DATA REFINEMENT IN A CATEGORICAL SETTING.

C.AR HOARE, June 1987

Data refinement is one of the most effective formal methods for the
step-wise development of large programs and systems. The system design
is expressed as a program text, which is first interpreted as operating on
data of abstract type. The simple mathematical properties of abstract data
are helpful in deriving the design from its specification. At the next step,
the abstract data are represented compactly by bit-patterns (say) in the
store of a computer, and the required operations upon them are
implemented by efficient subroutines, The same program text developed in
the previous step is then given this new concrete interpretation, so that it
can be executed directly by a computer. In the case of a large system, the
transition between design and code is split into many steps, each of which
provides the starting point for the following step.

The correctness of the more concrete interpretation is established by a
collection of abstraction functions, which map each concrete type to the
corresponding abstract type. Each abstraction function must be proved to
commute with each primitive operation of the appropriate data type, in the
following sense:

To apply the abstraction function after any concrete operation
gives the same (or better) result as applying it before the
corresponding abstract operation.

This fact is proved only for the primitive operations invoked by the
program; as a consequence, it is valid for any program written using those
primitives, provided that the programming language has been destgned with
sufficient care. This paper investigates the conditions under which data
refinement is a valid method for program development.

Summary (only for category theorists)

The relevance of category theory to data refinement is suggested by the
uniform view which both of them take towards data types and operations on
values of each type. The advantage of the categorical setting lfes in its
purely algebraic proofs, which do nof need to mention the Individual data
values of each type. '

ALY

are Uﬁg Jelevacab, o
The programs in a strictly typed programming language form'a category L,
in which composition is just the familiar sequential composition of
programming, denoted by semicoton. An abstract interpretation of the
language L is givenby a functor G, which maps each program of L into
some mathematical category M. The functorial property of G ensures
that it respects the original type structure as well as the syntactic
structure of the program. A concrgte interpretation is given similarly by a g
different functor F, which mapgL into some (usually) different part of the ¢
same category M. Now the abstraction function of data refinement is
nothing other than a natural transformation between these two functors,

Among the elements of a programming language L we can single out @ /o
subset L, containing just the primitive data types and the bullt-in

operations upon them. The combinators of the language (for example,
sequential composition) are called generators, because every program in L
can be generated by a finite number of applications of the generators to the
primitive elements of Ly - A generator “g” in L 1safunction from L 1o

L, written tn quotes to emphasise Its syntactic nature. It is assumed {o
have a mathematical meaning ¢, which is a function from M to M. Any
interpretation of the language L must respect this meaning, in the usual
sense of denotational semantics. So we require that all functors F from L
to M must commute with every "g" in the sense that

FC"g"p) = oFp) forall p in L

A beneficial consequence of this requirement s that the whole meaning of
a functor can be defined by just giving its value when applied to etements
of L,. Itsvalue onany generated element of L can then be computed by

primitive recursion on the structure of the generation tree.

Similarly, we want to prove the commuting property of a natural
transformation only for types and operatlons in L, , and on the basis of

"/, this simple proof, we want to be sure that the commuting property nolds

¢ for all generated programs in L. This is what.is-meant by the statement
that natural transformations are valid for data refinement. The purpose of
this research is £o explore the design constramts on the) hguage L which Q _{_J’ L
will maintain this validity. ‘_‘ ens s o AT
i
\#
Let f be apartial function from the semantic category M toitself.
Suppose we wish to insert f as a new feature in our programming
language. It is mathematically trivial to choose a new notation 1" to
denote the function, and to insert it among the generators of L, subject to

3

the same type constraints in L-as - issubject to in M. This will-enlarge e
the class of texts in the language to include those which mention "f" in a

syntactically valid and type-consistent way. If every natural

transformation valid on the original smaller language is still valid on the

extended language, we say that the extension preserves the validity of

natural transformation. If the introduction of "f* can generate new

identities (objects) in L, the definition of the natural transformation n

must be extended to these new identities as well. This is done by the usual

commuting equation

n("f"h) = f(nb) for all identities b of L.

bas\c, The madn result of this paper is to show that any functor from M to itself

PR will preserve validity of natural transformations, and that any natural
’/ov\ - transformatiog@etween such functors will do so too. This is a theorem of
-7\ 8UCh elegance‘@at it must be a special case of some more genera theorem

-0 \Jumcjhon known to categomstf?but not to me. ;_} o (\ " ;\ ab .

find in @ programming 1 anguage are either functors or natu. al trans-
formations. However, to deal with languages which contain non-
terminating or non-deterministic programs, we will need to introduce a
slight generalisation of the natural transformation, known as a simulation.
It is explained in the remainder of this section.

In program development, it is not necessary to insist on absolute identity
of the effects of the concrete and abstract programs. It is certainly enough
to require that the concrete program is better than the abstract one in all
relevant respects, and in all contexts of use. We therefore introduce a
partial ordering ¢ {pronounced "upward") into our categories, to denote
that the 1eft operand is an improvement on the right operand (which must
have the same domain and codomain). Here are two of the ways in which a
program p may be uniformly as good or better than q-

cases that q terminates (but perhap;@ Y also terminates 1n cases thafyq y
may fail) M vt aseeere el e levg poe s e ﬂf}
i/ ! v
7 _»* o t’j be pAsEi ‘i‘ L jE\ oflg [T) ;,a,«,r__/l

MWAEALS DAl FEEER B l

| (2) every result {hat p can gi\'/e is the same as (or better than) some ! A }La s
result that g can give (but g can give a wider range of different results). ¢, ,_!
Thus p s more predictable, more controllable, and more determ;nistic Caafers
than q. od et d

LTS

N

“:‘.::wcﬂ
v——*—;—-—-'—»—,

in the mathematical theory, ¢

is an arbitrary partial order, and may be

ass ULVYI??

4

interpreted as any.kind of .improvement, To ensure that the improvement 15
maintained in all contexts, we po§tulate thatg all operatﬂr combinatorq,
and functors are monotonic, W/ tlly fee ?f 6 S 4 ONTEAANEY
Now the commuting equation defining naturality can be replaced by an
inequation, expressing the superiority of the concrete functor. This canbe
done in two different ways, leading to two definitions.

(1) An upward simulation u is defined as a transformation
from F to G such that

bz Fb -> Gb, for all identities b if L
Fp;ub® ¢ ub;6p, forallp:b->Db' in-L.

(2) A downward simulation d is defined as a transformation
from G 1o F such that

db: Gh -> Fb, for all identities b in L
db;Fp ¢ Gp,;dbt, forallp:b->b in L.

Clearly, the familiar natural transformation is both upward and downward
from F to G. Another way of combining the two definitions 15 in the
definition of a toial simulation. This is 2 pair (d,u), where
&AG\A:A AL

1. u isanupward simulation

2. d is a downward simulation

3.0s5;us = Gs and Fs ¢ us; ds

‘;),;:,i;:\u,“ FWV\ "i TG

A total simulation establishes a pre-order in-a-category, in the same way
as a natural isomorphism establishes an equivalence. The preorder 1S the
one used by Scott to find a solution for refiexive domain equations.

In a simple category L, all three kinds of simulation are valid, in the sense
that the simulation property needs proof only on the generating graph\‘ 0

But a simple category is a rather weak programming language, 1n which
only straight line programs can be written. This paper investigates a
series of generators which enrich the category L, including least upper
bounds, zero morphisms, coproducts, products or smash products, and
higher order function spaces (cartesian closure). The same enrichments are
ratdeeto the semantic category M, and all functors are assumed to respect
the additional structure. Each enmchment is treated separately, so that the
proofs apply to the widest possible variety of languages. For some of the
enriched languages, both kinds of simulation are valid, and for others, only

TS

E ok C,L’\
S0

kvads of

CO V\’llﬁl/v\ﬂz‘f-(ﬁ"\ﬂé
1‘}”“;}
AN ((AR LG \§

tl«;\/\\(‘;,/ SO

covslye (id
AT/ VAN
| "c.',(\ L

5€I>CL\ (L

)

LA ')a»{ s

M/\O‘LU ({ WY

A l")l%lfk

o4

I y

6___51 , O
& 1.4
A

|7 [
P

envy ci'w e L

U/\ait the resulls arflpl

of’

]

VP uj{.@ A 5

" Tre a\tac{
T

lﬁm VAN Q w LUq
€r (-_LL‘ 5

G_,

)

se,rax{'c& r@l:j :

Vaoyions

Vo

LOLLS

V.

i'\ AA \o{;w (,\-\.()&@v\
WL &J(LC A {L{i&

U\(“lf)u VO dypMas
|
13 L ON L\;LV ON L

e
v o) (g j Ve o

T Lo

G Swljle/

}JfC) 1

N\ } WO LY AAALS

.

Cer\f\f\‘) 0S5 Lf\\ S
¥4

-

V\f' WAGE -,
i d 3o, 0
£ e i/\(AEEAAA WA

3 ¢
¢

1 ool
3 Een
PR A A

.

b1\ ljﬂ,-"g_)!'; {7/{51 %\/’ fi 1

T AN

guéLu N

i
T
N Ad ¢ AN %*— L‘Q..;. e aoun Cj\.ﬁ' \k
1 Cour - - JT : :
iV :l w";:f.l
WiV L.U(Lh\ AN
!
Al

[“
§ Haa

eevcl

P

L

be

FI

]

AL VD 5

|
f}i 1A, f!

ﬂg_ e f s
na {EUMI VALY ‘uvi‘,{? y W
¥ ‘! {fi
i !

FANGE G ch: WA

na

.

i N N
'l/b'V‘s’{f"\fi/. /W{ 17)(,,;/\ﬁ a }.'i (ii"\

éﬁ \ﬂf .\I(\l_

-]O\/\I(:;.\f\w | onw Yoo

i@ﬁ\,ﬁg LLand §

) ol 5

one is valid..Total simulation.is.the only valid method for all cases.

The most characteristic feature of a general-purpose programming

language is recursion, in some languages confined to a special iteralive

form. The meaning of recursion can be given by allowing generatdens tobe QYS
apptied a countable number of times, thus generating infinite expressions,

or trees. Arecursively defined program unit

X=X

is then identified with its infinite unfolding. This gives a sort of
operational semantics for recursion,

In category theoretic terms, this is the “cofinal algebra” semantics.
Equality (or ordering) between trees can be defined in terms of the ordering
of all finite "prunings”, and so can he proved by induction (and must be,
because equality is no longer decidable). Thus the inductive proofs
establishing validity of data refinement will hold (I think) for recursive
programs too. Perhaps further research is called for here.

An interesting by-product of this research Is an understanding how a
category provides an algebraic semantics for a range of programming
languages, even those which include non-termination, non-determinacy,
higher order procedures, and a imited form of concurrency.

WL&!_Q._[_L i _n_‘»ﬁz'«_s.j[xf-’ : —*[9'6115". s

Introduction to category theory {for computing scientists)

- prescateqomy
We define a graphftobe a set G with two monadic operators (total
functions from G to G)

dormiain, denoted by prefix 5 g
Ylff"a‘.;'t> 3 Dy B Vv
codornain, denoted by postfix 7 o Téaay

<}
These operators bind even tighter than function application. They are
assumed to satisfy the following axfoms

(p>)> = p) = <(p>.)

{

1]
B

(((D) D ((D))

Consequently, both operators have the same range (image), whose elements

6

are known as identities. They are elsewhere called nodes or objects, and =~

they represent the data types of a programming language. In a procedural
language, they also represent the structure of the machine state or stack

during execution. They will be denoted by early letiers in the alphabet -
b, C,){ We also use the abbreviation

p:b->c means ‘p=b and p’=¢
It is easy to prove that

p is an identity
iff p’=p (orequivatently, ¢ = p).

A graph morphism is defined as a function from one graph to another,
provided that it preserves the graph structure; in other words, it
commutes with the domain and codomain operators

fp’ = (fpY and fp = (fp)
Clearly, a graph morphism maps identities to identities.

A category € is agraph together with a partial dyadic function known as
composition, and denoted here by infix semicolon, which hinds less tightly
than function application. The following axioms must also be satistied

p;t 15 defined if andonly if p° = g

(p;akir = pi(g;r)

4
0 o

p}p> = p = <p1p //./ \ f,\) L AALAST
If tdentities are taken to be n -)'(commands (e.g, "skip”), then sequential
composition in a normal programming language clearly satisfies these
axfoms. 1t is defined only“if-the type of the result of the first operand is
the same as the type expected initially by the second operand.

A partial order ¢ (pronounced "upward”} 15 defined to be a relation which
is reflexive, transitive, and antisymmetric. A partial order on a category
holds only between elements of the same type; and composition is
monotonic

pca = p’=q andp="°q
pcg = pregr and r,perq

Clearly, equality itself satisfies these axioms; and so does the converse of
¢, which will be denoted d and pronounced "downward”. We will
henceforward be concerned with categories orderedby ¢, 4, and =,
Conventional category theory is the special case where these three
orderings are the same.

Aretraction is defined as a pair (d,u) of elements of a category, where

d,u - (q = u) A f,‘-'f;_;,»f-“lf'\f-/“ /I_,!\ P
\

MDA
U;d fg <Ll‘ }__ ’d> R [P R -\ﬂ u“ff

*

Po”ow W\g;ﬂ
The ‘theorém shows that each element of aretraction uniquely

determines the other

Theorem 0. Let (d,u) and (e,v) bé retractions. Then
d=e iff usv

Proof: assume d=¢

because ‘u ¢ wd,d =<y, and composition is monatonic
<U;V ¢ (udhv = (uehv

by cancellation of fdentity
v ¢ (uehv

composition Is associative
v ¢ u;(ev)

(e;v) Is an identity and can be cancelied

v U

o)

The proof that ugv 1s similar.
The proof of the reverse implication is similarly simtlar
end of proof.

The next theorem shows that compatible retractions can be composed

Theorem 1. If {d,u) and (e,v) areretractions, and e’ =°d, then (e:d, uv)
s a retraction.

Proof: {e;d); (u;v)
composition is associative
=e; (dw;v
(d,w) is aretraction
= @; <d; Vv
cancellation of identity, and e’ = ‘d
=g; ¥
(e,v) is aretraction
=<e
The other half of the proof is similar, using inequations and monotonicity
of composition.
end of proof,
A total monotonic function F from category L to category M is said tobe

a functor (abbreviated F: L -> M) if it is a graph morphism that distributes
through composition

Fp;,a) =Fp; Fq

A functor from M to {tself s known as an endofunctor. The next theorem
shows that functors can be composed,

Theorem 2. Let H:M-> N, Then the composition HoF 15 also a functor
from L to N.

Proof: ((HoF)py
by definition of composition o of functions
= (H(Fp)Y
H isa functor
= H(FpY’
F Isafunctor
= H(Fp”)
definition of ¢
= (HoF)p’
The proof for *is similar. Now consider semicolon
(HoF Xp,;q)
definition of o
=H(F(p ; g)
F isafunctor
= H(Fp; Fq)
H is a functor
= H(Fp) ; H(FQ)
definition of o (twice)
=(HoF)p ; (HoF)g

end of proof.

10
Let F and G be tw® functors from L to M, and let t be a function from
the identities of L to the elementsof M. Thent issaidiobhea
transformation from F to G if its domain agrees with F and its
codomain with G
“b) = Fb and (tb) = Gb for all identities b in L

If furthermore

Fp:tp” ¢ tp:Gp forall p in L,
then t is called an ¢-simutation (abbreviated t:Fc G). A d-simulation
d:GdF isdefined similarly. Anatural transformation n is defined as a
simulation that is both upward and downward from F to G.
A total simulation from F to G isapair (d,u), where

(1) {db, ub) isaretraction in M, for all identities b of L

(2) u:FchG

(3 d:GdF

Either of the conditions (2) and (3) could be omitted, in the light of the
important theorem

Theorem 3. (1) = ((2)=(3)N

Proof: first assume (1} and (2)
d'p; Fp

Insertion of redundant identity, since “up’y = (FpY
d<p; Fp ; “(up”)

(d/ U} is aretraction, composition is monotonic agsk.
c. (d'p; Fp); (up’; dp”)

composition is associative

= dp; (Fp; wp”); dp’

i

by assumption (2) and composition is monotonic
(s:.\}l‘p; (up; GpY; dp’

/
composition is assoclative

= (d*p: u’p); (Gp; dp”)
assumption (1)

= Gp; dp’
The other half of the proaf(of (2} from (3) and (1))1‘3 similar.
end of proof.
This theorem greatly reduces the labour of using total simulations, because
it allows proof of the commuting property of only one of the simulations
say u. Thenif u is(for example) a total surjective function, it is Known
to have a unique partner d such that (d,u) is aretraction. S0 if U has
been proved to be an upward simulation, and is a total surjective function,
it is in effect also a total simulation.
A simulation is an appropriate method of connecting two functors, both
mapping a category L to acategory M. We now consider two functors
which map in opposite directions

V:L->M

U:M=>t

We define a method of connecting these two functors which witl be known

as arightward junction from V to U. it isa function © of three
arguments; the first is an identity in L, the second is an identity in M,
and the third is an element in L. The result of/ fs an element of M. The
defining properties of a junction are

0. If g:b—>Uc inL

then ©bcqg:Vb->¢c iIn M

D

1. 08’ (p;q;Us)=Vp;ep°‘sq;s
T

/ It p is an identity, property 1 simplifies to
ta. ©05°(q; Us) = 0%%sy; s
and if s is an identity

b e<r>q (p; Q= Vp,ep re

foran p,q in L and svm M oF‘ aFFro nat, t\1 FQ.,

e e e LS TR s

A eftwardjunctlon 9“ from U to V is defined °1m11ar1y
0. Ifr:Vb->c inM
then ©7bcr:b->Uc in L

e ps’(Wp;r;s) = p; 0 p sr;Us for an pinL andr, s m M

o e Type

If @~ istheinverse of 8, ie
O hc(becp)=p forall p inL
and @vc(®@"ber)=r for allr rin ™M

then the bijection (8,87) is known as an adjunction in category theory
Further V is called the left adjoint and U the right adjoint of the
adjunction.

Validity of simulation

Composition is the first and most important of the operations of category
theory, and it Is present as a generator in almost all programming
languages. Our first task is therefore to prove that it preserves the
validity of each of the three kinds of simulation. That means that a
simulation that has been proved to commute for all elements of the graph
Lo will stitl commute on additional elements of L, ie., the sequences

-obtained by repeated composition. As might be expected, the proof uses an
induction hypothesis that each operand of the composition satisfies the
commuting property.

13

Theorem 4. Introduction of composition maintains validity of each kind of
simulation.

Proof (for upward simulation).
Every new element is of the form p;q, where p’ = ‘q

F(p;a) ; u(p;@)”
F is a functor, and property of composition
= Fp;Fa;ug’
induction on g, and composition is monotonic cwa OAS 0 €4 c\J i:';*ﬁ
c Fp;u‘a;6q
composition is defined
= Fp; up” ; Gg .
induction on p, and composition is menotonic C‘v'\-'\f\ 0-A50¢C lCA“:V‘b'
¢ u'p; Gp; Gy
property of composition, and G {s a functor
= u(p; ; G(p;)
end of proof.
The domain and codomain of (p;q) are the same as those of p and q
respectively. So composition cannot introduce any new identities into the
category, and the definition of a simulation does not need to be extended.
Composition of simulations
A most valuable aspect of data refinement is that 1t may be applied
repeatedly in many steps throughout the design of a complex system. Al
each step, asimulation is proved to connect the result of the previous step

to the input of the next one. Assuming that ail simulations are of the same
kind, the correctness of the stepwise process is established by composing

the whole sequence of successive simulations inte a single simulation,
which connects the design of the first step tothe code of the Tast. This
composition is defined in the obvious way, and is obviously associative
(u;vb = (ub:vb) and (e;d)b = eb;db
where wWFcG, viGCH
e:HdG, & 6daF
Theorem S. u;v is asimulation of the same kindas u and v
Proof: (for upward simulations u, v) |
Fp; (uvp’
definition of composition of simulations
= Fp; up’; vp’
u fs upward from F to G and compdsiton s monotonic
¢ up; Gp; vp’
v isupward from G to H
¢ u'p;vp; Hp
definition of composition of simulations
= (u; v)°p; Hp
end of proof.
The composition of total simulations is defined
((d,u); (e,v)b = ((e;db, (U;vIb)
Theorem 6. The composition of total simulations is a total simuiation.

Proof. By theorem I, the composition is aretraction. By theorem 5, the
component (u;v) 1s an upward simulation. By theorem 0, (e;d) is uniquely

determined, and by theorem £ it is a downward simulation. ewnd of Fmof\,

3

14

A simple generator

We turn now to our main task of considering what functions on M can be
included into the programming language L, while preserving the validity of
data refinement, Consider a function t from the identities of M to the
etements of M, which has the following two properties:

0.th:b~>b

Lp;tp = t;
p,p p;p em:@

in other words, t is a natural transformation from the 2dentity@nctor o
jtseif.

An uninteresting example of such a transformation is the tdentity function
(tb = b for all b). A more interesting example s the function that maps
each data type to the abort command (on data of the same type) . Among
the many defects of abort is the possibility that in all initial conditions it
~ will fall to terminate, Property 1. is satisfied in Dijkstra's programming
language, because

p;abort = abort ;p

In words, a program which starts by failing to terminate is
indistinguishable from one which ends by failing to terminate.

in a category with zero morphisms, tb could be defined as Obb , the zero
morphism between b and b. This would satisfy the additional axtom

th:p = th;q forall p,q:b->b

This law is also true for abort in programming janguages, and so is the
law which states that abort is the worst of all programs

pctp:p foralip.

However, our main concern is data refinement, which does not rely on these
two additional Taws.

The function t canbe introduced into the programming fanguage with the
notation "t", which is designed to have the same typing property O as t.
Because of this, it cannot introduce any new identities into the language
(by Property 0, ("t'b)’ ="t"b => "t"b =b),

Theorem/, t preserves the validity of all kinds of simulation.
Proof. F("t"b); u("t"by’
functors distribute through generators, and property 0 of "t
= t(Fb); ub
u is atransformation from F to 6
= t4ub) ; ub
property t of t

Jf{ = ub ; t(ub)’

u is a transformation from F to G
= ub; t{Gh)

property 0 of "t", and G distributes through generators
= u'Ct'p) ; GC't"D)

end of proof.

A Tanguage like CSP contains commands for input and output, which have
results observable before the program terminates (or fails to do so).
Consequently, the aborting command (CHAOS) does not satisfy property 1.
However it has the weaker property that non-termination after performing
the inputs and outputs of p cannof be worse than immediate non-
termination. So for CSP, property 1 must be replaced by

p;tp” ¢ tp;p

This states that t is an upward simulation from the identity functor to
itseif.

This weakening invalidates upward simulation. But downward simulation
remains valid. The proof is the same as the one given above, except that
the equation justified by property 1 is replaced by the downward
fpequation. As aresult, total simulation remains valid. The reason 1s that

7

17

the downward component is valid, and the other component is still upward
because of the retraction property.

In a functional programming languagel(composition denotes functional
composition. If the 1anguage has a semantics based on lazy evaluation, a
function (such as a constant function) can be evaluated without evaluating
its argument. As aresult, it will terminate even when applied to a
non-terminating argument. However, the wholly undefined function always
fails. On the principle that failure is worse than any Kind of success,
property 1. has to be replaced by

abort ;p ¢ p,; abort
In such a language, the corresponding t s a downward simulation, and it is
downward simulation that is no longer valid. in a language which combines
the possibility of non-termination, a lazy evaluation strategy, and

synchronised comgfmunication, neither of the above inequations will hold;
and data refinement proofs will be more difficult.

Functional generators

The t introduced in the previous section was defined only on the identities
of L, Wenow consider a monotonic function f defined on all elements,

subject to the distributive properties
0. fp: p->p’
1. flp;ar) = pifar

In other words, f isa junction from the identity endofunctor to itself.

Thcstem Introduction of such an "f* preserves the validity of atl kinds of

simulation. As before, the proof considers only elements of the forim "f'p,
but now it is necessary to use the inductfon hypothesis that d isa
simulation of the same kind on p .
Proof(for downward simulation).

G("f"p) ; d("f"p)’
functors distribute through generators, and property O of "f”

= f(Gp) ; dp’

property 1 of f (the missing component is an identity)
= f(Gp; dp”)
induction on p, and f is monotonic
d 1% ; Fp)
property 1 of f
= dp; f(Fp)
property 0 of "f", and functors distribute through generators
= QCTp) S FCP)
end of proof (for downward simulation),
If f 15 afunction that somehow worsens its argument, it may be better to

postpone the application of f as long as possible. Thus property 1 should
be weakened to the chained inequations

p;fag c fip; ¢ fp;q

This weakening invalidates upward simulation but not downward or total
simulation. The proof s the same as that given above, except that the lines
justified by property | are replaced by inequations.

Similar reasoning applies to a dyadic function ¢, defined on pairs of
elements with the same domain and the same codomain. An example of
such a function is the non-deterministic or of a language such as CSP. This
allows an implementation to make an arbitrary selection between the Two
operands. The distribution law is usually written in infix form

pAlgorr)s = (p;q;8) or (p;r;s)

This law states that it makes no difference whether the selection 1s made
before execution of the first operand of a composition {(e.g, at compiie
time), or whether it is made (at run time) after execution of the first
operand.

19

Functorial generators

we now consider functions which obey a different set of distribution laws,
namely the same laws which define a functor

0 fp:fép - fp’

b flp,q) =fp; fq
The interesting feature of such generators is that when applied to
fdentities they generate new identities. So we need to decide how Lo
extend the definition of simulations, when applied to these generated
arguments. This is done in the usual way by defining them to commute with
the generator “f* in L

u("f"by = f(ub) and d("f"b) = f(db) for all identities b in L
TheorenS. For a total simulation, this preserves the retraction property
Proof. d("f"b); u(*f"b)
by the definition given above

= f(db) ; f(ub)
f isafunctor

= f(db ; ub)
by induction - (d,u) is a total simuiation

= f(Gb) |
G s a functor, and distributes through generators

= G(""b)
The other half of the proof is similar, relying on monotonicity of f.

end of proof.

TheoremlQ. A functorial generator preserves the validity of all kKinds of
simulation.

A i i b (’;fj}
hifoe O (<§) e f ((’\ a:A) 20

1

é‘f;ﬂ b < nb For b on ns \joe,aw ek L\V\p

Proof. (for upward simulation) {_Q 3
ARV

e (o o
FCTP); uCrpY /) - (F M @WG ﬁ) %L))\
LA _ j L

by distribution through generators, and property O of "f* U f s 4__{(;» nw [HALS LA
}

= f(Fp) ; flup”) & (\f,lf']W) &(]2}%‘1 L /;

f {s afunctor _
" 103 g) | 0. Bl
P, up (w(\:} - ﬂ“i {; Al

f is monotonic, and induction hypothesis | 4, 0! bois o

¢ fu'p; Gp) - f('L!s,n fu ' @ €Q>

by a mi t . -)
y a mirror argumen . iD R \?_ é - {H])

= u'Cfp) ; GU'Ep)
The proof for a downward simulation is similar.
end of proof.

Stmilar arguments apply to a functor g with two parameters (known as a
bifunctor), which is defined to satisfy the distribution laws

0. “gpw) =g p g and (gpgy = gp’ @
. g(p;q) (r;s} = gpr; gas
A simple example of a bifunctor is one that selects one of its operands
Gpg =p forall q
Proof:
“Gpg) = p = G'p‘q (and similar for ”)
Glp;g)r;s) = = 0pr; Gas

end of proof.

t}/

...__F_,\
gy o

A bifunctor may be converted to a single functor in any one of three ways
(1) fixits first argument to an identity
(2) fix its second argument to an identity -
(3) identify its two arguments with each other
Proof: (1) let fg=g¢bg. Then
) = (gbe) = gb%q = gbq = g ete. (owwl Swwt‘cvf p"*‘ >>
fip;0) = gb(p;@) = glb;bXpa) = gbp;gba = fp;fq.
(3) Let fp=gpp. Then
“tp) = “(gop) = gp = fp ete (cwxcl swv\\&w\‘“ (v >>
;@) = glpaXp,a) = gpp; gag = fo;fg
end of proof.
fn fact, a functor in any number of variables taking values In a variety of
categories, can be defined by composing any number of functors applied to
those varfables and to fdentities.
Simulation generators
The arguments In the section on zero morphisms generalise Lo simulations

between any palr of functorial generators. For example, let t be a

generator which is an upward simulation from functorial generator f toxq
L

Theorem [t preserves the validity of downward simylatiop, } _
Dt D)
Proof, dC"t"d) ; F("t"b) P

"{" is atransformation from f to ¢

= dC"f"b) ; FCL™D)

b
)

AN . 1”“’.‘:‘
- n A OARAVRAN
ST

distribution through generators
= f(db) ; t(Fb) f@ng\) } {,CQ:E{@
d is atransformation from G to F | o
= f(db) ; t(aby’
t isupward from f 1o g
¢ t%db); gldb)
by a mirror argument
= 60"t"D); d("t'b)
end of proof

Corollary. A natural transformation, being a simulation tn both directions,
preserves valtdity of all types of simuiation.

A similar argument applies to a simulation t between bifunctors and g,
which have the proper{ies

0. the : fbe -> gbe
1. fpg;tp’q ¢ t9%q; gpg

The definition of simulation is extended as usual to newly generated
elements by distribution

u(“t"he) = t{ubXuc)

and all proofs go forward as before (i hope).

Discriminated Union

A familiar and useful example of a bifunctor is the one that forms the
discriminated unton (b + ¢) of two data types b and ¢. This is
sometimes known as the direct sum (in set theory), coproduct (in category
theory), and appears as a variant record in PASCAL. A data vaiue of type
(b + c) isapair (tag, x), where

O
(0

either (0) tag=0 and x isof type b
or (1) tag=1 and x isof type ¢

If p:b=b and @ c->c',then (p+ @) represents a case statement which
firsts tests the tag; if the tag is zero it executes p, or if the tagis 1 it
executes . The result of either execution is then tagged with the same
value as initially. This gives aresult in the right type, namely b+ '),
But the tags are just representation details; they should be ignored in the
mathematical theory.

The discriminated union provides a convenient method of modelling the
familiar conditional construction of a programiming language, For example,
the test "even” , which tests whether a number {s odd or even, can be
regarded as a function from the natural number type IN to the disjoint
union IN+ IN. When applied to an even number, 2n, tts result (0, 2n) s
the same number tagged as the first alternative of the discriminated unfon,
whereas an odd number {s mapped into (1, 2n+1), the same nurnber tagged
as in the second alternative. To halve a number if {1 is even, or add one if
it is odd, can be achieved by the composition

even; (halve + succ)

But it 5ti1l remains to map the result of this conditional from the
discriminated unfon (IN + IN} back to the single natural number type IN.
For this we need for each type b, a "merge” operator symbolised by Vb,
which maps a disjoint unton (b +b) onto the type b, simply by forgetling
the tag which determines from which of the two (identical) types its
argument has originated. Thus to achleve the effect

if even{x) then x:=x/2 else x=x+1 fi
the conditional described above should be completed as follows

even; (halve + succ) ; VIN
If p maps b to b, p may be applied after the merging operation Vb, or
it may be applied to both alternatives before the merging operation Vb';
the final result of each of these applications will be the same. Thus

merging satisfies the algebraic law

Tp;p=(h+p ;v

Theorem 2 The merging operator preserves all kinds of simulation.

Proof: The algebraic law states that V is a natural transformation
between the identity functor and the functor that maps p onto (p+ p)
end of proof.

In a programming language, there are two extreme conditions for each pair
of types b and ¢

tbe (meaning true) which always selects the first alternative (of type b)
6

fbc (meaning false) which always selects the second alternative Séype ¢)

Thus if {p+ @) is executed after tpq, the first alternative p is
invariably selected; softhe effect 13 the same as if p had been appl d

beforehand / AN \rﬁ } Ans asd, f T A]J iﬂn fJ {b >E}j\n s \, 7 ﬁ! "I(-j,/",‘?j\f.-??,"'f’},{f'\.ﬂ/‘
tpéa; (prq) = p; 0’0
Similarly

n

Fpa; (p*q) = q; ¢

These preserve validity of all kinds of simulation, because they are natural
transformations from the bifunctor which selects one of its operands {o
the dgiscriminated union bifunctor.

Here are additional laws which connect true, false and V
thb; Vb = b = fbb; Vb

They are not necessary to the validity of data refinernent.

Cartesian product

Another familfar and useful example of a bifunctor is the one that forms
the cartesian product (b x c) of two datatypes b and c¢. Thiseffect is
achieved in PASCAL by a record declaration. A data value of type (b x ¢)
{s an ordered pair (x,y) where x isof type b and y (sof type ¢. If
p:h->b" and qc->¢’, then (p x @) is a command which executes p on the
first component of the pairand g on the second component. The result is

b,

just the pair of results produced and so has the type (b’ x). Since the
components of a pair are disjoint, p and g can be executed serially in
either order, or even concurrently. But that is an implementation detail,
and can be ignored in the theory.

A frequently required operation on pairs is the selection of the first or
second component. In PASCAL this is done by field names, and in LISP by
car and cdr. We choose to make the types of the components explicit, and
so introduce a pair of operators for each pair of data types b and ¢

Tbe : bxc—>b

TT{)C: bxc-»>c

with the intention that
TRX,y) = X
F A
and TI(Xy) =V

In category theory this intention must be expressed without mentioning
individual values X and y. The required laws are mirror images to the
Jlaws for true and false described in the previous section

(pxq ;™ = Tpa;p

4
exa; T = 9% q

The left hand side of each equation describes the application of p o the
first component, and the application of g to the second component of a
pair; this is followed by discard of one of these results. The right hand
side describes the more efficient program which discards the unwanted
component first, and the performs only the appropriate operation. |t seems
reasonable to postulate that this optimisation does not change the meaning.
of the program. .

@ '??555-1.{‘6*.-@4\mﬁi@;\;@
But in manyﬁ(ah‘guages the &quation does not hold. Suppose that the
calculation oﬁ the discarded alternative rails to terminate. Then the
execution of the left hand side may also fail to terminate. The right hand
side does not involve an operation on the discarded alternative, and will
therefore terminate in cases that the left hand side will not. This means
that the right hand side in general can only be better than the left hand

And

side, and 50 the optimisation mentioned in the previous paragraph is still
valid. This is expressed mathematically by inequations stating that the

selectors are downward simulations from the product bifunctor to the [

bifunctor that selects one of its operands

fp b) ') T2 1)

v Xa); TD>Q> ﬁ T|<D<Q ;D A\ \) M\{’} woe W

’>>‘3\i'<< U X -
(pxq); TH’a” d T'p°a;q l

The stronger equations, of course, rematn true for a "lazy” functional
language, in which no result is computed until it is known 1o be needed
However, this apparent optimisation usually involves some run-time
overhead, which is not acceptable in a procedural language.

Selection gives a way of passing from a product type to one of its
component types. We now need a method of passing from a component type
to a product type. Mathematically, the easiest way of doing this is by the
mirror analogue of V¥, which will be denoted

Ab:b->bxb

When appited to an ¥ of type b this produces the pair (x,x) consisting
just of the two copies of x. Ina language without an updating assignment,
this can be done very cheaply by copying pointers. In a procedural

environment like that of UNIX, A corresponds to the fork by which parallel

et

processes are generated. This involves copying the entire machine state, wi c\\ oM

world itself, and each person who lives in it. But mathematics has no
concern with these practical detatls.

The meaning of A can be given (without mentioning components) by the
mirror for the law for V

8 (oxp Z p; ap

The left hand side describes the construction of a pair of identical values
followed by the application of p to each of them. The right hand side
describes the more efficient technique of applying p to the single value
before taking the copy.

But in a programming language which permits non-determinism, the effect
of these two executions is not always the same. If p isnon-
deterministic, the two occurrences of p on the left hand side may produce

ere are some things in the world that cannot be copied, for examplé, the

1‘ ~}>€_ ?”cl{ L"Q\r

4

@'\swt

27

different results, even when starting with the same value. However, equal
results of the left hand side are still possible (by chance, say). So the left
hand side can only be inferior in the sense that it is more
non-deterministic. The right hand side is still a valid optimisation, as
expressed by the upward simulation property

p;ap” & A (pxp)
This means that upward simuiation by itself is no longer valid in a language

which permits both copying of abstract data-types and non-determinisrm,
and total simulation has to be used.

Contravariance

Let us consider now a function h which satisfies the following
distribution laws

hp - hp> -> h<p

NMp:q) = hg; hp
Because distribution of h through composition reverses the order of the
operands, it s known as a contravariant functor (in contrast to the norimal

covariant kind). The familiar converse of arelation Is a confravariant
functor)

The Introduction of such a functor as a generator into a programming

language maintains the validity of total simulation. However, the

extension of (d,u) to the newly generated elements of L needs to be

defined In a similar contravariant fashion -
(d,u)"h'bY = (hiub),hldb))

Such a definition is not possible for separate upward and downward
simulations, which are invalidated by a contravariant generator,

Theorem 13 The extended definition given above s still a retraction
Proof. d("h"b) ; u("h"b}

by contravariant distribution through generators

D
<0

= h{ub) ; h(db)
by contravariance of h
= h(db ; ub)
(d,w) is a retraction
= h{Gh)
functors distribute through generators
= G("h"D)
The other half of the proof 15 similar
end of proof
Theorem [A Contravariant functors maintain validity of total stmulation
Proof: (for the upward part)
FC'h"p) 5 w("h"pY
distribution through generators (contravariant for u)
= h(fp) ; Nd‘p)
contravariant distribution of h
= h(d*p ; Fp)
by the induction hypothesis, d: G dF and monotonicity of h
¢ hiGp ; dp’)
by a mirror argument
= y¢’C"h'p) : GUh'P)
end of proof

The arguments given above apply also to contravartiant bifunctors. But a

/

(

-,

29

more interesting kind of bifunctor is ene which is contravariant in one
argument (the first, say) and covariant in the other

hpa : hp”*g -> hpg’
h (p;a) (r;5) = har; hps

The introduction of such a functor as a generator maintains validity of
total simulation, provided that this is extended to distribute through "h"
in a similar mixed fashion

(d,u) ("h"bc) = (h{ubXdc),h(db)(uc))

The proofs (I hope) are a mixture of those given above.

A natural transformation between such bifunctors .would satisfy the laws
nbc : hbe > jbe

hpg ; n‘pa” = np”“a; Jpa

Junctional Generators , '
WA N W|w secj—lo\’\

A functional generator was defined,gs one that admits distribution from
both sides by composition. It is therefore a special case of a junction from
the identity endofunctor to ftseif. It preserves validity of ali kinds of
stmulatfon. This is a property enjoyed by all junctions.

Theorern 15.Generators which are junctions preserve validity of all Kinds of
simulation, gl -
e ! A bwwb‘{/ L(,H % A :?\
Proof: Let ¢:b—>Uc /

and'so @bcg: Vb ¢

s
{/; Y,

hote: U(dc) = d("U‘fE')/= a7, emd o Fon ot?,

G6("0"beg) : d("0'beg)”

—

/

distributjfunctors) hrough generators, and property 0 of "@"

= B(6O)GCXGA) ; de

dc . Ge -> Fc, and property | of ©
= @(GhYF X6y ; Uldeh
see note above

= B(Gh)FCXGq ; do’)

d is downward, monotonicity

¢ OCbXFcXdb ; Fg)
property 1 of © and db:06b->Fb

= V(dh) ; &(FhXFCXFq)
distrinution of generators Y vl he genni i

ff . J

= d("V"p) ; F("@"beq)
property 0 of "@"

= 4'"8"beq) ; FU'e'bey)
end of proof.
Higher order functions
An useful example of a bifunctor of mixed variance is the one that forms
from data types Db and ¢ the exponential data type (b => ¢). s vaiues
are functions from b to ¢, inthat they take a single argument of type b
and deliver a single result of type ¢. If p:b=>b" and q:c—> ¢, then
{p=>q) is afunction which takes as argument a function f:b' -> ¢, and
has as its result the composed function (p;f;q), or in standard notation
(qofop). Thisresulting function itself expects an argument of type b

and gives a result of type ¢ . in familiar lambda-notation, the exponential
can be defined as the higher order function (functional)

(p=>qg) = Af (D =c).(A:b.glf(px))

The mix-variant functorial property of => canbe proved from this

T 4
i

definition, by showing the equality of the two sides of the equation when
applied to an arbitrary f.

Proof. ((p=>q); {r=>s)f
beta-substitution in the first function of the composition

= {r=>8) {p;f;q)
beta-substitution in the second function

= rp,fas
def"imtion of =»

=((F;D) => (Q;S)) (-
end of proof
Consider a fupction f:bxc > a, which takes a pair of arguments. The
curried version of f 15 the same as f, except that {t takes its arguments
one at a time. Thus (curry f): b -> (¢ => a) 1s a function which expects an
argument x of type b, and delivers as result another function from ¢ 1o
a. When this latter function is applied to an argument vy in b, it delivers
the same result as f does when applied to the palr (Xy). More simply, in
symbols

(Ccurry xdy = f(xy)

The currying operator has an inverse called "upcurry”, Consider a function
g:b->{c=>a). Then

uncurry g:bxc->a
(uncurry giXx,y) = (gxly

it follows that

——

g

f Lz(.&s. o Qo\{\p&‘ﬁh‘\’\; (w\ﬁ\

AT 2o og Yo 0T
In category theory’ffhe currying operator is represented by a new kind of
junction C, with four arguments instead of three. 1ts defining properties

curry(uncurry ¢)

uncurry(curry)

T
L

ore - .0 bc:,,:i G

O‘Cbcaf:b—>(c=>a) forf:bxc/>a __
P I 1 LA f‘ S

L CPartoxa); £51) = p; COE Rt (o)

'
!
[NEAFEE

Perhaps we should check here that the lambda-definition o'f curry has these
properties.

Theorem/é. The introduction of the currying operator maintains validity of
total simutation.

= f L. a
bAs } e Ll

Proof.

Note 0. by property O of "C" and mix-variant distribution of simulation

u("C"bcaf?= u(c=ra) = {(dc => ua) :
Note 1. (Fbx dc); ub x ¢) 1) e
\.' ;-&[
F \
. iy T 5 i
distribution laws for u and X (__,_, ohr (PX 1@,) = i)
= (Fb,ub) x (dc;uc) . 5
) f m:f‘ 1 < %??{f; E“ SN0
Py P P e
Fb = “ub and (d,u) 1s a retraction s Fy
= (ub x G¢) P i (N
- {“) P D 0 B e’")
end of notes. K '
Y A S A N IR
' ISR B AR R
Consider first the upward simulation P }

F("C"beal) ; u("C'bcaf)
distribution, note O, and introduction of identity Fb ” ’ L
= Fb ; C(FD)FC)Fa)Ff) ; (de => ua) sab = (__,,,((,\x‘o\) 0\.(&}5@
dc: Ge->Fc, ud:Fd-> Gd and property 1 of C | |

= C(FDXGCXGaY(Fb x dc) ; FF ; ua) S

f?=a,u:Fc6 andmonotonicity of everything

c C(Fb)(Gc)(Ga%(Fb xde) ;uth x ¢y 6f) ﬁ
note 1 and introduction of identity Ga
= C{FbXGCXGaX(ub X Gp) ; Gf ; Ga) (1/
ub: Fb > Gb and property 1 of C
= b ; CIGbXGCHGaXGT) ; (GC => Ga)
property 0 of C and cancellation of identity
= u{“C"bcaf) ; 6("C"bcarl)
Now constder the downward simulation
G("C"beaf) ; d("C"bcaf)

............................

end of proof ‘ ‘ . S o
The wv\cwwuw_a JWV\&hIM Lo LL bfﬂ&‘&a SLW\JWAV’

Conclusion

What does it all mean? Why do the algebraic proofs work out so neatly?
what is the good of {t all? | should be most grateful for answers to these
questions.

