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1 Introduction

From its inception, the Web has been centred around the idea of linking information to make it more accessi-
ble and useful to users. Recently, however, the Web has evolved at an increasing pace towards the so-called
Web 3.0, where classical linked information lives together with ontological knowledge and social interac-
tions of users. While the former allows for more precise and rich results in search and query answering
tasks, the latter can be used to provide a personalized access to information. This requires new techniques
for ranking results based not only on the link structure of documents but also on ontological and user-centred
data, i.e., user preferences.

The study of preferences has been carried out in many different areas, such as philosophy, economics,
and choice theory. They can be modeled in a qualitative and in quantitative way, where quantitative pref-
erences are associated with a number representing their worth, or they are represented as an ordered set of
objects, while qualitative preferences are related to each other via pairwise comparisons.

In this paper, we focus on the problem of ranking answers for conjunctive queries (CQs) to Datalog+/–
ontologies, based on user preferences encoded in CP-nets [6]. CP-nets are a flexible and powerful language
for representing preferences in a qualitative way. The integration between the ontology and the CP-net is
tight: on the one hand, CP-net outcomes are constrained by the ontology, and on the other hand, they directly
inform how answers to CQs are ranked.

The main contributions of this paper are briefly as follows:

(i) We introduce ontological CP-nets, which are a novel combination of Datalog+/– ontologies with CP-nets,
modeling preferences over ground atoms in Datalog+/– ontologies.

(ii) We define CP-net-based CQs and their skyline and k-rank answers. We also provide an algorithm for
computing k-rank answers to CQs based on the preferences encoded in an ontological CP-net.

(iii) We analyze the complexity of k-rank answering CP-net-based CQs, providing precise complexity and
tractability results. In detail, we have data tractability, as long as query answering in the underlying classical
Datalog+/– ontology is data tractable, the CP-net is a polytree, and the query is fixed-width, bounded, or
atomic.

The rest of this paper is organized as follows. In Section 2, we briefly recall Datalog+/– and CP-
nets. Section 3 introduces ontological CP-nets, where preferences are expressed over ground atoms from
a Datalog+/– ontology, as well as the syntax and the semantics of conjunctive queries (CQs) based on
such CP-nets. In Section 4, we describe how to compute k-rank answers to CP-net-based CQs. Section 5
provides general complexity and tractability results. In Section 6, we discuss related work. Finally, Section 7
summarizes the main results of this paper and gives an outlook on future work.

2 Preliminaries

In this section, we recall the basics on Datalog+/– and CP-nets.

2.1 Datalog+/–

We now recall the main concepts of Datalog+/– [10], namely, relational databases, (Boolean) conjunctive
queries ((B)CQs), tuple- and equality-generating dependencies (TGDs and EGDs, respectively), negative
constraints, the chase, and ontologies in Datalog+/–.



2 RR-14-03

Databases and Queries. We assume (i) an infinite universe of (data) constants � (which constitute the
“normal” domain of a database), (ii) an infinite set of (labeled) nulls �N (used as “fresh” Skolem terms,
which are placeholders for unknown values, and can thus be seen as variables), and (iii) an infinite set of
variables V (used in queries, dependencies, and constraints). Different constants represent different values
(unique name assumption), while different nulls may represent the same value. We denote by X sequences
of variables X1, . . . , Xk with k> 0. We assume a relational schema R, which is a finite set of predicate
symbols (or simply predicates).

A term t is a constant, null, or variable. An atomic formula (or atom) a has the form P (t1, ..., tn),
where P is an n-ary predicate, and t1, ..., tn are terms. A term or atom is ground iff it contains no nulls
and no variables. A database (instance) D for a relational schema R is a (possibly infinite) set of atoms
with predicates from R and arguments from � [ �N . A conjunctive query (CQ) over R has the form
Q(X) = 9Y�(X,Y), where �(X,Y) is a conjunction of atoms (possibly equalities, but not inequalities)
with the variables X and Y, and possibly constants, but without nulls. We use sign(Q) to denote the set
of predicates appearing in �. A Boolean CQ (BCQ) over R is a CQ of the form Q(), often written as
the set of all its atoms, without quantifiers. Answers to CQs and BCQs are defined via homomorphisms,
which are mappings µ : � [�N [ V ! � [�N [ V such that (i) c 2 � implies µ(c) = c, (ii) c 2 �N

implies µ(c) 2 �[�N , and (iii) µ is naturally extended to atoms, sets of atoms, and conjunctions of atoms.
The set of all answers to a CQ Q(X)= 9Y�(X,Y) over a database D, denoted Q(D), is the set of all
tuples t over � for which there exists a homomorphism µ : X[Y!� [�N such that µ(�(X,Y))✓D
and µ(X)= t. The answer to a BCQ Q() over a database D is Yes, denoted D |=Q, iff Q(D) 6= ;.

Given a relational schema R, a tuple-generating dependency (TGD) � is a first-order formula of the form
8X8Y�(X,Y)!9Z (X,Z), where �(X,Y) and  (X, Z) are conjunctions of atoms over R (without
nulls), called the body and the head of �, denoted body(�) and head(�), respectively. Such � is satisfied in
a database D for R iff, whenever there exists a homomorphism h that maps the atoms of �(X,Y) to atoms
of D, there exists an extension h0 of h that maps the atoms of  (X,Z) to atoms of D. Since TGDs can be
reduced to TGDs with only single atoms in their heads, in the sequel, every TGD has w.l.o.g. a single atom
in its head. A TGD � is guarded iff it contains an atom in its body that contains all universally quantified
variables of �. The leftmost such atom is the guard atom (or guard) of �. A TGD � is linear iff it contains
only a single atom in its body. As set of TGDs is guarded (resp., linear) iff all its TGDs are guarded (resp.,
linear).

Query answering under TGDs, i.e., the evaluation of CQs and BCQs on databases under a set of TGDs
is defined as follows. For a database D for R, and a set of TGDs ⌃ on R, the set of models of D and
⌃, denoted mods(D,⌃), is the set of all (possibly infinite) databases B such that (i) D✓B and (ii) every
� 2⌃ is satisfied in B. The set of answers for a CQ Q to D and ⌃, denoted ans(Q,D,⌃), is the set of
all tuples a such that a 2 Q(B) for all B 2mods(D,⌃). The answer for a BCQ Q to D and ⌃ is Yes,
denoted D [ ⌃ |=Q, iff ans(Q,D,⌃) 6= ;. Query answering under general TGDs is undecidable [1], even
when R and ⌃ are fixed [8]. Decidability of query answering for the guarded case follows from a bounded
tree-width property. Its data complexity in this case is P-complete.

A negative constraint (or simply constraint) � is a first-order formula of the form 8X�(X)!?, where
�(X) (called the body of �) is a conjunction of atoms over R (without nulls). Under the standard semantics
of query answering of BCQs in Datalog+/– with TGDs, adding negative constraints is computationally easy,
as for each constraint 8X�(X)!?, we only have to check that the BCQ 9X�(X) evaluates to false in D
under⌃; if one of these checks fails, then the answer to the original BCQ Q is true, otherwise the constraints
can simply be ignored when answering the BCQ Q.

As another component, the Datalog+/– language allows for special types of equality-generating depen-
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dencies (EGDs). Since they can also be modeled via negative constraints, we omit them here, and we refer
to [10] for their details. We usually omit the universal quantifiers in TGDs, negative constraints, and EGDs,
and we implicitly assume that all sets of dependencies and/or constraints are finite.

The Chase. The chase was first introduced to enable checking implication of dependencies, and later also
for checking query containment. By “chase”, we refer both to the chase procedure and to its output. The
TGD chase works on a database via so-called TGD chase rules (see [10] for further details and for an
extended chase with also EGD chase rules). The (possibly infinite) chase of a database D relative to a set
of TGDs ⌃, denoted chase(D,⌃), is a universal model, i.e., there is a homomorphism from chase(D,⌃)
onto every B 2mods(D,⌃) [10]. Thus, BCQs Q over D and ⌃ can be evaluated on the chase for D and ⌃,
i.e., D[⌃ |= Q is equivalent to chase(D,⌃) |= Q. For guarded TGDs ⌃, such BCQs Q can be evaluated
on an initial fragment of chase(D,⌃) of constant depth k · |Q|, which is possible in polynomial time in the
data complexity.

Datalog+/– Ontologies. A Datalog+/– ontology O=(D,⌃), where ⌃=⌃T [ ⌃E [ ⌃NC, consists of
a finite database D over �, a set of TGDs ⌃T , a set of non-conflicting EGDs ⌃E , and a set of negative
constraints ⌃NC. We say O is guarded (resp., linear) iff ⌃T is guarded (resp., linear).

Example 1 Consider the following relational schema R representing booking information about airlines
and their flights:

flight(id, d-airport, a-airport, d-time, a-time, plane-id, company);
plane(id, capacity); dP lace(city, airport);

book(flight-id, departure-date,class).

For example the flight relation contains information about the flight such as the departure airport, plane id
and the company that is responsible; A simple Datalog+/– ontology O=(D,⌃) for flights is given below.
Intuitively, the database D encodes that for example f1, f2 and f3 are 3 flights and ma,na are arrival times.
etc. The set of constraints ⌃ encodes the domain and range of flights, the fact that a flight cannot have the
same departure and arrival city, and an inverse relation between flight and hasFlight.

D = {flight(f1, l2, l3, nd, na, p2, a1), book(f1, d1, e), aT ime(ma),
f light(f2, l2, l1, md, ma, p1, a2), book(f2, d1, b), aT ime(na),
f light(f3, l3, l2, nd, na, p3, a2), book(f3, d1, b), dT ime(nd),
dT ime(md), class(b), class(e), dP lace(c1, l1), airline(a1),

dP lace(c1, l2), dP lace(c2, l3), airline(a2};

⌃ = {flight(A, B, C, D, E, F, G) ! 9Y dP lace(Y,B)

flight(A, B, C, D, E, F, G) ! dT ime(D) ^ aT ime(E)

flight(A, B, C, D, E, F, G) ! 9Y plane(F, Y )

flight(A, B, C, D, E, F, G) ! 9X airline(G,X)

flight(A, B, B, D, E, F, G) ! ?
flight(A, B, C, D, E, F, G) ! hasF light(G, A)

book(A,B,C) ! 9X hasF light(X, A)
book(A,B,C) ! class(C)}.
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dTimemd � nd aTime ma � na

class
b � e | nd ^ma

e � b | md _ na

Figure 1: An example of a CP-net with five variables.

2.2 CP-Nets

Conditional preferences networks (CP-nets) [5] are a formalism to represent and reason with qualitative
preferences. They allow the specification of preferences based on the notion of conditional preferential
independence (CPI) [13].

We assume a set of variables V, where each variable Xi 2V is associated with a domain of values,
denoted dom(Xi). The domain of values x of a set of variables X= {X1, . . . , Xk}✓V, denoted dom(X),
is defined as dom(X1)⇥ · · ·⇥dom(Xk). If X=V, then x is a complete assignment (outcome), otherwise it
is a partial assignment. If x and y are assignments to disjoints sets X and Y, then we denote the combination
of x and y by xy.

A preference relation ⌫ is a total pre-order over the set of outcomes. We write o1 � o2 to state that o1
is strictly preferred over o2 while we write o1 ⌫ o2 if o1 is strictly or equally preferred to o2. We say that
o2 is dominated by o1 if o1 � o2 and that o2 is directly dominated by o1, o1 �d o2 if o2 is dominated by o1
and there is no outcome o such that o1 � o and o � o2. If there is no outcome o such that o � o1 we say
that o1 is undominated. If both o1 ⌫ o2 and o2 ⌫ o1 hold, we say there is an indifference situation.

A conditional preference is represented as (x � x

0 | z) meaning that “given z, I prefer x over x0”. Let
X, Y and Z be nonempty sets that partition V and � a preference relation over dom(V). X is conditionally
preferentially independent (CPI) of Y given Z iff for all x, x’2 dom(X), y, y’2 dom(Y), z 2 dom(Z), we
have xyz � x

0
yz iff xy0

z � x

0
y

0
z. CP-nets are a graphical language to model CPI statements. Formally,

a CP-net N over V consists of an annotated directed graph G over {X1, . . . , Xn} in which nodes stand for
problem variables and edges represent conditioning among variables Xi. Each node Xi is annotated with a
conditional preference table CPT (Xi), that associates a total order �Xi|u with each instantiation u of Xi’s
parents Pa(Xi), i.e., u 2 dom(Pa(Xi)). In the sequel, we use o 2 N to denote that o is an outcome of N .

The following are the two main computational tasks for CP-nets:

• Dominance query: given a CP-net and two outcomes o1 and o2, decide whether o1 � o2.

• Outcome optimization: given a CP-net, compute an undominated outcome.

Example 2 The CP-net in Figure1 encodes that the morning departure (md) is preferred over night depar-
ture (nd), and morning arrival (ma) is preferred over night arrival (na). The business class (b) is preferred
over the economy class (e), when there is a night departure and a morning arrival, and the other way around,
otherwise.
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Figure 2: The preference graph induced by the CP-net in Figure 1.

To establish an order among possible outcomes of a CP-net, we introduce the notion of worsening flip.
This is a change in the value of a variable that worsens the satisfaction of user’s preferences. For example,
in Figure 1, we have that md ma e � md na e. Based on the notion of worsening flip, we can derive a
preference graph representing the transitive reduction of the preference relations among possible outcomes.
In Figure 2, the preference graph related to the CP-net in Figure 1 is represented. Given two outcomes o1
and o2, an edge going from o1 to o2 means that o1 � o2.

3 CP-Net-Based Conjunctive Queries

In this section, we introduce CP-Datalog+/–, which is an extension of Datalog+/– by CP-net based prefer-
ences. We first introduce the syntax and then the semantics of CP-Datalog+/–.

3.1 Syntax

We first define CP-net-based conjunctive queries, which are conjunctive queries along with a CP-net for
defining a preference relation among the ground instances of the queries’ atoms and thus among the queries’
answers. To this end, we introduce ontological CP-nets, which informally define preference relations be-
tween conjunctions of ground atoms (which have as arguments constants from � as well as the special
constant ⌫, which is a placeholder for any null). The preference relation is defined relative to an underlying
ontology.

Definition 1 (Ontological CP-Nets) Let O be a Datalog+/– ontology over the set of constants �. Then, an
ontological CP-net over O is a CP-net N , which has as set of variables V a set of predicates from O, and as
the domain of each P 2V, denoted dom(P ), a finite set of at least two different atoms P (t1, . . . , tk) with
t1, . . . , tk 2� [ {⌫}.

Observe that every outcome o of an ontological CP-net is a conjunction of grounded atoms. The follow-
ing example illustrates the concept of ontological CP-net.
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dPlace(c1, l1) � (c1, l2) � (c3, l3)

dTime
nd � md | (c1, l1)
md � nd | (c1, l2)
nd � md | (c3, l3)

airline a1 � a2

aTime ma � na

class
b � e | nd ^ma

e � b | md _ na

Figure 3: An example of CP-net for five variables.

Example 3 Given the ontology O in Example 1, an ontological CP-net N over O is shown in Figure 3,
where V= {dPlace, airline, dTime, aTime, class} and, e.g., dom(aT ime)= {airline(a1), airline(a2)}.
For clarity, in the CPT associated with the variable P , we use ti to denote P (ti). Then, e.g., ti � tj

means P (ti) � P (tj). The shown CP-net encodes that the departure place (dPlace) that maps city c1 with
airport location l1 is more preferred than (c1, l2) that is more preferred than (c3, l3) (this might be dependent
on where the user lives in). Now, given the departure place, there are preferences on the departure time
(how long it takes to reach the place etc). Thus, if the departure place is (c1, l1) or (c3, l3), then the night
departure (nd) is preferred over the morning departure (md). If the departure place is (c1, l2), then the
morning departure is preferred over night departure. The business class (b) is preferred over the economy
class (e), when there is a night departure and a morning arrival, and the other way around, otherwise. Airline
a1 is preferred over a2.

As a consequence of the underlying ontology, some of the outcomes of an ontological CP-net may be
inconsistent, and some other outcomes may be ontologically equivalent. We thus have to assure that the
preference relation encoded in an ontological CP-net is well-defined, which is expressed in the notion of
consistency of ontological CP-nets. In the sequel, let �+ denote the transitive closure of the preference
relation � induced by the ontological CP-net for its outcomes, and �+

⇠ its restriction to the classes of
equivalent consistent outcomes. The notion of consistency of CP-nets then describes the acyclicity of this
preference relation �+

⇠ and the �+-incomparability of any two equivalent consistent outcomes. That is, to
obtain �+

⇠, we remove from �+ all inconsistent outcomes relative to the ontology O, and we do not admit
equivalent outcomes relative to O.

Definition 2 (Consistency of Ontological CP-Nets) Let O be a Datalog+/– ontology over �, and let N be
an ontological CP-net over O. Then, N is consistent iff (i) �+

⇠ is acyclic, and (ii) o1 �+ o2 for no two
outcomes o1 and o2 of N that are equivalent under O.

We next define CP-Net-based conjunctive queries, which are informally conjunctive queries along with
an ontological CP-net for defining a preference relation among the queries’ answers.

Definition 3 (CP-Net-Based Conjunctive Query) Let O be a Datalog+/– ontology. Then, a CP-net-based
conjunctive query (CP-net-based CQ) (Q,N ) consists of a conjunctive query Q and a consistent ontological
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CP-net N over O such that all variables in N occur in Q.

W.l.o.g., all the atoms in C have different predicates (which can be easily achieved by a predicate
renaming), and thus there exists a bijection � from atoms in Q to the vertices of N .

3.2 Semantics

We next define the semantics of CP-net-based CQs (Q,N ). The following definition formalizes answers to
Q in the usual way and relates these answers to the outcomes of the CP-net N .

Definition 4 (Answer to a CP-Net-Based CQ) Let O=(D,⌃) be a Datalog+/– ontology, and let (Q,N )
be a CP-net-based CQ with Q(X)= 9Y�(X,Y). Then, the set of all answers for (Q,N ) to O un-
der the outcome o of N , denoted ans(Q,N , O, o), is the set of all tuples a over � for which there
exists a homomorphism µ : X[Y!� [ �N such that (i) µ(�(X,Y))✓ chase(D,⌃) and µ(X)=a,
and (ii) o✓µ0(�(X,Y)), where (a) µ0|X = µ|X, (b) µ0(Y )=µ(Y ) for all Y 2Y such that µ(Y ) 62�N

and (c) µ0(Y )= ⌫ for all Y 2Y such that µ(Y )2�N . The set of all answers for (Q,N ) to O, denoted
ans(Q,N , O), is the set of all answers for (Q,N ) to O under some outcome o of N .

Example 4 Consider again Example 3, which describes a consistent ontological CP-net N , and let

Q(B,A,Z,C)= 9X,Y dP lace(X,B) ^ airline(A) ^ dT ime(Z) ^ aT ime(Y ) ^ class(C).

Then, (Q,N ) is a CP-net-based CQ, and hl1, a1, nd, bi is an answer to this CQ (note that its outcome of N
is o= {dP lace(c1, l1), airline(a1), dT ime(nd), aT ime(ma), class(b)}).

We now focus on how to order these answers based on the preferences of the user. We concentrate
on skyline queries [3], a well-known class of queries for preference-based formalisms, and the iterated
computation of skyline answers that allows us to assign a rank to every atom (using the CP-net); we refer to
these as k-rank answers.

Definition 5 (Ordering Answers) Let O=(D,⌃) be a Datalog+/– ontology, and let (Q,N ) be a CP-net-
based CQ with Q(X)= 9Y�(X,Y). Let a1 and a2 be two different answers for (Q,N ) to O under the
outcomes o1 and o2 of N , respectively, such that o1 � o2. Then, we say that a1 is ranked better than a2.

We next define skyline and k-rank answers to CP-net-based CQs.

Definition 6 (Skyline Answer) Let O=(D,⌃) be a Datalog+/– ontology, and let (Q,N ) be a CP-net-
based CQ with Q(X) = 9Y�(X,Y). A skyline answer for (Q,N ) to O is any tuple a in ans(Q,N , O, o)
for some undominated outcome o of N .

Observe that skyline answers are not unique. Indeed, we may have more than one undominated outcome
o of N , and we may also have more than one homomorphism µ that satisfies the conditions (i) and (ii) of
Definition 4 for the same undominated outcome o of N .

Definition 7 (k-Rank Answer) Let O=(D,⌃) be a Datalog+/– ontology, and let (Q,N ) be a CP-net-
based CQ with Q(X) = 9Y�(X,Y). A k-rank answer for (Q,N ) to O outside a set of ground atoms S
is a sequence ha1, . . . ,aki such that either:
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(a) a1, . . . ,ak are k different skyline answers for (Q,N ) to O that do not belong to S, if m> k such
answers exist; or

(b) (1) a1, . . . ,ai are all i different skyline answers for (Q,N ) to O that do not belong to S, and (2)
hai+1, . . . ,aki is a k�i-rank answer for (Q,N�{o}) to O outside S [ {a1, . . . ,ai}, where o is an
undominated outcome of N , otherwise.

A k-rank answer for (Q,N ) to O is a k-rank answer for (Q,N ) to O outside ;.

Note that when no answer for (Q,N ) to O exists, then hi is its unique k-rank answer. A k-rank answer
is a sequence of k answers to a CP-net-based CQ ranked by following the order among outcomes induced
by the ontological CP-net. Given two following answers in the sequence, they can be related to the same
outcome (as for the skyline situation, the answer related to a single outcome may not be unique) or to two
different outcomes in directly dominated relation. Finally, the computed answer is not deterministic. Indeed,
a CP-net induces a partial order over the set of possible outcomes.

4 CP-Net-based Query Answering

We now present an algorithm to compute k-rank answers in an ontological CP-net-based setting. The pro-
cedure in Algorithm 1 exploits �+

⇠ (the transitive closure of outcomes restricted to the class of equivalent
consistent outcomes) to incrementally compute ordered answers to a conjunctive query Q over an ontology
O and an ontological CP-net N for O. The algorithm stops the computation of answers when it reaches k
different answers to Q. The most preferred solutions are the ones related to the undominated outcome of
N . This is the reason why the computation starts by adding ou to the set Outcomes (line 7). Then, the
algorithm incrementally adds directly dominated outcomes to Outcomes and finds answers to Q that are
related to them. To preserve the preference order in �+

⇠, in line 9, there is a check needed to avoid that
an outcome in Outcomes is selected before we have answers related to other better outcomes. For a better
understanding of line 9, we refer to the preference graph in Figure 2. Suppose that Outcomes = {mdma e,
mdma b, nd ma b, md na b, nd ma e, nd na b, md na e} and Checked = {mdma e, mdma b, nd ma b,
md na b}. Then, we have to select an outcome in {nd ma e, nd na b,md na e}. By Figure 2, nd ma e is
the worst choice. Indeed, although it is directly dominated by nd ma b, it is also dominated (not directly)
by nd na b and md na e.

Note that we may have two sources of non-determinism in the algorithm. In particular, in line 9, we may
choose arbitrarily among different incomparable outcomes. In the situation that we have just discussed, we
can select either nd na b or md na e. The other source of non-determinism is in line 11. Here, we may
have multiple equivalent (from the outcomes ordering point of view) µ, and after selecting some of them,
we reach length(Result ) = k.

Finally, an algorithm to compute skyline answers can be easily modeled by stopping the computation of
answers to the ones related to the undominated outcome ou.

5 Computational Complexity

In this section, we analyze the computational complexity of skyline and k-rank answering CP-net-based
CQs (Q,N ) to Datalog+/– ontologies. We also delineate some tractable special cases.
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ALGORITHM 1: k-Rank-Prefs (O,N , Q, k)

Input: O is a Datalog+/– ontology, (Q,N ) is a CP-net-based CQ, and k > 0.
Output: k-rank answers {a1, . . . ,ak} to (Q,N ).

1 Result  hi;
2 Outcomes  ;;
3 Checked  ; ;
4 k-reached  false;
5 Compute �+

⇠ for N ;
6 Let ou 2 N be an undominated outcome;
7 Outcomes  Outcomes [ {ou};
8 while k-reached = false do
9 choose o 2 Outcomes such that @o0 2 Outcomes � Checked , o0 � o and o0 6�d o;

10 Checked  Checked [ {o};
11 foreach µ such that µ(X)2 ans(Q,N , O, o) do
12 if k-reached = false and µ(X) 62 Result then
13 Result  Result � hµ(X)i;
14 if length(Result ) = k then
15 k-reached  true;
16 end
17 end
18 end
19 foreach o 2 N such that 9o00 2 Outcomes and o00 �d o do
20 Outcomes  Outcomes [ {o};
21 end
22 end
23 return Result .

5.1 General Results

The following theorem shows that k-rank answering CP-net-based CQs (Q,N ) to linear (resp., guarded)
Datalog+/– ontologies is both complete for PSPACE (resp., 2EXPTIME) and that hardness holds even when
Q has a bounded width, is fixed, or is an atom. The lower complexity bounds follow from the result that the
more specialized problem of answering BCQs to linear (resp., guarded) Datalog+/– ontologies is complete
for PSPACE (resp., 2EXPTIME) [9], where hardness holds even in the case of bounded-width, fixed, or
atomic BCQs. As for the upper complexity bound, we first have to decide the consistency of N , which
can be done in PSPACE in the linear case (despite the number of outcomes of N being exponential, as we
only have to store maximally four outcomes) and in 2EXPTIME in the guarded case, by (i) deciding BCQs
to linear (resp., guarded) Datalog+/– ontologies, which is complete for PSPACE (resp., 2EXPTIME) [10],
and (ii) deciding dominance between two outcomes in a standard CP-net, which is PSPACE-complete [11].
For the actual k-rank answering, intuitively, we first compute k ordered top outcomes of N , which can also
be done in PSPACE (resp., 2EXPTIME), following a similar line of argumentation as for consistency, and
we then use these outcomes to instantiate Q and evaluate the resulting CQ Q0 over O, which is in PSPACE
(resp., 2EXPTIME).



10 RR-14-03

Theorem 1 Let k> 0 be fixed. Given a linear (resp., guarded) Datalog+/– ontology O and a CP-net-
based CQ (Q,N ), computing the k-rank answer for (Q,N ) is complete for PSPACE (resp., 2EXPTIME).
Hardness holds even when Q has a bounded width, is fixed, or is an atom.

The next theorem shows that k-rank answering CP-net-based CQs (Q,N ) to linear (resp., guarded)
Datalog+/– ontologies in the data complexity (where ⌃ is fixed) is both complete for PSPACE. The lower
complexity bounds follow from the result that the more specialized problem of deciding dominance between
two outcomes in a standard CP-net is PSPACE-complete [11]. As for the upper complexity bound, we first
have to decide the consistency of N , which can be done in PSPACE, by (i) deciding BCQs to linear or
guarded Datalog+/– ontologies, which is NP-complete in the data complexity [10], and (ii) deciding domi-
nance between two outcomes in a standard CP-net, which is PSPACE-complete [11]. For the actual k-rank
answering, intuitively, we first compute k ordered top outcomes, which is in PSPACE, by a similar argumen-
tation as for consistency, and we then use these outcomes to instantiate Q and evaluate the resulting CQ Q0

over O, which is in NP and thus in PSPACE.

Theorem 2 Let k> 0 be fixed. Given a linear or guarded Datalog+/– ontology O, and a CP-net-based CQ
(Q,N ), computing the k-rank answer for (Q,N ) is data complete for PSPACE.

5.2 Tractability Results

We now delineate special cases where skyline and k-rank answering CP-net-based CQs (Q,N ) to Data-
log+/– ontologies O=(D,⌃) is tractable in the data complexity (where ⌃ is fixed). More precisely, the
following result shows that these two problems are tractable in the data complexity, when (i) O is linear or
guarded, (ii) N is a polytree, and (iii) Q has a bounded width, is fixed, or is an atom (which also implies that
N is bounded). It follows from the results (1) that answering bounded-width, fixed, or atomic BCQs to linear
or guarded Datalog+/– ontologies can be done in polynomial time [10], and (2) that for standard polytree CP-
nets (of bounded node in-degree), dominance between two outcomes can be decided in polynomial time [5].
Intuitively, we first decide whether N is consistent, which can be done in polynomial time, since the number
of outcomes of N is polynomial (by the above assumptions), deciding equivalence and inconsistency of
outcomes can be done in polynomial time, and deciding dominance of two outcomes can also be done in
polynomial time. We then order the outcomes of N along their preferences, and use them in this order to
instantiate Q and evaluate the resulting CQ Q0 over O, which can be done in polynomial time.

Theorem 3 Let k> 0 be fixed. Given a linear or guarded Datalog+/– ontology O, and a CP-net-based CQ
(Q,N ), where N is a polytree, and Q has a bounded width, is fixed, or is an atom, computing the skyline
and the k-rank answer for (Q,N ) can both be done in polynomial time in the data complexity.

6 Related Work

Modeling and dealing with preferences in databases has been studied for almost three decades, since the
seminal work of [14]; see [19] for a survey of notable works in this line. Work has also been carried
out in the intersection with databases and knowledge representation and reasoning, such as preference logic
programs [12], incorporation of preferences into formalisms such as answer set programs [7], and answering
k-rank queries in ontological languages [15].
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In the philosophical tradition, preferences are usually expressed over mutually exclusive “worlds”, such
as truth assignments to formulas. The work of [2] is framed in this interpretation of preferences, aiming
at bridging the gap between several formalisms from the AI community such as CP-nets and those studied
traditionally in philosophy. In this regard, CP-nets [5] is one of the most widely known formalisms. Most
of the work on CP-nets has focused on the computation of optimal outcomes and the problem of dominance
testing, i.e., to check if one outcome of the CP-net is preferred to another. More recently, the work of Wang
et al. [20] proposes an efficient algorithm and indexing scheme for top k retrieval in CP-nets.

Recently, there has been some interest regarding the combination of Semantic Web technologies with
preference representation and reasoning. A combination of conditional preferences (very different from CP
-nets) with description logic (DL) reasoning for ranking objects is presented in [16]. There, conditional pref-
erences are exploited in the definition of a ranking function that allows to perform a semantic personalized
search and ranking over a set of resources annotated via an ontological description. In [15], Datalog+/– is
extended with preference management formalisms closely related to those previously studied for relational
databases. The authors focus on two kinds of answers to queries, skyline and k-rank (a generalization of
top-k queries), and develop algorithms for disjunctions of atomic queries and conjunctive queries.

Closest in spirit to this paper is perhaps the preference formalism that combines CP-nets and DLs in
[17], where variable values of CP-nets are satisfiable DL formulas. The main difference between this and
the proposal here lies in the relationship between the ontology and the CP-net. While [17] uses ontological
axioms to restrict CP-net outcomes, here we use the preference information contained in the CP-net to
inform how answers to queries over the ontology should be ranked. Finally, in an information retrieval
context in [4], Wordnet is used to add a semantics to CP-net variables. Another interesting approach to
mixing qualitative preferences with Semantic Web technology is presented in [18], where an extension of
SPARQL is studied that can encode user preferences in the query.

7 Summary and Outlook

We have introduced ontological CP-nets, which are a novel combination of Datalog+/– ontologies with CP-
nets. We have defined CP-net-based CQs and their skyline and k-rank answers on top of ontological CP-nets.
We have also provided an algorithm for computing k-rank answers to CP-net-based CQs. Furthermore, we
have provided precise complexity and tractability results for this problem.

Interesting topics of ongoing and future research include the implementation and experimental evalu-
ation of the approach, as well as a more complete complexity analysis for other Datalog+/– variants and
ontology languages as well as other special cases of CP-nets.
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