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Abstract

Gordon Plotkin has shown how the operational semantics of a programming
language can be presented in an elegantly structured style. Robin Milner has pio-
neered the use of various kinds of bisumulation to obtain a range of more abstract
gsemantics of a language in the form of algebraic laws. The laws can then be used
more widely in practice to reason about specification, to transform designs and to
optimise programs.

In tribute to Robin Milner, we reverse the direction of the derivation, Starting
with a sufficiently powerful collection of algebraic laws, we prove the correctness of
an operational interpreter of the same language. The proof takes full advantage of
algebraic reasoning based on the laws. The technique is illustrated on a sequential
non-deterministic language suggested by Dijkstra.

1 Introduction

Professional practice in a mature engineering discipline is based on relevant scientific
theories, usually expressed in the language of mathematics. A mathematical semantics
for a programming notation aims to provide a scientific basis for specification, design and
implementation of computer programs expressed in that notation. The goal is to improve
the cost, quality, and duration of software engineering projects. Unfortunately, in the early
stages of a new science, such worthy goals are sometimes obscured by irrelevant factors
such as notational variations, which divide the research community into rival schools,
obscure the proper structuring of the subject into its branches, and delay the general
progress of knowledge by effective collaboration of a large body of scientists.

The study of program semantics may be rationally structured into three main branches,
differentiated by their style of pregentation. The denotational style relates each program to
a description of its observable properties and behaviour when executed. This style is most
directly applicable to capture of requirements, and the correctness of specifications and
designs, even before the program has been written. The process languages CSP and occam
have been given a semantics in this style by Bill Roscoe and his colleagues at Oxford [2,
4, 5]. The algebraic style characterises a programming language by a somewhat complete
collection of equations which are postulated to hold between programs. These can be used
directly to reason about specifications, to transform designs, and to optimise programs for
efficient execution. The process language ACP (1] has been defined primarily in algebraic
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style by Jan Bergstra and his colleagues in Amsterdam. The operational style [11] gives
meaning to a program by showing how its execution can be split into a sequence of atomic
steps performed by a simple abstract mechanism. This gives an essential insight into the
efficiency and even the computability of the language. An operational semantics is the
starting point for the process notations CCS [9], designed and explored by Robin Milner
and his colleagues at Edinburgh.

One of the main inspirations of scientific research is the pursuit of simplicity. And simple
theories are also easier to use in engineering practice. So the notations selected to illustrate
a given semantic style will naturally be chosen to simplify their semantic treatment in that
style. The selection may be subtly or deeply different from a selection made to optimise
definition in a different style. In natural science, such conflicts would be subjected to the
decisive test of experiment. In computing science, no such test seems possible; and to
a superficial view, differences in notation are taken as a symptom of the immaturity of
the subject; meanwhile, practising software engineers continue to use notations with no
semantics or underlying theory at all,

The best way to resolve conflicts which are not amenable to experimental test is to prove
that they do not exist. For example, the physical theory of gravitation may be presented
in terms of Newtonian force acting at a distance, or in field theory, or by Einsteinian
geodesics; and all of these are provably equivalent. In mathematics, a topology may
be defined equivalently by a family of sets, by a neighbourhood system, or by a closure
operator. Scientist and mathematicians will be equally familiar with all approaches, and
will use whichever presentation is easiest for the purpose in hand. (Of course, this does
not prevent arguments about teaching syllabus design.)

To follow the example of mature disciplines, any programming theory recommended for
practical use should be presentable in many different styles, thereby combining their indi-
vidual distinctive advantages; and the theorist should guarantee that they are equivalent.
Ideally, all the presentations should be equally simple, and even the proof of their con-
sistency should be accessible and elegant. An inspiring example is the correspondence
proved between CCS modulo bisimulation and the Hennessy—Milner modal p-calculus. In
tribute to Robin Milner, this paper makes a similar connection between an algebraic and
an operational style of presentation.

The notation chosen is simple and non-controversial. It is essentially the sequential
non-deterministic language introduced by Dijkstra to explore the Discipline of Program-
ming {3]. It already has a denotational semantics in terms of predicate transformers. It
already has an algebraic semantics very similar to that of the relational calculus. It is not
difficult to write down the obviously intended operational semantics; the only challenge
is to prove its correctness in an elegant fashion, one which may be generalised to more
complex languages in due course.

In Section 2, we summarise a selection of the algebraic laws that are presenfed as the
algebraic definition of the language. These laws support inequational reasoning, using
a partial order, representing a refinement or improvement relation. The easiest way to
derive an operational semantics is to show that the final state of each operational step is
an improvement on its initial state. Because improvement is transitive, the final state of




the whole computation (i.e. its result) will be better than its initial state, the one which
contains the whole program loaded for execution. This approach is worked out in Section
3.

Unfortunately this approach guarantees only partial correctness, ignoring both deadlock
and non-termination. The proof of total correctness is given in Section 4, using an ap-
proach that has often been used in proof of the correctness of an implementation of
functional programming languages. First, the executing mechanism is defined by means
of an interpreter written in the language itself. This is an obviously isomorphic presenta~
tion of the operational semantics. Then the interpretation of the text of any program is
proved to be equal to the meaning of the program itself {or perhaps an improvement of
it). The proof is conducted exclusively in the higher conceptual level of the programming
language, avoiding more operational modes of reasoning. A similar technique has been
applied in the ProCoS project to prove the correctness of a translator to machine code [7].

2 The Language and its Algebraic Semantics

The programming language contains the following operators:

L abort

7 skip (do nothing)

T, Yy 2 =6 fyeny g multiple assignment

P:Q sequential composition

PNQ non-determinism

Pabr@Q conditional: if b then P else Q)
uXeP recursive program X with body P

In addition to the above, the following operators will be used for reasoning about the
correctness of the operational semantics:

var v declaration introducing variable v
endv end the scope of v

b agsertion: if b then II else L

Oics b — p guarded command set

Usually, guarded command sets allow the expression of arbitrary non-determinism of
guarded commands: one, many or even none of the guards may be satisfied. Here we will
use a guarded command set in a more restrictive way: exactly one of the guards will be
satisfied at a given state. A formal way to express this fact is to require that the latter

operator above satisfy

Viesbi = true conditions are exhaustive
Vi,j€ S |i#jebiAbj = false conditions are pairwise disjoint
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These two conditions will be assumed in any future use of the guarded command set
operator.

The algebraic semantics of our simple programming language is given by a set of laws
(equations and inequations). In the reminder of this section we present a selection of
algebraic laws which will be used to prove the correctness of an operational semantics for
our simple language. A complete set of laws for Dijkstra’s langnage is given in [8]!. To
easy future references, we associate both a number and a name with each law.

skip, Abort and Sequential Composition

The execution of IT always termiinates and leaves everything unchanged; therefore to
precede or follow a program by IT does not change its effect.

Law 2.1 (I[; P) = P = (P;II) {(;~II unit)
To precede or follow a program P by the command L results in abortion.

Law 2.2 (1;P) = 1 = (P;1) ;1. zero)
Sequential composition is associative.

Law 2.3 P;(Q;R) = (P;Q); R (; assoc)

Non-determinism

The operator M satisfies many useful laws: it is associative, commutative, idempotent and
has L as zero. In addition, sequential composition distributes through non-determinism.

Law 2.4 (— dist)
(1) P{(QNR) = (PQ)N(P;R)
(2) (@NR}P = (4 P)N(R; P)

The Ordering Relation

Equational reasoning is usually rather limited for some applications of program trans-
formation. It has become standard practice to introduce a refinement relation: P C @
means that ¢} is at least as good as P in the sense that it will meet every purpose and
satisfy every specification satisfled by P. Furthermore, substitution of ¢} for P in any
context can only be an improvement. '

We define C in terms of M. Informally, if the non-determinism of P and () always yields
P, one can be sure that P is worse than @ in all situations.

1The set of laws is complete in the sense that they are sufficient to reduce any finite (non-recursive)
program to a normal form,




Definition 2.1 (The ordering relation)
def
PLQ = (PNQ) =P
=

The relation C is an w-complete partial ordering: it is reflexive, transitive and antisym-
metric, and if P; C Piy, for all ¢, then the sequence has a least upper bound satisfying

Law 2.5 L, PiCQ = VieP,CQ (C—1) lub)
Moreover, C has L as its bottom element and M as the greatest lower bound.

Law 2.6 LCP {C —L bottom)
Law 2.7 (RCPARLCQ) = RC (PNnQ) (C—n glb)

In order to be able to use the algebraic laws to transform subcomponents of compound
programs, it is crucial that P C @ imply F(P) C F(Q), for all contexts F' (functions
from programs to programs). This is equivalent to saying that F' (and consequently, all
the operators of our language) must be monotonic with respect to C. For example:

Law 2.8 If P C @ then
1) (PNR)C(QNR) (" monotonic)
(2) (B; P)C (R;Q) and (P;R) C (Q; R) {; monotonic)

A stronger property of sequential composition will be used in our proofs: it is continuous,
i.e., it preserves the least upper bound of ascending chains.

Law 2.9 P; U,Q; B = Ui(P; Qs R) (C — continuous)

Guarded Command Set

If the same program () is guarded by all the conditions of a guarded command set, we
can be sure that P will be selected for execution. (Recall that we have enforced that the
conditions of a guarded command set are exhaustive).

Law 2,10 (Oiesh; - Q) = Q (O idemp)
Sequential composition distributes leftward through a guarded command set.

Law 2.11 (DiGS b,; -3 R), Q = DiES bi — (Pi; Q) (;—D leftdist)




Conditional

The most basic property of the conditional is that its left branch is executed if the con-
dition holds initially; otherwise its right branch is executed. This suggests that any
conditional can be written as a guarded command set.

Definition 2.2 (Conditional)
PabpQ) ¥ p>PO-b-Q)
|

The next two laws follow directly from the above definition and the laws of guarded
command sets.

Law 2.12 (P true > Q) = P = (Q< false 1> P) (< b elim)
Law 2.13 (P<4b Q)R = (P;R)<d b > (Q; R) (— < b left dist)
Assertion

We will use the notation b, to stand for an assertion. It behaves like II if b is true; oth-
erwise it behaves like L. Clearly, an assertion can be defined in terms of the conditional.

Definition 2.3 (Assertion)

b ¥ (rab 1)

|
We can always determine which command will be selected for execution provided we know

which guard holds beforchand. This law relies on the two conditions we have imposed on
a guarded command set: the guards must be exhaustive and pairwise disjoint.

Law 2.14 If j € S then
bi i (Ciesbi = P) = by P (O elim})

If an assertion of a condition b is guarded by bitself, this assertion has no eftfect whatsoever.

Law 2.15 Oicsb; —= (b P) = Uies by = F; {void assertion)




Assignment
Obviously, the assignment of the value of a variable to itself does not change anything,.
Law 2.16 (z:=2) = II (:= skip)

In fact, such a vacuous assignment can be added to any other assignment without changing
its effect.

Law 2.17 (z,y:=¢,y) = (z:=¢) (:= identity)

The list of variables and expressions may be subjected to the same permutation without
changing the effect of the assignment.

Law 2.18 (z,y,z:=¢, f,9) = (y,z,2:= f,e,9) (:= sym)
The following abbreviation will be helpful.
Definition 2.4 (Substitution) Let f(z) be an arbitrary expression possibly containing «

as a free variable. We define that to precede this expression with an assignment z := e
results in f(e), that is, f with z replaced by e:

(@ :=e /@) £ fle)
| |

The sequential composition of two assignments to the same variable is easily combined to
a single assignment.

Law 2,19 (z:=¢;z:= f(2)) = (z:=(z:=¢; f(x))) = (z:= f(e))
(:= combination)

Assignment distributes rightward through a conditional, replacing occurrences of the as-
signed variables in the condition by the corresponding expressions.

Law 2.20 2 :=¢;(Pdb Q) = (z:=eP)da:=¢bb (x:=¢Q)
(= — < I> right dist)

An assignment of a value to a variable & may be eliminated if this assignment is preceded
by an assertion that z already holds that value.

Law 2.21 (z=¢)1;(z:=¢) = (z=1¢)1 {void assignment)




Conditional expressions
We will use the notation
Bics bs — €5

to represent a conditional expression which behaves like the expression e; whenever the
guard b; holds. The same restrictions imposed on guarded command sets will be assumed
here: exactly one of the guards will hold at a given state.

We define a conditional assignment as a particular kind of guarded command set.

Definition 2.5 (Conditional assignment)

z = (Oies b — &) o (Cies b = (x:= ¢y))

The following law allows the elimination of a conditional assignment whose expressions
are constant values.

Law 2.22 If 2 is not free in P and, for each 7 € S, the expression ¢; is a constant value,
then
(= Oiegb; = ¢;); Py (= Dieg by = ;) = P; (2= Oges by — )

{void cond assignment)

It is useful to have means of transforming conditional expressions directly. They satisfy
laws similar to those of guarded command sets. For example, conditional expressions are
idempotent

Law 2.23 (Diesb; —€) = e (cond exp idemp)
and allow the use of information about the guards in guarded expressions.

Law 2.24 If none of ¢; contains = as a free variable then

Oies (2 =¢;) = filz) = Oies(z =€) = (x:=¢; filx)) =
Oies (z =) — fi(es) {cond exp substitution)

Recursion and Iteration

A recursive program X e F(X) is defined as the limit of the ascending chain F°(L1) C
FY1)C... where:

FO{(X)=X and
Fr(X) = F(F*(X)), foralln>0.
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Definition 2.6 (Recursion)
def i
JU,X.F(X) = LLF (_i_)
o

Algebraically, recursion can be characterised by the following well-known fixed point laws.

Law 2.25 uX e F(X) = F(uX ¢ F(X)) {1t fixed point)
Law 2.26 F{(Y)CV = uXeF(X)CY (12 least fixed point)

Iteration can be defined as a special case of recursion:

Definition 2.7 (Iteration)

(b* P) Y ouXe((P;X)<b > II)

[

Therefore it is possible to prove (rather than just postulate) the properties of iteration
given below. All these properties are special cases of more general theorems stated and
proved in (7).

If we know that the condition of an iteration is true beforehand, we can unfold this
iteration in the following way.

Law 2.27 If z is not free in e then
zi=e;(z=e)xP = z=¢;P;(x=¢)xP {+ unfold)

If the execution of P always establishes z = e, then the iteration behaves like abort.

Law 2.28 If (P;z:=¢) = P and z is not free in e then
z:=eg{rz=e)xP = 1L (* abort)

On the other hand, if the condition is false beforehand the iteration has no effect.

Law 2.29 If z is not free in e then
z:=¢{t#e)xP = (z:=¢) (% elim)

The following law allows the combination of loops with the same body.

Law 2.30 (bAC)*x P; (b P) = (bxP) (* combination)




Variable Declaration

The declaration var z,y,.. .,z introduces the variables z,y, ...,z for use in the program
which follows, The undeclaration end x,y,. ..,z ends the scope of variables z,y,...,2. If
P is a program and z is a variable, we say that an occurrence of = in P is free if it is not
in the scope of any declaration of z in P, and bound otherwise.

It does not matter if variables are declared in one list or singly; nor does it matter in
which order they are declared.

Law 2.31 (dec comm)
(1) (varz;vary) = varz,y = (vary;varz)

(2) (endz;endy) = endz,y = (endy;endz)

The scope of a variable may be increased {(or reduced) without effect, provided that this
does not interfere with other variables with the same name.

Law 2.32 If z is not free in P (dec change scope)
(1) P; varx = varz; P

(2) endz; P = Pjendz

Declaration distributes through guarded command set, as long as no interference occurs
with the conditions.

Law 2.33 If o is not free in b;, forall1 € S
varz; (Dieg b; — P)jendz = Oiegb; — (varz; Pj; end o) {dec — [ dist)

var 2 followed by end x has no effect whatsoever,

Law 2.34 (varz; endz) = II {var — end skip)
The next law postulates that the sequential composition of end x with var z has no effect
whenever it is followed by an assignment to = that does not rely on the previous value of

€,

Law 2.35 If z is not free in e
(endz; varz; z:=¢) = (z:=¢e) {(end - var skip)

An assignment to a variable just before the end of its scope is irrelevant.

Law 2.36

(z:=¢;endz) = endzx (end— := final value)
The following equations can be easily derived from previous laws of declaration.
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Law 2.37 (dec— := elim)
(1) (varz; z:=¢; endz) = II

(2) If z is not free in P

(varz,y; o,y =e, f; Pendz,y) = (vary; y:= f; Pendy)

Fquations such as the ones above, which combine the effect of more basic laws, allow
more interesting transformations, leading to more concise proofs.

3 The Operational Semantics

It is the purpose of an operational semantics to define the relationship between a pro-
gram and its possible executions by machine. For this we need a conecept of execution
and a design of machine which are sufficiently realistic to provide guidance for real im-
plementation, but sufficiently abstract for application to the hardware of a variety of real
computers. Furthermore it is the major aim of this paper to show that it is possible to
derive this kind of semantics in such a way to guarantee its correctness (with respect to
the algebraic semantics presented in the previous section).

In the most abstract view, a computation consists of a sequence of individual steps. Each
step takes the machine from one state m to a closely similar one m/; the transition is
often denoted m — m'. Each step is drawn from a very limited repertoire, within
the capabilities of a simple machine. A definition of the set of all possible single steps
simultancously defines the machine and all possible execution sequences that it can give
rise to in the execution of a program.

The step can be defined as a relation between the machine state before the step and
the machine state after. In the case of a stored program computer, the state can be
analysed as a pair (s, P), where s is the data part (ascribing actual values to the program
variables x,y, ..., %), and P is a representation of the rest of the program that remains to
be executed. When this is I, there is no more program to be executed; the state (¢, I7)
is the last state of any execution sequence that contains it, and £ defines the final values
of the variables.

It is extremely convenient to represent the data part of the state by a total assignment
T, Y, .., 2 =kd,....m

where k,[,...,m are constant values which the state ascribes to ,y, ..., z respectively.

Suppose that (s;P) C ¢, where s and ¢ range over states. This means that one of
the possible effects of starting program P in state s is to end in state ¢. Similarly,
(5; P) C (¢; Q) means that an implementation of the program (s; P) is permitted instead
to execute (¢ @)).This is what will actually happen if ¢ is an intermediate state in the
execution of (s; P) and @ represents the program that remains to be executed. That
explains the definition of the transition relation given below.

Definition 3.1 (Transition relation)

11




(5,P) — 1LQ) ¥ (sP)C(4Q)

Therefore the following transition rules can be regarded as theorems, rather then as defi-
nitions; they are easily proved from the algebraic laws of the programming language.

1.

(5,0 1= &) — ((v:= (s)), 1)
Proof: from laws (1 unit}(2.1) and (= combination}(2.19).

The effect of a total assignment v := e is to end in a final state in which the variables
of the program have constant values (s; e), that is, the result of evaluating the list of
expressions e with all variables in it replaced by their initial values. Here we return
to the simplifying assumption that expressions are everywhere defined,

(s,(I5Q)) — (5,@)
Proof: from Law (;—IT unit)(2.1).
A ITin front of a program @ is immediately discarded.

(s,(P; R)) — (¢,(Q; R)) whenever (5, P) — (¢,Q)
Proof: sequential composition is monotonic.

The first step of the program (P; R) is the same as the first step of P, with R saved
up for execution (by the preceding rule} when P has terminated.

(s, PNQ) — (s,P)
(5, PNQ) — (5,Q)
Proof: from Law {(C—nN glb)(2.7).

The first step of the program (PN Q) is to discard either one of the components P
or . The criterion for making the choice is completely undetermined.

. (8, P<1b>Q) —> (s, P) whenever s;b

(s, P<ab >Q) — (5,Q) whenever s;—b
Proof: from laws (— <1 b leftdist)(2.13) and (<1 b elim}(2.12).

The first step of the program (P <1b 1> Q) is also a choice, but unlike in the previous
rule the choice is made in accordance with the truth or falsity of (s;b), that is, the
result of evaluating b with all free variables replaced by their initial values.

(5, nX @ F(X)) — (5, F(n X ¢ F(X)))
Proof: from Law (u fixed point)(2.25).

Recursion is implemented by the copy rule, whereby each recursive call within the
procedure body is replaced by the whole recursive procedure.

(8, L) — (s, L)

Proof: C is reflexive.
The worst program L engages in an infinite repetition of vacuous steps.
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4 Total Correctness of the Operational Semantics

The correctness of each of the transition rules presented in the previous section is certainly
a necessary condition for the correctness of the operational semantics, but it is not a
sufficient condition. There are two kinds of error that it does not guard against:

¢ There may be too few transitions (or even none at all!). An omitted transition
would introduce a new and unintended class of terminal states. A more subtle error
would be omission of the second of the two rules (4) for PN @, thereby eliminating
non-determinism from the language.

e On the other hand, there may be too many transitions. For example, the transition

(5,Q) — (5,Q)

is entirely consistent with the approach of the previous section, since it just expresses
reflexivity of the refinement relation. But its inclusion in the operational definition
of the language would mean that every execution of every program could result in
an infinite iteration of this dumnp step.

To guard against these dangers, we need to obtain a clear idea of what it means for an
operational semantics to be correct, The purpose of an operational semantics is to define
the “machine code” of an abstract machine. One of the best and most common ways
of defining a machine code is to write an interpreter for it in a high level programming
language, whose meaning is already known; and a language immediately available for this
purpose is the one whose algebraic meaning has been given in Section 2. The criterion
of total correctness of the interpreter is that its application to a textual representation of
any program must be proved to be equal to the algebraic meaning of the program itself.

Therefore we need to make a distinction between two natures of a program: syntactic (its
textual representation) and semantic (its meaning as given by the algebraic laws). In this
setting, we must consider the transition rules of the previous section as a definition of the
way in which programs are to be executed. In this definition, the components s and P
of each state are represented concretely by their texts. The states are identified as pairs
(s,P), where s is a text describing the data state, and P is a program text, defining the
program state. We use typewriter font to distinguish text from meaning: P is the text of
a program whose meaning is the predicate P. The symbol — is a relation between the
texts; it is actually defined inductively by the transition rules: it is the smallest relation
satisfying just those rules.

The alphabet of global variables of our interpreter will be

s to hold the data state (as text)
p to hold the program state (as text)

They will be updated on each step of the interpreter by the assignment
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8, p 1= next(s,p)

The definition of the next function operating on texts is taken directly from the individual
clauses of the operational semantics:

—_

. next(s,v:=e) = ((v:=(s;e)),II)
2. next(s, (I1;Q)) = (s,Q)

3. next(s, (P;R}) = (¢, (Q;R)) whenever next(s,P) = (t,Q)

)
4. next(s,PNQ) = (s,P)
next(s,PNQ) = (5Q)

5. next(s,P<db >0Q) = (s5,P) < 5b>(s0Q)
6. next(s,uX o F(X)) = (s,F(uXoF(X)))

7. next(s, “L”} = (s, “L”)

Note that the condition on the right-hand side of rule 5 refers to the (semantic) evaluation
of the expression b whose textual representation is denoted by b. For example, if the value
of s is v := ¢, then s;b is the same as v :== ¢;b: that is, b with every occurrence of v
replaced by c.

For non-determinism we need two assignments
s,p = nextl(s,p) N s,p:=next2(s,p) ... STEP

where nextl(s,PMQ) = (s,P) and next2(s,PNQ) = (s,Q).
In all other cases nextl(s,P) = next2(s,P) = nexi(s,P).

The inner loop of the interpreter repeats this step until the program terminates:
(p#11)% STEP ... LOOP

The interpreter defined as LOOP describes the relationship between the initial and the
final values of the program variables s and p. It leaves unchanged the values of the
program variables z,%,...,2 Recall that the program text P initially assigned to the
variable p has its meaning given by P; the latter describes the way that the abstract
variables z,y,...,2 are updated. The interpreter is correct if the updates correspond
to each other in some appropriate sense. The relevant sense is described exactly by the
final value of the variable s, produced by the interpreter. This should describe one of the
particular final values permitted by P.

The following program, denoted ¥(P), describes the interpreted execution of the program
text P.
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Definition 4.1 (Interpreted execution)

(P) el var s, p;
7,8 =P, Ueyvat?=c— v:i=g
LOOP;
Oeevar s = (vi=c¢) 2 v =g
end s, p

The first action of the interpreted execution is to introduce s and p as local variables. The
initial value of p is the program text P. The initial value of s is determined by a conditional
expression; this value is calculated from the initial state of the program variables v whose
domain is represented by the set Val2. Then the interpreter LOOP is executed; this
updates s and p, but not the program variables v. If and when the loop terminates, a
guarded set command which converts the final value of s to that of v is executed; this
will assign the desired final values to the program variables. The final values of s and p
are irrelevant after the interpreter is executed, so their scope is ended.

The operational semantics is correct if and only if we can prove the following, for all
programs P:

U(P) = P

The proof that the above holds for every program P is performed by structural induction.

The following theorem deals with II. Its proof does not use any of the transition rules,
since (s,II) was regarded as the final states (one for each possible value of s) in the
operational semantics.

Lemma 4.1 (Skip)
(1) = 11

Proof:

T (1)

= {(x elim})(2.29) and (dec— = ¢lim)(2.37)}
var s; 8 := (Oeeva ¥ = ¢ = v = c); (Oeevu s = (vi=c) = v i=c);
end s

= {def cond assign(2.5), {;~0 left dist)(2.11) and (O0—:= elim}(2.14)}
var s; Ugeyq v =¢ = (8 1= (v:=c¢);v:=¢); ends

2It may be worth observing that the guarded command set which initialises s satisfies the two required
properties: the conditions are clearly exhaustive (since Val comprises every possible value that may be
assigned to v) and pairwise disjoint, since v will hold exactly one of the values of the set Val.
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= {{void assertion}(2.15) and(void assignment}(2.21)}
var s; Oy ¥ = ¢ — 5 1= (v 1= ¢); end s

= {def cond assign(2.5) and {dec— := ¢lim}(2.37)}
I

Lemma 4.2 (Assignment)

U(v:=e) = (vi=¢)

Proof:
T(v :=e)
= {{(* unfold)(2.27) def of next and {:= combination)(2.19)}
var s, p;p, 8 := I, ey v = ¢ — v i= ((v :=¢);e); LOOP;
(Oevar s =(vi=c) s vi=c);ends,p
= {{x elim)(2.29) and (dec— := elim)(2.37)}
var §; 5 := Oeeyq v = ¢ = v = ((v:i= ¢); e);
(Oeevars = (vi=c) —wv:i=c);ends
= {def cond assign(2.5), (;—0 left dist}(2.11) and {(O—:= elim)(2.14)}
var $; Oeeva v = ¢ = (s:= (v i= ((v:=c);8)); v i= ((v = c)ie));
end s
= {{:= combination}(2.19), {void assertion)(2.15) and
{void assignment)(2.21)}
var s, Oeeyav =c— (s:= (v:=((v:i=c);e}); v:i=e); end s
= {(~0 left dist}(2.11) and (dec— := change scope}(2.32)}
var s; (Oeevav = ¢ — 8= (v:= ((vi=c);e))); ends; v:=e
= {def cond assign(2.5) and (dec— := elim)(2.37)}
vi=e
|

Lemma 4.3 (Abort)
v(l) = L

Proof: directly from the definition of the function next and laws (* abort)(2.28)
and (;-L1 zero)(2.2). =

Now we will show that ¥ distributes through each operator of our programming language.
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Lemma 4.4 {Non-determinism)
vPnQ) = v(PNnYQ)

Proof: let S =UO,cyugv=c—vi=c and T =0yus=(vi=c) o v:i=c

¥(rnQ)

= {{x unfold)(2.27), def. of next and (:= combination)(2.19)}
vars,p; (p,s:=P,8 N p,s:=0Q,8); LOOP; T; ends,p

= {(~1N dist)(2.4)}
(var s,p; p,s :=P,S; LOOP; T; end s,p) N
(vars,p; p,s = Q,5; LOOP; T; end s,p)

= {def of ¥}
T(P)N¥(Q)

The proof that ¥ distributes through the conditional uses the following definition and its
corollary.

Definition 4.2 Let the value of the program variable s be Oeey v = ¢ — v == ¢. Then

d
(s b) =) Oceva ¥ = ¢ = (V1= ¢; b)

Corollary 4.1 (s;b) = b
Proof: from laws {cond exp substitution)(2.24) and (cond exp idemp}(2.23).m

Lemma 4.5 (Conditional)
Y(PAbQ) = ¥(P)<ab > ¥Q)

Proof: let S =0 vav=c—vi=c and T =0ygs=(vi=c) - v:i=c

T(P<abbQ)
= {{x unfold)(2.27), def of next and Corollary (4.1}}
vars,p; p,s:= ((P,S) < b > (Q,5)); LOOP; T; end s,p
= {def cond assign, (— < b left dist)(2.13) and (dec—D dist)(2.33)}
(vars,p; p,s :=P,S; LOOP; T; ends,p) <b b
(var s,p; p,s :=Q,S; LOOP; T; end s, p)
= {def of T}
T(P)db b ¥(Q)
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The proof that W distributes through sequential composition is slightly more difficult. 1t
uses the following two lemmas. The first one establishes a simple fact about one iteration
of the interpreter.

Lemma 4.6

(p#11)1; STEP; (p:=p;Q) = (p#I0)1; (p:=p;Q); STEP
Proof: from the definition of next and Law (:= combination}(2.19). ®
The following lemma is based on the notion of data refinement.

Lemma 4.7

(p # I1) « STEP; (p = 11;Q) =
(p =p;Q @A ILAp# 11;Q) * STEP

Proof: We will use the following abbreviations.

I(X) Y (STEP, X)<pA 1T b 1I
R(X) Y (STEP; X)<tp#1IAp#1L;Q b II
We will show that, for n > O
I"(L); (p:=150) = (p:=pQ); B"(L)
For n = 0 we have
1°(L); (p:=11;Q)
= {/%L) = L and {—1 zero)(2.2)}
4
= {R%L) =L and {;—L zero)(2.2)}
(p:=p;0); BY(L)
By induction we have
I"(L); (pi=15;0Q)
= {I"(X)=1(I"(X))}
((STEP; I'1)) 4 p#11 & 1I); (p:=11;Q)
= {{;~ <4 > left dist)(2.13) and induction hypothesis}
(STEP; (p:=p;Q); R*(L)) dp# 11 b (p:=IL;Q)
= {{void assertion)(2.15) and Lemma 4.6}
((p =p;Q); STEP; R*(L)) < p#I1 b (p:=1L;Q)
= {{(=— < pright dist){2.20)}
(p:=p;Q); (STEP; B"(L)) < (p# ID) A {p # 1L;Q) b 1)
= {(R(X) = RER(X)))
(p = p;Q); BH(L)
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- |
Now we show that ¥ distributes through sequential composition.
Lemma 4.8 (Sequential composition)

Y(P;Q) = ¥(P); ¥Q)

Proof: let §$ = Opcygv=c—vi=c and T =Dyys=(vi=c) o v:=c

¥(P;Q)
= {{xcombination)(2.30)}
var s, p; p, s := (P;Q),.5; (p # I1 Ap # 11;Q) * STEP; LOOP; T,
end s,p
=  {{i= combination})(2.19)}
vars,p; p,s :=P,S; (0:=p;Q); (p# IIAp# I1;Q) * STEP;
LOOP; T ends,p
= {Lemma 4.7}
var s,p; p,s :=P,S; LOOP; (p = 11;Q); LOOP; T; end s,p
= {def of nezxt(s, II;Q)}
vars,p; p,s :=P,S; LOOP; (p:=Q); LOOP; T; end s,p
= {{void cond assign)(2.22)}
vars,p; p, s :=P,S; LOOP; T; (p:=Q); LOOP; T; end s,p
= {(I;s:=258)="T,from (0O left dist)(2.11) and (O—:= elim)(2.14)}
vars,p; p, s :=P,5; LOOP; T; p,s:=@,5; LOOP; T; end s,p
= {(end — var skip)(2.35)}
(var s,p; p,s := P, S; LOOP; T; end s, p);
(var s,p; p,s := Q,5; LOOP; T; end s, p)
= {def of ¥}
(P ¥(Q)

Therefore we have shown that ¥ is distributive; this result is summarised by the following
lemma.

Lemma 4.9 (¥ distributive)
Let F(Xy,...,X,) stand for an arbitrary operator (I) of our programming language with
its arguments (Xy,...,X,). Then

U(F(Xy,..., X)) = FUX),..., 9 (X))
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Proof: from lemmas 4.4, 4.5 and 4.8. &

The following corollary of the above lemma establishes one half of the proof that¥ dis-
tributes through recursion.

Corollary 4.2
pXeF(X) T ¥(uX e F(X))

Proof:

T(pX e F(X))

= {def of next(s,uX ¢ F(X))}
V(F(uX o F(X)))

= {Lemma 4.9}
F(¥(uX o F(X)))

The final result follows from (u least fixed point)(2.26). m
The other half of the proof will require a few more lemmas and the following abbreviations.
Definition 4.3

T*(P) Y var 8,
p,8: =P, Ueygv=c— v:i=c;

)
Oeevar 8 = (Vvi=c¢) 30 i=g¢
end s, p
where
I(xX) ¥ (STEP; X)<p# 11 b 1I,
o ¥ x o and
iy x)y € orumx))  forn >0,
=
Lemma 4.10

\II(P) = U,:‘Ifi(P)

Proof: from the fact that LOOP = U;I*(1) and the continuity of sequential composi-
tion. ®
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Similar to Lemma 4.9 (¥ distributive) it is possible to show that U is sub-distributive.
Lemma 4.11 (¥ sub-distributive)
U F(Xy,..., X)) C FOU(X,),...,9%{X}))
|
Then we have the following corollary.
Corollary 4.3
W(u X 0 F(X)) T F*(1)

Proof: First we consider the base case.

W X o P(X))

= {I°L) = 1 and {;~1 zero)(2.2)}
L

= {F(X)=X}
FO(L)

Then by induction we have

\I’”+1(,LLX ¢ F(X))

= {def of next(s, pX o F(X)}}
V(F(p X o F(X)))

C  {Lemma 4.11}
P (1 X o F(X)))

C  {Linduction hypothesis}
P(F(L))

— (P = FERCO)
Fn+1(J_)

|
The following lemma establishes that U distributes through recursion.
Lemma 4.12

U(puXeF(X)) = pXeF(X)
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Proof:

uX e F(X)
{Corollary 4.2}
W(1 X 0 F(X))
= {Lemma 4.10}
LT X o F(X))
C  {Corollary 4.3}
U FE(L)
= {def of recursion}
pX e F(X)

(M

Finally comes the most important result of this paper: the theorem which establishes the
total correctness of the operational semantics.

Theorem 4.1 (Total correctness)
U(pP) = P

Proofi from lemmas 4.1, 4.2, 4.3, 4.9 and 4.12. =

5 Conclusion

This paper has presented an approach to deriving an operational from an algebraic se-
mantics of a programming language. The consistence of the operational semantics has
been easily proved by showing how each rule can be derived from the algebraic laws. A
complementary task was to prove that the rules are complete (not in the logical sense,
but) in the sense that there are no omitted transitions which would introduce a new and
unintended class of terminal states. Furthermore, our approach also prevents the inclu-
sion of unnecessary transitions which could, for example, lead to non-termination. The
approach has been illustrated by application to a very simple programming language for
expression of sequential algorithms with possible non-determinism. It is our hope that it
will generalise to more complex languages.

Both the statement of the correctness theorem and its proof depend utterly on acceptance
of the priority of the algebraic semantics as the specification of the language. Indeed, un-
less there is such an independent specification, the question of correctness of an operational
semantics cannot arise. But of course it is a matter of choice which semantic style should
be presented first. An operational semantics has considerable attraction, and is currently
quite fashionable among theorists investigating the foundations of Computing Science. In
the absence of an independent meaning for the programming language, the operational
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semantics may be the only one acceptable or available as a foundation for a theory of
programiming. In that case, other methods are needed for escaping from its deplorably
low level of abstraction. An example of such methods is bisimulation [10], as used by
Milner to obtain a more abstract semantics in the form of algebraic laws.

Starting with an algebraic semantics (as we have here) has the danger of inconsistency
or other unexpected interactions between the postulated laws. Our work is actually a
small part of a more general approach to Unified Theories of Programming [6]. This
approach starts with a denotational semantics (relating a program to a specification of
its observable properties and behaviour) from which the algebraic laws are derived. Then
it is suggested how an operational theory is derived from the algebraic (the link which
has been more deeply investigated here). To complete the cycle which establishes the
equivalence of the three presentations, it is shown how the observational presentation can
be derived from the operational. Although the order of presentation of these theories is
a matter of choice, it is suggested that one should start with the most abstract, because
this gives the most help in specification, design and the development and optimisation of
programs.
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