
COMPUTING STABLE MODELS FOR
NONMONOTONIC EXISTENTIAL RULES

Despoina Magka, Markus Krötzsch, Ian Horrocks

Department of Computer Science, University of Oxford

IJCAI, 2013



THE OWLS ARE NOT WHAT THEY SEEM

OWL widely used for authoring biomedical ontologies

Not marked for its ability to model cyclic structures

Such structures abound in life science (and other) domains

1



THE OWLS ARE NOT WHAT THEY SEEM

OWL widely used for authoring biomedical ontologies

Not marked for its ability to model cyclic structures

Such structures abound in life science (and other) domains

1



THE OWLS ARE NOT WHAT THEY SEEM

OWL widely used for authoring biomedical ontologies

Not marked for its ability to model cyclic structures

Such structures abound in life science (and other) domains

1



THE OWLS ARE NOT WHAT THEY SEEM

OWL widely used for authoring biomedical ontologies

Not marked for its ability to model cyclic structures

Such structures abound in life science (and other) domains

1



THE OWLS ARE NOT WHAT THEY SEEM

OWL widely used for authoring biomedical ontologies

Not marked for its ability to model cyclic structures

Such structures abound in life science (and other) domains

hasParticipant

locatedIn

reactant
product

1



NONMONOTONIC EXISTENTIAL RULES

Rules with nonmonotonic negation in the body and
existentials in the head

B1 ∧ . . . ∧ Bn ∧ not Bn+1 ∧ . . . ∧ not Bm → ∃y.H1 ∧ . . . ∧ Hk

Interpreted under stable model semantics

Good for representing non-tree-shaped structures

Existentials allow us to infer new structures

Nonmonotonicity adds extra expressivity in modelling

Stable model semantics supported by many tools: DLV,
clasp, . . .

2



NONMONOTONIC EXISTENTIAL RULES

Rules with nonmonotonic negation in the body and
existentials in the head

B1 ∧ . . . ∧ Bn ∧ not Bn+1 ∧ . . . ∧ not Bm → ∃y.H1 ∧ . . . ∧ Hk

Interpreted under stable model semantics

Good for representing non-tree-shaped structures

Existentials allow us to infer new structures

Nonmonotonicity adds extra expressivity in modelling

Stable model semantics supported by many tools: DLV,
clasp, . . .

2



NONMONOTONIC EXISTENTIAL RULES

Rules with nonmonotonic negation in the body and
existentials in the head

B1 ∧ . . . ∧ Bn ∧ not Bn+1 ∧ . . . ∧ not Bm → ∃y.H1 ∧ . . . ∧ Hk

Interpreted under stable model semantics

Good for representing non-tree-shaped structures

Existentials allow us to infer new structures

Nonmonotonicity adds extra expressivity in modelling

Stable model semantics supported by many tools: DLV,
clasp, . . .

2



NONMONOTONIC EXISTENTIAL RULES

Rules with nonmonotonic negation in the body and
existentials in the head

B1 ∧ . . . ∧ Bn ∧ not Bn+1 ∧ . . . ∧ not Bm → ∃y.H1 ∧ . . . ∧ Hk

Interpreted under stable model semantics

Good for representing non-tree-shaped structures

Existentials allow us to infer new structures

Nonmonotonicity adds extra expressivity in modelling

Stable model semantics supported by many tools: DLV,
clasp, . . .

2



NONMONOTONIC EXISTENTIAL RULES

Rules with nonmonotonic negation in the body and
existentials in the head

B1 ∧ . . . ∧ Bn ∧ not Bn+1 ∧ . . . ∧ not Bm → ∃y.H1 ∧ . . . ∧ Hk

Interpreted under stable model semantics

Good for representing non-tree-shaped structures

Existentials allow us to infer new structures

Nonmonotonicity adds extra expressivity in modelling

Stable model semantics supported by many tools: DLV,
clasp, . . .

2



NONMONOTONIC EXISTENTIAL RULES

Rules with nonmonotonic negation in the body and
existentials in the head

B1 ∧ . . . ∧ Bn ∧ not Bn+1 ∧ . . . ∧ not Bm → ∃y.H1 ∧ . . . ∧ Hk

Interpreted under stable model semantics

Good for representing non-tree-shaped structures

Existentials allow us to infer new structures

Nonmonotonicity adds extra expressivity in modelling

Stable model semantics supported by many tools: DLV,
clasp, . . .

2



CLASSIFICATION OF STRUCTURED OBJECTS I

C

O H

H

H

H

Methanol molecule

hasAtom
bond

c o
h

m
methanol

f1(m)

f2(m) f3(m)

f4(m)

f5(m)

f6(m)

organicHydroxy
hasOxygen

methanol(x) → ∃6
i=1yi. ∧6

i=1 hasAtom(x, yi) ∧ c(y1) ∧ o(y2) ∧
∧6

i=3h(yi)∧ ∧5
i=2 bond(y1, yi) ∧ bond(y2, y6)

∧3
i=1 hasAtom(x, zi) ∧ c(z1)∧o(z2) ∧

h(z3) ∧ bond(z1, z2) ∧ bond(z2, z3)→ organicHydroxy(x)

hasAtom(x, z) ∧ o(z) → hasOxygen(x)

methanol � organicHydroxy ✓ methanol � hasOxygen ✓

3



CLASSIFICATION OF STRUCTURED OBJECTS I

C

O H

H

H

H

Methanol molecule

hasAtom
bond

c o
h

m
methanol

f1(m)

f2(m) f3(m)

f4(m)

f5(m)

f6(m)

organicHydroxy
hasOxygen

methanol(x) → ∃6
i=1yi. ∧6

i=1 hasAtom(x, yi) ∧ c(y1) ∧ o(y2) ∧
∧6

i=3h(yi)∧ ∧5
i=2 bond(y1, yi) ∧ bond(y2, y6)

∧3
i=1 hasAtom(x, zi) ∧ c(z1)∧o(z2) ∧

h(z3) ∧ bond(z1, z2) ∧ bond(z2, z3)→ organicHydroxy(x)

hasAtom(x, z) ∧ o(z) → hasOxygen(x)

methanol � organicHydroxy ✓ methanol � hasOxygen ✓

3



CLASSIFICATION OF STRUCTURED OBJECTS I

C

O H

H

H

H

Methanol molecule

hasAtom
bond

c o
h

m
methanol

f1(m)

f2(m) f3(m)

f4(m)

f5(m)

f6(m)

organicHydroxy
hasOxygen

methanol(x) → ∃6
i=1yi. ∧6

i=1 hasAtom(x, yi) ∧ c(y1) ∧ o(y2) ∧
∧6

i=3h(yi)∧ ∧5
i=2 bond(y1, yi) ∧ bond(y2, y6)

∧3
i=1 hasAtom(x, zi) ∧ c(z1)∧o(z2) ∧

h(z3) ∧ bond(z1, z2) ∧ bond(z2, z3)→ organicHydroxy(x)

hasAtom(x, z) ∧ o(z) → hasOxygen(x)

methanol � organicHydroxy ✓ methanol � hasOxygen ✓

3



CLASSIFICATION OF STRUCTURED OBJECTS I

C

O H

H

H

H

Methanol molecule

hasAtom
bond

c o
h

m
methanol

f1(m)

f2(m) f3(m)

f4(m)

f5(m)

f6(m)

organicHydroxy
hasOxygen

methanol(x) → ∃6
i=1yi. ∧6

i=1 hasAtom(x, yi) ∧ c(y1) ∧ o(y2) ∧
∧6

i=3h(yi)∧ ∧5
i=2 bond(y1, yi) ∧ bond(y2, y6)

∧3
i=1 hasAtom(x, zi) ∧ c(z1)∧o(z2) ∧

h(z3) ∧ bond(z1, z2) ∧ bond(z2, z3)→ organicHydroxy(x)

hasAtom(x, z) ∧ o(z) → hasOxygen(x)

methanol � organicHydroxy ✓ methanol � hasOxygen ✓

3



CLASSIFICATION OF STRUCTURED OBJECTS I

C

O H

H

H

H

Methanol molecule

hasAtom
bond

c o
h

m
methanol

f1(m)

f2(m) f3(m)

f4(m)

f5(m)

f6(m)

organicHydroxy

hasOxygen

methanol(x) → ∃6
i=1yi. ∧6

i=1 hasAtom(x, yi) ∧ c(y1) ∧ o(y2) ∧
∧6

i=3h(yi)∧ ∧5
i=2 bond(y1, yi) ∧ bond(y2, y6)

∧3
i=1 hasAtom(x, zi) ∧ c(z1)∧o(z2) ∧

h(z3) ∧ bond(z1, z2) ∧ bond(z2, z3)→ organicHydroxy(x)

hasAtom(x, z) ∧ o(z) → hasOxygen(x)

methanol � organicHydroxy ✓

methanol � hasOxygen ✓

3



CLASSIFICATION OF STRUCTURED OBJECTS I

C

O H

H

H

H

Methanol molecule

hasAtom
bond

c o
h

m
methanol

f1(m)

f2(m) f3(m)

f4(m)

f5(m)

f6(m)

organicHydroxy

hasOxygen

methanol(x) → ∃6
i=1yi. ∧6

i=1 hasAtom(x, yi) ∧ c(y1) ∧ o(y2) ∧
∧6

i=3h(yi)∧ ∧5
i=2 bond(y1, yi) ∧ bond(y2, y6)

∧3
i=1 hasAtom(x, zi) ∧ c(z1)∧o(z2) ∧

h(z3) ∧ bond(z1, z2) ∧ bond(z2, z3)→ organicHydroxy(x)

hasAtom(x, z) ∧ o(z) → hasOxygen(x)

methanol � organicHydroxy ✓

methanol � hasOxygen ✓

3



CLASSIFICATION OF STRUCTURED OBJECTS I

C

O H

H

H

H

Methanol molecule

hasAtom
bond

c o
h

m
methanol

f1(m)

f2(m) f3(m)

f4(m)

f5(m)

f6(m)

organicHydroxy
hasOxygen

methanol(x) → ∃6
i=1yi. ∧6

i=1 hasAtom(x, yi) ∧ c(y1) ∧ o(y2) ∧
∧6

i=3h(yi)∧ ∧5
i=2 bond(y1, yi) ∧ bond(y2, y6)

∧3
i=1 hasAtom(x, zi) ∧ c(z1)∧o(z2) ∧

h(z3) ∧ bond(z1, z2) ∧ bond(z2, z3)→ organicHydroxy(x)

hasAtom(x, z) ∧ o(z) → hasOxygen(x)

methanol � organicHydroxy ✓ methanol � hasOxygen ✓

3



CLASSIFICATION OF STRUCTURED OBJECTS II

C

O H

Organic hydroxy group

hasAtom
bond

c o
h

h
organicHydroxy

g1(h)

g2(h) g3(h)

hasOxygen

organicHydroxy(x) → ∃3
i=1yi. ∧3

i=1 hasAtom(x, yi) ∧ c(y1)

∧ o(y2) ∧ h(y3) ∧ bond(y1, y2)

∧ bond(y2, y3)

hasAtom(x, z) ∧ o(z) → hasOxygen(x)

organicHydroxy � hasOxygen ✓

4



CLASSIFICATION OF STRUCTURED OBJECTS II

C

O H

Organic hydroxy group

hasAtom
bond

c o
h

h
organicHydroxy

g1(h)

g2(h) g3(h)

hasOxygen

organicHydroxy(x) → ∃3
i=1yi. ∧3

i=1 hasAtom(x, yi) ∧ c(y1)

∧ o(y2) ∧ h(y3) ∧ bond(y1, y2)

∧ bond(y2, y3)

hasAtom(x, z) ∧ o(z) → hasOxygen(x)

organicHydroxy � hasOxygen ✓

4



CLASSIFICATION OF STRUCTURED OBJECTS II

C

O H

Organic hydroxy group

hasAtom
bond

c o
h

h
organicHydroxy

g1(h)

g2(h) g3(h)

hasOxygen

organicHydroxy(x) → ∃3
i=1yi. ∧3

i=1 hasAtom(x, yi) ∧ c(y1)

∧ o(y2) ∧ h(y3) ∧ bond(y1, y2)

∧ bond(y2, y3)

hasAtom(x, z) ∧ o(z) → hasOxygen(x)

organicHydroxy � hasOxygen ✓

4



CLASSIFICATION OF STRUCTURED OBJECTS II

C

O H

Organic hydroxy group

hasAtom
bond

c o
h

h
organicHydroxy

g1(h)

g2(h) g3(h)

hasOxygen

organicHydroxy(x) → ∃3
i=1yi. ∧3

i=1 hasAtom(x, yi) ∧ c(y1)

∧ o(y2) ∧ h(y3) ∧ bond(y1, y2)

∧ bond(y2, y3)

hasAtom(x, z) ∧ o(z) → hasOxygen(x)

organicHydroxy � hasOxygen ✓

4



CLASSIFICATION OF STRUCTURED OBJECTS II

C

O H

Organic hydroxy group

hasAtom
bond

c o
h

h
organicHydroxy

g1(h)

g2(h) g3(h)

hasOxygen

organicHydroxy(x) → ∃3
i=1yi. ∧3

i=1 hasAtom(x, yi) ∧ c(y1)

∧ o(y2) ∧ h(y3) ∧ bond(y1, y2)

∧ bond(y2, y3)

hasAtom(x, z) ∧ o(z) → hasOxygen(x)

organicHydroxy � hasOxygen ✓

4



INCORRECT MODELLING

m
methanol

f1(m)

f2(m) f3(m)

f4(m)

f5(m)

f6(m)

g1(m)

g2(m) g3(m)

organicHydroxy
hasOxygen

h
organicHydroxy

g1(h)

g2(h) g3(h)

hasOxygen

methanol(x) → ∃6
i=1yi. ∧6

i=1 hasAtom(x, yi) ∧ . . .

∧ bond(y2, y6)
∧3

i=1 hasAtom(x, zi) ∧ . . .∧
bond(z2, z3) → organicHydroxy(x)

organicHydroxy(x) → ∃3
i=1yi. ∧3

i=1 hasAtom(x, yi) ∧ . . .

∧ bond(y2, y3)

hasAtom(x, z) ∧ o(z) → hasOxygen(x)

5



INCORRECT MODELLING

m
methanol

f1(m)

f2(m) f3(m)

f4(m)

f5(m)

f6(m)

g1(m)

g2(m) g3(m)

organicHydroxy
hasOxygen

h
organicHydroxy

g1(h)

g2(h) g3(h)

hasOxygen

methanol(x) → ∃6
i=1yi. ∧6

i=1 hasAtom(x, yi) ∧ . . .

∧ bond(y2, y6)
∧3

i=1 hasAtom(x, zi) ∧ . . .∧
bond(z2, z3) → organicHydroxy(x)

organicHydroxy(x) → ∃3
i=1yi. ∧3

i=1 hasAtom(x, yi) ∧ . . .

∧ bond(y2, y3)

hasAtom(x, z) ∧ o(z) → hasOxygen(x)

5



INCORRECT MODELLING

m
methanol

f1(m)

f2(m) f3(m)

f4(m)

f5(m)

f6(m)

g1(m)

g2(m) g3(m)

organicHydroxy

hasOxygen

h
organicHydroxy

g1(h)

g2(h) g3(h)

hasOxygen

methanol � organicHydroxy ✓

methanol(x) → ∃6
i=1yi. ∧6

i=1 hasAtom(x, yi) ∧ . . .

∧ bond(y2, y6)
∧3

i=1 hasAtom(x, zi) ∧ . . .∧
bond(z2, z3) → organicHydroxy(x)

organicHydroxy(x) → ∃3
i=1yi. ∧3

i=1 hasAtom(x, yi) ∧ . . .

∧ bond(y2, y3)

hasAtom(x, z) ∧ o(z) → hasOxygen(x)

5



INCORRECT MODELLING

m
methanol

f1(m)

f2(m) f3(m)

f4(m)

f5(m)

f6(m)

g1(m)

g2(m) g3(m)

organicHydroxy
hasOxygen

h
organicHydroxy

g1(h)

g2(h) g3(h)

hasOxygen

methanol � hasOxygen ✓

methanol(x) → ∃6
i=1yi. ∧6

i=1 hasAtom(x, yi) ∧ . . .

∧ bond(y2, y6)
∧3

i=1 hasAtom(x, zi) ∧ . . .∧
bond(z2, z3) → organicHydroxy(x)

organicHydroxy(x) → ∃3
i=1yi. ∧3

i=1 hasAtom(x, yi) ∧ . . .

∧ bond(y2, y3)

hasAtom(x, z) ∧ o(z) → hasOxygen(x)

5



INCORRECT MODELLING

m
methanol

f1(m)

f2(m) f3(m)

f4(m)

f5(m)

f6(m)

g1(m)

g2(m) g3(m)

organicHydroxy
hasOxygen

h
organicHydroxy

g1(h)

g2(h) g3(h)

hasOxygen

methanol(x) → ∃6
i=1yi. ∧6

i=1 hasAtom(x, yi) ∧ . . .

∧ bond(y2, y6)
∧3

i=1 hasAtom(x, zi) ∧ . . .∧
bond(z2, z3) → organicHydroxy(x)

organicHydroxy(x) → ∃3
i=1yi. ∧3

i=1 hasAtom(x, yi) ∧ . . .

∧ bond(y2, y3)

hasAtom(x, z) ∧ o(z) → hasOxygen(x)

5



INCORRECT MODELLING

m
methanol

f1(m)

f2(m) f3(m)

f4(m)

f5(m)

f6(m)

g1(m)

g2(m) g3(m)

organicHydroxy
hasOxygen

h
organicHydroxy

g1(h)

g2(h) g3(h)

hasOxygen

organicHydroxy � hasOxygen ✓

methanol(x) → ∃6
i=1yi. ∧6

i=1 hasAtom(x, yi) ∧ . . .

∧ bond(y2, y6)
∧3

i=1 hasAtom(x, zi) ∧ . . .∧
bond(z2, z3) → organicHydroxy(x)

organicHydroxy(x) → ∃3
i=1yi. ∧3

i=1 hasAtom(x, yi) ∧ . . .

∧ bond(y2, y3)

hasAtom(x, z) ∧ o(z) → hasOxygen(x)

5



INCORRECT MODELLING

m
methanol

f1(m)

f2(m) f3(m)

f4(m)

f5(m)

f6(m)g1(m)

g2(m) g3(m)

organicHydroxy
hasOxygen

h
organicHydroxy

g1(h)

g2(h) g3(h)

hasOxygen

methanol � hasOneCarbon ✘

methanol(x) → ∃6
i=1yi. ∧6

i=1 hasAtom(x, yi) ∧ . . .

∧ bond(y2, y6)
∧3

i=1 hasAtom(x, zi) ∧ . . .∧
bond(z2, z3) → organicHydroxy(x)

organicHydroxy(x) → ∃3
i=1yi. ∧3

i=1 hasAtom(x, yi) ∧ . . .

∧ bond(y2, y3)

hasAtom(x, z) ∧ o(z) → hasOxygen(x)

5



REPAIR WITH AUXILIARY PREDICATES

m
methanol

f1(m)

f2(m) f3(m)

f4(m)

f5(m)

f6(m)

organicHydroxy
hasOxygen

h
organicHydroxy

g1(h)

g2(h) g3(h)

hasOxygen

methanol � hasOneCarbon ✓

methanol(x) → ∃6
i=1yi. ∧6

i=1 hasAtom(x, yi) ∧ . . .

∧ bond(y2, y6)
∧3

i=1 hasAtom(x, zi) ∧ . . .∧
bond(z2, z3) ∧ not gh(z1)
∧ not gh(z2) ∧ not gh(z3) → organicHydroxy(x) ∧ rh(x)

organicHydroxy(x)∧ not rh(x) → ∃3
i=1yi. ∧3

i=1 hasAtom(x, yi) ∧ . . .

∧ bond(y2, y3) ∧ ∧3
i=1gh(yi)

hasAtom(x, z) ∧ o(z) → hasOxygen(x)
6



REPAIR WITH AUXILIARY PREDICATES

m
methanol

f1(m)

f2(m) f3(m)

f4(m)

f5(m)

f6(m)

organicHydroxy
hasOxygen

h
organicHydroxy

g1(h)

g2(h) g3(h)

hasOxygen

methanol � hasOneCarbon ✓

methanol(x) → ∃6
i=1yi. ∧6

i=1 hasAtom(x, yi) ∧ . . .

∧ bond(y2, y6)
∧3

i=1 hasAtom(x, zi) ∧ . . .∧
bond(z2, z3) ∧ not gh(z1)
∧ not gh(z2) ∧ not gh(z3) → organicHydroxy(x) ∧ rh(x)

organicHydroxy(x)∧ not rh(x) → ∃3
i=1yi. ∧3

i=1 hasAtom(x, yi) ∧ . . .

∧ bond(y2, y3) ∧ ∧3
i=1gh(yi)

hasAtom(x, z) ∧ o(z) → hasOxygen(x)
6



REPAIR WITH AUXILIARY PREDICATES

m
methanol

f1(m)

f2(m) f3(m)

f4(m)

f5(m)

f6(m)

organicHydroxy
hasOxygen

h
organicHydroxy

g1(h)

g2(h) g3(h)

hasOxygen

methanol � hasOneCarbon ✓

methanol(x) → ∃6
i=1yi. ∧6

i=1 hasAtom(x, yi) ∧ . . .

∧ bond(y2, y6)
∧3

i=1 hasAtom(x, zi) ∧ . . .∧
bond(z2, z3) ∧ not gh(z1)
∧ not gh(z2) ∧ not gh(z3) → organicHydroxy(x) ∧ rh(x)

organicHydroxy(x)∧ not rh(x) → ∃3
i=1yi. ∧3

i=1 hasAtom(x, yi) ∧ . . .

∧ bond(y2, y3) ∧ ∧3
i=1gh(yi)

hasAtom(x, z) ∧ o(z) → hasOxygen(x)
6



WHAT’S THE PROBLEM?
Reasoning is undecidable
(even fact entailment, even without not )

many known conditions for regaining decidability
acyclicity conditions ensure finite models: (super)-weak
acyclicity, joint acyclicity, aGRD, MSA, MFA, . . .

Reasoning is hard (even for finite models)

stable models lead to non-determinism
stratification conditions ensure determinism

Stratification

Stable model uniqueness

Deterministic reasoning

7



WHAT’S THE PROBLEM?
Reasoning is undecidable
(even fact entailment, even without not )

many known conditions for regaining decidability
acyclicity conditions ensure finite models: (super)-weak
acyclicity, joint acyclicity, aGRD, MSA, MFA, . . .

Reasoning is hard (even for finite models)

stable models lead to non-determinism
stratification conditions ensure determinism

Stratification

Stable model uniqueness

Deterministic reasoning

7



WHAT’S THE PROBLEM?
Reasoning is undecidable
(even fact entailment, even without not )

many known conditions for regaining decidability
acyclicity conditions ensure finite models: (super)-weak
acyclicity, joint acyclicity, aGRD, MSA, MFA, . . .

Reasoning is hard (even for finite models)

stable models lead to non-determinism
stratification conditions ensure determinism

Stratification

Stable model uniqueness

Deterministic reasoning

7



WHAT’S THE PROBLEM?
Reasoning is undecidable
(even fact entailment, even without not )

many known conditions for regaining decidability
acyclicity conditions ensure finite models: (super)-weak
acyclicity, joint acyclicity, aGRD, MSA, MFA, . . .

Reasoning is hard (even for finite models)
stable models lead to non-determinism
stratification conditions ensure determinism

Stratification

Stable model uniqueness

Deterministic reasoning

7



WHAT’S THE PROBLEM?
Reasoning is undecidable
(even fact entailment, even without not )

many known conditions for regaining decidability
acyclicity conditions ensure finite models: (super)-weak
acyclicity, joint acyclicity, aGRD, MSA, MFA, . . .

Reasoning is hard (even for finite models)
stable models lead to non-determinism
stratification conditions ensure determinism

Stratification

Stable model uniqueness

Deterministic reasoning

7



WHAT’S OUR PROBLEM?

m
methanol

f1(m)

f2(m) f3(m)

f4(m)

f5(m)

f6(m)

organicHydroxy
hasOxygen

h
organicHydroxy

g1(h)

g2(h) g3(h)

hasOxygen

Repaired program not stratified

methanol(x) → ∃6
i=1yi. ∧6

i=1 hasAtom(x, yi) ∧ . . .

∧ bond(y2, y6)
∧3

i=1 hasAtom(x, zi) ∧ . . .∧
bond(z2, z3) ∧ not gh(z1)
∧ not gh(z2) ∧ not gh(z3) → organicHydroxy(x) ∧ rh(x)

organicHydroxy(x)∧ not rh(x) → ∃3
i=1yi. ∧3

i=1 hasAtom(x, yi) ∧ . . .

∧ bond(y2, y3) ∧ ∧3
i=1gh(yi)

hasAtom(x, z) ∧ o(z) → hasOxygen(x)
8



WHAT’S OUR PROBLEM?

m
methanol

f1(m)

f2(m) f3(m)

f4(m)

f5(m)

f6(m)

organicHydroxy
hasOxygen

h
organicHydroxy

g1(h)

g2(h) g3(h)

hasOxygen

Repaired program not stratified

methanol(x) → ∃6
i=1yi. ∧6

i=1 hasAtom(x, yi) ∧ . . .

∧ bond(y2, y6)
∧3

i=1 hasAtom(x, zi) ∧ . . .∧
bond(z2, z3) ∧ not gh(z1)
∧ not gh(z2) ∧ not gh(z3) → organicHydroxy(x) ∧ rh(x)

organicHydroxy(x)∧ not rh(x) → ∃3
i=1yi. ∧3

i=1 hasAtom(x, yi) ∧ . . .

∧ bond(y2, y3) ∧ ∧3
i=1gh(yi)

hasAtom(x, z) ∧ o(z) → hasOxygen(x)
8



WHAT’S OUR PROBLEM?

m
methanol

f1(m)

f2(m) f3(m)

f4(m)

f5(m)

f6(m)

organicHydroxy
hasOxygen

h
organicHydroxy

g1(h)

g2(h) g3(h)

hasOxygen

Repaired program not stratified

methanol(x) → ∃6
i=1yi. ∧6

i=1 hasAtom(x, yi) ∧ . . .

∧ bond(y2, y6)
∧3

i=1 hasAtom(x, zi) ∧ . . .∧
bond(z2, z3) ∧ not gh(z1)
∧ not gh(z2) ∧ not gh(z3) → organicHydroxy(x) ∧ rh(x)

organicHydroxy(x)∧ not rh(x) → ∃3
i=1yi. ∧3

i=1 hasAtom(x, yi) ∧ . . .

∧ bond(y2, y3) ∧ ∧3
i=1gh(yi)

hasAtom(x, z) ∧ o(z) → hasOxygen(x)
8



RESULTS OVERVIEW

1 R-acyclicity and R-stratification conditions
R-stratification ensures stable model uniqueness
Both coNP-complete to check

2 Complexity of reasoning

Fact entailment Program comp. Data comp.
R-acyclic coN2ExpTime-complete coNP-complete
R-acyclic+R-stratified 2ExpTime-complete PTime-complete

3 Generalise R-acyclicity and R-stratification with constraints
� new conditions ΠP

2 -complete to check
4 Experiments over ChEBI with DLV

Performance gains in DLV using R-stratification
Missing subsumptions from ChEBI ontology

9



RESULTS OVERVIEW

1 R-acyclicity and R-stratification conditions
R-stratification ensures stable model uniqueness
Both coNP-complete to check

2 Complexity of reasoning

Fact entailment Program comp. Data comp.
R-acyclic coN2ExpTime-complete coNP-complete
R-acyclic+R-stratified 2ExpTime-complete PTime-complete

3 Generalise R-acyclicity and R-stratification with constraints
� new conditions ΠP

2 -complete to check
4 Experiments over ChEBI with DLV

Performance gains in DLV using R-stratification
Missing subsumptions from ChEBI ontology

9



RESULTS OVERVIEW

1 R-acyclicity and R-stratification conditions
R-stratification ensures stable model uniqueness
Both coNP-complete to check

2 Complexity of reasoning

Fact entailment Program comp. Data comp.
R-acyclic coN2ExpTime-complete coNP-complete
R-acyclic+R-stratified 2ExpTime-complete PTime-complete

3 Generalise R-acyclicity and R-stratification with constraints
� new conditions ΠP

2 -complete to check

4 Experiments over ChEBI with DLV
Performance gains in DLV using R-stratification
Missing subsumptions from ChEBI ontology

9



RESULTS OVERVIEW

1 R-acyclicity and R-stratification conditions
R-stratification ensures stable model uniqueness
Both coNP-complete to check

2 Complexity of reasoning

Fact entailment Program comp. Data comp.
R-acyclic coN2ExpTime-complete coNP-complete
R-acyclic+R-stratified 2ExpTime-complete PTime-complete

3 Generalise R-acyclicity and R-stratification with constraints
� new conditions ΠP

2 -complete to check
4 Experiments over ChEBI with DLV

Performance gains in DLV using R-stratification
Missing subsumptions from ChEBI ontology

9



POSITIVE RELIANCES

Rule r2 positively relies on r1 (written r1
+−→ r2): there is a

situation when r1 can trigger r2 to derive something new

EXAMPLE

r1 : ∧3
i=1 hasAtom(x, zi) ∧

c(z1) ∧ o(z2) ∧ h(z3) ∧
bond(z1, z2) ∧ bond(z2, z3) → organicHydroxy(x)

r2 : organicHydroxy(x) → ∃3
i=1yi. ∧3

i=1 hasAtom(x, yi) ∧
c(y1) ∧ o(y2) ∧ h(y3) ∧
bond(y1, y2) ∧ bond(y2, y3)

r1
+−→ r2 but r2 �+−→ r1

NP-complete to check
(but only w.r.t. the size of the rules)

10



POSITIVE RELIANCES

Rule r2 positively relies on r1 (written r1
+−→ r2): there is a

situation when r1 can trigger r2 to derive something new

EXAMPLE

r1 : ∧3
i=1 hasAtom(x, zi) ∧

c(z1) ∧ o(z2) ∧ h(z3) ∧
bond(z1, z2) ∧ bond(z2, z3) → organicHydroxy(x)

r2 : organicHydroxy(x) → ∃3
i=1yi. ∧3

i=1 hasAtom(x, yi) ∧
c(y1) ∧ o(y2) ∧ h(y3) ∧
bond(y1, y2) ∧ bond(y2, y3)

r1
+−→ r2 but r2 �+−→ r1

NP-complete to check
(but only w.r.t. the size of the rules)

10



POSITIVE RELIANCES

Rule r2 positively relies on r1 (written r1
+−→ r2): there is a

situation when r1 can trigger r2 to derive something new

EXAMPLE

r1 : ∧3
i=1 hasAtom(x, zi) ∧

c(z1) ∧ o(z2) ∧ h(z3) ∧
bond(z1, z2) ∧ bond(z2, z3) → organicHydroxy(x)

r2 : organicHydroxy(x) → ∃3
i=1yi. ∧3

i=1 hasAtom(x, yi) ∧
c(y1) ∧ o(y2) ∧ h(y3) ∧
bond(y1, y2) ∧ bond(y2, y3)

r1
+−→ r2

but r2 �+−→ r1

NP-complete to check
(but only w.r.t. the size of the rules)

10



POSITIVE RELIANCES

Rule r2 positively relies on r1 (written r1
+−→ r2): there is a

situation when r1 can trigger r2 to derive something new

EXAMPLE

r1 : ∧3
i=1 hasAtom(x, zi) ∧

c(z1) ∧ o(z2) ∧ h(z3) ∧
bond(z1, z2) ∧ bond(z2, z3) → organicHydroxy(x)

r2 : organicHydroxy(x) → ∃3
i=1yi. ∧3

i=1 hasAtom(x, yi) ∧
c(y1) ∧ o(y2) ∧ h(y3) ∧
bond(y1, y2) ∧ bond(y2, y3)

r1
+−→ r2 but r2 �+−→ r1

NP-complete to check
(but only w.r.t. the size of the rules)

10



POSITIVE RELIANCES

Rule r2 positively relies on r1 (written r1
+−→ r2): there is a

situation when r1 can trigger r2 to derive something new

EXAMPLE

r1 : ∧3
i=1 hasAtom(x, zi) ∧

c(z1) ∧ o(z2) ∧ h(z3) ∧
bond(z1, z2) ∧ bond(z2, z3) → organicHydroxy(x)

r2 : organicHydroxy(x) → ∃3
i=1yi. ∧3

i=1 hasAtom(x, yi) ∧
c(y1) ∧ o(y2) ∧ h(y3) ∧
bond(y1, y2) ∧ bond(y2, y3)

r1
+−→ r2 but r2 �+−→ r1

NP-complete to check
(but only w.r.t. the size of the rules)

10



POSITIVE RELIANCES

Rule r2 positively relies on r1 (written r1
+−→ r2): there is a

situation when r1 can trigger r2 to derive something new

EXAMPLE

r1 : ∧3
i=1 hasAtom(x, zi) ∧

c(z1) ∧ o(z2) ∧ h(z3) ∧
bond(z1, z2) ∧ bond(z2, z3) → organicHydroxy(x)

r2 : organicHydroxy(x) → ∃3
i=1yi. ∧3

i=1 hasAtom(x, yi) ∧
c(y1) ∧ o(y2) ∧ h(y3) ∧
bond(y1, y2) ∧ bond(y2, y3)

r1
+−→ r2 but r2 �+−→ r1

NP-complete to check
(but only w.r.t. the size of the rules)

10



R-ACYCLICITY

A program is R-acyclic: there is no cycle of positive
reliances that involves a rule with an existential

Checking R-acyclicity is coNP-complete

Similar to ≺-stratification [Deutsch et al., PODS, 2008];
extension of aGRD [Baget et al., RR, 2011]

Fact entailment for R-acyclic programs

Stable models bounded in size (double exp),
but many models possible

coN2ExpTime-complete w.r.t. program complexity

coNP-complete w.r.t. data complexity

11



R-ACYCLICITY

A program is R-acyclic: there is no cycle of positive
reliances that involves a rule with an existential

Checking R-acyclicity is coNP-complete

Similar to ≺-stratification [Deutsch et al., PODS, 2008];
extension of aGRD [Baget et al., RR, 2011]

Fact entailment for R-acyclic programs

Stable models bounded in size (double exp),
but many models possible

coN2ExpTime-complete w.r.t. program complexity

coNP-complete w.r.t. data complexity

11



R-ACYCLICITY

A program is R-acyclic: there is no cycle of positive
reliances that involves a rule with an existential

Checking R-acyclicity is coNP-complete

Similar to ≺-stratification [Deutsch et al., PODS, 2008];
extension of aGRD [Baget et al., RR, 2011]

Fact entailment for R-acyclic programs

Stable models bounded in size (double exp),
but many models possible

coN2ExpTime-complete w.r.t. program complexity

coNP-complete w.r.t. data complexity

11



R-ACYCLICITY

A program is R-acyclic: there is no cycle of positive
reliances that involves a rule with an existential

Checking R-acyclicity is coNP-complete

Similar to ≺-stratification [Deutsch et al., PODS, 2008];
extension of aGRD [Baget et al., RR, 2011]

Fact entailment for R-acyclic programs

Stable models bounded in size (double exp),
but many models possible

coN2ExpTime-complete w.r.t. program complexity

coNP-complete w.r.t. data complexity

11



R-ACYCLICITY

A program is R-acyclic: there is no cycle of positive
reliances that involves a rule with an existential

Checking R-acyclicity is coNP-complete

Similar to ≺-stratification [Deutsch et al., PODS, 2008];
extension of aGRD [Baget et al., RR, 2011]

Fact entailment for R-acyclic programs

Stable models bounded in size (double exp),
but many models possible

coN2ExpTime-complete w.r.t. program complexity

coNP-complete w.r.t. data complexity

11



NEGATIVE RELIANCES

Rule r2 negatively relies on r1 (written r1
−−→ r2): there is a

situation when r1 can inhibit the application of r2

EXAMPLE

r1 : ∧3
i=1 hasAtom(x, zi) ∧ c(z1) ∧

o(z2) ∧ h(z3) ∧ bond(z1, z2) ∧
bond(z2, z3) ∧ not gh(z1) ∧

not gh(z2) ∧ not gh(z3) → organicHydroxy(x) ∧ rh(x)

r2 : organicHydroxy(x) ∧ not rh(x) → ∃3
i=1yi. ∧3

i=1 hasAtom(x, yi)
∧ c(y1) ∧ o(y2) ∧ h(y3) ∧
bond(y1, y2) ∧ bond(y2, y3)

∧ gh(y1) ∧ gh(y2) ∧ gh(y3)

r1
−−→ r2 but r2 �−−→ r1

Polynomial time to check

12



NEGATIVE RELIANCES

Rule r2 negatively relies on r1 (written r1
−−→ r2): there is a

situation when r1 can inhibit the application of r2

EXAMPLE

r1 : ∧3
i=1 hasAtom(x, zi) ∧ c(z1) ∧

o(z2) ∧ h(z3) ∧ bond(z1, z2) ∧
bond(z2, z3) ∧ not gh(z1) ∧

not gh(z2) ∧ not gh(z3) → organicHydroxy(x) ∧ rh(x)

r2 : organicHydroxy(x) ∧ not rh(x) → ∃3
i=1yi. ∧3

i=1 hasAtom(x, yi)
∧ c(y1) ∧ o(y2) ∧ h(y3) ∧
bond(y1, y2) ∧ bond(y2, y3)

∧ gh(y1) ∧ gh(y2) ∧ gh(y3)

r1
−−→ r2 but r2 �−−→ r1

Polynomial time to check

12



NEGATIVE RELIANCES

Rule r2 negatively relies on r1 (written r1
−−→ r2): there is a

situation when r1 can inhibit the application of r2

EXAMPLE

r1 : ∧3
i=1 hasAtom(x, zi) ∧ c(z1) ∧

o(z2) ∧ h(z3) ∧ bond(z1, z2) ∧
bond(z2, z3) ∧ not gh(z1) ∧

not gh(z2) ∧ not gh(z3) → organicHydroxy(x) ∧ rh(x)

r2 : organicHydroxy(x) ∧ not rh(x) → ∃3
i=1yi. ∧3

i=1 hasAtom(x, yi)
∧ c(y1) ∧ o(y2) ∧ h(y3) ∧
bond(y1, y2) ∧ bond(y2, y3)

∧ gh(y1) ∧ gh(y2) ∧ gh(y3)

r1
−−→ r2

but r2 �−−→ r1

Polynomial time to check

12



NEGATIVE RELIANCES

Rule r2 negatively relies on r1 (written r1
−−→ r2): there is a

situation when r1 can inhibit the application of r2

EXAMPLE

r1 : ∧3
i=1 hasAtom(x, zi) ∧ c(z1) ∧

o(z2) ∧ h(z3) ∧ bond(z1, z2) ∧
bond(z2, z3) ∧ not gh(z1) ∧

not gh(z2) ∧ not gh(z3) → organicHydroxy(x) ∧ rh(x)

r2 : organicHydroxy(x) ∧ not rh(x) → ∃3
i=1yi. ∧3

i=1 hasAtom(x, yi)
∧ c(y1) ∧ o(y2) ∧ h(y3) ∧
bond(y1, y2) ∧ bond(y2, y3)

∧ gh(y1) ∧ gh(y2) ∧ gh(y3)

r1
−−→ r2 but r2 �−−→ r1

Polynomial time to check

12



NEGATIVE RELIANCES

Rule r2 negatively relies on r1 (written r1
−−→ r2): there is a

situation when r1 can inhibit the application of r2

EXAMPLE

r1 : ∧3
i=1 hasAtom(x, zi) ∧ c(z1) ∧

o(z2) ∧ h(z3) ∧ bond(z1, z2) ∧
bond(z2, z3) ∧ not gh(z1) ∧

not gh(z2) ∧ not gh(z3) → organicHydroxy(x) ∧ rh(x)

r2 : organicHydroxy(x) ∧ not rh(x) → ∃3
i=1yi. ∧3

i=1 hasAtom(x, yi)
∧ c(y1) ∧ o(y2) ∧ h(y3) ∧
bond(y1, y2) ∧ bond(y2, y3)

∧ gh(y1) ∧ gh(y2) ∧ gh(y3)

r1
−−→ r2 but r2 �−−→ r1

Polynomial time to check
12



R-STRATIFICATION

A program P is R-stratified if there is a partition P1, . . . ,Pn of
P such that for Pi,Pj and rules r1 ∈ Pi and r2 ∈ Pj, we have:

if r1
+−→ r2 then i ≤ j and if r1

−−→ r2 then i < j.

Strictly extends ‘classical’ stratification
� ensures stable model uniqueness
coNP-complete to check

Fact entailment for R-acyclic, R-stratified programs

Stable models bounded in size (double exp),
and at most one stable model
2ExpTime-complete w.r.t. program complexity
PTime-complete w.r.t. data complexity

13



R-STRATIFICATION

A program P is R-stratified if there is a partition P1, . . . ,Pn of
P such that for Pi,Pj and rules r1 ∈ Pi and r2 ∈ Pj, we have:

if r1
+−→ r2 then i ≤ j and if r1

−−→ r2 then i < j.

EXAMPLE

r2r1 +
+

r3 r4 r5

r6

P1

P2

P3

S
1
�P = TP1(F)

S
2
�P = TP2(S

1
�P)

S
3
�P = TP3(S

2
�P)

−

++

+

+

+

−

Strictly extends ‘classical’ stratification
� ensures stable model uniqueness
coNP-complete to check

Fact entailment for R-acyclic, R-stratified programs

Stable models bounded in size (double exp),
and at most one stable model
2ExpTime-complete w.r.t. program complexity
PTime-complete w.r.t. data complexity

13



R-STRATIFICATION

A program P is R-stratified if there is a partition P1, . . . ,Pn of
P such that for Pi,Pj and rules r1 ∈ Pi and r2 ∈ Pj, we have:

if r1
+−→ r2 then i ≤ j and if r1

−−→ r2 then i < j.

EXAMPLE

r2r1 +
+

r3 r4 r5

r6

P1

P2

P3

S
1
�P = TP1(F)

S
2
�P = TP2(S

1
�P)

S
3
�P = TP3(S

2
�P)

−

++

+

+

+

−

Strictly extends ‘classical’ stratification
� ensures stable model uniqueness
coNP-complete to check

Fact entailment for R-acyclic, R-stratified programs

Stable models bounded in size (double exp),
and at most one stable model
2ExpTime-complete w.r.t. program complexity
PTime-complete w.r.t. data complexity

13



R-STRATIFICATION

A program P is R-stratified if there is a partition P1, . . . ,Pn of
P such that for Pi,Pj and rules r1 ∈ Pi and r2 ∈ Pj, we have:

if r1
+−→ r2 then i ≤ j and if r1

−−→ r2 then i < j.

EXAMPLE

r2r1 +
+

r3 r4 r5

r6

P1

P2

P3

S
1
�P = TP1(F)

S
2
�P = TP2(S

1
�P)

S
3
�P = TP3(S

2
�P)

−

++

+

+

+

−

Strictly extends ‘classical’ stratification
� ensures stable model uniqueness
coNP-complete to check

Fact entailment for R-acyclic, R-stratified programs

Stable models bounded in size (double exp),
and at most one stable model
2ExpTime-complete w.r.t. program complexity
PTime-complete w.r.t. data complexity

13



R-STRATIFICATION

A program P is R-stratified if there is a partition P1, . . . ,Pn of
P such that for Pi,Pj and rules r1 ∈ Pi and r2 ∈ Pj, we have:

if r1
+−→ r2 then i ≤ j and if r1

−−→ r2 then i < j.

EXAMPLE

r2r1 +
+

r3 r4 r5

r6

P1

P2

P3

S
1
�P = TP1(F)

S
2
�P = TP2(S

1
�P)

S
3
�P = TP3(S

2
�P)

−

++

+

+

+

−

Strictly extends ‘classical’ stratification
� ensures stable model uniqueness
coNP-complete to check

Fact entailment for R-acyclic, R-stratified programs

Stable models bounded in size (double exp),
and at most one stable model
2ExpTime-complete w.r.t. program complexity
PTime-complete w.r.t. data complexity

13



R-STRATIFICATION

A program P is R-stratified if there is a partition P1, . . . ,Pn of
P such that for Pi,Pj and rules r1 ∈ Pi and r2 ∈ Pj, we have:

if r1
+−→ r2 then i ≤ j and if r1

−−→ r2 then i < j.

Strictly extends ‘classical’ stratification
� ensures stable model uniqueness
coNP-complete to check

Fact entailment for R-acyclic, R-stratified programs

Stable models bounded in size (double exp),
and at most one stable model
2ExpTime-complete w.r.t. program complexity
PTime-complete w.r.t. data complexity

13



R-STRATIFICATION

A program P is R-stratified if there is a partition P1, . . . ,Pn of
P such that for Pi,Pj and rules r1 ∈ Pi and r2 ∈ Pj, we have:

if r1
+−→ r2 then i ≤ j and if r1

−−→ r2 then i < j.

Strictly extends ‘classical’ stratification
� ensures stable model uniqueness
coNP-complete to check

Fact entailment for R-acyclic, R-stratified programs
Stable models bounded in size (double exp),
and at most one stable model

2ExpTime-complete w.r.t. program complexity
PTime-complete w.r.t. data complexity

13



R-STRATIFICATION

A program P is R-stratified if there is a partition P1, . . . ,Pn of
P such that for Pi,Pj and rules r1 ∈ Pi and r2 ∈ Pj, we have:

if r1
+−→ r2 then i ≤ j and if r1

−−→ r2 then i < j.

Strictly extends ‘classical’ stratification
� ensures stable model uniqueness
coNP-complete to check

Fact entailment for R-acyclic, R-stratified programs
Stable models bounded in size (double exp),
and at most one stable model
2ExpTime-complete w.r.t. program complexity

PTime-complete w.r.t. data complexity

13



R-STRATIFICATION

A program P is R-stratified if there is a partition P1, . . . ,Pn of
P such that for Pi,Pj and rules r1 ∈ Pi and r2 ∈ Pj, we have:

if r1
+−→ r2 then i ≤ j and if r1

−−→ r2 then i < j.

Strictly extends ‘classical’ stratification
� ensures stable model uniqueness
coNP-complete to check

Fact entailment for R-acyclic, R-stratified programs
Stable models bounded in size (double exp),
and at most one stable model
2ExpTime-complete w.r.t. program complexity
PTime-complete w.r.t. data complexity

13



RELIANCES UNDER CONSTRAINTS

Restrict input sets of facts to relax R-acyclicity and
R-stratification using constraints

EXAMPLE

r1 : mol(x) ∧ hasAtom(x, z) ∧ c(z) → organic(x)
r2 : mol(x) ∧ not organic(x) → inorganic(x)
r3 : inorganic(x) → mol(x) ∧ geoOrigin(x)

C = {inorganic(x) ∧ hasAtom(x, z)

∧ c(z)

→ ⊥}
r1

−−→ r2
+−→ r3

+−→ r1 but r3 �+−→C r1

Slightly more complex to check:

Positive reliance Negative reliance R-acyclicity/R-stratification
ΣP

2 -complete in ∆P

2 ΠP

2 -complete

� ΣP

2 -hardness follows from satisfiability of a QBF ∃�p.∀�q.ϕ

14



RELIANCES UNDER CONSTRAINTS

Restrict input sets of facts to relax R-acyclicity and
R-stratification using constraints

EXAMPLE

r1 : mol(x) ∧ hasAtom(x, z) ∧ c(z) → organic(x)
r2 : mol(x) ∧ not organic(x) → inorganic(x)
r3 : inorganic(x) → mol(x) ∧ geoOrigin(x)

C = {inorganic(x) ∧ hasAtom(x, z)

∧ c(z)

→ ⊥}
r1

−−→ r2
+−→ r3

+−→ r1 but r3 �+−→C r1

Slightly more complex to check:

Positive reliance Negative reliance R-acyclicity/R-stratification
ΣP

2 -complete in ∆P

2 ΠP

2 -complete

� ΣP

2 -hardness follows from satisfiability of a QBF ∃�p.∀�q.ϕ

14



RELIANCES UNDER CONSTRAINTS

Restrict input sets of facts to relax R-acyclicity and
R-stratification using constraints

EXAMPLE

r1 : mol(x) ∧ hasAtom(x, z) ∧ c(z) → organic(x)
r2 : mol(x) ∧ not organic(x) → inorganic(x)
r3 : inorganic(x) → mol(x) ∧ geoOrigin(x)

C = {inorganic(x) ∧ hasAtom(x, z)

∧ c(z)

→ ⊥}

r1
−−→ r2

+−→ r3
+−→ r1

but r3 �+−→C r1

Slightly more complex to check:

Positive reliance Negative reliance R-acyclicity/R-stratification
ΣP

2 -complete in ∆P

2 ΠP

2 -complete

� ΣP

2 -hardness follows from satisfiability of a QBF ∃�p.∀�q.ϕ

14



RELIANCES UNDER CONSTRAINTS

Restrict input sets of facts to relax R-acyclicity and
R-stratification using constraints

EXAMPLE

r1 : mol(x) ∧ hasAtom(x, z) ∧ c(z) → organic(x)
r2 : mol(x) ∧ not organic(x) → inorganic(x)
r3 : inorganic(x) → mol(x) ∧ geoOrigin(x)

C = {inorganic(x) ∧ hasAtom(x, z) ∧ c(z) → ⊥}
r1

−−→ r2
+−→ r3

+−→ r1

but r3 �+−→C r1

Slightly more complex to check:

Positive reliance Negative reliance R-acyclicity/R-stratification
ΣP

2 -complete in ∆P

2 ΠP

2 -complete

� ΣP

2 -hardness follows from satisfiability of a QBF ∃�p.∀�q.ϕ

14



RELIANCES UNDER CONSTRAINTS

Restrict input sets of facts to relax R-acyclicity and
R-stratification using constraints

EXAMPLE

r1 : mol(x) ∧ hasAtom(x, z) ∧ c(z) → organic(x)
r2 : mol(x) ∧ not organic(x) → inorganic(x)
r3 : inorganic(x) → mol(x) ∧ geoOrigin(x)

C = {inorganic(x) ∧ hasAtom(x, z) ∧ c(z) → ⊥}
r1

−−→ r2
+−→ r3

+−→ r1 but r3 �+−→C r1

Slightly more complex to check:

Positive reliance Negative reliance R-acyclicity/R-stratification
ΣP

2 -complete in ∆P

2 ΠP

2 -complete

� ΣP

2 -hardness follows from satisfiability of a QBF ∃�p.∀�q.ϕ

14



RELIANCES UNDER CONSTRAINTS

Restrict input sets of facts to relax R-acyclicity and
R-stratification using constraints

EXAMPLE

r1 : mol(x) ∧ hasAtom(x, z) ∧ c(z) → organic(x)
r2 : mol(x) ∧ not organic(x) → inorganic(x)
r3 : inorganic(x) → mol(x) ∧ geoOrigin(x)

C = {inorganic(x) ∧ hasAtom(x, z) ∧ c(z) → ⊥}
r1

−−→ r2
+−→ r3

+−→ r1 but r3 �+−→C r1

Slightly more complex to check:

Positive reliance Negative reliance R-acyclicity/R-stratification
ΣP

2 -complete in ∆P

2 ΠP

2 -complete

� ΣP

2 -hardness follows from satisfiability of a QBF ∃�p.∀�q.ϕ

14



EXPERIMENTAL SETUP

Chemical Entities of Biological Interest
Reference terminology adopted for chemical annotation by
major bio-ontologies
~20,000 molecule and ~8,000 chemical class descriptions
ChEBI taxonomy manually curated

Our knowledge base consisted of rules derived from ChEBI
that represented

500 molecules
30 molecular part descriptions
50 chemical class descriptions

� 78,957 rules in total (R-stratified and R-acyclic)

Used DLV for stable model computation

15



EXPERIMENTAL SETUP

Chemical Entities of Biological Interest
Reference terminology adopted for chemical annotation by
major bio-ontologies
~20,000 molecule and ~8,000 chemical class descriptions
ChEBI taxonomy manually curated

Our knowledge base consisted of rules derived from ChEBI
that represented

500 molecules
30 molecular part descriptions
50 chemical class descriptions

� 78,957 rules in total (R-stratified and R-acyclic)

Used DLV for stable model computation

15



EXPERIMENTAL SETUP

Chemical Entities of Biological Interest
Reference terminology adopted for chemical annotation by
major bio-ontologies
~20,000 molecule and ~8,000 chemical class descriptions
ChEBI taxonomy manually curated

Our knowledge base consisted of rules derived from ChEBI
that represented

500 molecules

EXAMPLE

methanol(x) → ∃6
i=1yi. ∧6

i=1 hasAtom(x, yi) ∧ . . . ∧ bond(y2, y6)

30 molecular part descriptions
50 chemical class descriptions

� 78,957 rules in total (R-stratified and R-acyclic)

Used DLV for stable model computation

15



EXPERIMENTAL SETUP

Chemical Entities of Biological Interest
Reference terminology adopted for chemical annotation by
major bio-ontologies
~20,000 molecule and ~8,000 chemical class descriptions
ChEBI taxonomy manually curated

Our knowledge base consisted of rules derived from ChEBI
that represented

500 molecules
30 molecular part descriptions

EXAMPLE

∧3
i=1 hasAtom(x, zi) ∧ . . .∧
bond(z2, z3) ∧ not gh(z1)
∧ not gh(z2) ∧ not gh(z3) → organicHydroxy(x) ∧ rh(x)

organicHydroxy(x)∧ not rh(x) → ∃3
i=1yi. ∧3

i=1 hasAtom(x, yi) ∧ . . .

∧ bond(y2, y3) ∧ ∧3
i=1gh(yi)

50 chemical class descriptions
� 78,957 rules in total (R-stratified and R-acyclic)

Used DLV for stable model computation

15



EXPERIMENTAL SETUP

Chemical Entities of Biological Interest
Reference terminology adopted for chemical annotation by
major bio-ontologies
~20,000 molecule and ~8,000 chemical class descriptions
ChEBI taxonomy manually curated

Our knowledge base consisted of rules derived from ChEBI
that represented

500 molecules
30 molecular part descriptions
50 chemical class descriptions

EXAMPLE

hasAtom(x, z) ∧ o(z) → hasOxygen(x)

� 78,957 rules in total (R-stratified and R-acyclic)

Used DLV for stable model computation

15



EXPERIMENTAL SETUP

Chemical Entities of Biological Interest
Reference terminology adopted for chemical annotation by
major bio-ontologies
~20,000 molecule and ~8,000 chemical class descriptions
ChEBI taxonomy manually curated

Our knowledge base consisted of rules derived from ChEBI
that represented

500 molecules
30 molecular part descriptions
50 chemical class descriptions

� 78,957 rules in total (R-stratified and R-acyclic)

Used DLV for stable model computation

15



EXPERIMENTAL SETUP

Chemical Entities of Biological Interest
Reference terminology adopted for chemical annotation by
major bio-ontologies
~20,000 molecule and ~8,000 chemical class descriptions
ChEBI taxonomy manually curated

Our knowledge base consisted of rules derived from ChEBI
that represented

500 molecules
30 molecular part descriptions
50 chemical class descriptions

� 78,957 rules in total (R-stratified and R-acyclic)

Used DLV for stable model computation

15



EMPIRICAL RESULTS

First attempt to compute the stable model of the overall
program P failed (no result after 600 secs)

Second attempt exploited partition of the program into two
rule sets according to R-stratification
Computed 8,639 subclass relations in 13.5 secs
Revealed missing subsumptions from the ChEBI ontology

E.g. organicHydroxy � organoOxygenCompound ✓

✘

16



EMPIRICAL RESULTS

First attempt to compute the stable model of the overall
program P failed (no result after 600 secs)
Second attempt exploited partition of the program into two
rule sets according to R-stratification

Computed 8,639 subclass relations in 13.5 secs
Revealed missing subsumptions from the ChEBI ontology

E.g. organicHydroxy � organoOxygenCompound ✓

✘

16



EMPIRICAL RESULTS

First attempt to compute the stable model of the overall
program P failed (no result after 600 secs)
Second attempt exploited partition of the program into two
rule sets according to R-stratification

Split into lowest R-stratum P1
and remaining four upper R-strata P

5
2

Computed stable model S
1
�P

of P1 ∪ F

Computed stable model S
5
�P

of P
5
2 ∪ S

1
�P

Computed 8,639 subclass relations in 13.5 secs
Revealed missing subsumptions from the ChEBI ontology

E.g. organicHydroxy � organoOxygenCompound ✓

✘

16



EMPIRICAL RESULTS

First attempt to compute the stable model of the overall
program P failed (no result after 600 secs)
Second attempt exploited partition of the program into two
rule sets according to R-stratification

Split into lowest R-stratum P1
and remaining four upper R-strata P

5
2

Computed stable model S
1
�P

of P1 ∪ F

Computed stable model S
5
�P

of P
5
2 ∪ S

1
�P

Computed 8,639 subclass relations in 13.5 secs
Revealed missing subsumptions from the ChEBI ontology

E.g. organicHydroxy � organoOxygenCompound ✓

✘

16



EMPIRICAL RESULTS

First attempt to compute the stable model of the overall
program P failed (no result after 600 secs)
Second attempt exploited partition of the program into two
rule sets according to R-stratification

Split into lowest R-stratum P1
and remaining four upper R-strata P

5
2

Computed stable model S
1
�P

of P1 ∪ F

Computed stable model S
5
�P

of P
5
2 ∪ S

1
�P

Computed 8,639 subclass relations in 13.5 secs
Revealed missing subsumptions from the ChEBI ontology

E.g. organicHydroxy � organoOxygenCompound ✓

✘

16



EMPIRICAL RESULTS

First attempt to compute the stable model of the overall
program P failed (no result after 600 secs)
Second attempt exploited partition of the program into two
rule sets according to R-stratification
Computed 8,639 subclass relations in 13.5 secs

Revealed missing subsumptions from the ChEBI ontology

E.g. organicHydroxy � organoOxygenCompound ✓

✘

16



EMPIRICAL RESULTS

First attempt to compute the stable model of the overall
program P failed (no result after 600 secs)
Second attempt exploited partition of the program into two
rule sets according to R-stratification
Computed 8,639 subclass relations in 13.5 secs
Revealed missing subsumptions from the ChEBI ontology

E.g. organicHydroxy � organoOxygenCompound ✓

✘

16



EMPIRICAL RESULTS

First attempt to compute the stable model of the overall
program P failed (no result after 600 secs)
Second attempt exploited partition of the program into two
rule sets according to R-stratification
Computed 8,639 subclass relations in 13.5 secs
Revealed missing subsumptions from the ChEBI ontology

E.g. organicHydroxy � organoOxygenCompound ✓

✘

16



CONCLUSIONS

R-acyclicity and R-stratification conditions
(coNP-complete to check)

Fact entailment Program comp. Data comp.
R-acyclic coN2ExpTime-complete coNP-complete
R-acyclic+R-stratified 2ExpTime-complete PTime-complete

Generalise with constraints (ΠP

2 -complete to check)
Performance gains in DLV & new subsumptions in ChEBI

Future directions:
More general notions of ‘rule’ + equality in rule heads
[LPNMR’13]
Compare performance with other ASP solvers
[chemical classification problem, ASPCOMP’13]

Thank you! Questions?!?

17



CONCLUSIONS

R-acyclicity and R-stratification conditions
(coNP-complete to check)

Fact entailment Program comp. Data comp.
R-acyclic coN2ExpTime-complete coNP-complete
R-acyclic+R-stratified 2ExpTime-complete PTime-complete

Generalise with constraints (ΠP

2 -complete to check)
Performance gains in DLV & new subsumptions in ChEBI

Future directions:
More general notions of ‘rule’ + equality in rule heads
[LPNMR’13]
Compare performance with other ASP solvers
[chemical classification problem, ASPCOMP’13]

Thank you! Questions?!?

17



CONCLUSIONS

R-acyclicity and R-stratification conditions
(coNP-complete to check)

Fact entailment Program comp. Data comp.
R-acyclic coN2ExpTime-complete coNP-complete
R-acyclic+R-stratified 2ExpTime-complete PTime-complete

Generalise with constraints (ΠP

2 -complete to check)

Performance gains in DLV & new subsumptions in ChEBI

Future directions:
More general notions of ‘rule’ + equality in rule heads
[LPNMR’13]
Compare performance with other ASP solvers
[chemical classification problem, ASPCOMP’13]

Thank you! Questions?!?

17



CONCLUSIONS

R-acyclicity and R-stratification conditions
(coNP-complete to check)

Fact entailment Program comp. Data comp.
R-acyclic coN2ExpTime-complete coNP-complete
R-acyclic+R-stratified 2ExpTime-complete PTime-complete

Generalise with constraints (ΠP

2 -complete to check)
Performance gains in DLV & new subsumptions in ChEBI

Future directions:
More general notions of ‘rule’ + equality in rule heads
[LPNMR’13]
Compare performance with other ASP solvers
[chemical classification problem, ASPCOMP’13]

Thank you! Questions?!?

17



CONCLUSIONS

R-acyclicity and R-stratification conditions
(coNP-complete to check)

Fact entailment Program comp. Data comp.
R-acyclic coN2ExpTime-complete coNP-complete
R-acyclic+R-stratified 2ExpTime-complete PTime-complete

Generalise with constraints (ΠP

2 -complete to check)
Performance gains in DLV & new subsumptions in ChEBI

Future directions:
More general notions of ‘rule’ + equality in rule heads
[LPNMR’13]

Compare performance with other ASP solvers
[chemical classification problem, ASPCOMP’13]

Thank you! Questions?!?

17



CONCLUSIONS

R-acyclicity and R-stratification conditions
(coNP-complete to check)

Fact entailment Program comp. Data comp.
R-acyclic coN2ExpTime-complete coNP-complete
R-acyclic+R-stratified 2ExpTime-complete PTime-complete

Generalise with constraints (ΠP

2 -complete to check)
Performance gains in DLV & new subsumptions in ChEBI

Future directions:
More general notions of ‘rule’ + equality in rule heads
[LPNMR’13]
Compare performance with other ASP solvers
[chemical classification problem, ASPCOMP’13]

Thank you! Questions?!?

17



CONCLUSIONS

R-acyclicity and R-stratification conditions
(coNP-complete to check)

Fact entailment Program comp. Data comp.
R-acyclic coN2ExpTime-complete coNP-complete
R-acyclic+R-stratified 2ExpTime-complete PTime-complete

Generalise with constraints (ΠP

2 -complete to check)
Performance gains in DLV & new subsumptions in ChEBI

Future directions:
More general notions of ‘rule’ + equality in rule heads
[LPNMR’13]
Compare performance with other ASP solvers
[chemical classification problem, ASPCOMP’13]

Thank you! Questions?!?

17


