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By! ...! By! notBpeg! ...! notBym"# y.Hy! ...! Hg
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m Good for representing non-tree-shaped structures
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Stratibcation

I
Stable model uniqueness

¥

Deterministic reasoning
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R-acyclicity and R-stratibpcation conditions

m R-stratibcation ensuresstable model uniqueness
m Both coNRcomplete to check

Complexity of reasoning

Fact entailment Program comp. Data comp.
R-acyclic coN2ExpTimecomplete | coNRcomplete
R-acyclic+R-stratibed 2ExpTimecomplete | PTimecomplete

Generalise R-acyclicity and R-stratibcation with constraints
I new conditions ! 5-complete to check
Experiments over ChEBI with DLV

m Performance gains in DLV using R-stratiPcation
m Missing subsumptions from ChEBI ontology
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organicHydroxy(x) ! notr,(x) "# 2,yi.! 2, hasAtom(x, y;)
Fe(yn) ! o(yz) ! h(ys)!
bond(y1,y2) ! bond(yz,Ys)

P gn(y1) ! gn(y2)! 9n(ys)

r (% ) but ) % r
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= Rule ry negatively relies on ry (written r1 9% r): there is a

situation when ry can inhibit the application of r»

I 3 hasAtom(x,z) ! c(z1)!

0(z2) ! h(zz)! bond(zy,z,)!

bond(z,,z3)! not gn(zy)!
not gn(zo) ! notgn(zz) " organicHydroxy(x) ! rn(x)

organicHydroxy(x) ! notr,(x) "# 2,yi.! 2, hasAtom(x, y;)
Fe(yn) ! o(yz) ! h(ys)!
bond(y1,y2) ! bond(yz,Ys)

P gn(y1) ! gn(y2)! 9n(ys)

rL o ro but r% Iy

= Polynomial time to check
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R-STRATIFICATION

m A program P is R-stratibedif there is a partition Py, ..., P of
P such that for P, P, and rulesr; " Pyandry' Pj, we have:

ifri% rotheni( j  and ifri 9% rotheni< j.
l'e

+ +

+I’3<— g ——1TIs

P2 J“L [ S = Tr(Sh)
+ S = Tri(F)
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m A program P is R-stratibedif there is a partition Py, ..., P of
P such that for P, P, and rulesr; " Pyandry' Pj, we have:

ifri% rotheni( j  and ifri 9% rotheni< j.

EXAMPLE

I'e

Ps :\\ S = Te(S)
PO TR
P, S = Tr(S)
P1
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m A program P is R-stratibedif there is a partition Py, ..., P of
P such that for P, P, and rulesr; " Pyandry' Pj, we have:

ifry % rotheni( j  and ifry % ratheni< j.
m Strictly extends OclassicalO stratibcation

I ensures stable model uniqueness
m coNRcomplete to check

m Fact entailment for R-acyclic, R-stratiPed programs

m Stable models bounded in size (double exp),
and at most one stable model

m 2ExpTimecomplete w.r.t. program complexity
m PTimecomplete w.r.t. data complexity
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RELIANCES UNDER CONSTRAINTS

m Restrict input sets of facts to relax R-acyclicity and
R-stratiPcation using constraints

ry: mol(x) ! hasAtom(x,z)! c(z) " organic(x)
ro: mol(x) ! not organic(x) " inorganic(x)
rs: inorganic(x) " mol(x) ! geoOrigin(x)
C = {iinorganic(x) ! hasAtom(x,z)! c(z) ")}
1% ro% rzd ry but r3d% cri

m Slightly more complex to check:

Positive reliance Negative reliance R-acyclicity/R-stratiPcation
" P-complete in# % I P-complete

I " P-hardness follows from satisbability of a QBF#p.*b."
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m Reference terminology adopted for chemical annotation by
major bio-ontologies

m ~20,000 molecule and ~8,000 chemical class descriptions

m ChEBI taxonomy manually curated

m Our knowledge base consisted of rules derived from ChEBI
that represented
m 500 molecules
m 30 molecular part descriptions

EXAMPLE

I 3 hasAtom(x,z)! ...!
bond(z,,z3)! not gn(z1)
I notgn(zz)! notgn(zs) " organicHydroxy(x)! m(x)

organicHydroxy(x)! not ry(x) " # 3 ~ .- ! 2 1 hasAtom(x, y.) !
! b0nd(Y2.V3) 2 1gh(y|)
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m Reference terminology adopted for chemical annotation by
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m ~20,000 molecule and ~8,000 chemical class descriptions
m ChEBI taxonomy manually curated

m Our knowledge base consisted of rules derived from ChEBI
that represented

m 500 molecules
m 30 molecular part descriptions
m 50 chemical class descriptions

EXAMPLE

hasAtom(x,z)! o(z) " hasOxygen(x)
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EXPERIMENTAL SETUP

m Chemical Entities of Biological Interest . .
m Reference terminology adopted for chemical annotation by
major bio-ontologies
m ~20,000 molecule and ~8,000 chemical class descriptions
m ChEBI taxonomy manually curated

m Our knowledge base consisted of rules derived from ChEBI
that represented
m 500 molecules
m 30 molecular part descriptions
m 50 chemical class descriptions

I 78,957 rules in total (R-stratibed and R-acyclic)

m Used DLV for stable model computation
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m First attempt to compute the stable model of the overall
program P failed (no result after 600 secs)

m Second attempt exploited partition of the program into two
rule sets according to R-stratibcation

Split into lowest R-stratum P
and remaining four upper R-strata Pg

4

Computed stable model S, of Py + F

v

Computed stable model S of P3 + S
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EMPIRICAL RESULTS

m First attempt to compute the stable model of the overall
program P failed (no result after 600 secs)

m Second attempt exploited partition of the program into two
rule sets according to R-stratibcation

m Computed 8,639 subclass relations in 13.5 secs

m Revealed missing subsumptions from the ChEBI ontology

E.g. organicHydroxy $ organoOxygenCompound !
Tolecular entty

main group molecular enty

T E TG onygenators  CAIDCN group element atom hydrogen atom

i e carbon group Folecu arentty

YIOYGOUP. o gen molecular ertiy

arganic moecular entity hydroxides

arganic hyeroxy compound
a
:
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CONCLUSIONS

m R-acyclicity and R-stratibcation conditions
(coNRcomplete to check)

Fact entailment Program comp. Data comp.
R-acyclic coN2ExpTimecomplete | coNRcomplete
R-acyclic+R-stratibed 2ExpTimecomplete | PTimecomplete

m Generalise with constraints (! E-complete to check)
m Performance gains in DLV & new subsumptions in ChEBI

m Future directions:

= More general notions of Orule® + equality in rule heads

[LPNMRO13]
m Compare performance with other ASP solvers

[chemical classiPcation problem, ASPCOMPO13]

Thank you! Questions?!?




