(REFL»1COMPL a, BOOL preserve.
REF[ICOMPL val., REF[.ICOMPL v
NAGFAIL fail) VOID:

(REF[,1COMPL a. BOOL preserve,
REFLI1COMPL vals, REF[.1COMPL vec,
NAGFAIL fail)VOID:
BEGIN INT ni = LWB val.
n2 = UPB valg
REFL.1COMPL h = (preserve
I Loclnl + n2. nl : n2lCOMPL
P WIL
):
[nl : n2]INT perm. ind;
(rnl : n2lREAL scaling;
FO2BALANCE bal := (nls u2, scaling):
NAGFAIL faill = (INT n, [ICHAR s)
VOID;
(LLWB s : UPB 8lCHAR sl := s
fatl{n, 81 RENAME '"zzzzzz");
GOTO exit ‘
) s
fOtupblas, bals hs inds vees, Ffaill);
FO2uab(bal, (preserve
I h
! a
)o vals NIL, perm. vec,
faill
)s
IF veec :/=: NIL
THEN f02upb(bal, NIL, NIL,
vec, faill

CONTENTS

Page
{NTRODUCT I ON 3
ADDRESS FOR ENQUIRIES 3
NAG L1BRARY SERVICE NEWS h
DOCUMENTATION NEWS 4
'Is There a Mathematical Basis for Computer Programming?' 6

- Professor C.A.R. Hoare

NAG ALGOL 68 LIBRARY, MARK 3 15
ROUTINES.TO BE WITHDRAWN FROM THE MARK 9 FORTRAN LIBRARY 1)
THE MARK 8 ALGOL 60 LIBRARY 19
IMPLEMENTATION REVIEW 19
IN BRIEF . 22
PERSONNEL | | | 22
NAG USERS ASSQCIATION 23
MEMBERSHIP QF THE NAG USERS ASSOCIATION 24
Numerical A!gorithm;'Group Limited October 1981

Editor: Miss Janet Bentley

Published by NAG Central Office

INTRODUCTION

Major events since the release of the last NAG Newsletter include
the inauguration of an Association of NAG Users {(NAGUA). Future i{ssues of
this Newsletter will include a NAGUA section and any members of the
Association wishing to contribute to this section should address their
correspondence to the Editor, at NAG Central Office. Plans have already
been made for the 1982 meeting and these are outlined on page 23.

This year's lecture at the Annual General Meeting of NAG Limited
was given by Professor C.A.R. Hoare of the Unjversity of Oxford. We are
delighted to have the opportunity to publish the script of his lecture,
entitled 'Is There a Mathematical Basis for Computer Programming?’ as the
feature article in this issue of the Newsletter.

In addition to regular articles, we include details of the Mark 3
Algol 68 Library, which has recently been completed, of Mark 8 Algol 60
and of the routines to be withdrawn from the Mark 9 FORTRAN Library.

. I'f you have any comments or suggestions regarding the NAG Newsletter,
‘or indeed would like to contribute an article, then please contact the
Editor at NAG Central Office. We look forward to hearing from you.

ADDRESS FOR ENQUIRIES

Enquiries related to this Newsletter should be addressed to the
Editor at NAG Central Office (address below). For further information about
NAG and the NAG Library Service please contact:

The NAG Library Service Co-ordinator or in North America,
NAG Central Office The Company Secretary
7 Banbury Road NAG (USA) Inc.
Oxford 0X2 6NN 1250 Grace Court:
United Kingdom Downers Grove

. I1Tinois 60516
Tel: National 0865 511245 U.S.A. :

Internationat +44 865 511245
o ‘ Tel: (312) 971 2337

Telex: 254708 (TELESERV
DFLD NAG USA} '

Teaek} 83147 (ref: NAG)

NAG LIBRARY SERVICE NEWS

Most NAG Library Service sites will by now have received the Mark 8
FORTRAN Library. The implementation review on page 19 gives an indication
of when the remaining implementations are expected to be completed. The
advent of this Mark of the Library has seen the addition of a new item in
the NAG 'product range', namely the On-Line Information Supplement. We are
delighted at the response we have had from sites and, since announcing its
availability in July of this year, have received orders from 40 sites.
Orders for the Library Service continue to arrive and 1981 has seen the
installation of the Library at sites in four additional countries: Kuwait,
Morocco, Zimbabwe and Qatar.

On-Line Information Supplement

This supplement is now available to all sites which have Mark 8 of
the NAG FORTRAN Library. It contains information about the Library suitable
for display at computer terminals or listing on line-printers. The cost of
the Supplement is one-third of the FORTRAN-related licence fee and further
details and order forms are readily available from NAG Central Office.

Graphical Supplement

The first implementations of this Supplement to the NAG FORTRAN
Library are now nearing completion. As the different machine versions
become available for distribution we shall contact all Library Service sites
within that machine range with details of ordering procedures etc. Again
the cost will normally be one-third of the FORTRAN-related licence fee.

DOCUMENTATION NEWS

Supplements to the Fortran Library

The On-Line Information Supplement to the FORTRAN Library Mark 8
was completed during the summer. This is derived from the Library Manual and
describes the Purpose, Specification, Parameters and Error Indicators of
each routine in the Mark 8 Library. It is suitable for display at computer
terminals and for listing at line-printers.

The Graphical Supplement is a new product that has extended our
use of Cunetform and TS5D to meet the different demands of Tts Manual.
TSSD is the typesetting program developed by Harwell and used by NAG in

devising a single documentation data base intended for computer type setting.

Cuneiform is a locally developed package, designed initially for extracting
the on-line form from this data base. All the documents in the Graphics
Manual, including the introductions, are typeset so that the Manual fits onto
only 250 pages, and will be distributed in a single ring binder. An on-line
form of this documentation will be supplied with the Graphical Supplement.
Both Supplements are issued as separate products from the FORTRAN Library:
for further details please contact the Library Service Co-ordinator at NAG
Central Office.

|
v
1

DOCUMENTATION NEWS (CONTD)

Updates to NAG Library Manuals

Algol 60: the Update to Mark 8 contains 300 typewritten pages and
was printed in April of this year. The cost of the update (code PAN1/ALM7)
is £6.

Algol 68: the Update to Mark 3 contains some 1100 pages of new text
and extends the Manual from 2 to 4 volumes. The update has been prepared
and printed entirely in-house and is now belng collated ready for
distribution in November.

FORTRAN: preparation of the Update to Mark 3 is well under way.
While this is much smaltler than the Update to Mark 8, it is still a
considerable work containing 15 new typeset documents, several new Chapter
Introductions and a large number of corrections and improvements to individual
pages in the existing manual. The On-Line Information Supplement will also
be updated to Mark 9 and a FORTRAN Mini Manual Mark 9 is also being prepared.

New Products in Preparation

Genstat 4.03 has received sufficient interest from the German-
speaking community for Rothamsted Experimental Station to have arranged
translation of its manual into German. NAG are currently producing the
manual on one of Central O0ffice's new micro computers.

Microfiche

The FORTRAN Library Manual Mark 8 is now available on 34 microfiche,
reduction *24, at a cost of £18., FORTRAN Mark 7 is still available, on
31 fiche, at a cost of £13.

The Genstat 4.03 Manual is available on 8 fiche, at £8, and we have
a]so recorded back issues of the Statistical Package News!etters onto
microfiche. Fiche containing Glim Newsletter issues 1-2, 3-k4 and Genstat. issues
1-6 are available at £1.50 each.

Nicola Bourdillon
NAG Central Office

IS THERE A MATHEMATICAL BASIS FOR COMPUTER PROGRAMMING?
C.A.R. HOARE

SEPTEMBER 1981

Introduction

A gpecificatjon of a mechanism should in some sense be a full
description of the intended observable behaviour of the
mechanism. For any observation of the actual behaviour of the
mechanism, it should be very clear whether the observation
accords with the specification or not. For example, part of the
specification of a command in a program may be that it increases
the value of a program variable "x". The values of the variable
before and after execution of the command can be observed and
recorded on each occasion that it is executed, e.q.

X before x after

3 4
97 137
31 12

The observations recorded in the first two rows of this table
accord with the specification; but the third row does not.

An observation of the behaviour of a mechanism usually involves
observation of the values of certain variables, to which it is
convenient to ascribe special conventional variable names. For
example, we shall use program variable names "x", "y", etc., to
denote the values taken by these variables before execution of a
command; and we shall use dashed variants "x'", "y'", etc., to
denote the final values taken by these variables when the command
terminates. We also introduce the Boolean variable "end", which
takes the value true if the command terminates.

A specification can now be formulated as an assertion about the
intended values which these special variables are allowed to
take. For example, the specification given informally above can
be formalised as the assertion

X < X' & end.

For any observed values of "x", "x'" and "end", it is easy to
determine whether they satisfy this specification or not.

A mechanism gatisfies a specification if every possible
observation of its possible behaviour satisfies the
specification. The set of special variables which may occur in a
specification is known as its alphabet. A specification may also
contain other logical variables, either bound or free.

Following the lead of R.W. Floyd and E.C.R. Hehner, we propose to
assign as the meaning of a command of a program the strongest
specification which it is certain to satisfy. For example, let
SKIP be the command which terminates successfully, and leaves the
values of all variables unchanged. Its strongest specification
is

X'=x & y'=Y & end

Here and later, we assume that the alphabet of our specifications
is the set {x,y,x',y',end}. The discussion can be readily
adapted to different and larger alphabets.

The identification of a command with its strongest specification’
is justified by the principle of the identity of indiscernibles.
If two mechanisms have the same specification, then every
possible observation of every possible behaviour of either of
them is also a possible observation of a possible behaviour of
the other. There is no conceivable experiment that might
distinguish between them. Furthermore, in every context in which
we might use one of them, the other will be equally good. It is
no counterargument to complain that one of the mechanisms might
be cheaper or faster in execution. If we are interested in these
additional properties, then we must be able to observe them, and
we should introduce additional special variables into the
alphabet of the specification to denote their values. Cur
present purpose is to discuss the logical properties of commands,

and therefore we choose to ignore (for the time being) possible

variations in efficiency or cost. 1In mathematics, the fact that

(a+b)? may be easier to calculate than a2+2ab+b? does not

prevent us from regarding them as equal.

The identifiqation_of a piece of program with the strongest
assertion which describes its possible behaviours may seem
disconcerting at first: it has the consequence that a programming

-language is just a highly restricted notation for writing an

assertion. The purpose of the restrictions is to permit the

. automatic implementation on a stored-program computer of a

mechanism that exhibits the described behaviour. One particular
restriction which we shall implicitly observe is that program
texts may contain only undashed variables of their alphabet.

We shall now define the individual constructs of a simple
programming notation, including only assignment, alternation, and
recursion. L

Assignment

Let P be an assertion, let x be an undashed variable, and let e
be an expression containing only undashed variables. Then the
notation

“x==e;P“
is an assertion which is satisfied by a mechanism which first
assigns the value of e to x and then behaves in a manner that
satisfies P. An explicit assertion describing this behaviour can
be constructed by transforming the assertion P. Let P 2 be
formed from P by replacing every free occurrence of x by e. (If
any free variables of e become identified with bound variables of
P, the collision is averted by systematic change of the offending
bound variables). Let De be an assertion which is true just when
all the values of the operands of e are within the domain of
their operators. Then we define
LN -8 = X

(x:=e;P) afPe v (P e)

Examples of this rule are:

(1) (x:=x+y; SKIP) = (x'=x+y & y'=y & end)

I

(2) (y:=y/x; x:=x+y; SKIP} =

(x=0 v x'=x+y/x & y'=y/x & end)
(3) (x:=1; y:=y/x; Xx:=x+y; SKIP) = (x'=l+y & y'=y & end)

Note that when the initial values of the variables are such that
the expression is not defined, the specification takes the value
true. This is the most useless specification of all, since it
does not place any constraint on the final values of the
variables, nor does it even state whether the command terminates.
The specification frue is the easiest one to meet, because it
represents a prior decision to accept the product, without even
looking at its behaviour. Such an indiscriminating customer is
the only one who will be happy with a program which attempts to
evaluate an undefined expression.

Alternation

Let P and Q be assertions, and let b and ¢ be Booclean
expressions, containing only undashed variables.

Then the notation.
(b > P Oc Q)
is an assertion which is satisfied by a mechanism which first

evaluates b and/or c. If“either is undefined, or if both are
false, the subsequent behaviour of the mechanism is arbitrary.

"If b is true and c¢ false, the subsequent behaviour of the

mechanism must satisfy P; if ¢ is true and b false, the
subsequent behaviour must satisfy Q; and in the final case, with
both ¢ and b true, the mechanism may satisfy either P or Q or
both, i.e. it must satisfy their disjunction (P v Q). This
description of a mechanism is formalised by the definition of its
behaviour:

(b~ POc ~» Q) =df-1DbV—1Dc vab &1¢c v b&PVvecs&o
Example
(x <y + (x:=y; SKIP) Oy £ x ~SKIP)
; (HxLy & 1 y<x
vy & x'=sy & y'sy & end
vy<x & X'=x & y'sy & end)
= (x'=max(k,y) & y'=y & end).

The definition given above can be readily extended to more than
two alternatives. For one alternative, the definition is

-{a ~ P) =df‘(a'+ P[la-+P) = Davaav P

Other useful special cases are:
(if a then P else Q) =4, (a » P 0 (a) » Q)

(P v Q)_=df = (true - P [J true -+ Q)
(P v Q) may be regarded as a non-deterministic program, which
"decides arbitrarily" to behave either as described by P or as
described by Q. However, the .concept of non-determinism is one
that has led to a lot of unnecessary confusion; by talking about
specifications, we can avoid talking about some unobservable
property of nondeterminism inherent in a mechanism.

‘IO

Recursion

Let P be an assertion containing the variable p, which itself
ranges over possible assertions. Thus if Q is some assertion,

with the same alphabet, Pg is the result of replacing all

occurrences of p in P by Q (with the usual change to bound
variables if necessary). P may be regarded as describing the
behaviour of an aggembly, with a slot p into which a range of
different components may be plugged. If the component is
described by Q, then the result of plugging the component into

the assembly will be described by P g. Now we shall define a
mechanism which behaves like a call of a recursively defined
procedure with name "p" and body P. The command will be written.

up.P

The intention is that ;p.P will behave as specified by P, on the
assumption that its component p does so as well. The effect we
want is as if yp.P were plugged into itself as its own component,
i.e.

.p = (p|P .
HP uP-P)

Such a self inserted assembly seems to be physically impossible{

and even mathematically, the circularity of the definition seems
quite improper. Scott has shown a way to solve these problems.
It is both physically possible and mathematically wvalid to

construct a series Po,Pl".. of ever improving approximations to
the required product. The firsf approximation P0 is the wholly
arbitrary process, satisfying specification true. The next
approximation is formed by plugging the previous approximation as

the component p in the assembly P, giving pl. The whole series
of approximations can be defined by induction:

p0

‘true

Pn-+-1 P pn for n20 -

p B .
P" is the assertion satisfied by a mechanism which behaves
correctly up to recursion depth n, but breaks when required to
recurse deeper; and a broken mechanism may do anything
whatsoever.

- 11 -

Now what we really want is a mechanism which satisfies all these
specifications, for all finite depths of recursion. This is the
mechanism whose behaviour is described by the assertion:

vn > 0.P"

The discussion so far deals"with the general case of recursion,
as featured in several well-known programming languages.
Nevertheless, in all programs constructible in our 1little
programming notations, the recursions reduce to iterations, which
use the time dimension rather than a space dimension to create
the illusion of boundlessness. This is illustrated by the
following examples.

(1) up. (x:=x+1;p)

p = true

1 _ X
p- = D(x+1) v true x+1
_pn = true for all n
therefore -

pPe. (x:=x+1;p) = ¥n2 O.true = true.

This is the most useless specification. The punishment for a
non-terminating loop is the same as that for an undefined
expression, - the mechanism may break, and do anything
whatsoever. '

(2) wpe(x > 0 > x:=x-1; p 0 x=0 -+ SKIP)

¢ tfue

P =
pl = (x <0 vx>0 & true §-1 v x=0 & x'=x & end)
={(x <0 vx2>21lvo0o<£x<1lszx'=0s end
pn = (x<0vx2nvD0<x<nsa&zx'=0 & end)
Therefore

(2) =x<0vx'=20 & end

_]2...

Note how the condition under which the loop fails to terminate
has emerged from our formal reasoning.

Of course, the reasoning is not entirely mechanical. The

discovery of the'particular finite approximations PO, Pl, P2,

vee P157, ses etc., can be accomplished formally, by simply
expanding the definitions - although the size of the formulge
will grow alarmingly. The discovery of a general formula P",
containing "n" as a free logical variable, requires a little
insight, and usually a proof by induction. For the example shown
above, the required proof is:

(a) base step: = P0 = {(x<0 v x>0 v ...), which is

trivially true.

(b) induction: P p (x<0 v x>0 & (™ |¥

p" x-1

v = 0 & X" = 0 & end)

= (k<0 v x =0 & x' = 0 & end
vX>0& (x-1<0 v x=1>n v 0 £ x-1<n
& x' = 0 & end))

= (x<0 v x 2> n+l v 1<x, n+l &ax'

= 0 & end)
n+l

=P

The inverse calculus

The definitions given for our programming notations form the
basis of a kind of calculus, which for any program permits its
strongest specification to be derived; and all other assertions
describing its potential behaviour follow logically from the
strongest one. This calculus should be of direct use to
maintenance programmers who are all too often given a program and
asked to find out what it does. But this is the wrong way round.
The specification should have come before the program, as in
normal practice of a well established engineering discipline.

In our view, a program is just an assertion expressed in a highly
restricted notation. So if S was the original specification, the
programmer's task is to construct a program P of which he can

prove:

P=>8

13

This proof guarantees that every observable behaviour of P will
satisfy the specification S. But to solve the problem of finding
a suitable P we need a different calculus, which is a kind of
inverse of the calculus presented here.

Consider the analogy provided by a more familiar calculus. Given
an expression containing valuables x and y, the differential
calculus enables us to formulate its derivative with respect to
either x or y or both. Fof a wide class of initial expressions,
differentiation is a purely formal process. However for
practical purposes of science and engineering, we are more
usually faced with the problem of finding an expression whose
derivatives have certain desired properties, for example that
they satisfy certain differential equations. Mathematicians have
developed many ingenious strategies for solution of integral and
differential equations, but in general their application requires
good judgement, and there is no guarantee that a particular
method will lead to a solution, or even that a solution exists,
Nevertheless, when a solution has been found, its validity can be
much more easily checked by using the simpler differential
calculus. It is our hope that by using the calculus of
specifications, the checking of properly annotated computer
programs may become simpler than their original construction.

As an example of the kind of rule of the inverse calculus which
might be of use to programmers, we shall suggest a technique for

constructing a recursively defined program to meet a given
specification R. :

(1) Try to decide on upper bound on the depth of the recursion
required. This will usually depend on the initial values
of the program variables. Formulate the bound as an
expression e, which maps these variables onto a natural
number. :

Prove: De v R.
(2) Let n be’a fresh variabie, and define:
R(n) =q¢ €N v R.

Find a program P(p) with free variable p. such that
you can prove: '

P(R(n)) = R{n+1)

(3) Then the program you want is

Hp.F.

- 14 -

Conclusion

We have propounded the view that a computer program is a
mathematical formula whose properties can be explored by the
normal methods of mathematical reasoning. It is thus feasible
{and certainly desirable) to formulate accurate specifications of
programs, and prove that they have been met. But much progress
still needs to be made in developing the necessary mathematical
theories and technigues, and in teaching them to programmers.
Three obstacles must be overcome:

(1) Mathematicians are inexperienced and disinclined to deal
+ with formulae that stretch over many thousands of lines.

(2) Mathematicians are classified as pure or applied. Applied
mathematicians are interested in the continuum of real
numbers, and their approximations; while pure
mathematicians pride themselves on not being applied. Non-
numerical computer programming is a direct application of
the concepts and techniques of pure mathematics, and is
therefore not appreciated by either class of mathematician.

(3) Mathematics has become a subject which students have to
learn; computer programming is actually doing mathematics,
though neither programmers nor mathematicians seem to
realise it.

I hope this brief paper has made a start in removing these
obstacles.

- 15 -

NAG ALGOL 68 LIBRARY, MARK 3

Scope of the Library

The Mark 3 Algol 68 Library contains roughly double the number of
routines in Mark 2. ‘It provides, with very limited exceptions, facilities
equivalent to. those of the Mark 5 FORTRAN Library, with additional material
in some chapters based on Marks 6, 7 or 8 of the FORTRAN Library. Also
included ate some facilities not available in the other language versions
of the Library. The new material in the Mark 3 Algol 68 Library is
summarised below. .

Mark 5 FORTRAN equivalents

To provide equivalence with Mark 5 FORTRAN, routines have been added
in chapters A02 (complex arithmetic), C02 (zeros of polynomials), €05 (roots
of one or more transcendental equations), C06 (summation of series), GOl
(simple calculations on statistical data (but excluding routines for
statistical distribution functions)}, M01 (sorting), S {approximations of
special functions (but excluding Fresnel integrals}) and X02 (machine
constants) . :

in the FO1/F04 (matrix operations/simultaneous linear equations)
chapters, material has been added for least squares solutions. An extra
routine to calculate the approximate pseudo (or generalised) inverse of

ATA has been included. (Routines for sparse matrices have been excluded.)

In the FO1/F02 (matrix operations/eigenvalues and eigenvectors)
chapters, general purpose and easy-to-use routines have been .included for
real and complex unsymmetric matrices (this covers all Mark 5 FORTRAN
routines with some additions}. Also included are routines for real
symmetric (lower triangle only supplied), real band symmetric {two
alternative modes of storage) and Hermitian matrices. In the real band
symmetric case, a routine for Inverse iteration has also been included.
(Routines for the generalised A-AB eigenproblem have been excluded).

In the F05 (orthogonalisation) chapter, additional material for

normalising the eigenvectors of real and complex matrices has also been
included. ‘ '

The X03 (inner products} chapter has been revised to provide inner-
products of real and complex vectors and of rows and/or columns of symmetric
and band symmetric real matrices. Both single and double length
accumulation is possible. Also provided are facilities for double length
arithmetic and conversion operations.

Mark 6 FORTRAN equivalents

In the EO4 (minimising and maximising a function)} chapter, routines
are provided for unconstrained minimisation and minimising subject to simple
bounds on variables (both general and easy-to-use routines). Also included
is a routine for non-linear least squares minimisation. (Routines for non-
linear constraints are excluded.)

- 16 -

NAG ALGOL 68 LIBRARY, MARK 3 (CONTD)

Mark 6 FORTRAN equivalents (contd)

In the GO5 (random numbers) chapter, a basic generator uniformly
distributed on (0,1) is provided. This may be initialised to a user
specified value and the current generator state may be saved and restored
by the user. Routines for generating pseudo-random numbers on a variety
of continuous distributions are provided as are routines for initialising
a reference vector for various discrete distributions (the reference vector
can then be used to generate a pseudo-random integer).

Mark 7,8 FORTRAN equivalents

In the E02 {curve and surface fitting) chapter, routines additional
to the Mark 5 FORTRAN equivalents are provided. General and easy-to-use
routines for weighted least squares polynomial approximations to set(s)
of data points are included (in the general case, there is an option to
force the fit to contain a given polynomial factor). Service routines
are provided to evaluate a polynomial given in Chebyshev series form and
to determine the coefficients of its derivative and its indefinite
integral. Also included s a routine for weighted least squares curve
fitting by cubic splines, and service routines to evaluate a cubic spline
from its B-spline representation and also to evaluate its first three
derivatives and its indefinite integral. (Routines for surface fitting
are not included.)}

Extra, with no FORTRAN Egyfvalents

. A new AOL (extended arithmetic) chapter has been provided. This
gives relational, arithmetic and conversion operators for multiple length
integer and rational arithmetic.

A new T01 (vector and matrix operations - Torrix) chapter has also
been provided. This provides a much generalised version of part of the
F01 (matrix operations) chapter. Torrix is a system of operations on
objects {vectors and matrices) of fairly general linear spaces. The
underlying field is REAL. Extensions are available for generating complex
vectors and matrices and real symmetric, real band symmetric and Hermitian
matrices for manipulation by the Torrix cperators.

Availability

The Mark 3 Algol 68 Library is currently available for ICL 1906A/S
systems. Other implementations in progress include ICL 1900* and 2900,
CDC, Telefunken TR440 and [BM/AMDAHL. A summary of the Library contents
and details of costs are available on request from NAG Central Office.

© DO2ADF ‘ DO2HAF Improved algorithm and re-désigned

]7
ROUTINES TO BE WITHDRAWN FROM THE MARK 9 FORTRAN LIBRARY

20 routines will be withdrawn from the NAG FORTRAN Library at Mark
9. These impending withdrawals have been announced in the Mark 8 Library
Manual, in particular in the document FORTRAN MK8 NEWS. Details are given
below, together with brief comments on the reasons for withdrawal and on |
the choice of a replacement routine. Any users who are currently using a ’
routine which will be withdrawn, should consider modifying thefr programs
now, to use a replacement routine instead. Replacement routines are
already in the library at Mark 8, and the relevant Chapter Introduction
should be consulted.

Users who feel that they would be seriocusly inconvenienced by the
withdrawal of a routine, may apply to their sites for a copy of the routine,
but should note that NAG does not recommend this course of action and does
not accept any responsibility for the withdrawn routine or offer any support
for it.

Withdrawn Replacement

routine routine (s) Lomments
CO5AAF :
CO5ABF CQO5ADF fmproved algorithm, more reliable

CO5ACF and robust routine. (Other new CO5
routines, such as CO5AGF, -AJF, -AXF
or =~AZF, provide additional new
facilities.)

The new routines are not restricted
to sequences whose lengths are

powers of 2, and are in any case more
efficient on most machines.

CO6AAF COGECF
CO6ABF COGEAF

DO1ACF DOIBDF}

DO1AGF DO1AJF tmproved algorithms. Both new

routines are derived from 'QUADPACK'.
6 other 'QUADPACK' routines were
included at Mark 8 and offer more
specialized facilities for

I-dimensional integration.

software.

Improved software, designed in
conjunction with the easy-to-use
driver routines D02JAF and -JBF
which handle a single equation or a
linear system respectively.

DO2AFF DO2TGF

EQ T1ADF ED 1BAF

+ E02BBF EQO1BAF uses a more satisfactory

form of cubic spline, and, in

conjunction with E02BBF, is more
efficient when the data is to be g
interpolated at several points. ’

- 18 -

ROUTINES TO BE WITHDRAWN FROM THE MARK 9 FORTRAN LIBRARY (cONTD)

Withdrawn Repiacement

routine routine(s) Comments

FO1BHF FO2WAF or -WCF More efficient algorithm aﬁd more
flexible routine; amount of compu-
tation and. amount of storage required

- may be reduced in many applications.

The new routine FO2WBF now handles
the case m<n.

FOIBJF FOTBWF Better performance on paged machines.

FO1BKF FO2WDF The new routine uses the singular
value decomposition for a more
reliable determination of rank, in
those cases where the QR-factorization
has not established that the matrix
is of full rank.

FO1BM

FOBALE} FOILBF Better performance on paged machines.

FO28MF FO1BWF .
The replacement routines have been

+ FO2BFF . .
_ shown to be more efficient.

FOLAUF FOLJGF These are companion routines to
FO1BKF and FO2WDF (see above).

FOLAVF FO4LDF Better performance on paged machines.

FO1ACF GO4AEF The new routine offers more facilities
and is designed to-be consistent with
other new GO4 routines introduced at
Mark 9.

HO1AEF . HO 1BAF '

‘or HOIADF HOTAEF was sometimes unreliable.

The new routine HO1BAF is robust
and stable; HO1ADF may be faster.

The routine DO2AGF will not after all be withdrawn at Mark 9,
although its withdrawal has been announced. {t allows the user to specify
an interior matching point; this facility is not provided by the proposed
replacement routine DOZHBF, but can occasionally be very convenient.

However in other circumstances users are strongly recommended to use
DO2HBF,

Jeremy Du Croz
NAG Central Office

]9
MARK 8 aLcoL 60

The following 16 new primary routines are included in the NAG Algol 60
Library at Mark 8:

CO5ADA CO5AXA DG1FBA FO2GJA
CO5AGA DO 1AHA E01BAA FO2SDA
CO5AJA DO TAJA FO1BRA FOLAXA
COSAVA DO 1BCA FO1BSA X02AGA

Users of the FORTRAN Library will be aware of the analogous FORTRAN

routines: the 5 CO05 routines find a simple zero of a single equation and

DOTAHA and DO1AJA are adaptive quadrature routines replacing DOTAGA. New
linear algebra routines FO1BRA, FO1BSA and FOLAXA address the problems of
sparse, unsymmetric linear equations whilst FO2GJA is an implementation of
the QZ algorithm. EO1BAA provides facilities for cubic spline interpolation.

David Sayers
NAG Central Office

A REVIEW OF NAG LIBRARY IMPLEMENTATIONS

Table 1 below summarises the implementation state of the NAG Algol 60
Library. Since the last issue of this newsletter {NL1/81), we are pleased to
report that a new machine range version is available; an implementation of

the Algol 60 Mark 7 Library for the Honeywell Level 66 (GCOS} systems, carried

out at the University College of Wales at Aberystwyth. The first completed

implementation of the Mark 8 Library, undertaken by the University of Sheffield,

is about to be released.

! BURROUGHS 6700 ! ALGOL 60 17 18 1% ! N
! GDC 6000/LOWER CYBER ! ALGOL 60, 17 18 ! ALGOL 4 COMPILER
! CDC 7600 (LCM) ! ALGOL 60 17 18 1 ! ALGOL 4 COMPILER .
I CDC 7600 (SCM) ! ALGOL 60 17 18 1 ! ALGOL 4 COMPILER
! DEC SYSTEM 10 (KA) ! ALGOL 60 !5 18 1% !
! DEC SYSTEM 10 (KI) ! ALGOL 60 !5 18 1 =* ! KL COMPATIBLE
! DEC SYSTEM 20 ! ALGOL 60 ! 1g 1 =% !

1 HONEYWELL GCOS ! ALGOL 60 17 1 87 !
! IBM 360/370 (H.E.P.) ! ALGOL 60 17 t 8 ! D.P./DELFT COMPILER
! IBM 360/370 (S.E.P.) ! ALGOL 60 17 18 ! D.P./DELFT COMPILER
! ICL 1900% ! ALGOL 60 1t 7 18 1 _ 1 NON-1906A/S
! ICL 1906A/S ! ALGOL 60 17 18 1 oCcr8l !
! ICL 2900(B) ! ALGOL 60 17 18 % ! VIA ICL VME/B A(EDIN)
! PHILIPS 14/1800 1 ALGOL 60 te 17 1 ! EINDHOVEN COMPILER
! TELEFUNKEN TR&440 1 ALGOL 60 17 18 1 !
! UNIVAC 1100 ! ALGOL 60 D.P. 1 5 !} - | ! NU ALGOL DOUBLE PR.
! UNIVAC 1100 ! ALGOL 60 S.,P. 1 5 ! - ! ! NU ALGOL SINGLE PR.

LIBRARY MARK !

COMPUTER SYSTEM ! LANGUAGE ! !
' ! | NOW !NEXT ! DUE |

COMMENTS

Table 1: Algol 60 Implementations

- 20 -

A REVIEW OF NAG LIBRARY IMPLEMENTATIONS (CONTD)

With the assembly of the Algol 68 Mark 3 Library now completed, it is
appropriate that we include for the first time in this review, a summary of
the current implementation status of that Library. Table 2 lists the Mark 2
implementations currently available and those Mark 3 implementations in
progress.

LIBRARY MARK |

- 21 -

A REVIEW OF NAG LIBRARY IMPLEMENTATIONS (CONTD)

! ! LIBRARY MARK !

! COMPUTER SYSTEM ! LANGUAGE ! ! COMMENTS !
! ! ! NOW INEXT ! DUE ! !
! ¢DC 7600/CYBER ! ALGOL 68 2 ! 3 ! % ! !
! IBM 360/370 ! ALGOL 68 ! 13 ! * ! !
! ICL 1900% ! ALGOL 68 12 13 1% ! NON-1906A/S !
! ICL 1906A/S ! ALGOL 68 12 '3 1 NOV8L ! !
! ICL 2900(B) ! ALGOL 68 ! 13 1 * ! VME/B !
! TELEFUNKEN TR440 ! ALGOL 68 12 13 1 ! !

Table 2: Algol 68 Implementations

As Table 3 shows, most FORTRAN implementations have now reached Mark 8.
A newcomer to the 1ist of available implementations is the Ctl Iris 80 Mark 8
Library completed earlier this year by the Oceanographic Centre at Brest in
France. Another new machine range version is the Hewlett Packard 1000
implementation of Mark 8, performed jointly by NAG and M.A.F.F. Lowestoft
personnel. Both single and double precision base versions of the Mark 9
FORTRAN Library have been assembled and IBM implementations of Mark 9 are
underway. Some of the other implementations of Mark 9 will commence shortly;
the rest will begin in due course. |In general, where an implementation of
the Mark 8 Library has been completed, priority is being given to |mplement|ng
the Mark 1 Graphical Supplement before work on Mark 9 commences.

For further details of any specific implementation, please contact us
at either of the addresses given at the front of this newsletter.

! COMPUTER SYSTEM ! LANGUAGE ! ! COMMENTS !
! o ! NOW INEXT ! DUE ! !
! BURROUGHS 5700 ! FORTRAN S.P. ! 5 t - 1 ! !
! BURROUGHS 6700 ! FORTRAN S.P., ! 7 ! 8 ! NOV8l1 !]
! CPC 3000L ! FORTRAN S.P. ! 7 I - 1 ! !
! CDC 6000/LOWER CYBER ! FORTRAN S.P. ! 8 ! 9 ! !
! CDC 7600 (LCM) ! FORTRAN S.P. ! 8 19 ! ! !
I CpC 7600 (SCM) ! FORTRAN S.P. ! 8 1§ I ! !
! CII IRIS 80 ! FORTRAN D.P., ! 8 ! 9 ! ! !
! CRAY~-1 ! FORTRAN S.P. ! 8 1 9 1 ! !
! DEC PDP 11 (H.F.P.) ! FORTRAN D.P. ! 7 ! 9 | ! IV PLUS COMPILER !
! DEC SYSTEM 10 (XA) ! FORTRAN S.P. ! 8 1 9 ¢ ! KA PROCESSOR !
! DEC SYSTEM 10/20 ! FORTRAN S.P, ! 8 1 9 ! ! KI PROCESSOR UPWARDS !
! DEC VAX11 ! FORTRAN D.P. ! 8 !t 9 1 ! !
! GEC 4000 ! FORTRAN D.P. ! 8 ! 9 | ! !
! HARRIS VULCAN ! FORTRAN D.P. ! 8 1 9 1 ! VIA HARRIS !
! HARRIS VULCAN ! FORTRAN S.P, ! 8 ! - 1 ! VIA HARRIS !
| HEWLETT PACKARD 1000 ! FORTRAN S.P. ! 8 ! 97 1 ! !
! HEWLETT PACKARD 3000 ! FORTRAN D.P. ! 7 1t 9 ! !
! HONEYWELL LEVEL 66 | FORTRAN D.P. ! 8 1 9 ! ! GCOS !
! HONEYWELL MULTICS ! FORTRAN D.P. ! 8 1 9 I ! !
! IBM 360/370 (H.E.P.) ! FORTRAN D.P. ! 8 ! 9 | # ! G COMPILER !
! IBM 360/370 (S.E.P,) ! FORTRAN D.P. ! 8 1 9 I & ! ¢ COMPILER !
! IBM 360/370 (H.E.P.) ! FORTRAN D.P. ! 8 1 9 1| =% ! B+(LEVEL Q) COMPILER !
! IBM 360/370 (S.E.P.) ! FORTRAN D.P. ! 8 ! 9 I =% { B+(LEVEL Q) COMPILER !
! IBM 360/370 ! FORTRAN S.P. ! 8 1 9 ! ! G COMPILER !
! IBM 360/370 ! FORTRAN S.P. ! 8 1 9 1t ! F+(LEVEL Q) COMPILER !
! IBM 360/370 (H.E.P.) ! FORTRAN D,P. ! 8 ! & 1 ! WATFIV COMPILER !
! IBM 360/370 (S.E.P.) ! FORTRAN D.P. ! 8 1 9 ! ! WATFIV COMPILER !
! ICL 1900% ! FORTRAN S.P. ! 8 ! 9 | ! NON-1906A/S !
! ICL 1900%(G3&4) ! FORTRAN S.P., ! 7 ! 87 | ! SALFORD F77 COMPILER !
! ICL 1906A/S ! FORTRAN S.P, - 1 8 1t 9 ! ! !
! ICL 1906A/S ! FORTRAN S.P. ! 7 1 8 I =% ! SALFORD F77 COMPILER !
! ICL 2900(B) ! FORTRAN D.P. ! 8 1 9 ! ! VIA ICL VME/B F1 & FG !
! ICL 2900(K) ! FORTRAN D.P. ! & 1 ¢ 1 ! VIA ICL VME/K F1 & FG !
! ICL SYSTEM 4 ! FORTRAN D.P. ! 8 19 ! ! . !
! NORD 10/100 ! FORTRAN S.P. ! 8 ! 9 1 ! !
! PERKIN ELMER 32 ! FORTRAN.D.P. 1 6 ! 8 t % ! !
! PHILIPS 14/1800 ! FORTRAN D.P. ! 7 18 ! ! a ~ !
! PRIME V MODE ! FORTRAN D.P. !' 8 1 9 I ! VIA PRIME (EUROPE) !
| SIEMENS BS2000 ! FORTRAN D.P. ! 7 ! 8 1 # ! !
! TELEFUNKEN TR440 !. FORTRAN S.P., ! 7 ! 8 ! Nov81 ! !
! UNIVAC 1100 ! FORTRAN D.P. ! 8 ! 9 1 ! ASCIT FTN COMPILER !
! UNIVAC 1100 ! FORTRAN D.P. ! 8 ! 9 1 ! FIELDATA E3 COMPILER !
! UNIVAC 1100 ! FORTRAN S.P, 1 8 ! 9 1 ! ASCII FTN COMPILER !
! UNIVAC 1100 ! FORTRAN S.P. !' 8 ! 9 | ! FIELDATA E3 COMPILER !
! XEROX 530] FORTRAN D.P. !5 ' - 1 ! !
! XEROX SIGMA 6-7 ! FORTRAN D.P. ! 17 1% ! !

Table 3: FQRTRAN Implementations

D.P, Double Preciston.
H.F.P. Hardware Floating Point
S.F.P. Software Floating Point

H.E.P. Hardware Extended Precision
S8.E.P. Software Extended Precision’
S.P. Single Precision

Key:

[* in DUE columm indicates implementation in progress)

Steve Hague
NAG Central Office

- 22 -

IN BRIEF

Annual General Meeting (NAG AGM/5)

The fifth annual general meeting of the Numerical Algorithms Group
Limited took place on Friday, 18th September 1981 at Imperial College,
London. Mr. J.G. Hayes of the National Physical Laboratory was re-elected
to the NAG Executive. After completion of formal business, members heard
an invited lecture by Professor C.A.R. Hoare, of the University of Oxford,
entitled 'Is There a Mathematical Basis for Computer Programming?'.

Finite Element Library

NAG is shortly to take over the marketing and distribution of the
Finite Element Library developed by the Science Research Council. This
library of Finite Element subroutines and programs is designed as a
development tool for those people wishing to experiment with the
-practicalities of solving partial differential equations. 1t addresses
problems not currently covered by specialist Finite Element packages and
provides a valuable teaching tool for those interested in the mathematics
of the finite element method. The first machine versions of this library
will be available early next year and more detailed information will be
provided in the next issue of this Newsletter.

NAG(USA) Inc. Telex

NAG(USA) Incorporated can now be contacted via a telex service:

Telex Number: 254708
Ref: TELESERV DFLD

Message to be directed to 'Numerical Algorithms Group, Downers Grove'.

PERSONNEL

New Staff at Central Office

We are pleased to welcome one new member of staff at the NAG Central
O0ffice. Miss Fiona Byrne has recently taken over the post of secretary to
the Implementation and imformation Group.

- 23 -
NAG USERS ASSOCIATION

The inaugural meeting of the NAG Users Association was held at
St. John's College, Oxford from 8th to 10th of April 1981. 1t attracted
120 users of NAG products, with representatives from 9 different countries.
The meeting agreed a constitution and elected the following committee:

Dr. R.E. Huddleston (Chai rman)
Sandia Laboratories, U.S.A.

Mr. G. Thackray (Secretary)
ICl Mond Division, U.K. ’

Dr. G.R. Field
University of London, U.K.

Dr. L. Graney
BP Research, Middlesex, U.K.

Mr. P. Endebrock
RRZN, Hanover, W. Germany

In addition there are two representatives from NAG (currently Dr. B. Ford
and Miss J. Bentley). '

The next meeting of the Association will again be held at St. John's
College, Oxford, with lectures at the Mathematical Institute. The dates
for the meeting are Wednesday, 29th September 1982 to Friday, Ist.October
1982, |Invitations and booking forms will be issued to all user sites during
February 1982.

Any users wishing to make presentations at this meeting should write
to the Chairman, c/o NAG Central Office, providing a title and brief
abstract.

Sites which are not members of the Association will be given the
opportunity to send a representative to the meeting. However, numbers are
restricted and preference will be given to members. The registration fees

 for the meeting, for members and non-members,will be announced in the

information to be circulated to user sites in February.

- 24 -
MEMBERSHIP OF THE NAG USERS ASSOCIATION

- Why join the NAG Users Association? In joining any organization one
must ask whether the expense - either in time or money - will be balanced
by the return. - Since the NAG Users Association (NAGUA} is not a charitable
organization,” we cannot offer you either tax benefits or that humanitarian
feeling that comes from helping others.

What then can NAGUA offer you to make the fee for joining (small) and
the expense of sending representatives to meetings (much more expensive) and
possibly even the expense of real part|c1pat|on (potenttally very expensive)
worthwhile?

In my opinion, the whole question can be summed up in one word -
COMMUN{ CAT IONS .

At the present, you can certainly write a letter to NAG expressing a
suggestion about their services or products and undoubtedly you will receive
an acknowledgement of your communication; you are much less likely to
receive a reply which gives you an indication of how NAG views your
suggestion or the path they may take as a result of that suggestion. This
is in no way due to NAG's unwillingness to communicate with you, but is
instead indicative of how companies deal with individual inquiries. They
wish to leave themselves the broadest possible path for the future.

Let us assume for the moment that NAGUA exists and has a broad base
of members. You now have a forum for your NAG inquiries. 1f you have a
problem, suggestion, or query and if your concern is shared by a number of
other members of NAGUA, then your concern will receive a fuller reply from
NAG. Additionally you may very well find that another member of the Users
Association has solved your problem and is willing to share the work already
completed. The Users Association will not only allow better communication
with NAG, but with a large number of organizations which share common
technical problems. [t has been my experience that if you are able to visit
NAG for a few days, they will take time to tell you how they work, where
they want to go and what some of the problems are in getting there. The
chances are that not many of you will have that opportunity. However,
NAG has demonstrated that it is willing to discuss its goals in detail with
an organization such as NAGUA. This sort of communication is in NAG's best
interest since it receives many ideas from outside of -its own organization.
This sort of communication is in the best interest of the members of NAGUA
since they can then:influence NAG to implement their wishes.

So that is it - communicate through NAGUA - join.

Robert E. Huddleston
Sandia Laboratories, Livermove, C4, U.S.A.

