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Not marked for its ability to model cyclic structures
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NONMONOTONIC EXISTENTIAL RULES

Rules with nonmonotonic negation in the body and
existentials in the head

B1 ∧ . . . ∧ Bn ∧ not Bn+1 ∧ . . . ∧ not Bm → ∃y.H1 ∧ . . . ∧ Hk

Interpreted under stable model semantics

Good for representing non-tree-shaped structures

Existentials allow us to infer new structures

Nonmonotonicity adds extra expressivity in modelling

Stable model semantics supported by many tools: DLV,
clasp, . . .
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CLASSIFICATION OF STRUCTURED OBJECTS I

C

O H

H

H

H

Methanol molecule

hasAtom
bond

c o
h

m
methanol

f1(m)

f2(m) f3(m)

f4(m)

f5(m)

f6(m)

organicHydroxy
hasOxygen

methanol(x) → ∃6
i=1yi. ∧6

i=1 hasAtom(x, yi) ∧ c(y1) ∧ o(y2) ∧
∧6

i=3h(yi)∧ ∧5
i=2 bond(y1, yi) ∧ bond(y2, y6)

∧3
i=1 hasAtom(x, zi) ∧ c(z1)∧o(z2) ∧

h(z3) ∧ bond(z1, z2) ∧ bond(z2, z3)→ organicHydroxy(x)

hasAtom(x, z) ∧ o(z) → hasOxygen(x)

methanol � organicHydroxy ✓ methanol � hasOxygen ✓
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WHAT’S THE PROBLEM?
Reasoning is undecidable
(even fact entailment, even without not )

many known conditions for regaining decidability
acyclicity conditions ensure finite models: (super)-weak
acyclicity, joint acyclicity, aGRD, MSA, MFA, . . .

Reasoning is hard (even for finite models)

stable models lead to non-determinism
stratification conditions ensure determinism

Stratification

Stable model uniqueness

Deterministic reasoning
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WHAT’S OUR PROBLEM?
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Repaired program not stratified

methanol(x) → ∃6
i=1yi. ∧6

i=1 hasAtom(x, yi) ∧ . . .

∧ bond(y2, y6)
∧3

i=1 hasAtom(x, zi) ∧ . . .∧
bond(z2, z3) ∧ not gh(z1)
∧ not gh(z2) ∧ not gh(z3) → organicHydroxy(x) ∧ rh(x)

organicHydroxy(x)∧ not rh(x) → ∃3
i=1yi. ∧3

i=1 hasAtom(x, yi) ∧ . . .

∧ bond(y2, y3) ∧ ∧3
i=1gh(yi)

hasAtom(x, z) ∧ o(z) → hasOxygen(x)
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RESULTS OVERVIEW

1 R-acyclicity and R-stratification conditions
R-stratification ensures stable model uniqueness
Both coNP-complete to check

2 Complexity of reasoning

Fact entailment Program comp. Data comp.
R-acyclic coN2ExpTime-complete coNP-complete
R-acyclic+R-stratified 2ExpTime-complete PTime-complete

3 Generalise R-acyclicity and R-stratification with constraints
� new conditions ΠP

2 -complete to check
4 Experiments over ChEBI with DLV

Performance gains in DLV using R-stratification
Missing subsumptions from ChEBI ontology
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POSITIVE RELIANCES

Rule r2 positively relies on r1 (written r1
+−→ r2): there is a

situation when r1 can trigger r2 to derive something new

EXAMPLE

r1 : ∧3
i=1 hasAtom(x, zi) ∧

c(z1) ∧ o(z2) ∧ h(z3) ∧
bond(z1, z2) ∧ bond(z2, z3) → organicHydroxy(x)

r2 : organicHydroxy(x) → ∃3
i=1yi. ∧3

i=1 hasAtom(x, yi) ∧
c(y1) ∧ o(y2) ∧ h(y3) ∧
bond(y1, y2) ∧ bond(y2, y3)

r1
+−→ r2 but r2 �+−→ r1

NP-complete to check
(but only w.r.t. the size of the rules)
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R-ACYCLICITY

A program is R-acyclic: there is no cycle of positive
reliances that involves a rule with an existential

Checking R-acyclicity is coNP-complete

Similar to ≺-stratification [Deutsch et al., PODS, 2008];
extension of aGRD [Baget et al., RR, 2011]

Fact entailment for R-acyclic programs

Stable models bounded in size (double exp),
but many models possible

coN2ExpTime-complete w.r.t. program complexity

coNP-complete w.r.t. data complexity
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NEGATIVE RELIANCES

Rule r2 negatively relies on r1 (written r1
−−→ r2): there is a

situation when r1 can inhibit the application of r2

EXAMPLE

r1 : ∧3
i=1 hasAtom(x, zi) ∧ c(z1) ∧

o(z2) ∧ h(z3) ∧ bond(z1, z2) ∧
bond(z2, z3) ∧ not gh(z1) ∧

not gh(z2) ∧ not gh(z3) → organicHydroxy(x) ∧ rh(x)

r2 : organicHydroxy(x) ∧ not rh(x) → ∃3
i=1yi. ∧3

i=1 hasAtom(x, yi)
∧ c(y1) ∧ o(y2) ∧ h(y3) ∧
bond(y1, y2) ∧ bond(y2, y3)

∧ gh(y1) ∧ gh(y2) ∧ gh(y3)

r1
−−→ r2 but r2 �−−→ r1

Polynomial time to check

12
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R-STRATIFICATION

A program P is R-stratified if there is a partition P1, . . . ,Pn of
P such that for Pi,Pj and rules r1 ∈ Pi and r2 ∈ Pj, we have:

if r1
+−→ r2 then i ≤ j and if r1

−−→ r2 then i < j.

Strictly extends ‘classical’ stratification
� ensures stable model uniqueness
coNP-complete to check

Fact entailment for R-acyclic, R-stratified programs

Stable models bounded in size (double exp),
and at most one stable model
2ExpTime-complete w.r.t. program complexity
PTime-complete w.r.t. data complexity
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RELIANCES UNDER CONSTRAINTS

Restrict input sets of facts to relax R-acyclicity and
R-stratification using constraints

EXAMPLE

r1 : mol(x) ∧ hasAtom(x, z) ∧ c(z) → organic(x)
r2 : mol(x) ∧ not organic(x) → inorganic(x)
r3 : inorganic(x) → mol(x) ∧ geoOrigin(x)

C = {inorganic(x) ∧ hasAtom(x, z)

∧ c(z)

→ ⊥}
r1

−−→ r2
+−→ r3

+−→ r1 but r3 �+−→C r1

Slightly more complex to check:

Positive reliance Negative reliance R-acyclicity/R-stratification
ΣP

2 -complete in ∆P

2 ΠP

2 -complete

� ΣP

2 -hardness follows from satisfiability of a QBF ∃�p.∀�q.ϕ

14
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EXPERIMENTAL SETUP

Chemical Entities of Biological Interest
Reference terminology adopted for chemical annotation by
major bio-ontologies
~20,000 molecule and ~8,000 chemical class descriptions
ChEBI taxonomy manually curated

Our knowledge base consisted of rules derived from ChEBI
that represented

500 molecules
30 molecular part descriptions
50 chemical class descriptions

� 78,957 rules in total (R-stratified and R-acyclic)

Used DLV for stable model computation
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EMPIRICAL RESULTS

First attempt to compute the stable model of the overall
program P failed (no result after 600 secs)

Second attempt exploited partition of the program into two
rule sets according to R-stratification
Computed 8,639 subclass relations in 13.5 secs
Revealed missing subsumptions from the ChEBI ontology

E.g. organicHydroxy � organoOxygenCompound ✓

✘
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CONCLUSIONS

R-acyclicity and R-stratification conditions
(coNP-complete to check)

Fact entailment Program comp. Data comp.
R-acyclic coN2ExpTime-complete coNP-complete
R-acyclic+R-stratified 2ExpTime-complete PTime-complete

Generalise with constraints (ΠP

2 -complete to check)
Performance gains in DLV & new subsumptions in ChEBI

Future directions:
More general notions of ‘rule’ + equality in rule heads
[LPNMR’13]
Compare performance with other ASP solvers
[chemical classification problem, ASPCOMP’13]

Thank you! Questions?!?
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