i M
i i
A far, WA r_‘}uu SoTaee,

Yy) .
.!{“ 1 ¥ éi.,—éii,m‘um:.»

A Model for

COMMUN | CATING SEQUENTIAL PROCESSES.

C.A.R. Hoare

Oxford University Computing Lbaoratory
Programming Research Group
L5, Banbury Road
Oxford. 0OX2 6PE

Summary: A previous paper [5] has suggested that parallel
composition and communication should be accepted as primitive
concepts in programming. This paper supports the suggestion by
giving a simplified mathematical model for processes, using traces
[6] of the sequences of possible communications between a
process and its environment. '

December = 1978.

Introduction.

This paper gives a mathematical model of the concept of a
communicating sequential process. A trace of the possible behaviour
of a process is given by a sequence of f symbols (or messages) communicated
between that process and its environment. A trace may end with a special
symbol v, indicating successful termination of the process. A trace
that ends without a v indicates failure or breakage of the process { e.g.
abortion or deadlock). A process is defined by the set of all possible
traces of its behaviour. Its actual behaviour in any given environment .
will be determined (at least partially) by that environment. 4

‘The set of sequences representing a process may be regarded
from several different points of view. For example, the set can beg
identified with the (finite or infinite) tree formed by ”merglng
the common initial subsequences of sequences in the seE:> o o

The nodes of the tree represent states of a machlne executing the
process, and the arcs are labelled with the symbol whose communacatson
(either input or output) causes the machine to pass to the state at the
other end of the arc. Terminal nodes represent-either siccess (V) or
failure (L)f When two subtrees are equal, they can.- be collapsed to
a single copy, with two arcs leading to its root node, and this gives
yet another equivalent representation, of a process as a (finite or infinite)
directed graph, known as a state tranSItlon _diagram.

But the most effective way of defnn:ng a process is that suggested
by the work of Milner [7], 411 that . i% necessary is to define the set of
symbols which the process is capable of communicating on its first step;
and then for each such symbol, to define the subsequent behaviour of the
process after comminication, of that symbol 0Of course, if a process has
al ready successful]y terminated, or is already broken, clearly there is
nothing |t can communrcate on its first step.

These varlous equnvalent models.are described more formally in
seeflon 1..of.the-paperi Section 2 defines the four basic methods of
constructing more complex processes out of simpler ones. They are the
“familiar sequential composition (concatenation), and alternative composition
{modelled on guarded commands [2});and the less familiar parallel composition,
and process naming. Parallel composition is modelled by a form of inter-
leaving, in which communications between the constituent processes are
represented only once. Process naming merely ensures that every symbol
communicated by the process is tagged with the process name. . There is no
need to introduce a special repetitive construct, since in a mathematical
model, recursion is perfectly satisfactory for this purpose.

Section 3 applies the definitions given earlier to a simplified version
of the language of Communicating Sequential Processes, given in {5]. It
can be omitted by a reader not familiar with the previous paper.

Finally, section 4 discusses some of the defects of the model and
points to p055|b!e directions of future research _

ettt T —

The paper is |Ilustrated by a number of examples defining famll;ar
concepts and algorithms. As the exposition unfolds, the examples gradually
come to resemble computer programs, and the constituent processes which

v

enter into the definitions seem to acquire a life of their own as
independent agents. From a formal standpoint, this is pure fancy; but

it gives an intuitive content to the theory, and may ald our understanding
and invention. | am rather pleased by the way in which the "“programming
language'' emerges directly from the mathematical definition of its
semantics; perhaps this progresslon should be adopted more wldely as

a8 methodology of programming language design.

L ol b v =6 fatudd
ghat = i@ I ?1 F LEAT TR
Basic Definitions.

A process P communicates with its environment by means of
symbols from jts alphabet I (P)*. A process with alphabet I can
temminate either sucessfully (indicated by /E) or unsucessfully
(indicated by'iz).

{ .
b Lo vy

i

s

If a process P has not terminated, it is prepared to communicate any
symbol from some nonempty set PO contained in L(P); after communication
of some symbol ¢ in PO, P will then pass to its next

state, in which its subsequent behaviour P(0) in general depends
functionally on o.

More formally, the space D of processes over afphabet L is
specified by the following axloms and defsnitsons

(1) “?F?g;f__'

{2) |f-Ti is a subset of T and P is a total function from
m to DE’ then P is in Jx. Such a function will be specified:
{o: T > P(0)), omitting the conventional lambda before the bound
variable 0.

(3) The '"broken' process is just a function with empty domain

iz :df (U:{} g .-.)
(where ... could be replaced by anything, e.gq. /E)

(k) The domain P° of a process P is defined -

(/Z)o = {1} (the empty set)
(6:7 - P(a))® =

This is the set of symbols that can be communicated by P on
its first step. Clearly P® ¢ I and (LZ)O = {}

(5) IfPe Dz then Z(P) = &

In practice, Z(P) will be finite or denumerable.

(6) For all Pe Dy

P=/,, or P=(c:P%P(0))

b}

This axiom excludes - umwanted digmemu fj—awx DZ

if the domain of a function is finite, it is more convenient to
define the function by simple enumeration of Its arguments paired with
their corresponding values. Thus if 'a'' and "b'" are distinct symbols,
(a ~ Amb>B)

is the finite function with domain {a,b} which maps a onto A and b
onto B, i.e. '

(o:{a,b} +if c=a then A else B)

This notation is also used for finite functions with largér domains:
(a >Aub>Bw ...wuwc+C); |

0f course, the symbols a,b, ..,c must all be disfinct.

Example (1) X0 .

A process X0 is initially capable of communicating either ''a'
or '"'b", where the selection between them will be made by the environment
of the process. |If "a" is selected, the process will break; but if
Up' is selected, the process will go into a state in which it s prepared
to communicate only 'a''; if and when this is accomplished, the process
terminates successfully. Such a process can be defined:

X0 =df (a>1ub =+ (a>V)) ploc: 0,15 —p & 0 s O bert
L i 4

ﬁém; 4

The explanation given above carefully avoids ascribing any direction
to the communication between a process and its environment. This strange

‘assimilation of input with output is a purely formal simplification.

Informally, when a process can communicate only a single symbol. (e.g., on
the second step of X0), we shall call this "output'; but if several
alternatives are offered (as on the first step of X0), we shall regard
the process as asking for "'input" of information from its environment.

In future, output will be denoted simply by writing the character
to be ewptt communicated:

i.e. Ma' for (o: {a} + r'
Thus X0 could be written more briefly as
(a > 1ub~>a)
Similarly, the theory gives no particular interpretation to thé

symbols in the alphabet of a process. Sometimes they are just symbols
of a language to be accepted by an automaton. Sometimes they are

Ncommands'' or ‘'questions' from one process to another, and sometimes
they are ''responses'' or "replies'". Such different interpretations of
the symbols will feature in the examples given throughout this paper.

An equivalent way of defining a process P is in terms of its
language £(P). This is the set of finite sequences of symbols which
it can communicate during some finite interval of time. By this definition,
if s is in £(P), so is every initial subsequence of s.

The symbol v is reserved to appear only at the end of sequences which
lead to successful termination. Any other sequence, which is not an

initial subsequence of some longer sequence of the language, leads to
breakage of the process. More formally, the language of a process is.

defined
|

{e, Vel [ir o =V
{e} v {0 s| oe p° & sefL(P(a))} Alo'u\wwise_

£(P)

il

where € 1Is the empty :equénce and os is formed by prefixing the
symbol O to the sequence s,

(:E;;#:;at Ye is the sequence containing only v).

From this definition it follows that;:
{1}
{g, a,av}

L (1)

£ (a)

I

£ (aA w b+B) =
{e} v {as|se A} u {bs]se B}

£ (x0) = {e, a,b,ba,bay} |
The appedag of V/ f5 ok Ha od o} e
sucrsful Brnce wll ben okt B ke o
cmmd,vi'z c_aim)«b convention .

It is sometimes illuminating to picture the behaviour of a process
as a tree. The nodes of the tree represent states of the process,
the initial state being at the root of the tree. Each branch leading
from a node is labelled by a distinct symbol from the alphabet of the
process; communication of that symbol causes the process to pass along
the branch which it labels. A terminal node (leaf) of the tree is
marked with a v/ to indicate successful termination; a leaf which is not
so marked indicates breakage (i}. For example, the process X0 defined
above is shown in Fig 1,

| .Ffjwr@ 1 .

The language corresponding to such a tree contains the sequence of labels
on every finite subpath which starts at the root; and a final v is
recorded at the end of each path which leads to successful termination.

Such a tree can be drawn for any process which has only a finite
language; but for an infinite language, informal dots would be required.
For example, a process X1 which communicates a string of none or more
tiews followed by a single “'d!' can be pictured as in Fig 2 (a).

(::;7many cases such an infinite tree can be represented as a directed
graph (Fig. 2(b)).

(’Eut such a graph must be regarded as equivalent to one with its cycles
arbitrarily expanded, so that {a) (b) and (¢} of figure 2 all depict
the same process.) '

(:]n functional notation, such an infinite tree has a simple recursive
definition:

Xt = c+ Xlwd=>V)

.df(
Hovwww, TN o‘w\u— coses (e,.ﬁ_ FJ:) 5)' o lwoc.e.ss
W‘ Lvl Wﬁm (.aw\no'[' L:_ re‘)wswtﬁl fra
™ F‘mvt. jNJ\FL\.

becomebrue

| ‘"Cju.re, 3,

Example: (2) BOOL

A process BOOL models the behaviour of a Boolian variable. Commands
and questions from.-its environment are represented by symbols in its
alphabet. At any time it accepts commands "'become true'',"become false'
and "end''. After receiving "end", it terminates successfully. When
true it accepts the symbol 'istrue' and when false it accepts the
symbol "isfalse', but initially it accepts neither of these.

= ? i ‘ - - & ‘E —
BOOL 4F {become true + T | Rool = P?%%vigijeuﬂj -7
f} \become false > F

i
fyuend + ¢
B

1)
where T behaves like a true Boolean and F like a false one:
T = dﬁﬂ(become true > T
W become false > F _
u e et
U end - slﬂ.ri
)

_ 7
Ty

L4 become false = F
Ledil \
u égwgglse +l¢ P? Qﬁﬁ&&mﬂ} F
4
L end ->\(5E\;QP
) -

{become true + T

This process is pictured as a directed graph in Fig 3.

Technical Note.

The use of recursion to define potentially infinite processes
requires justification in the form of complete partial ordering(g)
over processes. The ssmplest candidate for such an ordering is:

Plg P2 = df £ (P1) ¢ £ (P2)

The concerned reader should check that all the operators defined in the
next section are continuous with respect to this ordering. }{ou{gmtv

Ehene ave other awlurwsﬁ which preserve uw‘{‘mmi:1
oﬁ Hhe onJ_:’“; mwl(:"dv SOV prcm.-s

(e.q the defidion 8 snadadid iae | Sedimn 4.4)
Hhse

"(f e f’“‘f”"‘j’ﬁ"'

2. Compasition of Pevermimistic Processes.

tn this section we introduce various methods of defining
compound processes from simpler component processes. Three
operators will be introduced, and thelr syntactic precedence will

be as listed:
; sequential composition (binds tightest)
|I paralliel composition

B alternative composition.

whabEer—than—att—efitheser However, redundant brackets will be

used quite freely.

2.1, Sequential Composition.

A sequential composition (A;B) is a process which behaves like A
untit A terminates. |f A has broken, then so has (A;B); otherwise,
its subsequent behaviour is tike B. More formally

Z{A;B) = df I(A)uI (B)
A;B =df . B if A=/
=(o: a° +-(A(U);B)) otherwise

Clearly, this operation is associative, and

S by

@éﬂfj 3A = jnu,igw%;
e

Foa s Sl i]
(a>Aub>8) ;¢ =(a+(A;C)ub>(B;C)) (oot ¥ 1? TR

{’ PP T = ({8)‘*
] .
Sequential composition may be pictured as "an operat:on on

trees, which grafts the whole of the tree B in place of every ticked
leaf of A (Fig. 4).

g

I:}} E‘} - gﬁ% § 5 e ﬁ‘é' L g((&-fqﬁ oy t’*f}}
S P{i‘ﬁ‘t?& \ru:;i:; fw\ﬁ%’a U;a\ Jé

9a

Note that unticked leaves of the first operand represent
failure, and remain ungrafted. ‘

The language associated with composition is

£{A;B) = {s;t | seA §te B}

where s;t = s if s does not end in ¥
and s Vit = st (i.e. concatenation of s and t).
Examples.

(1) The process X2 accepts strings of the form a"p" Y.

x2 =pila(x2;b) w0 '8 > op

(2) ~ The proﬁess X3 accepts strings of the form anbncmdf
X3 =gl(a + (X2;X1) W c>X1 M d> V)
where X2 and X1 have been defined above

(3) The process X4 accepts strings of the form b dy
[left as an exercise]

(4) The process CTR behaves like a simple integer counter
initialised to zero. The symbals of its alphabet represent
commands and questions from its environment; on receiving a
command ''inc'', its value increases by one; on receiving Hdec!',
its value (provided it is non zero) decreases by one. A zero
counter can accept the command ''end", after which it terminates
successfully. When its value is positive it will accept the
symbol "ispos', and when it is zero, it will accept Wiszero'',

CTR = df%(is zero + CTR

L inc -+ {POS;CTR)
tdend +
)

where P0S is designed to terminate after accepting one more
Hdec!' than ''inc'':

POS =2(ispos + POS
Wdec >
tdinc + {(POS;P03)

)

The behaviour of CTR is pictured as an infinite graph in Fig 5.

10.

2.2.

[

Parallel Composition.

A parallel composition (A]|B) is a process whose communications

are a kind of merging of the individual communications of A and B.

More precisely, any symbol o which belongs only to the alphabet of

A {i.e. 0 e Z{A)- (B)) will be communicated directly between the
environment and A; and similarly, a symbol ¢ ¢ L(B)-L{A) will be

accepted by AI[B only if and when it is accepted by B. But a

symbol o which is in both their alphabets must be accepted simultaneously
by both A and B. (AIIBS terminates successfully only if and when

both A and B have terminated successfully.

More formally, the language of A || B can be defined as follows:
2 (A 1] 8) = Z(A) v Z(B)

$(alls) = {5|(srz‘;(a))e £(n) & (skz(B)) < £(B)}

, meludmag ondey :
where sPL is the string formed from s by 9m+$¢4;;ge44 symbols w»n

eutside (Zu {vV1), omd ewmutl L sHherrs,
The [|operator is associative &commutative. |t was discovered
independently by Francez and by Plotkin. '

Example.

if .L(X0) = {e,a,b,ba,bav} where Z{X0) = {a,b}
and £{(B) = {g,b,bc,bcb,bcb ¥,bd,bda,bda v}
whereL(B) = {a,b,c,d}

then £ (X0||B) = {e,b,bc,bd,bda,bday’}

This example is pictured in figure 6.

12,

Note how the initial “output' of 'b'' by B has been "input'' by
X0, and used to steer X0 away from its failing left branch. After
communication of ''b", X0 has to wait until B has input from their
common environment either the symbol ''¢" or the symbol "d", which
are of no concern to X0. If "'d* is input, then X0 and B agree that
the next symbol must be '!a", which is in both their alphabets. But
if "e" is input, X0 will accept only 'a'* and B will accept only
b, Since these two symbols are in both of their alphabets, the
disagreement about their acceptability leads to failure of (xol|8)
in a kind of deadly embrace., [1]
k

The general definition of parallel composition describes an
unfamiliar and slightly complex combination of interleaving and
intersection of the communications of the component processes.
However, there are two common special cases, in which the aspects
of interleaving and intersection are isolated:

(1) Intersection.

if Z(A).z %(B) then éverx' symbol communicated by AllB
must be simultaneously communicated by both A and B; and
consequently '

L(A[fB) - = L(A)n £ (B)

(2) Interleaving

if 2(A) n Z(B)= { } . then every symbol communicated by

Al|B must be communicated either by A or by B, but not both.

Thus £(A||B) contains the set of all interleavings of an arbitrary
- uniicked string aeA and an arbitrary unticked string beB;

The interleaving is ticked in £L(A]|B) only if both av ¢ £L(A)

and bY € £(B). : o '

_ The direct definition of the parallel operator in terms of
the functions. rather than the languages is rather more complex:

/

i AllB= ¥ ifA =B =
i1 EA lB%O(m) (Aon(B)o)' u((:;\o - I(B)) v (Bc(’ ; Egﬁ\g)
i1 (A1B) (g} = Alog){|Blo if o Z(A)nZ(B) ‘
| AR i e z-2(8)
= AI__]B_.(G_) it -GG—S-(-P«-)- o 6 z_@)._y_(,q)

This-definition makes it clear that each symbol accepted by A|]B
must be accepted by each process which has that symbol In its
alphabet.

Examples.

(1) The process X5 communicétes strings of the form a’ b " d/
X5 = Xh||x3

where X4 and X3 were defined in the previous section? eauWnﬁpbé (2)“A“A'CQ)

13.

{2) The process X6 uses the process CTR to count up to three and
down again,

X6 =inc; inc; inc; DWN

where DWN = {ispos -~ dec; DWN
BHis zero + end)

It runs in parallel with CTR, thus: CTR]|X 5

£(CTR||X.&) consists of all initial substrings of;
inc inc inc ispos dec ispos dec ispos dec iszero -endy

(3) The process ACTR behaves exactly like CTR except that it

communicates symbol)
Q Sawn\.\')ols . WLH\

Ya.inc", "a.dec', etc., instead of "inc'", 'dec'", etc.

am wnafie do ave known os C’LW_M 5 w»‘oal’:s
ACTR = {(a.iszero~ACTR j

Ba.inc -+ AP0S; ACTR
Wa.end + v
)

APOS = (a.ispos + APQS

ba.dec v
Ua.pos > AP0S; APOS)

(&) The process ABCTR behaves like a pair of counters, one of which

accepts commands of the form a.in¢, a.dec, etc., and the other
accepts commands of the form b.inc, b.dec, etc:

ABCTR = df ACTR||BCTR
where the definition of BCTR is very similar to that of ACTR.
Because their alphabets are disjoint, ACTR and BCTR operate

quite independently of each other.

(5) The process ABCTR is to run in parallel with a USER process,
{still to be determined)} thus:

ABCTR| |USER

As part of the USER process, we require a process ADD which will
add the current value of BCTR to ACTR: _

ADD = AX (b.iszero + v
Ub.ispos + a.inc;

b.dec; ADD;b.inc

2.3,

.,

Process Naming.

The examples of the previous section show the usefulness
of compound symbols, such as "a.inc'" and "b.dec', in distinguishing
between different processes with very similar behaviour. The
first component of the symbol, the '"a' or the ''"v'Y, serves as the
name for a process which communicates the symbol. This permits
the environment of a group of parallel processes to direct a
communication to the particular one of them which answers to that
name.

More formally, if '"x'" is a symbol and "a' is a simple symbol,
then Ma.x" is also a symbol; and "a.x" = "b.y" only if "a" = "p"
and "x'"" = "y'. The dot - prefixing notation can be extended to
alphabets and to processes:

a.J] = df {a.0 | o¢T}
%{a.A) =df a.zr{Aa)
a.A = df Vv if A=

= (g:(a.Ao) + a.(A(S’))) otherwise,
where § is formed from o by removing its intitial "a.".

In order to avoid the awkwardness of this last construction, we
introduce the query notation:

a26 T +P(6) for o:(a.TD> P(6)

wheel "o i:mf.%fﬁf Brrag Guban cotl & va TU whodn hea Qn‘m‘ﬁms ,"‘tw‘t;%,m’?;f..- .
The process haming operation has obvious properties’ {
a.y =
a-ly 7 tax
a.(A;8) = (a.A)};(a.B)
a.(A|]8) = (a.A)|](a.B)
L(a.A) = {a.s|s e £(A)}

where a.s 'is formed from s by prefixing "a." to each symbol of
s except V.

Examples.

(1) The following is a more convenient definition of ABCTR

ABCTR = ,. a, CTR|[b.CTR
{2) A process FAC inputs a natural number ne NN and later outputs
the value of its factorial. When n>0, a new process f.FAC

is '"created" to compute the value of factorial (n - 1).

15,

FAC = ,.(n:NN = if n =0 then 1 else (f.FAC|[X))

where X = df(f.(n~1); (f2m: NN = m x n))

Note that L(X) = lJ {n,f.n}
- nehN
L(f.FAC)= {J Of.n,f.f.n,f.ffon.}
neNN

5 (FAc) = WE(X) v Z(RFAC) = NN o F Z{FAC)

Thus in their parallel composition {f.FAC||X),the output of the

natural number m x n by X is of no concern to f.FAC; and the

internal communications between subprocesses of T. FAC are of
indiootis

no concern to X, The numwbar oF "Fs om a wb
'blu- b{f\ a MM&LW\ OV'B u)[w\do\ j WMMLLAﬁa‘
Some strings of L£(FAC) are: :

0tV
1 f.0 f.1 1/ .
2 f.1 f.F.0 £.F.1 F.1 2/

3 f.2 f.f.1 f.f.f.0 f.f.Ff.1 £.£.1 £.2 6/

. The presence in these strings of symbols with the form f.n,
f.f.n, etc. is very inconvenient, and it would be nice to remove

thém. Unfortunately, Lﬁ~geﬁe*a+~%he—em+ss+9ﬁ-9£—s¥mbah&4*wH

pr qprrunn ‘u'é ‘,5) M:j
‘HM, QMM‘O«.Q« case , Tlne., bojau.. %23 Pas’l‘rowwl t)

’ fSed*un« éﬁ*éff ﬁi,,fﬁ .

In view of the possible novelty of the example, it is
worth recalling that the recursion is interpreted as the
limit of an ascending chain of sets

£(FAC) = |} £(FAC;)
ieNN
where FACO = lZ(FAC)
FACi+] = (n:NN - if n=0 then 1

else (f.FACi||X))

FAC. will successfully compute the factorial of any number less
“thah i; and will fail for any larger number.

The suspicious reader may attempt to draw outline tree

pictures of X, FAC,, f.FAC,{|X,, FAC,, and FAC)
But pictures are a very weak alg'to t%e understgnding of algorlthms,

even one as simple as this.

2.4

16.

Alternative Composition.

If A and B are processes not equal to v, and there is no symbol

acceptable on the first step by both A and B, then AWB is the

process which initially accepts any symbol acceptable to either

A or B; if the symbol is actually acceptable by A, the subsequent
behaviour of AMB is determined by A; or if it is acceptable by

B, -t.is. B._that.determines.it. swgasaegwa«f% la,v!n.rfwmww I Ry S nj, E;HE E*

More formally, if A = /and Bz ¥ and A%8° = { }

7 (AyB) Z(A) u Z(B)

Akl B : df(U:(AqJBO)'+ if o ¢ A® then A{0) else B{o))

This is, of course, the familiar union of functions with disjoint
domains, and is associative, commutative and idempotent. Further:

(AuB);C = (A;C)u (B;C)
and 7
L(AWB) =L(A)u £L(B) provided that £(A)nL(B) = {e}

In applying this notation, we shall abbreviate Ho:{al+ A" to

g > A,)
(?;;;‘:;;)familiar construct "(a=+A s b>B)'"" is just a special

case of alternative composition, where the domain of each
component is a singleton set.

Examples.

(1) A process COPY inputs natural numbers ne NN from a process
named ''west'', and outputs them to a process named ''east''. 0On
receiving an ‘'end' signal, it transmits ''end" to the east, and
terminates successfully.

COPY = {west?n:NN = east.n; COPY

U west.end -~ east.end

)

{2) A process REGNN models the behaviour of a register, initially
empty, but capable of containing a single natural number. It
responds to a command '‘assign.n' where ne NN. It also accepts

the symbol "fetch.m'' where m is the number most recently assigned
to it. |t terminates on receipt of an "‘end" command. (Note that
in this case thefcompound symbols .indicate the nature of the
command, not theg\name of its source)

REGNN = (assign?n:NN > X u end » v)
where for né NN
X = (fetch.n + X
n n
bwend v

Liassign?m:NN -+ Xm

)

This is a form of mutual recursion with an infinite number
of simultaneous definitions of X; for «=0,1,2,... The definition
is theoretically sound, but it may be disturbing to those not
familiar with the technique. '

(3) A process NNSET is required to model a set of natural numbers,
initially empty. |t accepts commands ''insert.n', and inserts

the number n into the set. |t responds. to commands 'has.n'' by
outputting "yes" if n has been previously inserted into the set,
and "no'' otherwise. |t terminates successfully on receiving the

symbol "end"'.

NNSET = (has?n:NN = no

M insert?n:NN - (rest.NNSET||X)

bend -/
)

where

X, = {hasTm:NN ~»

19

if m=n then vyes

else rest.has.m;

(rest.yes —+ yesMrest.no+ no)
) 5 Xa
Lt insert?m:NN »
if m=n then X,
else (rest.insert.m;X).

k) end =+ rest.end

)

18.

Some strings of L£(NNSET) are:

end v
has.3 no end v

insert.3 has.3 Yyes
insert.3 has.l4 pest.has.h rest.no no

insert.3 insert.4 rest.insert.4 bhas.% rest.has.h rest.yes vyes

Communicating Sequential Processes.

In this section, we define a s}ightTy simplified version of the
tanguage of Communicating Sequential Processes [5}, and illustrate
it by the example of the dining philosophers.

OutpUt commands.

The basic program structure of [5] is the parallel command,
consisting of a fixed number of named processes. This can be modelled

by process naming, thus:
(a, A} oy Ayl | |14 A)
where @1,85,...,3 are distinct process names

and A],Az,..
But in this construction, the alphabet of each component process is
prefixed by its name, and is therefore disjoint from the alphabet of

every other process. Consequently, we must introduce a special convention

to enable the processes to communicate and synchronise with each other.

.,Aﬁ describe the behaviour of the component processes.

This is accomplished by introduction of a new kind of compound.
symbol, ‘'alc", where a is a process name, and ¢ is a symbol. When this
symbol is output by a process with name b, the symbol actually transmitted
is prefixed by b: ''b.(alo). But we declare that this double compound
symbol is identically equal to the symbol with the process names reversed:
Ba.{b.o)'". This symbol will in general be in the alphabet of a process
with name "a", and can be input by an input command (within that process)

thus:

(b7x:T%...).

This convention has the realistic consequence that each act of communication
{or synchronisation) involves exactly two processes,| exactly one of which
(the source) must issue an '"output command" of the form '"alc', where

19! js the name of the destination of the output.

TRt rruRately; ThTS TechiTgue; which -werks-well-for—internatTm T
communication between processes of a parallel command, does not work so
well for communication between the individual processes and their global
environment. The reason is that each such communication is still tagged
with the local process name of the participating process. The removal
of these local names is a topic that will be treated in section 4.2.

,\
H
4
s

Example: dining philosaphers.

This example is the same as example 5.3 of [5]. it uses
arrays of processes, which can be simply defined in an informal

] manner;
[Py = gp. PallPrgdl - HIPy
and - “0""p. —4f P P o p
Zem..m ¥ md T+l LW N

The solution is: s
 fork . FORK; |
(room.ROOM, | | (]| weem.ROOM][(]] phil, .PHIL.])

1:0..4 £:0. .4

- where PHIL{ = THINK;
é?/ ~wierne (end +~/

W room!enter>

| o4 » L H ‘ “
forki.plckup, forkﬂ®1fp:ckup,
EAT; '
1 I y .
_forki.putdown,forkﬂa1.putdown,
room!exit;PHiLi
)
and'FORKi = (end> v
u phlli.puckup > phlli.putdown;FORKi,

U pﬁl]iej.plckup - phnlicn.putdown;FORKi

).

and ROOM, = (u phil;.enter - ROOM;
10,4

u end » v

)

ROOMh = _(lj phii-.exit.+ ROOMB).

: 7:0..4 * _
ROOMn = ((}40‘_hphili.enter.+ ROOMn+])

U(l{o].uphlli.exit + ROOM__

) rfor O<n<i.

ROOM describes the behaviour of the room with n philosophers inside it.
The restriction.of this number to four pr%fénts deadlock.

30& G’u.a.ﬂ*ot&o‘. Cd\n/\wmolé .

%&é& 1t is common that selection between alternative commands needs

‘ to be determined by the truth or falsity of a Boolean condition, rather
than by input from an environment. If we confine attention to the
simple case where the condition is just the value of a Boolean variable,
"this can be easily achieved. Let b and ¢ be distinct names of processes
which model Boolean variables. (See section 1 example (2) BOOL).
Then (b.istrue -+ Buc.istrue + C) is an alternative command which can
behave like B if b is true or like C if ¢ is true. if both are true,
the choice is not determined. |1f neither is true, neither of the
communications b.istrue or c.istrue can take place, and the alternative
command fails. Of course 'isfalse'' can be used in place of ".istrue"
wherever negation of the condition is required.

Often, selection in an alternative command needs to be determined
by a combination of circumstances, for example by a combination of
truth of a condition "b' and the readiness of some other process to
communicate some symbol ''s''. To cater for this, the paper [5] introduced
multiple guards, in which an input command appearing to the left of an
> could be preceded by one or more Boolean conditions, falsity of which
would inhibit selection of that alternative. This effect can be achieved
by the definition

(b.istrue;s » A w t+C) = df
(b.istrue = {5 + Aut > C) wt~ c).

The definition can be readily extended to cases where more than one of
the alternatives have multiple guards, for examplie: :

(b.istrue;s = B w c.istrue;t » c)

b.istrue » (c.istrue;t > Cus > B8)
w c.istrue » {b.istrue;s » But » C)

The case of several Boolean conditions on a single guard can be defined

similariy: R .
-Y (b-bétVUJu} o.mafvuxq g —> B u t “?(:)
= (b.istrue -~ {c.istrue;s » Bwt =+ C)wt + C)

£ all these definitions are fully expanded, the number of cases grows
exponentially. ‘

The coffplexity of the construction would beg?ontrollable if it were
not: guaranteed that the tests on the preliminary guards b, istrue'
c.istrue'' are free of side-effect.

Example: ROOM

This example redefines the behaviour of the ROOM in which the
philosophers eat. ltusesan integer register "occ' instead of the
parameter. :

A

3.3,

ROOM = (occ.REGNN || full.BooL ||

df . _
(OCC-3$519ﬁQ'|| full.becomefalse);
LOOP;

ocelend 3 fulllend

)
where LOOP :.(Llfull.isfa]se;phili.enter >
£.0..

(occ. fetch?n: {0..2} - occ.aséign;(n+1);
W occ. fetch.3 + occ.assign.h;
full.becometrue

)); LOOP

2@%‘ L Phiié.exit *

{occ.fetch?n:{1..4} ~
occ.assién(n*i);
_ full.becomefalse
.);LOOP
1 end ?—/
)
Automatic términatjon.

In [5] it was postulated that a repetitive command with input guards
would automatically terminate if the source of every input guard had
terminated. This convention is quite convenient to use; but the construction
of a mathematical model involves the same kind of complexity that would
be necessary in a practical implementation on one or more computers.
We arrange that before a process "a'' terminates it is prepared to communicate
the symbol "a.ended" as often as is required; but that when all processes
of a parallel- command have terminated, they gll_simu]taneousTVHcommunicate
the symbol "finished! (which is in the alphabet of all of them). This is
achieved by appending after the process an endloop of the form

ENDLOOP (&) = (g:PROC,a,ended ENDLOOP (a)

W finished ~+ v

A d T

The-irrroduction ot tThe setrPROC g required troenable-thetest

where PROC is the set of all s&ﬁﬁﬂ@waﬁd:ngmpwﬁﬂﬁ'process names iw ‘H;A. &, B e

]
,F a Mx,ﬁi },;_gj, L \rv\,é‘?w4’§— -

and PROC.a.ended = ff.a.ended |¥7 € PROC }
vgerded
wewbemmadewa&maﬂymdep@hw@%prﬁﬁﬁﬁgwﬁﬁﬁfTﬁ@”ﬁﬁﬁwwﬁﬁm?ﬁﬁ? Thus we can
define the double colon notation of [5]:_

aith = ¢ (a.A); ENDLOOP({a}.

Now, within another process B we can at any time test whether the

: A has ended; and in particular, this information can be used

process a:
he one-limbed repetitive command

to terminate a loop. Thus we can define t
of [51: :

#[ate:T>t] = 4 LOOP
where LOOP = {a.ended ~ v
t1alx: W~ L;LOOP
)

The case of a loop with several alternatives uses the convention
for chains of Boolean guards, e.g.

introduced

* [pr: W1 > L1 W ctwiWM2 + L2} = 4 LOOP

where LOOP =

(b.ended ; c.ended + v
U btxe: W1 > L1;LO0OP

ucle: T2 > L2;L00P

)

Discussion:

This paper has presented a rather general model of parallelism and
communication, and has applied the model to the definition of a number
of familiar and less familiar programming concepts. The complexity of
the definition {in spite of some fairly ingenious notational conyentions)
reveals an unexpected logical complexity in some of the apparently primitive
ideas of Communicating Sequential Processes. This section speculates on
further developments and applications of the model.

Correctness.

A grave defect of this paper has been that it contains a large number
of complex mathematical definitions, and makes no attempt to derive from
them any useful theorems. The most useful theorems wo
of processes, with respect to some specification of their intended purpose.
Clearly, the purpose of a process P is to interact successfully with some
environment E. More specifically, we can define an environment E as being

uld prove the correctness

AL

L.2.

itself a process with T(E)c $(P). On a given step, £ is capable of
communicating any symbol of g% with P; and for each gin E9, the

subsequent behaviour of E is defined by E{(o). The outcome is satisfactory
only if E ends in ¥V and P_ends in / as well. But if either P or E breaks,
or if at any stage P~ n E© = {} (deadlock), then the interaction has failed.
P is correct with respect to E if there is no possibility of such failure.

More formally, the interaction between a process P and its environment
E is defined simply by their parallel composition P||E. 1f every branch
of P||E is finite and ends in Y, then there is no way in which their
interaction could fail to terminate successfully; and we say that the
process P[1E is satisfactory, and that the process P is correct in
environment E.

Simple consequences of this definition are
(1) L is never correct
(2) v is correct only in environment v

(3) 1f P is correct in E and Q is correct in F then (P;Q) is correct
in (E;F). ' :

It would be very desirable to derive a simple but complete calculus
of correctness for communicating processes, similar to that formulated in i
[2] for sequential processes; but simplicity may be achievable only in !
carefully defined special cases.

localisation of Internal Communication.

in general the environment E of a process P is not concerned with _
internal communications between named subprocesses of P; it cannot control ;
their timing, nor can it even detect their occufﬁhce, To model the hiding "r&-}j_
of the internal communications of P all that is necessary is to exclude
the symbols used for internal communication from the alphabet of the
environment E. Thus, whenever there is an option of an internal communication, '
that option can be exercised by P alone, without participation of E.
If there are several options, or if there is a choice between internal
and external communication, the choice is non-deterministic. (f P is correct
with respect to E, then their interaction will terminate successfully, in
spite of the nondeterminism. Note that if there is a possibility of an
infinite sequence of internal communications, unpunctuated by an external one,
then, by our definition, P is not correct in environment £, because P||[E
wil]l contain an infinite branch.

This technique can be taken as the basis of a method for localisation
of internal communications. Let P be a process, and let W be the set of
symbols used for internal communication within P. We wish to define an
operation PNV, with alphabet (£ (P) -W), which behaves exactly like F,
except that the occurrence of all communication of symbols from W has been
wholly concealed. Clearly, we want to ensure that P\'W behaves exactly
like P in all environments E with alphabets which exclude I, 1.e.

¥E B (E) = (P} - =
P is correct in E = (PNTW) is correct in E.

In general, there is more than one P\X¥ which has this property; and
the choice of which one to use can be left non-deterministic. Unfortunately,

bk,

4.3,

treatment of this form of nondeterminism is beyond the scope of the
simple model presented here.

Analysis of Algorithms.

Jf P is correct in environment E, it is reasonable to ask the

‘additional question, ""How scon can one be certain that their interaction

will terminate?! Let c(c)be the time taken to‘communicate the symbol o,
for all oe T(P). Consider a particular trace s/ from £{(P||E). Define

} (s) =% c(s.). This is the time taken by trace s on the worst-case
assumptidn that only one communication can take place at a time, as would
occur if P were executed on a single processor which simulates its
parallelism by timesharing between processes. In such a case, the answer
to the question posed -above is

max {§{s)}|sv eL(P]|E)}

Now consider the best case assumption, in which a process is executed
with as much parallelism as possible. Two communications can occur in
parallel if and only if thelr sources and destinations are all distinct
process names.

lLet s be the trace which we are trying to analyse. Let T l—j be the
earliest time at which process named & will terminate, w &n g e trace

of the overall behaviour of the system is s. Clearly T e(PY =0 For all

p. Extension of s by a communication O, with source a and destination
b, will clearly have to be delayed until both a and b are free; and then
it will occupy both a and b for a further c{(c) units of time. Thus

T;;’(—g;g_= TS(P) | if sourse (G)#-P*dest((j)
. _ _ ,
Tso (source(o)} — Tsoldest(cjs =

(o) + max {ngsource(o))‘, Tsm

The time when all processes are finished is ' O&L%T

o

%(5) = max (T, 5y PepROC)

where PROC is the set of all prbcess names.

This definition works only if the participants in each communication can be
identified,

Discrete event simulation.

The theory described so far in this paper places no constraint
on the manner in which parailelism is implemented; it can be applied
equally to multiprocessor networks, and to quasiparallel implementations
on a single processor; consequently, the execution of a group of processes
in quasiparallel can serve as a faithful simulation of a genuinely parallel
system. The usefulness of such simulations can be greatly increased if
it is possible to specify explicitly the passage of simulated time, and

dissociate this completely from the passage of time on the processor conducting

the simulation.

S WK

In a simnulation language like SIMONE [4] this is achieved by
providing q, command Jike

wait.until.t

where t is a number specifying the instant of simulated time at which the
command is to be obeyed. |If simulated time has already passed t, this is
an error; if simulated time is equal to t, the command can be obeyed
immediately; but if simulated time has not yet reached t, the command is
delayed until it does. Let S be a process whose subprocesses contain
instances of this command. Then we need to define a process SIMULATE (S},
which describes the behaviour of S when executing in quasiparallel in
simulated time.

Let p and g be {possibly compound) process names. Then clearly
every trace s of SIMULATE(S) must satisfy

(1) If "p.waituntil.t1" occurs earlier in s than "p.waituntil.t2" then
t1 must be not later than t2.

Also we wish to ensure that a ''waituntil'' command will not be obeyed while

there is still something else to do at the current moment of simulated
time i.e.
(2) 1f sg is in S, and 0 is not a 'waituntil' command, then s cannot be

followed by a "waituntil'' command in SIMULATE(S).

SIMULATE(S) can be defined as the subset of all traces in $ which satisfy
properties (1) and (2); a more constructive definition could also be given,
but it is even more complicated, since it models the activity of an
implementation.

Technical Note.

The SIMULATE function is pot monotonic in the simpie subset ordering
of languages. |t follows that it cannot be defined by any combination of
the operators introduced previously in this paper. '

Of course, realistic simulation will also require some facility
for a process to find out the current value of simulated time; and some
current capability of joining queue of processes waiting for service. Both

of these facilities can be defined by extension of the model presented here.

Acknowledgements.

This work owes everything to the inspiration of
Robin Milner, and the close collaboration of John R. Kennaway,
Nissim Francez and WFII/ P. de Roever. Many defects have been

removed from earlier drafts by the kind attention of Ann Yasuhara,
Edsger W. Dijkstra and others.

amf

-1
L6

References.

i Dijkstra, E.W,
z. Dijkstra, E.W.
3 Francez, N.

4 Kaubisch, W.H.

5 Hoare, C.A.R.

6 Hoare, C.A.R.

Cooperating sequential processes, in Programming
Languages ed. F. Genuys.
Academic Press, New York, 1968 pp 43-112.

Guarded commands, hondeterminacy, and a calculus
for the derivation of programs.
Comm ACM 18.8 (Aug. 1975) pp 453 - 457.

et al

et al. Quasi parallel Programming,Software Practice
and Experience. 6 (1976} pp 341 - 356.

Communicating Sequential Processes.

Comm ACM 21.8 (Bug. 1978) pp 666 - 677.

Some Properties of Predicate Transformers,
JACM 25.3 (July 1978) pp 461 - 489,

7 Milner, A.J.R.G.

9.7

