z) ! c(z1)!

0(z2) ! h(zz)! bond(zy,z,)!

bond(z,,z3)! not gn(zy)!
not gn(zo) ! notgn(zz) " organicHydroxy(x) ! rn(x)

organicHydroxy(x) ! notr,(x) "# 2,yi.! 2, hasAtom(x, y;)
Fe(yn) ! o(yz) ! h(ys)!
bond(y1,y2) ! bond(yz,Ys)

P gn(y1) ! gn(y2)! 9n(ys)

rL o ro but r% Iy

= Polynomial time to check

13

R-STRATIFICATION

m A program P is R-stratibedif there is a partition Py, ..., P of
P such that for P, P, and rulesr; " Pyandry' Pj, we have:

ifri% rotheni(j and ifri 9% rotheni< j.

13

R-STRATIFICATION

m A program P is R-stratibedif there is a partition Py, ..., P of
P such that for P, P, and rulesr; " Pyandry' Pj, we have:

ifri% rotheni(j and ifri 9% rotheni< j.

EXAMPLE

Ps J\%
+ +

+r3<— g ——1TIs

o N

R-STRATIFICATION

m A program P is R-stratibedif there is a partition Py, ..., P of
P such that for P, P, and rulesr; " Pyandry' Pj, we have:

ifri% rotheni(j and ifri 9% rotheni< j.

EXAMPLE

Ps J\%
+ +

+r3<— g ——1TIs

o N e

13

R-STRATIFICATION

m A program P is R-stratibedif there is a partition Py, ..., P of
P such that for P, P, and rulesr; " Pyandry' Pj, we have:

ifri% rotheni(j and ifri 9% rotheni< j.
l'e

+ +

+I’3<— g ——1TIs

P2 J“L [S = Tr(Sh)
+ S = Tri(F)

13

13

R-STRATIFICATION

m A program P is R-stratibedif there is a partition Py, ..., P of
P such that for P, P, and rulesr; " Pyandry' Pj, we have:

ifri% rotheni(j and ifri 9% rotheni< j.

EXAMPLE

I'e

Ps :\\ S = Te(S)
PO TR
P, S = Tr(S)
P1

13

R-STRATIFICATION

m A program P is R-stratibedif there is a partition Py, ..., P of
P such that for P, P, and rulesr; " Pyandry' Pj, we have:

ifri% rotheni(j and ifri 9% rotheni< j.

m Strictly extends OclassicalO stratibcation
I ensures stable model uniqueness

m coNRcomplete to check

13

R-STRATIFICATION

m A program P is R-stratibedif there is a partition Py, ..., P of
P such that for P, P, and rulesr; " Pyandry' Pj, we have:

ifri% rotheni(j and ifri 9% rotheni< j.

m Strictly extends OclassicalO stratibcation
I ensures stable model uniqueness

m coNRcomplete to check

m Fact entailment for R-acyclic, R-stratiPed programs

m Stable models bounded in size (double exp),
and at most one stable model

13

R-STRATIFICATION

m A program P is R-stratibedif there is a partition Py, ..., P of
P such that for P, P, and rulesr; " Pyandry' Pj, we have:

ifry % rotheni(j and ifry % ratheni< j.
m Strictly extends OclassicalO stratibcation

I ensures stable model uniqueness
m coNRcomplete to check

m Fact entailment for R-acyclic, R-stratiPed programs

m Stable models bounded in size (double exp),
and at most one stable model

m 2ExpTimecomplete w.r.t. program complexity

13

R-STRATIFICATION

m A program P is R-stratibedif there is a partition Py, ..., P of
P such that for P, P, and rulesr; " Pyandry' Pj, we have:

ifry % rotheni(j and ifry % ratheni< j.
m Strictly extends OclassicalO stratibcation

I ensures stable model uniqueness
m coNRcomplete to check

m Fact entailment for R-acyclic, R-stratiPed programs

m Stable models bounded in size (double exp),
and at most one stable model

m 2ExpTimecomplete w.r.t. program complexity
m PTimecomplete w.r.t. data complexity

14

RELIANCES UNDER CONSTRAINTS

m Restrict input sets of facts to relax R-acyclicity and
R-stratiPcation using constraints

14

RELIANCES UNDER CONSTRAINTS

m Restrict input sets of facts to relax R-acyclicity and
R-stratiPcation using constraints

ry: mol(x) ! hasAtom(x,z)! c(z) " organic(x)
ro: mol(x) ! not organic(x) " inorganic(x)

rs: inorganic(x) " mol(x) ! geoOrigin(x)

14

RELIANCES UNDER CONSTRAINTS

m Restrict input sets of facts to relax R-acyclicity and
R-stratiPcation using constraints

ry: mol(x) ! hasAtom(x,z)! c(z) " organic(x)
ro: mol(x) ! not organic(x) " inorganic(x)
rs: inorganic(x) " mol(x) ! geoOrigin(x)

flt% rod% r3d% rp

RELIANCES UNDER CONSTRAINTS

m Restrict input sets of facts to relax R-acyclicity and
R-stratiPcation using constraints

ry: mol(x) ! hasAtom(x,z)! c(z) " organic(x)
ro: mol(x) ! not organic(x) " inorganic(x)
rs: inorganic(x) " mol(x) ! geoOrigin(x)

C = {iinorganic(x) ! hasAtom(x,z)! c(z) ")}

rl‘% ro% r3dh r

14

RELIANCES UNDER CONSTRAINTS

m Restrict input sets of facts to relax R-acyclicity and
R-stratiPcation using constraints

ry: mol(x) ! hasAtom(x,z)! c(z) " organic(x)
ro: mol(x) ! not organic(x) " inorganic(x)
rs: inorganic(x) " mol(x) ! geoOrigin(x)

C = {iinorganic(x) ! hasAtom(x,z)! c(z) ")}

% rod radh rp but r3s%% c r

14

14

RELIANCES UNDER CONSTRAINTS

m Restrict input sets of facts to relax R-acyclicity and
R-stratiPcation using constraints

ry: mol(x) ! hasAtom(x,z)! c(z) " organic(x)
ro: mol(x) ! not organic(x) " inorganic(x)
rs: inorganic(x) " mol(x) ! geoOrigin(x)
C = {iinorganic(x) ! hasAtom(x,z)! c(z) ")}
1% ro% rzd ry but r3d% cri

m Slightly more complex to check:

Positive reliance Negative reliance R-acyclicity/R-stratiPcation
" P-complete in# % I P-complete

I " P-hardness follows from satisbability of a QBF#p.*b."

15

EXPERIMENTAL SETUP

m Chemical Entities of Biological Interest

m Reference terminology adopted for chemical annotation by
major bio-ontologies

m ~20,000 molecule and ~8,000 chemical class descriptions
m ChEBI taxonomy manually curated

EXPERIMENTAL SETUP

m Chemical Entities of Biological Interest o- 2

m Reference terminology adopted for chemical annotation by
major bio-ontologies

m ~20,000 molecule and ~8,000 chemical class descriptions

m ChEBI taxonomy manually curated

m Our knowledge base consisted of rules derived from ChEBI
that represented

15

EXPERIMENTAL SETUP

m Chemical Entities of Biological Interest o- 2

m Reference terminology adopted for chemical annotation by
major bio-ontologies

m ~20,000 molecule and ~8,000 chemical class descriptions

m ChEBI taxonomy manually curated

m Our knowledge base consisted of rules derived from ChEBI
that represented
m 500 molecules

EXAMPLE

methanol(x) " # & 1Y ! 1hasAtom(x,yi)I ...! bond(y,, Ys)

15

EXPERIMENTAL SETUP

m Chemical Entities of Biological Interest o- 2

m Reference terminology adopted for chemical annotation by
major bio-ontologies

m ~20,000 molecule and ~8,000 chemical class descriptions

m ChEBI taxonomy manually curated

m Our knowledge base consisted of rules derived from ChEBI
that represented
m 500 molecules
m 30 molecular part descriptions

EXAMPLE

I 3 hasAtom(x,z)! ...!
bond(z,,z3)! not gn(z1)
I notgn(zz)! notgn(zs) " organicHydroxy(x)! m(x)

organicHydroxy(x)! not ry(x) " # 3 ~ .- ! 2 1 hasAtom(x, y.) !
! b0nd(Y2.V3) 2 1gh(y|)

15

EXPERIMENTAL SETUP

m Chemical Entities of Biological Interest

m Reference terminology adopted for chemical annotation by
major bio-ontologies

m ~20,000 molecule and ~8,000 chemical class descriptions
m ChEBI taxonomy manually curated

m Our knowledge base consisted of rules derived from ChEBI
that represented

m 500 molecules
m 30 molecular part descriptions
m 50 chemical class descriptions

EXAMPLE

hasAtom(x,z)! o(z) " hasOxygen(x)

15

15

EXPERIMENTAL SETUP

m Chemical Entities of Biological Interest . .
m Reference terminology adopted for chemical annotation by
major bio-ontologies
m ~20,000 molecule and ~8,000 chemical class descriptions
m ChEBI taxonomy manually curated

m Our knowledge base consisted of rules derived from ChEBI
that represented
m 500 molecules
m 30 molecular part descriptions
m 50 chemical class descriptions

I 78,957 rules in total (R-stratibed and R-acyclic)

15

EXPERIMENTAL SETUP

m Chemical Entities of Biological Interest . .
m Reference terminology adopted for chemical annotation by
major bio-ontologies
m ~20,000 molecule and ~8,000 chemical class descriptions
m ChEBI taxonomy manually curated

m Our knowledge base consisted of rules derived from ChEBI
that represented
m 500 molecules
m 30 molecular part descriptions
m 50 chemical class descriptions

I 78,957 rules in total (R-stratibed and R-acyclic)

m Used DLV for stable model computation

16

EMPIRICAL RESULTS

m First attempt to compute the stable model of the overall
program P failed (no result after 600 secs)

16

EMPIRICAL RESULTS

m First attempt to compute the stable model of the overall
program P failed (no result after 600 secs)

m Second attempt exploited partition of the program into two
rule sets according to R-stratibcation

16

EMPIRICAL RESULTS

m First attempt to compute the stable model of the overall
program P failed (no result after 600 secs)

m Second attempt exploited partition of the program into two
rule sets according to R-stratibcation

Split into lowest R-stratum P
and remaining four upper R-strata Pg

16

EMPIRICAL RESULTS

m First attempt to compute the stable model of the overall
program P failed (no result after 600 secs)

m Second attempt exploited partition of the program into two
rule sets according to R-stratibcation

Split into lowest R-stratum P
and remaining four upper R-strata Pg

4

Computed stable model S, of Py + F

16

EMPIRICAL RESULTS

m First attempt to compute the stable model of the overall
program P failed (no result after 600 secs)

m Second attempt exploited partition of the program into two
rule sets according to R-stratibcation

Split into lowest R-stratum P
and remaining four upper R-strata Pg

4

Computed stable model S, of Py + F

v

Computed stable model S of P3 + S

16

EMPIRICAL RESULTS

m First attempt to compute the stable model of the overall
program P failed (no result after 600 secs)

m Second attempt exploited partition of the program into two
rule sets according to R-stratibcation

m Computed 8,639 subclass relations in 13.5 secs

16

EMPIRICAL RESULTS

First attempt to compute the stable model of the overall
program P failed (no result after 600 secs)

Second attempt exploited partition of the program into two
rule sets according to R-stratibcation

Computed 8,639 subclass relations in 13.5 secs

Revealed missing subsumptions from the ChEBI ontology

EMPIRICAL RESULTS

m First attempt to compute the stable model of the overall
program P failed (no result after 600 secs)

m Second attempt exploited partition of the program into two
rule sets according to R-stratibcation

m Computed 8,639 subclass relations in 13.5 secs

m Revealed missing subsumptions from the ChEBI ontology

E.g. organicHydroxy $ organoOxygenCompound !
Tolecular entty

main group molecular enty

T E TG onygenators CAIDCN group element atom hydrogen atom

i e carbon group Folecu arentty

YIOYGOUP. o gen molecular ertiy

arganic moecular entity hydroxides

arganic hyeroxy compound
a
:

16

17

CONCLUSIONS

m R-acyclicity and R-stratibcation conditions
(coNRcomplete to check)

CONCLUSIONS

m R-acyclicity and R-stratibcation conditions
(coNRcomplete to check)

Fact entailment Program comp. Data comp.

R-acyclic coN2ExpTimecomplete | coNRcomplete

R-acyclic+R-stratibed 2ExpTimecomplete | PTimecomplete

CONCLUSIONS

m R-acyclicity and R-stratibcation conditions
(coNRcomplete to check)

Fact entailment Program comp. Data comp.
R-acyclic coN2ExpTimecomplete | coNRcomplete
R-acyclic+R-stratibed 2ExpTimecomplete | PTimecomplete

m Generalise with constraints (! g-complete to check)

CONCLUSIONS

m R-acyclicity and R-stratibcation conditions
(coNRcomplete to check)

Fact entailment Program comp. Data comp.
R-acyclic coN2ExpTimecomplete | coNRcomplete
R-acyclic+R-stratibed 2ExpTimecomplete | PTimecomplete

m Generalise with constraints (! g-complete to check)
m Performance gains in DLV & new subsumptions in ChEBI

CONCLUSIONS

m R-acyclicity and R-stratibcation conditions
(coNRcomplete to check)

Fact entailment Program comp. Data comp.
R-acyclic coN2ExpTimecomplete | coNRcomplete
R-acyclic+R-stratibed 2ExpTimecomplete | PTimecomplete

m Generalise with constraints (! g-complete to check)
m Performance gains in DLV & new subsumptions in ChEBI

m Future directions:

= More general notions of Orule® + equality in rule heads
[LPNMRO13]

CONCLUSIONS

m R-acyclicity and R-stratibcation conditions
(coNRcomplete to check)

Fact entailment Program comp. Data comp.
R-acyclic coN2ExpTimecomplete | coNRcomplete
R-acyclic+R-stratibed 2ExpTimecomplete | PTimecomplete

m Generalise with constraints (! g-complete to check)
m Performance gains in DLV & new subsumptions in ChEBI

m Future directions:
= More general notions of Orule® + equality in rule heads
[LPNMRO13]
m Compare performance with other ASP solvers
[chemical classiPcation problem, ASPCOMPO13]

17

CONCLUSIONS

m R-acyclicity and R-stratibcation conditions
(coNRcomplete to check)

Fact entailment Program comp. Data comp.
R-acyclic coN2ExpTimecomplete | coNRcomplete
R-acyclic+R-stratibed 2ExpTimecomplete | PTimecomplete

m Generalise with constraints (! E-complete to check)
m Performance gains in DLV & new subsumptions in ChEBI

m Future directions:

= More general notions of Orule® + equality in rule heads

[LPNMRO13]
m Compare performance with other ASP solvers

[chemical classiPcation problem, ASPCOMPO13]

Thank you! Questions?!?

