COMPUTING STABLE MODELS FOR

NONMONOTONIC EXISTENTIAL RULES

Despoina Magka, Markus Krétzsch, lan Horrocks

Department of Computer Science, University of Oxford

I[JCAI, 2013




THE OWLS ARE NOT WHAT THEY SEEM

m OWL widely used for authoring biomedical ontologies




THE OWLS ARE NOT WHAT THEY SEEM

m OWL widely used for authoring biomedical ontologies

NClthesaurus
=

the Gene Ontology




THE OWLS ARE NOT WHAT THEY SEEM

m OWL widely used for authoring biomedical ontologies

NClthesawaus

the Gene Ontology

= Not marked for its ability to model cyclic structures



THE OWLS ARE NOT WHAT THEY SEEM

m OWL widely used for authoring biomedical ontologies

NClthesawaus

the Gene Ontology

= Not marked for its ability to model cyclic structures

m Such structures abound in life science (and other) domains



THE OWLS ARE NOT WHAT THEY SEEM

m OWL widely used for authoring biomedical ontologies

NCitt lesaurus

the Gene Ontology

= Not marked for its ability to model cyclic structures

m Such structures abound in life science (and other) domains




NONMONOTONIC EXISTENTIAL RULES

= Rules with nonmonotonic negation in the body and
existentials in the head

BiAN...AB,ANnotB, 1 A...\ notB,, — 3y.Hi A... \Hy



NONMONOTONIC EXISTENTIAL RULES

= Rules with nonmonotonic negation in the body and
existentials in the head

BiAN...AB,ANnotB, 1 A...\ notB,, — 3y.Hi A... \Hy

m Interpreted under stable model semantics



NONMONOTONIC EXISTENTIAL RULES

= Rules with nonmonotonic negation in the body and
existentials in the head

BiAN...AB,ANnotB, 1 A...\ notB,, — 3y.Hi A... \Hy

m Interpreted under stable model semantics

m Good for representing non-tree-shaped structures



NONMONOTONIC EXISTENTIAL RULES

= Rules with nonmonotonic negation in the body and
existentials in the head

BiAN...AB,ANnotB,; 1 A...N\ notB,, — 3Iy.H A ...

m Interpreted under stable model semantics
m Good for representing non-tree-shaped structures

m Existentials allow us to infer new structures

N Hy,



NONMONOTONIC EXISTENTIAL RULES

= Rules with nonmonotonic negation in the body and
existentials in the head

BiAN...AB,ANnotB, 1 A...\ notB,, — 3y.Hi A... \Hy
m Interpreted under stable model semantics
m Good for representing non-tree-shaped structures

m Existentials allow us to infer new structures

m Nonmonotonicity adds exira expressivity in modelling



NONMONOTONIC EXISTENTIAL RULES

= Rules with nonmonotonic negation in the body and
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BiAN...AB,ANnotB, 1 A...\ notB,, — 3y.Hi A... \Hy

m Interpreted under stable model semantics
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m Existentials allow us to infer new structures
m Nonmonotonicity adds extra expressivity in modelling
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m R-stratification ensures stable model uniqueness
m Both coNP-complete to check

Complexity of reasoning

Fact entailment Program comp. Data comp.
R-acyclic coN2ExpTime-complete | coNP-complete
R-acyclic+R-stratified 2ExpTime-complete | PTime-complete

Generalise R-acyclicity and R-stratification with constraints
~~ new conditions I15-complete to check
Experiments over ChEBI with DLV

m Performance gains in DLV using R-stratification
m Missing subsumptions from ChEBI ontology
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not gn(z2) A not gn(z3) — organicHydroxy(x) A rn(X)

ra : organicHydroxy(x) A met rp(x) — 32_,yi. A2, hasAtom(x, y;)
Ac(yr) Ao(yz) Ah(ys) A
bond(y1,y2) A bond(yz, y3)
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m Rule r, negatively relies on r; (written r; = r,): there is a

situation when r; can inhibit the application of r,

A2, hasAtom(x,z;) A c(z1) A

0(z2) A h(zz) Abond(z,2z2) A

bond(zz,2z3) A not gn(z1) A
not gn(z2) A not gn(z3) — organicHydroxy(x) A rn(X)

organicHydroxy(x) A mot rn(x) — 32_,yi. A2, hasAtom(x, y;)
Ac(yr) Ao(yz) Ah(ys) A
bond(y1,y2) A bond(yz, y3)

A Gh(Y1) Agn(y2) Agn(ys)

r — but o -4 1

= Polynomial time to check
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P such that for P;, P; and rules r; € P; and r, € P;, we have:

ifr1i>r2theni§j and ifrl;rztheni<j.

m Strictly extends ‘classical’ stratification
~» ensures stable model uniqueness

m coNP-complete to check

m Fact entailment for R-acyclic, R-stratified programs

m Stable models bounded in size (double exp),
and at most one stable model

m 2ExpTime-complete w.r.t. program complexity
m PTime-complete w.r.t. data complexity



14

RELIANCES UNDER CONSTRAINTS

m Restrict input sets of facts to relax R-acyclicity and
R-stratification using constraints



14

RELIANCES UNDER CONSTRAINTS

m Restrict input sets of facts to relax R-acyclicity and
R-stratification using constraints

EXAMPLE

r
r .
r3 .

mol(x) A hasAtom(x, z) A ¢(z) — organic(x)
mol(x) A mot organic(x) — inorganic(x)
inorganic(x) — mol(x) A geoOrigin(x)




14

RELIANCES UNDER CONSTRAINTS

m Restrict input sets of facts to relax R-acyclicity and
R-stratification using constraints

EXAMPLE

r
r .
r3 .

mol(x) A hasAtom(x, z) A ¢(z) — organic(x)
mol(x) A mot organic(x) — inorganic(x)
inorganic(x) — mol(x) A geoOrigin(x)




RELIANCES UNDER CONSTRAINTS

m Restrict input sets of facts to relax R-acyclicity and
R-stratification using constraints

EXAMPLE

r mol(x) A hasAtom(x, z) A ¢(z) — organic(x)

ry: mol(x) A mot organic(x) — inorganic(x)

r3: inorganic(x) — mol(x) A geoOrigin(x)
C = {inorganic(x) A hasAtom(x,z) Ac(z) — L}

n=niHnin

14



RELIANCES UNDER CONSTRAINTS

m Restrict input sets of facts to relax R-acyclicity and
R-stratification using constraints

EXAMPLE

r mol(x) A hasAtom(x, z) A ¢(z) — organic(x)
ry: mol(x) A mot organic(x) — inorganic(x)
r3: inorganic(x) — mol(x) A geoOrigin(x)
C = {inorganic(x) A hasAtom(x,z) Ac(z) — L}
+

rn =SSt but ry e

14



14

RELIANCES UNDER CONSTRAINTS

m Restrict input sets of facts to relax R-acyclicity and
R-stratification using constraints

r mol(x) A hasAtom(x, z) A ¢(z) — organic(x)
ry: mol(x) A mot organic(x) — inorganic(x)
r3: inorganic(x) — mol(x) A geoOrigin(x)
C = {inorganic(x) A hasAtom(x,z) Ac(z) — L}
= 7 L 17y 2 77 but r3 o

m Slightly more complex to check:

Positive reliance Negative reliance R-acyclicity/R-stratification
y2-complete in AY 115-complete

~ ¥F-hardness follows from satisfiability of a QBF 3p.Vq.¢
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EXAMPLE

A2, hasAtom(x,z)) A ... A
bond(zy,z3) A not gn(z1)
A not gn(z2) A not gn(z3) — organicHydroxy(x) A r(x)
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EXPERIMENTAL SETUP

m Chemical Entities of Biological Interest b o
m Reference terminology adopted for chemical annotation by
major bio-ontologies
m ~20,000 molecule and ~8,000 chemical class descriptions
m ChEBI taxonomy manually curated

m Our knowledge base consisted of rules derived from ChEBI
that represented
m 500 molecules
m 30 molecular part descriptions
m 50 chemical class descriptions

~ 78,957 rules in total (R-stratified and R-acyclic)

m Used DLV for stable model computation
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Split into lowest R-stratum P,
and remaining four upper R-strata P3

4

Computed stable model S of Py U F

v

Computed stable model S3 of P5 U S
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EMPIRICAL RESULTS

First attempt to compute the stable model of the overall
program P failed (no result after 600 secs)

Second attempt exploited partition of the program into two
rule sets according to R-stratification

Computed 8,639 subclass relations in 13.5 secs

Revealed missing subsumptions from the ChEBI ontology

E.g. organicHydroxy C organoOxygenCompound v/

main group molecular enty

T E TG onygenators  CAIDCN group element atom hydrogen atom

i e carbon group Folecu arentty
oy grou
VIO GOUP o irogan molecular ertty
organic moedurently  hydioxides

arganic hyeroxy compound
a
:
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Thank you! Questions?!?




