3.1, Construct a timetable.

The method of constructing a timetable is to make successive
decisions about the assignment of activities to periods. Each

d@cision can be made in one of two ways
oA
either (a) to assign an activity_pﬁ’a period

R

or (b) mnot to assign it

£
Choice (b) is known as a Eancellation.og‘ﬂmiwru
We construct a procedure "progress" which jumps to print out the
timetable if and when it is successfully completed, and exits normallg
if there is no way of completing a timetable on the basis of previousﬁ
‘oken decisions. Each activation of progress takes one decision, and then
enters itself recursively. If normal exit from the recursive call
takes place, the decision must be reversed, and another recursive
e call is made. If this also exits normally, this proves that no
W gcisiomycan lead to a successfiul timetable, and thus the given Lo ol
activation should also exit normally,se thal &Mﬁhf Bmﬁkba&mg sy Foke Plac,

fig ﬁ%%&hg

H

S Thus the basic structure of the procedure is

begin if complete then go to printout;

choose appropriate (a,p);L
try assignment (a,p);
try cancellation (a,p):

EEEI.] 0 i ‘“\‘%

(~-_§‘l€;gﬂx gu,,g,{oj!,qwmf.?ﬁi% cﬁ:’\,\-%f‘t @v&u&ﬁfj—utm_& A P
In order to detect completion of the timetable, we keep a count of AR/
decisions taken so faﬂ”'and compare it with the number of decisions

which need to be taken.

ccunt:Integer_igitialli o

T Cpntandt
to be decided:Integer iATEITL

i 1’1

-:f [f\ : £
i Péoves § Y .;)g-y)ﬁ‘,. g'\A

=

In constructing a backtracking algorithm to tackle a problem of
any size it 1s most important to avoid as far as possible the pursuit
of decision sequences which can be readily detected to be inconsistent,
in the sense that they can never lead to success. Thus before taking
each decision, the consistency of the previous decision should be
rigorously checked, and if inconsistency is detected, an immediate
exit from the current activation of "progress" should be made. We
thus derive the following program:

construct the timetable:

begin progress recursive procedure

s g 1 - _/"’(”w.-:.:\
bﬁﬂg;ChGCR consxstency, - /ﬁ{m&.
; if § '}}u«‘
select suitable (a,p):
: . "
try assignment{(a,p);
try cancellation (a,p);
impossible: ?@g
ol 5
e PTOGTES S}
,ﬁbwmw,ﬁwprlnt failure message® stop;
printout:%éﬂ
WA ot L] ’
by ‘
3.2. Assignment and cancellation.
(&5 t{‘{g L

This method requires that we keep a record of dEC131ons made
presiowsdy, This may be done by two mappings:

T,P:Activity-yPeriod set

where T(a} is the set of periods which have been assigned to a

~Crrerially-set equal-to tlmetabléw) @ﬂ&££1fﬂﬁﬁ%

and P{a) is the set of periods which have not been cancelled for a

{initially set equal. qtm@‘_,,p,o,sgsﬂifb:,lweg) Mﬁiﬁﬁiﬁ Hoa g

F

Obviously, if our decisions are non—contradlctoxyjuthe following will
always hold: spoce- . '

A4 {
¥a, T(a)CP(a) . .
If p¢& P(a)-T(a), this means that no de01510n has yvet been made about

assigning or cancelling a fregf p. An assignment may then be made
by

T(a):+p

and a cancellation may be made by

P(a):~p.

\‘|,,} ”r{‘ DA i UL O '»,éi‘“""
T ‘ ¥

v {.L,Qjm £

try assignment{a,p):

begin T(a):+pj;count:+l;progress;count:~1;T(a)$-pend
try cancellation(a,p):

begin P(a):-pjcount:+ljprogressjcount:~1;®(a):+p end

3.3, Check Consistency.

It can be seen that the efficiency of the program is
critically dependent on the success of the consistency check in
ensuring that only those decisions are pursued which lead to a
successful timetable, If an absolute test of consistency were
available, it would never be necessary to backtrack over more
than one decision, since the futility of a decision which failed
to lead to a successful timetable would be immediately detected.

Unfortunately, it is too much to hope for a 100% test of
consistency, since this would require a guarantee of the existence
of a complex object like a timetable before it had been constructed.

e

for falsity of a =ax necessary condition will then be a clear
indication that failure is inevitable. A condition N is shown to

be necessary if it can-be proved that:. -
" (’Q‘UM ‘\5 \%’l\L P(;‘ l‘:f,;—:-‘=

’a’(,\\)
c B o
iﬁ K&Va (T(a)Ctlmetable(a)C?(a)) 2 N.

* The following necessary conditions can readily be proved: JN,,)
¥a size{(T(a)) £times(a) £size (P(a)) Ni
¥i,p. busy(i,p) £lives(i) ~ possbusy(i,p) P N2

where busy(i,p) = size e‘users(i)g g“”f(a)§ 11

and possbusy(l,p) = siz '~ﬂk)eP(a)§ I2
'VEVa a Espread Jtimes(a)L s€days(d)Y)x1length(a) \
?_W”.mwmhﬁrﬁwpossdﬂys{a)&éwm-*“*‘“ﬁperlods i (d)#’emptyg ~%WN3FM

VA \.Qsﬂ

] me™Ncan be

1re the mest -
1as .7 HIt also
kec qpﬁtxng

s ved’%‘ it ;«_.be-;
f ec1 1 on }r

e
éé Q srbre the valwes
m e & . i

e
e
T

W@ ““W“%f‘?:?‘i‘”“‘

Va: 1ie () € turea(n) € aipe (P0) v

!Vlﬁ v %MJ (;.]f)) & »Q(W(_") £ f)aSSLMj (LIP) NZ
Wg\m ku»su] ({,P) = 5\‘:5@ zasi o & u.sws(l) X P e—T(a-)z
M E)Wl’“ﬂv, (i, f’) = S\‘g;e- i&l o & V58 (u) 2& ?& P(ﬁ'-}z

 Ya acsprad D qe(T(e)a psdinll)) £ 1 N3
Va,at; & esrmg v%‘{‘i\(a) >1 D
P“”‘;-"ﬁs (Ti“)) * %‘“‘ (&-) < ‘*MM@“) € i)ossiew's (P(.&)) *'Qﬂﬂ\j“"@ w4 :

¥l |
ya, d. -‘gwa% (9-) >1 I+ (_0-) < «1\:5@, ial \ me{‘%(asol) %mfl'v\% ﬂawﬁ“‘{“)
WLWL ?ass'{usi; (d\’ol)-.-{?s l T(a.) C ps c P (a) Aﬁpéalsm(_ol)
k ps = bnple (b), {:«’r(ps))
&g,;iufs) & skt ()]

The w’\jw}«;v. °ﬁ wnddion o o 20 V.

=

N4

-nggyéﬁ) T(a)h periods 1n(d%4 1

& size {d Icounttuplesglﬁngth(a' *la))> {} X 1ength(a)> times{a)) N5

sA,A:A,.,VV‘;w"’"JVV) M’v(\ s o ;
w,{;a’a" fﬂﬁ,‘// ,e tle(a)&l@“é—-m—(a}“;'" ;
JEU——— S r [l

The ¢ junctlon of these %Tx conditions is k%own as N,

5.4. Select suitabl

Another factor which is critical to the efficiency of timetable
construction is the judicious selection of the next decision to take.
An obviously sensible strategy is to take first those decisions which
are forced, in the sense that they can only be taken one way; because.

B T —

if such a dec151on leads to inconsistency, backtracking is comparatively
cheap.

(1) A condltlon FA is said to be sufficient for forcing assignment
?w%ﬂmﬁﬁlf it can be proved that

ooty FA(a,p)D —p N¥

91

where P' = (P“ﬁa:P(a)-p), ie, to cancel p fromﬁ% leads to
immediate inconsistency.
o ob p

(2) A condition FC is said to be sufficient for cancelllng p;éaxg
& if it can be proved that

T
FC(a,p)D—N
Tl
& T
where T' = (T7 a: T(a)+p), ie, to assign a—te-p leads to
immediate inconsistency.

. [e
C?))]q " & DL t “"’[:ﬁp g Ancianb /ﬁ & f; - WM i)g\t As u}ﬂ[\ y\,\@V\A\AU axt.. Loy wdh OtAA
X/w- QL {,«.S 1% Ls’“eﬁve' /\P Mzwx A j)w omi Lz fraLdws .

Since a single decision may give rise to several further

forced decisions, it is necessary to store these decisions for future
execution in two sets

56\{(15’&\ g ﬂ‘,, o I%Pe cE s.f’z‘t W ‘Eaﬂu{“ Lw»xk{fuy%{

)
fnxgedwass;,nﬂﬁfereedwtancei gAgt1v1t¥x?erloJ}sei Anitigally émpty
Syuvuu;\ e e Ao‘fwv -%Fef wf _.e\ m‘Jm} V”s ;/ 2T L |
[

Decisions are placed in these sets as soon as a sufficient condition
for forcing is detectedi thus :
(a,p) € forced assign = FA(a,p) v s« }u”%(éﬁ ﬁﬁ

(a,p) & forced cancel #=E FC(a,p) Y, . ¢ ({ ok I

{
“_1

-10-
We can now split selection of the next decision into two parts:

select suitable(a,p);

{?elect forced{(a,p); select unforced(a,p)}

where
select forced(a,p):
if forced a551gn;#empty then‘4
1(a,p) from forced a531gn, try assignment(a,p);go to impossib1%=

T m——

else 1f forced cancel*empty then
elee thep b o
{(a,p) from forced cancel; try cance (a,p), go to 1mp0351b1e§

- uﬁkuwm} CmN&AbNA gmr
QWVQQFNJMwﬂ umAdtZLq JA&J&
e - ; rced dec1§10ns shonld be made during r %
AL

e C‘,k of eco S l s t en cy . szgl AT R R Chvs Jﬁhf d"f‘l\ andy (fan lev{v%ul Be. 5«5»?@#&
i gmﬁﬁd gm4 AA& ££WA»ﬂ&A¢& xﬂdﬁ U g
“the™ fallow1ng tga-sufficient-comdition-for-agfignment

,_Whe,__‘—fe_.rp_é..l.’..(a)_.,T. (ad: - =
= times(a) T 'kf{." FAl
%; - Ilj(ltreq irement(a) & lives(i) = pOSSbuSy(l)p)) 4 FA2
C‘ \‘;j 0 [6\%‘
é% 5dagz:}jé:g}zrmlne_(a) & slze(P(a)A perlods 1n(day of(p))) = length(a) FA3
' 1 b1 A4 oo
é&gl' g ébpread %f[;mes(a)w 31?e£®ossdays(a))
: ' r".’ ength(a). . VA
k: e !(f\))/\“&' \%F%{ul} f’:"f\fi%:-')f"‘ ,%f\(iﬂfjﬁlz
2 e {A]i@qﬂ?wmw%m wCMPng;
e -
/"’f o :
ps € P(a)pﬁpéTtods 1n(i§y)of(p)) |
yplﬁ@%ength(a) firgf(ps)) ;
startsialz e
Each of the foliﬁﬁing is a sufffc%g&ﬁAconditi n for cancellation of
p-fxrom-.a, Wh%ﬁé pe,P(a)—T(a) - " A
Qb e
e e g “eimes (a)
=, i(i€ equlrement(a 1lives (i) = busy{l,p))

&5 ’ / a @read/& sng&T(a)l\perlods 1n(dayxﬁﬁ
S 1eﬁ§th(ﬁ) 71 51ESpread & pe posstupi

Tj SR A

ﬂ/\v ioﬁ“ A f»\ &g, {\/ £ u\vL o«mA ‘hmu EJ?W Lo ld
W l\L\MV }((7_) - ‘.\{_c‘«_\ﬁ ¢ (jﬁ
5\34::,- l{ { = A Vb Qm

T . , i f
] L\‘ g N L “ia

1\(‘ l ("x ERRY { 5?‘.-';‘:\,'5j A F Lt
! 06
1S p U W{ g(r\} -

U
V\f t\bﬂl 5.\3

; { TSN
] a\i}”—. i | u.'J ;
ST TA
Je, v & v\ariw - tatid cnj o e

w{.))*‘ ‘opul,
Gic’!\g}[hgww me c\ fg d&léap ;i T PG&S(%("f'{m‘}

As il U{ﬁvlj AL, L(l \.{3]

(O\é 5{[}\!{!‘{(v ‘))E“{a \‘)J

Hff\,.& F ¢ D u;i{.u\’\{ﬁg& 9{9(?})
({M]f {%’}

O&(«_"SPVHLE gs Pfe
ﬁb\.\D AL
Jol)

?
>1 L\P C %‘;% })w gt F)J\J‘w (o

(e)= s ()

PR T IS E\ FaraN iy L \TW#E

{+) Y

2
" 3

-]
jL A

(o
&J(;t!’x Lywnaaasd i

1.8 -

i o
& [)Ufgm,'w ! i
5.%‘”—“ bl (E IRty

~y

J 44
= Agaag U

o

(+)

{ g{gs%c(‘ I:}?\ \an%{

4

.

RN
A

! (o) >
S

Yy
Y

L-(&w.

: /EU/'L/)
w:\. .>£ g\&.

\/\/ o
.u‘v u:,r?c
J

GAN

Lo
AN Lo I/JTEAA &\(;J

As coritand

be

et

. : 0 i P Apcor e
£ {I L,\/ X 5[{\‘;_ phocd o ARV LEE L2 by
gy, e AT v\‘;‘._l b
U i
I
. i/ -
iﬁe L\rj ad Lf w w\,ezw% A ,;;i‘ 'bf J Caann cz,‘{k mit-w\

/]
J(dl\‘ ced g g u’ U\ = i {(;..-:1{, o ekt T

{

ALAL

o by

A

L@;"‘!.M\P; {

Fa

£,

o e

Al

dolted, Wt ey .
heae oude be *“Q-w\sww‘\

"gi’éu%b"

lezr ot
»{Lﬁu’?waj [7"“

B PP

- (o

Azj % s {}f,v;“i

K ! : w}:)} N
.f, A ? \{ g !\ "i [j i ‘{ 3

T/L\Q o gv"-"l- &Y W\"“ o {% ¥ ‘(. Q i . P F e |

| Q ') 4 A A gra 0 LAY
- . . y N 0‘ Z e {I 2 é{;\,\g(\nd LA 4% 3 1

& A LA Ly
e LV conn TRAEAD be eostiy I f N .

A s i b] \ 5 % :»\er\g‘zf\ .,

P F% (a 7% ,jg £ _,i-_{_ﬂqu. 0

T i i AN £
et bg\ 6’\,‘/7-(1y
U

B&SM ijw((‘“;P))k
b sty o i L, Fo et

din Ko a5 Ao Ak o wa LS
T = N N .

y % w - oW, "‘“‘4_ Jwé@' MW&
wll b Hose deccrmns whidh ams Wd:fiﬁj
b ofd A -

- = :
AR AT .
- g - - S -
X, : 2T, fotslr =i il wr] IR O

(

il

ST

ST2
ST3

' ST
pridis wiodsin (e (5) |
b e (0 ‘”“’”Js et
WIAY I
il

T4
(/T!;a% (+) =

STS
)# ol

1 penidess (4“1’;([,) WEHL

%) o1k Tl x per

% s &J@Mfs P \%\Mz,@%
i St o ’éi/

X

A e

(AEe44 Lo ; y

) sty

4 8 . MJA | &/ A %&»w m%«;gf Y ﬁ
b W i

A g, gA @‘J/M@ § afernd
g{z 5 i %ﬂf’ z»ﬁ’k ﬁ?’ﬁ“‘ o ;vw

asn IR,

- r% i
/ : 47 T SR ¢ NV
4 ,@%ﬁ% Yy & T y

PO gﬁ
% ﬁ}m@m f’ﬁﬁ;wﬁ LARAG i

! i ;-
h
f”i’f Wopdh " ng»f'%
geat

P e S‘Rﬂ (ﬁ»)i

LAAAS LD

g
4&:@%&% ﬁﬁm w’%ﬂ’fﬁfiz‘gj
rf T
1

%%ﬁgﬁ Y j %ﬁ%ﬁw

y i:'{ i o i
@wﬁiﬁ i{éﬁ YL @% é’gwﬁ@ ot ik dhn Frk

« fi from
1o LA anA] .

T !

Alpred

. g.ﬂ
i A ons

- © %
; %&,éq\g% Y i EW’ % {?,»V} -}{A sﬁ\«.?
& vm’ £, et

B wgm@ G pnid ﬁ m}lm%m W}%w R «v g%w W}gngi
. iﬁ#@ﬁ"& w’%; %z@ﬂ: ,ﬂﬁ fsﬁtﬁ&ﬁg g f} @éfﬁuﬂé EN =R D Ao ratid g

Wi ‘@%ﬁ&

& 'M;? # - i %
gﬁ@ﬁﬁn@ﬁgf‘g N ”éf;fg 3) @&xAﬁﬂ% zﬁ@&;ﬁ}i é’ﬁ wg\w%

i sf‘*]
‘iﬁ“’wﬁg

&

s

o —dony fdan g L

- mTL‘sAM (. vmifwv‘ 6‘; e
i Q”&%é&%ﬁgww_m@mz%?ﬁém%w&%ﬂ
rﬁ?‘ %'ﬁ b?""ﬁ
;%L“%M% Tad mf o= Loty 7 .
‘ 5% e Leaitio- B , By - ﬁ TN ﬁﬁ’w
1242 ; %@W; ” xg %Mﬁ & ﬁﬁw@ @ Azf/j{/(«m&.ﬁj%

BN P
0 o N ET FPPN

£

W s

i
Jowas e

S
e,

5 i

£)
WEYYE S Wféf-az i

)

gﬁ ’@%

L e D T T i

e

-
-
¥
L
k
FE]

i b P g T
%ﬂi&w@‘wﬂg e ey R fy
. # . g . N

Db MW

4
1 *»%&;g
hyed - AL

S A f 3‘3 , o g i d
zﬁm? »ﬁ:wﬂg WAk fARE A f / Boe
i . N ij :'? LS g}é }g ﬁf@@ﬁ}%@ﬁwﬁ
Cas L P8/ DTS LT B |
Ul e Whon i I

F’Ié{.;‘g "ﬁ i : g f’: 5 5“.?"
Qgg @?@fﬁﬁvﬂﬁj be hetli
L4

9 ,g}%iw gﬁ %}&aﬁ%%w “
1 % ;%

i . ' P s
d b nd et
& éﬁ'
g

W ddiank,

it 43 "
. g i 4 ’
e . § P d 5
. f@%"’” st n D adtoshn vgg FRASA Flf
R, L g R Lo At i ‘
| i
&

i

A

P

" mamé’@m% e ‘iﬁ"wﬁfej%m

y oo bt d
Y G

4 e

)

§ i ‘
i ’f
L lanast ™ o fiiﬂ
i

g

!

) FAR R

| fwwzmmﬁ é%k

R ‘%g /fg y‘g&ﬁ%‘,ﬂ ﬁ"%f m‘fj a«ﬁ« 5?5‘3
7o ”%’

- :)
wwms&mjg f@ﬁé&g&i @/ﬁ éﬁf |

P e ff

f %&% nﬁgﬁf;@ L4 Mf*€£ sgf

CANGas i oo A
:

$. ﬁ /{ ﬂg« £
waﬁﬁ At Es Y & e g&j

LY VI /
'
f?

6‘%

&

_%v
.,
b

) \ °f
. 2 . . A %ﬁmm&.&%fﬁ .4
; wl N e Hen BT i

s S LT m}

j&m
PP i L AN

e

\QLL &:sw:stemrl}{g\ ’..} e T

o | - 1 U l;ﬁ‘f\ WL _ﬂli(a&) [‘ - \4
. T e \,,A -.ae_cm,{ Aees Y 7 P ,4
begun g opoe (o) oy The wes

S
js:_»f«:: L&

Landd.

) i'g:vcwi ;‘v\'w’@ {(A) v L5

bl

'/"_‘\“-.__

(@?A.E, ! 0{(LL\A mng’{‘ X QM«,JC dncw LAy PAR%S

ey
Yot

s
p)

e TE
.—% s
o

Y

& age (‘P(b S Lo (Ao (}a?))) 4 o ok {g o (éwﬁ\xpwiﬂ miw g;{

g
(i

e
S

i

e

WA LEE

¥ 7
9

[Loned sant L Oé

H o \;\fﬂ\&‘f‘f,

e

b

{j-t.x»v; LA

i -
71'{..59&9 2N -F \,ﬁij

4
: Ny G et

F;

SR TR TV ER

r,,
t &v% e o
g 01 Favar- RS | 9
: . F‘) -
AN ch: LL‘{W' A

i
%{)\‘” AN
ALassn

e

E}!}L 8%

O{J} £y

)

o i .

o ;‘
et 0‘\,{’ .

/ \/\/ !\M\ﬁ

Wm}{”?«&

i

/
R ATV

#

s iss ag,u, s:?)

.
v

oo
i
wd LA

" S ‘\)
7!5 gﬁam sl)/

b

i)
f i
!

{)_«lé‘[At LA
;

; i -
i

/i

/fm, wm’t A
if

\-J/L\t P G’OQ, w L’LCL '—’—’t >{1 e\&. CU"/‘I 11 J o i L\,z K g. y‘@fé wAEL
| W,

?Z«ng —

1250w WML

(_ > {)./3\,1 & %)CEV\& J

. %UJ ng\%/l OLAN .{l S :

Lt et

Ladeals jg

i
el '/[ff e

' . !’.‘) 3
ATwers & Lo inih

-
P
o)

H

Ind £y L’ji .

i
DA e

{

’Tm a/wl if’j Caan

" -
A f&i ’) AL L

o A
LA

]

ne RReisk

d

o

p
P

/jf‘ [E a2

u
b

w«}\[y

A u?»

.,
71'5 4 LIV

VALY Qg

k]

1 {1 }

hoL W . F {
‘@M}EM W AN

11
4, Tight sets.

As mentioned above, the feasibility of the timetabling method
depends critically on very early detection of inconsistency; for if
an inconsistent decision is detected only after mm n subsequent
assignments, it ma take 20 packtracking operations before the error
is corrected. Tur¥hermore, very powerful detection methods for
forced decisions are vitally impertant, since latent inconsistencies
can often be detected after a chain of forced decisions, which can
comparatively cheaply be backtracked.

We are therefore interested in strengthening the conditions for
consistency and forcing; and welcome a suggestion made in L[2] ,
namely the search for tight sets., We first note that the following

R 5 ot e 28 e et

is a necessary condition of consistency: , ~
Vi, ¥as: Activity set (asc:users(i):Dsize(C} P(a))xlives(i)ﬁgtimes(a)
- a€as agas e

-3 N7

s astlmes(a)

unit periods of item i; and these must be taken during the periods of
% (/P(a). But if there are too few such periods, this will be !
a€as

e impossible. -

Proof, The activities in as will require a total of

If equality in Ng obtains, the set as is said to be tight in i,

as gtight in(i) ﬁ?df as(juser(i) & size(U P(a))xlives (i) %thimes(a)
- a¢as ag as

Hote that the empty set and the full set (users(i)) are both trivially
tight.

Now it is clear that if as is tight in i, all the period~units

of item i will be occupied during U P(a) in satisfying the needs
' a g as

of the activities in as3; and none can be spared during these periods
for any activity outside as. We can thus Herive a sufficient
reridztwrr (for forced cancellation of a—fremp, where p&P(a):

condition a,&J'§ .

'Has,i as &tight in(i)¢ a¢users(i)~as&p € UP(a') FC7

. a'e as

Note that FC7 can be true only if as %’empty and asa%users(i); thus
no cancellations are forced by these trivially tight sets.

-]2-

4,1. Example.

In oxrder to develop a deeper understanding of the nature of a
tight set, we shall give an example of a tight set search. We shall
initially confine attention to an item with only one life, and suppose
that each of its user activities is to occur only one time. For the
sake of illustration, we assume size (Period) = 10. Now each value of
P(a) may be regarded as a Boolean vector of length 10, with 1 corres=
ponding to each pe P(a), and O for each pEP(a):

eg P(a) = 1 011010000

signifies that periods 1, 3, 4 and 6 are members of P{a). Now the
requirement that an item be kept fully busy during 10 periods implies
that it must have exactly 10 users (since our simplification states
that each user uses the item exactly oncé} Consequently the rows for
each of the users may be extracted to form a square Boolean matrix.

pl p2 p3 p4& p5 p6b p7 p8 'p9 plo
1 0. 1 1 0 i 0 0 o 0
1 0 1 1 0 11t 0O 0 o O
0 1 ¢ -1 1 0 0 0 0]
a 4 1 0 0 1 0 1 0 0 0 0
a 5 1 .0 1 Q 0 1 O o 0 O
a 6 1 1 1 0 1 1 0 0 O 0
a 7 1 1 1 1 0 1 1 1 8] 0
a 8 1 1 T 1 0 1 1 1 0 0
a 9 1 1 c 0 0 1 10 1 o0
alo 0 0 o v 1 110 1 e 1

w} 3

The first fact to mnote is that al&o a6 form a tight set, with
U P{a) comprising the first six periods (columns). This may most
a clearly be recognised by noticing that there is a solid 6 x 4
rectangle of zeroes on its right of the 6x6 sguare on the
major diagonal, The rule FC7 now permits cancellation of all
1's in the corresponding bottom left hand rectangle, leaving
the following:

101101
101101
N 10110 o
101101
101101
1 11011
1 1Jo ©
1 1o o
1 0{1 0
0 Ol’l‘l

P ¢ lement . .
Now it is clear that the Kgggan&n ¥ of a tight set in the

matrix is also tight - after the cancellation has taken place.

But al to a6 is not the only tight set in this matrix., For
example in the bottom right hand square the first two activities form
a tight subset, and the bottom left corner of that square should be
blanked out. : ‘

p/p8p9pl0;
a7 {1 1]0 ©
ag8 1l 110 ©
a9 0 0fl1 O
ale |0 0f1 1

Now a9 has only one possible time when it can be assigned;
this is in faet a special case of a tight set, and justifies yet
another cancellation: '

p9 plO
ag 1 0

Of course, it cannot in general be expected that the rows
or the columns of a tight set will be contiguous, as they were in the
cases described above. However, if there is a tight set, its rows
and columns could be made contiguous by suitable interchange. For
example, in the top left square of the original matrix, activities

wlb=

al, a2, a4 and a 5 form a tight set, with a union containing pl, p3,

-
p4,p6b. By inter change of rows and columns we obtain:
S

plL EB; 943 Pés ng p5

! i
a1 1 1 1 1)lo o
a? i 1 1 1 0 0
ah 1 1 3] 1 1 0 Q0
ab | 1 1 0 1 0 0
a3 0 0 1 1 1
ab 1 1 o 1 1 1

Thus four ones in the bottom left-hand corner of this square should
be. cancelled. ‘

This reasoning applies also if some activities are intended to
oceur more than once, An activity which is intended to occur n
times may be regarded as equivalent to n identical rows, each of which
is to occur once (thus a4 and a5 in our example might be a single
activity; also a7 and a8).

If an item has mu%&iple lives, say n lives, the Boolean matrix
will be n times as long as it is wide; and the "squares” along the

diagonal will be rectangles, also n times as long as wide. Apart
from this, the reaso?}given above applies also to this case.
W

Since searching for tight sets is an extremely laborious
business, we do not wish to do it too often. In particular, we can
avoid doing it in the case of forced decisions; instead we wait
until all forced decisions have been taken and the next ®m unforced
decision is due; consequently the tight set search should occur just
before "select unforg@ed (a,p)", and if one or more forced decisions
have been uncovered by the tight set search, one of these should be
selected. '

before select unforced(a,p) do {tight set search; select forced(a,p)g

- G
4.2. Scanning for tight subsets.

The search for tight subsets of a given set £8 can be made only
by considering each subset individually. The scan of all subsets
can conveniently be done by a recursive procedure "scan". This
procedure is designed to exit normally if there are no tight subsets,
and to jump to a "success" label when it finds one, having noted the

resulting forced cancellations. The procedure in-faet takes three
parametars:

as a subset of ts which has already
. been .Qmsw Sepi b,
ps = UV p(a)
a¢g as
n =Z times (a)
agas

The procedure will in fact only examine supersets of the set as
which has already been chosenj and it does this by adding in turn each

member of(ps - as)to the set as and entering itself recursively.
But "scan" must also remember not to accept ts itself as a tight
subset. We thus obtain the procedure!

scan {(as,ps,n) recursive procedure

compare size(ps)xlives(i)with n

PV Sp————

1f< then go to impossible

if Aas#;tsf then {for a g ts-as do
for P&P(a)ﬁps do forced cance1:+éaﬂ,)}

%{mﬁ: FALOATLE. i ;

else
for aEts-as QE scan (@%@as+a,psq P(a),n+times(a))

Hago to success}

In practlce it will be hlghly advantageous to wrlte this Ilttle
procedure in machine code, since it is effectively the "inner loop™ of the
entire timetabling process.

-1 6~

4 2Reduction of Inefficiency.

In view of the extremely time-consuning nature of the "scan"
procedure, it is necessary to take firm steps to reduce the frequency
with which it is called, and the size of the sets on which it is to
operate, Suppose the set of users of an item i have suffered no
cancellation since they were last scanned for tight subsets. Then
there is no point in making a further scan, If one or more user
activities have suffered cancellation since the last scan, then
any tight subsets within users(i) must contain at least one of those
cancelled activities. This suggests that we keep an account of
all activities cancelled since the last scan, together with all items
which mneed rescanning.

changed: Activity. set initially empty
needscan: Ttem = ~ set initially empty.
whenever P(a):rp do i?hanged:+-a; needscan:+requirement(a)%

Now we can code!:
tight set search:

begin for i £ needscan do

begin ts:= users{i);

scan LS}
needscan:-1i

end;

e

changed:=empty;

success: end

SR

where scan ts: for agts Nchanged do fscan(unitset(a),?(a),times(a));

ts:"at}

(1) cancellation can never cause a tight set to become nontight
(2) any new tight set must be wholly contained in some
previously existing tight set.

Further efficiency can be gained if we remark that:

17~

Point (2) may be established by visualising the diagonal form of
tight sets., Since it is much more efficient to scan two separate
sets than their union, it will pay us to record any tight sets as
we discover them, and confine future searches to these individual
tight sets, For this purpose we introduce a variable

tgss: Ttem—yActivity.set sequence initially tss(i) =
~unitsequence(users(i))
] . OELLI‘BWLLJ/;M _ , :
which maps each item onto a sequence are tight in that
item,

Whenever a tight set is discovered, both it and its
welatdive complement with respect to the set being searched must be
added to the appropriate tight set sequence

in scan before go to success do

LS L~
tss(i): as; tss(i): (ts~as)

- Whenever backtracking occurs, any tight sets discovered as a result
of a changed decision must be removed.

CEhus the item for which a tight set has been discovered
must be recorded in a variable local to progress :

tightset found: Boolean imitially false

in scan before go to success_dg
tightset found:=true; item with tight sets:=i1

before impossible do
iﬁ tightget found then remove two elements from
tss(item with tight setf)

Now the tight set search for item i involves scanning through
all sets &n tss{i) and selecting those which contain at least one
changed activity. However, once a tight set contalnlng a given
activity has been scanned, there is no point in scannlng a subgequent
tlght set containing that activity. We therefore keep in a variable

tchanged" that subset of the users(i) which have been changed but
not yet dealt with,

-18-

Now we can code a more efficient version of

tightset search:

begin for igmneed scan do

e e

begin mnew ichanged initially changed p users(i);

for ts in tss(i) while ichanged%.empty_gg

for a g tsAéghanged do
iscan ts; _ichanged:—ai :
needscan:~-1
end;

changed:=empty;

successtend

e st

