Dlogs 1t alwsys have to be so complicated?

Cad.Re Hoare F.R.O.

Ead
i

Frofe

sor of Dompubation

xford University

The most serious nhﬁtacle'ga the wider expleoitation of the promise
extended by the hardware of modern computers is the impenstrable and
still growing complexity of their software,. The removal of this harrier
will be the main achisvemsnt of resssrch in computer scisnce in the next

decadss.

Not long ago, the smallest stored-program digital computer filled
a large room with shelves of thermionic valves and tanks of meroury.
Through the magnifivent achisvements of bavdware engineers, the size of a
computer rapldly reduced to a few cabinets, a singls capinetp a single .
shelf, a single board, and now just a few chips. This progress is

expected to continus.

Progress in softwere has besn in the opposite direcgtion. For the
gariiest computsrs, a few dozen instructions of a boctstrap loader
sufficed as an operating systemy the program libravy containe& a few
mathematical rouvtines: ~and the machine was programmed in a decimal machine
mmde?'translated by an assembler of some hundreds of inetrumtianss
Gradually, the size of the software grew to FiLll and overTill the
increasing capacity of the hardware., UOpsrating aystem;9 program libraries,
and compilers for high l@ﬁel languages are now measured in millions of

instructions.

N

This is certainly progress, but s it in the right direction? IF
our present computers are thousands of fimes easier to use now than
they wera in the beginning, we should be very happy. 1 fear this is not
B0, TH@ raason s that the softwace has become so complicated that most
of ite users can no longer understand or control it. Furtheomove, they
can ne lengar trust its reliability or its stability: a constant stream of
new releases remedy defecits of previoué releases, and introduce new

faults of their own.

A crude symptomatic measure of this problem is the size of the
manuals required to explain to the hopeful user how to take advantage of
gach item of software, and whait to do when things go wrong., The siim
manual for an sarly computer was Jjust a description of the machine
structure, and an agcount of the effect of the few dozen instructions
which comprised its machine coda. Soon the manuals grew Lo book size, and
then to multiple volumes; they rapidly overflowed shelves and racks:

and now a conplete set of software manuals for a modecn mainframs computer

et

ooruples a complete room. Software documentation is now as voluminous

ag the havdware of the sarliest compubers!

Mlany professional programmers tolerate or sven welcome ﬁh}s growth
in vomplexity; a malicious sxplanation is that the complexity ensures
that the computer cannot be properly used by the layman without professional
assistance, [n the same way, adninistraticon, accountancy, and the law also

tand toward such complication that they can be understood only by

speciaiised professional administrators, accountants and lawyers.

This kind of man-made complexity is to be sharply contrasted with
the complexities of nature, which are the coneern of practising engingers,
doctors and scientists. Indeed, it is the primary objective of ressarch

scientists in these diseciplines to discover the simple laws which govern

m~

the complex phenomena of nature, so that vast cataloguss of experimental
cheervations can be reduced Lo a few Tormulas of mathematics, which can

£

be urderstood and readlly apolied by the nonespesialist,

The achievement of such simplicity is far from simple. The discovery
that thousands of chemical compounds can bes explained in terms of a mere
hundred elements; the sxplanation of thess hundred slements in terms of

. .
a few atomic particles; the sxplanation of hundreds of high ensrgy
particles in terms of a feuw dezen guarks; esach of these achisvemunts

eludsd the greatest intellects of earlisr timss, though now thess results
G # g

are common knowledge ameong schoolohildren.

ly own area of software expesrtise is Programming Languanes; these
provide excellent exemples of cancerous growih in complexity - pL/I,
ALGOL &8, CHILL, and now ADA. And yet in the design of programming

languages there has been no lagk of simple ideas of great generality.

(1} The parametrised subroutine, which made FORTRAN ints an

extensible languege.

{2) The block structure of ALGOL 60, which introdused the methods

of structured programming.

[Tha multi-repister desk (now pocket) galoulator, on uhich the
= El

attrastive 5implicity of BASIC was founded,

{4} The data type deglaration of PASCAL, which externds ths

concept of structure fo the storvage of data,
{5} The gensral recursive function, as incorporated in LISP.

(6) Ths communicating ssguential process, on which the tasking

feature of ADA has been based,

Jut why do languages which st

¢ with such simple idess Deacome 8o

nidecusly complicated?

There are many reasscns:

.

(1Y +the pursuit of efficiency on unsympathetic computer harduares
this explains the PROG feature in LISP, and irvegularities in the type

9

structure of PASCAL. &

(2) simple error or oversight, for example, the ouwn variable of

ALGOL 60, nr the "shallow! binding of LIGR,

{2} historical accident: the FORMAT of FORTRAN is copied from

some input/output routines which happened to be available for the [BM 650,

{4) design by committes leads to inclusion of features whose
pomplexity apd interactions have not been fully explored, ALCOL 68 and

ADA provide sad examples,
p |

{5) overamhition, whiech leads tec the vain search for a single

language to solve all problems,

{(6) the nesd for compatibility with every previous version of a

language prevents any subsequent simplification.

{(7) commercial interest, which laads s manufacturer to add features
to bis implementabion Shai will make it Lmpossible for customsrs to

transfer their programs to machlines of a different manufactursr.

{8) academic vespectability, which requires that every language

design emanating Trom a Unlversity must be original,

(9 srematurs inclusion of necessary features such as inpui and
I y

output, hefore the simplicity of the relevant mathematical theory has

besn discovered,

a4,

i

g
(10) Intellestusl stagnation of programmecs, who have suffered

the trauma of learning the complexity of ons pregramming language,

and reccill from the sugosstion thabt anobher Janguage wight be botter,

But I believe that in the next two decades we shall see the
solution to many of these problems. The difficulties encounterad by a
new generation of programmers of persm?al computers has led to a wider

u

rasegnition of the scele of the problem, and has added strength to the
will to solve it. Long experisnce has taught us the many subtle
temptations of complexity, and the need to avoid them, Recent discoveries
in the mathematical theory of programming and programming language
semantics offer the same promise of simplification that hag basn realised
in the spectacular advances of modern scisnce which depend wholly on the
relevant mathematics., Recent developments in VL3I and computer
architesture have mitigated the pressures imposed by efficisncy of

implementation.

Thus I have some confidence in setting targets of simplicity for
new programming languagss of the future. Let us use the crude but simple

measure of the size of the accompanying documentation.

{1) A formal definition of the language in terms of mathematical
gauations should occupy one or two pages - no more than the axioms on

whicihr the major branches of mathomatics are based.

(2} An informal descripticn, in the style of the Report on the

Algorithmic Language ALGGL 68, should ocoupy ten to twenty pages.

{3) A texthook should describe how to specify, design, docunent
and implement programs in the languags. Tt should 111 one or two

hundred pangses: and should be sultable for use in schools.

(4} A librarvy of useful alooribims expressed in the languags

should alsc be published openly in both readable and magnetic form.

These goals will be attained not just for a single language, but
for a variety of languages covering different applications areas, and
based on different mathematical foundations. For example, & languace
like PROLGG will be based on the predicate celeoulus; a functional

w
language like LISPKIT will be based on recursive function theory; and
a language of Communicating Sequential Processes will be based on nawer
mathematical theories, like those explored Ly Milner in his Caleouwlus of

i v
Communicating Systems, —”ﬁ-l- e & OCeadrran

ng#u%khJ LL1 zI)auv;4 r1au1 ,g} :I: t1 4; a“ 3«0J1hawwf& Y] \ML;:OIK$$

The task of pressrving the' simplicity of these languages in a

practical ilmplementation is a major challenge to computer science,

For example, & practicel implementation must deal with long-term storage
of voluminous data held on unsywpathetic devices like discs. It must
deal with fhe peculiarities of various input and mutpu£ devices, such

as screens, printers, plotters, voice encoders, etoy and it must do so
without significant loss in efficisney. The great temptation will be to
add new "feetures™ to the languzage, and thereby pass the problem on to
the user, The temptation is increased by the fact that the US?X can be
caslly persuaded to weloome such additional featurss. It 1s sad to
reflect thab even when the implementer has succeeded in hiding all the
complexitiss, the user will be ignorant of the problems he has been

spared, and will not apprecipte the benefits of his ignorance.

When a new tangs of simple well-defined programming languages has
been widely accepted, I belisve that we shall see a2 general improvement
in the guality and reliability of programs expressed in these languages,

The designers of operating systems and libraries, and also the professional

applicaticons

the pos

o basing

e '

their designs on well-spacifisd mathemaltical models, and will respond

b the challenge of implementing them efficiently in a manner which
pressrves the simplicity and =legance of & welledefined user interface.
Thus we will achizve an ssserltial objective that the ordinary usern can

always understaend what the compubter is doing fop him, and he can always

retain ocontrol and responsibility over the sctions of his machine.

This, T belisve, is the right way to ocvercoms the dangerous
attitude of helpless incomprehension with which many of the general
public spproach the computer. An alternative which may soem super-

cially attractive is to program the computer to try to understand the
modes of thought of its vser. But this could be very dangerous. It
means that the machine could deceive its user and persusde bim to accept

the assumptions consclously or unconsciously built into the original

prograi. The consequences of inadvertent or umscrupulous manipulation
are auen more frightening than the dangers of misunderstanding due to

propsslive complexity.

To avold the dangers uwidely predicted in science fiction, we must
gnsure that it is always the man that understands and controls fhe

maching, never the other way rownd, To ensure this reouires a deliberate

and desermined pursult of simplicity and reliability in the design of

=]
’

programs, scfiware, and systems. [hope that progress in this new
direction will bs signposted by the designers of rew programming La guages,

in which the new programs will be expressed.

