

Department of Computer Science

RR-14-04

Department of Computer Science, University of Oxford
Wolfson Building, Parks Road, Oxford OX1 3QD

A GENERAL FRAMEWORK FOR
INCONSISTENCY-TOLERANT QUERY

ANSWERING IN DATALOG +/-

Thomas Lukasiewicz
Maria Vanina Martinez

Gerardo I. Simari

DEPARTMENT OF COMPUTER SCIENCE RESEARCH REPORT

DEPARTMENT OF COMPUTER SCIENCE RESEARCH REPORT 14-04, MAY 2014

A GENERAL FRAMEWORK FOR INCONSISTENCY-TOLERANT QUERY

ANSWERING IN DATALOG+/–
(PRELIMINARY VERSION, 21 MAY 2014)

Thomas Lukasiewicz 1 Maria Vanina Martinez 2 Gerardo I. Simari 3

Abstract. Inconsistency management in knowledge bases is an important problem that has been
studied for a long time. During the recent years, additional interest in this topic has been sparked
with the advent of the Semantic Web. In this paper, we study different semantics for query answer-
ing in inconsistent Datalog+/– ontologies. Datalog+/– is a family of ontology languages that is in
particular useful for representing and reasoning over lightweight ontologies in the Semantic Web.
We develop a general framework for inconsistency management in Datalog+/– ontologies based on
incision functions from belief revision, in which we can characterize several query answering se-
mantics as special cases: (i) consistent answers, originally developed for relational databases and
recently adopted for some classes of description logics (DLs); (ii) intersection semantics, a sound
approximation of consistent answers; and (iii) lazy answers, a novel semantics proposed as an alter-
native to approximations to consistent answers that, taking the union of lazy answers, can be used
to obtain a good compromise between quality of answers and computation time for some fragments
of Datalog+/–. We also provide complexity results for query answering under the different seman-
tics, including data tractability results and first-order rewritability for query answering under the
intersection semantics for linear Datalog+/–.

1Department of Computer Science, University of Oxford, UK; e-mail: thomas.lukasiewicz@cs.ox.ac.uk.
2Department of Computer Science, University of Oxford, UK; e-mail: vanina.martinez@cs.ox.ac.uk.
3Department of Computer Science, University of Oxford, UK; e-mail: gerardo.simari@cs.ox.ac.uk.

Acknowledgements: This paper is a significantly extended and revised version of the results first published
in [1] and [2]. This work was supported by the Engineering and Physical Sciences Research Council (EP-
SRC) grant EP/J008346/1 (“PrOQAW: Probabilistic Ontological Query Answering on the Web”), the Eu-
ropean Research Council under the EU’s 7th Framework Programme (FP7/2007-2013/ERC) grant 246858
(“DIADEM”), a Google Research Award, and a Yahoo! Research Fellowship.

Copyright c© 2014 by the authors

RR-14-04 I

Contents

1 Introduction 1

2 Preliminaries 3

3 Inconsistency-Tolerant Query Answering 5
3.1 Relationship to Consistent Answer Semantics . 7
3.2 Relationship to Intersection Semantics . 8

4 Lazy Answers 9
4.1 Tractable k-lazy answers for Linear Datalog+/– . 14

5 Query Rewriting for FO-rewritable Fragments of Datalog+/– under the Intersection Semantics 16
5.1 TGD-Free Case . 17
5.2 General Case . 19
5.3 Concrete Classes of FO Rewritable Sets of TGDs . 22

6 Related Work 23

7 Summary and Outlook 27

RR-14-04 1

1 Introduction

It has been widely acknowledged in both the Semantic Web and databases communities that inconsistency
is an issue that cannot be ignored. Knowledge bases in the Semantic Web and databases in the form of
ontologies are becoming increasingly popular, and when integrating data from many different sources, either
as a means to populate an ontology or simply to answer queries, integrity constraints are very likely to be
violated in practice. In this paper, we address the problem of handling inconsistency in ontologies for the
Semantic Web, where scalability is an important issue.

We adopt the recently developed Datalog+/– family of ontology languages [3]. In particular, we fo-
cus on the guarded and linear fragments of Datalog+/–, which guarantee termination of query answering
procedures in polynomial time in the data complexity and first-order rewritability, respectively. Datalog+/–
enables a modular rule-based style of knowledge representation, and it can represent syntactical fragments
of first-order logic so that answering a BCQ Q under a set Σ of Datalog+/– rules for an input database D
is equivalent to the classical entailment check D ∪ Σ |= Q. Furthermore, its properties of decidability of
query answering and good query answering complexity in the data complexity allows to realistically assume
that the database D is the only really large object in the input. These properties, together with its expressive
power, make Datalog+/– very useful in modeling real applications such as ontology querying, Web data
extraction, data exchange, ontology-based data access, and data integration. The results in this paper extend
to the (entire) DL-Lite family of description logics (DLs), since linear Datalog+/– is strictly more expressive
than the whole DL-Lite family; furthermore, the results for guarded Datalog+/– extend to EL, since guarded
Datalog+/– is strictly more expressive than this language.

The following example shows a simple Datalog+/– ontology; the language and standard semantics for
query answering in Datalog+/– ontologies is recalled in the next section.

Example 1 A (guarded) Datalog+/– ontology KB = (D,ΣT∪ΣE∪ΣNC) is given below. Here, the formulas
in ΣT , ΣNC, and ΣE correspond to tuple-generating dependencies (TGDs), negative constraints, and equality
generating dependencies (EGDs), respectively. We recall the formal definitions for such constraints in the
following section.

D = {directs(john, d1), directs(tom, d1), directs(tom, d2), manager(tom, d1),
supervises(tom, john), works in(john, d1), works in(tom, d1)};

ΣT = {σ1 : works in(X,D)→ emp(X), σ2 : directs(X,D)→ emp(X),
σ3 : directs(X,D) ∧ works in(X,D)→ manager(X,D)};

ΣNC = {υ1 : supervises(X,Y) ∧ manager(Y,D)→ ⊥,
υ2 : supervises(X,Y) ∧ works in(X,D) ∧ directs(Y,D)→ ⊥};

ΣE = {υ3 : directs(X,D) ∧ directs(X,D′)→ D = D′}.
Here, the formulas in ΣT say that every person working for a department is an employee (σ1), that every
person directing a department is an employee (σ2), and that each person that directs a department and works
in that department is the manager of that department (σ3). The formula υ1 in ΣNC states that ifX supervises
Y , then Y cannot be a manager, while υ2 says that if Y is supervised by someone in a department, then Y
cannot direct that department. Finally, formula υ3 in ΣE states that the same person cannot direct two differ-
ent departments. As we show later, this ontology is inconsistent. For instance, the atoms directs(john, d1)
and works in(john, d1) trigger the application of σ3, producing manager(john, d1), but that together with
supervises(tom, john) (which belongs to D) violates υ1.

Two research areas are especially relevant to our work. The first is belief revision, an area of study in
artificial intelligence (AI) and philosophy, which deals with the general problem of extending, contracting,

2 RR-14-04

or revising a knowledge base composed of logical formulas. The second is from databases, and focuses on
finding consistent answers to possibly inconsistent databases; this can be done on the fly during the query
answering process, or over a database that has been previously treated to excise the pieces of information
causing the inconsistencies. We discuss related work in more detail in Section 6.

In this paper, we develop the first inconsistency-tolerant semantics for query answering in Datalog+/–
ontologies, which is based on a general framework for handling inconsistency via the application of func-
tions inspired by the concept of incision functions from belief revision. This framework allows us to study
inconsistency-tolerant semantics from a more abstract point of view, deviating the focus of attention from
repairs and consistent answers.

Furthermore, we provide a query rewriting approach to inconsistency-tolerant query answering under a
particular semantics for some fragments of Datalog+/–, i.e., a given query is rewritten into another query,
which fully embeds any underlying ontological knowledge and that, evaluated on the data, returns the consis-
tent answers under the intersection semantics. The result of this rewriting process is a first-order (FO) query.
FO-rewritability of queries is an important property, since the rewritten query can immediately be translated
into standard SQL. In this way, we reduce the problem of query answering over an ontology to the standard
evaluation of an SQL query in (possibly highly optimized) relational database management systems. Several
works have already provided algorithms for FO rewriting for fragments of Datalog+/–; however, all of them
focus on the standard semantics for query answering, while here we extend the rewriting process of those
sublanguages to specific inconsistency tolerant semantics to answer conjunctive queries.

The main contributions are briefly as follows:

• We develop a general framework for handling inconsistency in Datalog+/–, which is based on incision
functions, and captures several different inconsistency-tolerant semantics previously developed in the
literature.

• Within this framework, we propose a new inconsistency-tolerant semantics (lazy answers) that, taking
the union of lazy answers, can be used to obtain a good compromise between answer quality and
tractability for fragments of Datalog+/–, shifting the focus away from traditional repairs and consistent
answers.

• We provide complexity results for the problem of query answering in linear and guarded Datalog+/–
ontologies under the different semantics that we define within the framework, including tractability
results for the lazy semantics for atomic BCQs in linear Datalog+/–, and FO-rewritability of BCQs
under the intersection semantics for linear Datalog+/–.

• Finally, we show that FO query rewriting is feasible under the intersection semantics for FO-rewritable
(under standard query answering semantics) fragments of Datalog+/–.

The paper is organized as follows: Section 2 recalls the basics on Datalog+/– from [3]. In Section 3, we
develop a general framework for inconsistency management in Datalog+/– ontologies based on the notion
of incision functions from the belief revision literature and characterize consistent answers and intersection
semantics as special cases of incision functions. Section 4 presents the lazy semantics for consistent query
answering in Datalog+/– ontologies and studies its properties, complexity, and comparison with the other
two semantics. In Section 5 we develop an efficient first-order rewritability approach for query answering
under the intersection semantics for the linear fragment of Datalog+/–. Finally, Sections 6 and 7 discuss
related work and conclusions, respectively.

RR-14-04 3

2 Preliminaries

We briefly recall some basics on Datalog+/– [3], namely, on relational databases, (Boolean) conjunctive
queries ((B)CQs), tuple- and equality-generating dependencies (TGDs and EGDs, respectively), negative
constraints, the chase, and ontologies in Datalog+/–.

Databases and Queries. We assume (i) an infinite universe of (data) constants ∆ (which constitute the
“normal” domain of a database), (ii) an infinite set of (labeled) nulls ∆N (used as “fresh” Skolem terms,
which are placeholders for unknown values, and can thus be seen as variables), and (iii) an infinite set of
variables V (used in queries, dependencies, and constraints). Different constants represent different values
(unique name assumption), while different nulls may represent the same value. We assume a lexicographic
order on ∆ ∪ ∆N , with every symbol in ∆N following all symbols in ∆. We denote by X sequences of
variables X1, . . . , Xk with k > 0.

We assume a relational schema R, which is a finite set of predicate symbols (or simply predicates).
A term t is a constant, null, or variable. An atomic formula (or atom) a has the form P (t1, ..., tn), where P
is an n-ary predicate, and t1, ..., tn are terms. A conjunction of atoms is often identified with the set of all
its atoms.

A database (instance) D for a relational schema R is a (possibly infinite) set of atoms with predicates
from R and arguments from ∆. A conjunctive query (CQ) over R has the form Q(X) = ∃Y Φ(X,Y),
where Φ(X,Y) is a conjunction of atoms (possibly equalities, but not inequalities) with the variables X
and Y, and possibly constants, but without nulls. A Boolean CQ (BCQ) over R is a CQ of the form Q(),
often written as the set of all its atoms, without quantifiers. Answers to CQs and BCQs are defined via
homomorphisms, which are mappings µ : ∆∪∆N ∪V → ∆∪∆N ∪V such that (i) c ∈ ∆ implies µ(c) = c,
(ii) c ∈ ∆N implies µ(c) ∈ ∆ ∪∆N , and (iii) µ is naturally extended to atoms, sets of atoms, and conjunc-
tions of atoms. The set of all answers to a CQ Q(X) =∃Y Φ(X,Y) over a database D, denoted Q(D),
is the set of all tuples t over ∆ for which there exists a homomorphism µ : X∪Y→∆ ∪ ∆N such that
µ(Φ(X,Y))⊆D and µ(X) = t. The answer to a BCQ Q() over a database D is Yes, denoted D |=Q, iff
Q(D) 6= ∅. For the sake of simplicity in the presentation, we sometimes denote the set of answers to a CQ
Q(X) =∃Y Φ(X,Y) with the set of atoms in the conjunction µ(Φ(X,Y)).

Given a relational schemaR, a tuple-generating dependency (TGD) σ is a first-order formula of the form
∀X∀Y Φ(X,Y)→∃ZΨ(X,Z), where Φ(X,Y) and Ψ(X, Z) are conjunctions of atoms overR (without
nulls), called the body and the head of σ, denoted body(σ) and head(σ), respectively. Such σ is satisfied in
a database D forR iff, whenever there exists a homomorphism h that maps the atoms of Φ(X,Y) to atoms
of D, there exists an extension h′ of h that maps the atoms of Ψ(X,Z) to atoms of D. All sets of TGDs
are finite here. Since TGDs can be reduced to TGDs with only single atoms in their heads, in the sequel,
every TGD has w.l.o.g. a single atom in its head. A TGD σ is guarded iff it contains an atom in its body that
contains all universally quantified variables of σ. The leftmost such atom is the guard atom (or guard) of σ.
A TGD σ is linear iff it contains only a single atom in its body.

Query answering under TGDs, i.e., the evaluation of CQs and BCQs on databases under a set of TGDs
is defined as follows. For a database D for R, and a set of TGDs Σ on R, the set of models of D and Σ,
denoted mods(D,Σ), is the set of all (possibly infinite) databasesB such that (i)D⊆B and (ii) every σ ∈Σ
is satisfied in B. The set of answers for a CQ Q to D and Σ, denoted ans(Q,D,Σ), is the set of all tuples
a such that a ∈ Q(B) for all B ∈mods(D,Σ). The answer for a BCQ Q to D and Σ is Yes, denoted D ∪
Σ |=Q, iff ans(Q,D,Σ) 6= ∅. Note that query answering under general TGDs is undecidable [4], even when
the schema and TGDs are fixed [5]. The two problems of CQ and BCQ evaluation under TGDs are LOG-
SPACE-equivalent [6, 7]. Moreover, the query output tuple (QOT) problem (as a decision version of CQ

4 RR-14-04

evaluation) and BCQ evaluation are AC0-reducible to each other. Henceforth, we thus focus only on BCQ
evaluation, and any complexity results carry over to the other problems. Decidability of query answering
for the guarded case follows from a bounded tree-width property. The data complexity of query answering
in this case is P-complete.

Negative constraints (or simply constraints) γ are first-order formulas ∀XΦ(X) →⊥, where Φ(X)
(called the body of γ) is a conjunction of atoms (without nulls and not necessarily guarded). Under the
standard semantics of query answering of BCQs in Datalog+/– with TGDs, adding negative constraints is
computationally easy, as for each constraint ∀XΦ(X)→⊥, we only have to check that the BCQ Φ(X)
evaluates to false in D under Σ; if one of these checks fails, then the answer to the original BCQ Q is true,
otherwise the constraints can simply be ignored when answering the BCQ Q.

Equality-generating dependencies (EGDs) σ, are first-order formulas ∀XΦ(X) →Xi =Xj , where
Φ(X), called the body of σ, denoted body(σ), is a (without nulls and not necessarily guarded) conjunc-
tion of atoms, and Xi and Xj are variables from X. Such σ is satisfied in a database D forR iff, whenever
there exists a homomorphism h such that h(Φ(X,Y))⊆D, it holds that h(Xi) =h(Xj). Adding EGDs
over databases with guarded TGDs along with negative constraints does not increase the complexity of
BCQ query answering as long as they are non-conflicting [3]. Intuitively, this ensures that, if the chase (see
below) fails (due to strong violations of EGDs), then it already fails on the databaseD, and if it does not fail,
then whenever “new” atoms (from the logical point of view) are created in the chase by the application of the
EGD chase rule, atoms that are logically equivalent to the new ones are guaranteed to be generated also in the
absence of the EGDs. This guarantees that EGDs do not have any impact on the chase with respect to query
answering. Non-conflicting EGDs can be expressed as negative constraints of the form ∀XΦ(X), Xi 6=Xj

→⊥. In the following, for ease of presentation, all non-conflicting EGDs are expressed as such special
forms of negative constraints.

We usually omit the universal quantifiers in TGDs, negative constraints, and EGDs, and we implicitly
assume that all sets of dependencies and/or constraints are finite.

The Chase. The chase was first introduced to enable checking implication of dependencies, and later also
for checking query containment. By “chase”, we refer both to the chase procedure and to its output. The
TGD chase works on a database via so-called TGD chase rules (see [3] for an extended chase with also
EGD chase rules).

TGD Chase Rule. Let D be a database, and σ a TGD of the form Φ(X,Y)→ ∃ZΨ(X, Z). Then, σ is
applicable to D if there exists a homomorphism h that maps the atoms of Φ(X,Y) to atoms of D. Let σ be
applicable to D, and h1 be a homomorphism that extends h as follows: for each Xi ∈ X, h1(Xi) = h(Xi);
for each Zj ∈ Z, h1(Zj) = zj , where zj is a “fresh” null, i.e., zj ∈ ∆N , zj does not occur in D, and zj
lexicographically follows all other nulls already introduced. The application of σ on D adds to D the atom
h1(Ψ(X,Z)) if not already in D.

The chase algorithm for a database D and a set of TGDs Σ consists of an exhaustive application of
the TGD chase rule in a breadth-first (level-saturating) fashion, which outputs a (possibly infinite) chase
for D and Σ. Formally, the chase of level up to 0 of D relative to Σ, denoted chase0(D,Σ), is defined
as D, assigning to every atom in D the (derivation) level 0. For every k> 1, the chase of level up to k
of D relative to Σ, denoted chasek(D,Σ), is constructed as follows: let I1, . . . , In be all possible images
of bodies of TGDs in Σ relative to some homomorphism such that (i) I1, . . . , In⊆ chasek−1(D,Σ) and
(ii) the highest level of an atom in every Ii is k − 1; then, perform every corresponding TGD application
on chasek−1(D,Σ), choosing the applied TGDs and homomorphisms in a (fixed) linear and lexicographic
order, respectively, and assigning to every new atom the (derivation) level k. The chase of D relative to Σ,
denoted chase(D,Σ), is defined as the limit of chasek(D,Σ) for k →∞.

RR-14-04 5

The (possibly infinite) chase relative to TGDs is a universal model, i.e., there exists a homomorphism
from chase(D,Σ) onto every B ∈mods(D,Σ) [3]. This implies that BCQs Q over D and Σ can be evalu-
ated on the chase for D and Σ, i.e., D∪Σ |= Q is equivalent to chase(D,Σ) |= Q. For guarded TGDs Σ,
such BCQs Q can be evaluated on an initial fragment of chase(D,Σ) of constant depth k · |Q|, which is
possible in polynomial time in the data complexity.

The chase graph for D and Σ is the directed graph consisting of chase(D,Σ) as the set of nodes and
having an arrow from a to b iff b is obtained from a and possibly other atoms by a one-step application of a
TGD in Σ.

Datalog+/– Ontologies. A Datalog+/– ontology KB = (D,Σ), where Σ = ΣT∪ΣNC , consists of a database
D, a finite set of TGDs ΣT , and a finite set of negative constraints and non-conflicting EGDs ΣNC . We say
KB is guarded (resp., linear) iff ΣT is guarded (resp., linear). Example 1 illustrates a simple Datalog+/–
ontology, which is used in the sequel as a running example.

Depending on the expressive power of the underlying formalism, some works on inconsistency handling
in DLs allow for both terminological axioms (TBox) and assertional axioms (ABox) to be inconsistent. In
this work, we make the usual assumption that Σ contains integrity constraints expressing the semantics of the
data in D, and thus that Σ is itself consistent; inconsistencies can only arise when D and Σ are considered
together. We now define the notion of consistency in Datalog+/– ontologies.

Definition 1 (Consistency) A Datalog+/– ontology KB = (D,Σ) is consistent iff mods(D,Σ) 6= ∅.

Note that if ΣNC = ∅, then mods(D,Σ) is not empty. Different works on inconsistency handling in DLs
allow for inconsistency to occur for different reasons.

Normalization of Negative Constraints.

Definition 2 Let ΣNC be a set of negative constraints and non-conflicting EGDs, υ ∈ΣNC, andQ be a BCQ.
Let ∼v be an equivalence relation on the arguments in the body of v and the constants in ΣNC and Q such
that every equivalence class contains at most one constant. A normalization instance of v relative to such∼v
is obtained from v by replacing every argument in the body of v by a representative of its equivalence class
(which is a constant if the equivalence class contains a constant) and adding to the body the conjunction of
all s 6= t for any two different representatives s and t such that s is a variable occurring in the instance, and
t is either a variable occurring in the instance or a constant in ΣNC and Q. The normalization of υ, denoted
N (υ,Q), is the set of all such instances of v subject to all equivalence relations ∼v. The normalization of
ΣNC is N (ΣNC, Q) =

⋃
υ∈ΣNC

N (υ,Q).

Example 2 Consider the set of negative constraints ΣNC = {υ1 : p(U,U)→⊥, υ2 : p(X, Y)∧ q(X)→⊥}
and the BCQ Q = ∃Xq(X). Its normalization is:

N (ΣNC, Q) = {υ′1 : p(U, U)→⊥, υ′2 : p(X,X)∧ q(X)→⊥, υ′3 : p(X,Y)∧ q(X)∧ X 6= Y →⊥}.

3 Inconsistency-Tolerant Query Answering

The area of belief change in AI is closely related to the management of inconsistent information; it aims
at adequately modeling the dynamics of the knowledge that constitutes the set of beliefs of an agent when

6 RR-14-04

new information comes up. In [8], kernel consolidations are defined based on the notion of an incision
function. Given a knowledge base KB that needs to be consolidated (i.e., KB is inconsistent), the set of
kernels is defined as the set of all minimal inconsistent subsets of KB . For each kernel, a set of sentences
is removed (i.e., an “incision” is made) such that the remaining formulas in the kernel are consistent; note
that it is enough to remove any single formula from the kernel because they are minimal inconsistent sets.
The result of consolidating KB is then the set of all formulas in KB that are not removed by the incision
function. In this work, we present a framework based on a similar kind of functions to provide alternative
query answering semantics in inconsistent Datalog+/– ontologies. The main difference in our proposal is
that incisions are performed over inconsistent subsets of the ontology that are not necessarily minimal.

We analyze three types of incision functions that correspond to three different semantics for query an-
swering in inconsistent Datalog+/– ontologies: (i) consistent answers semantics, widely adopted in rela-
tional databases and DLs, (ii) intersection semantics, which is a sound approximation of consistent an-
swers [9], and (iii) a new semantics that relaxes the requirements of the consistent answers semantics,
allowing it to be computed in polynomial time for some fragments of Datalog+/–, without compromising
the quality of the answers as much as the intersection semantics does.

We first define the notion of a culprit relative to a set of constraints IC, which is informally a minimal
(under set inclusion) inconsistent subset of the database relative to IC. Note that we define culprits relative
to both negative constraints and EGDs.

Definition 3 (Culprit) Given a Datalog+/– ontology KB = (D,ΣT ∪ ΣNC) and IC ⊆ ΣNC, a culprit
in KB relative to IC is a set c ⊆ D such that mods(c,ΣT ∪ IC) = ∅, and there is no c′⊂ c such that
mods(c′,ΣT ∪ IC) = ∅. We denote by culprits(KB , IC) (resp., culprits(KB)) the set of culprits in KB
relative to IC (resp., IC = ΣNC).

Example 3 For the ontology KB of the running example, the culprits relative to ΣNC are:
c1 = {supervises(tom, john), directs(john, d1),works in(john, d1)},
c2 = {supervises(tom, john), directs(john, d1),works in(tom, d1)},
c3 = {directs(tom, d1), directs(tom, d2)}.

The following result shows that the normalization of negative constraints does not change the culprits of
an ontology, even in the additional presence of a set of TGDs ΣT (where the constants in ΣT are considered
in the same way as those in ΣNC and Q).

Lemma 1 Let KB = (D,ΣNC ∪ ΣT) be a Datalog+/– ontology, and Q be a BCQ. Then, culprits(KB) =
culprits(KB ′), with KB ′= (D,ΣT ∪N (ΣNC, Q)).

We construct clusters by grouping together all culprits that share elements. Intuitively, clusters contain
only information involved in some inconsistency relative to Σ, i.e., an atom is in a cluster relative to Σ iff it
is in contradiction with some other set of atoms in D.

Definition 4 (Cluster [10]) Given a Datalog+/– ontology KB = (D, ΣT ∪ ΣNC) and IC ⊆ ΣNC, two cul-
prits c, c′ ∈ culprits(KB , IC) overlap, denoted c Θ c′, iff c∩ c′ 6= ∅. Denote by Θ∗ the equivalence relation
given by the reflexive and transitive closure of Θ. A cluster is a set cl =

⋃
c∈e c, where e is an equivalence

class of Θ∗. We denote by clusters(KB , IC) (resp., clusters(KB)) the set of all clusters in KB relative to
IC (resp., IC = ΣNC).

Example 4 The clusters for KB in the running example are cl1 = c3 and cl2 = c1 ∪ c2 (cf. Example 3 for
culprits c1, c2, and c3).

RR-14-04 7

We now recall the definition of incision function from [8], adapted for Datalog+/– ontologies. Intuitively,
an incision function selects from each cluster a set of atoms to be discarded such that the remaining atoms
are consistent relative to Σ.

Definition 5 (Incision Function) Given a Datalog+/– ontology KB = (D,Σ), an incision function is a
function χ that satisfies the following properties:

(1) χ(clusters(KB)) ⊆
⋃
cl∈clusters(KB) cl, and

(2) mods(D − χ(clusters(KB)),Σ) 6= ∅.

Note that incision functions in [8] do not explicitly require condition (2) from Definition 5; instead, they
require the removal of at least one sentence from each α-kernel. The notion of α-kernel [8] translates in
our framework to a minimal set of sentences in D such that, together with Σ, entails the sentence α, where
KB = (D,Σ). Culprits are then, no more than minimal subsets of D that, together with Σ, entail ⊥. Here,
χ produces incisions over clusters instead, therefore, condition (2) is necessary to ensure that by making the
incision, the inconsistency is resolved.

3.1 Relationship to Consistent Answer Semantics

In the area of relational databases, the notion of repair was used in order to identify the consistent part of
a possibly inconsistent database. A repair is a model of the set of integrity constraints that is maximally
close, i.e., “as close as possible” to the original database. Repairs may not be unique, and in the general
case, there can be a very large number of them. The most widely accepted semantics for querying a possibly
inconsistent database is that of consistent answers.

We now define the notion of data repairs, which extends the notion of repairs to Datalog+/– ontologies
KB = (D,Σ). Intuitively, data repairs are maximal consistent subsets of D. We also show that BCQ an-
swering under the consistent answer semantics is co-NP-complete for guarded and linear Datalog+/– in the
data complexity.

Definition 6 (Data Repair) A data repair for KB = (D,Σ) is a set D′ such that:

(i) D′⊆D,

(ii) mods(D′,Σ) 6= ∅, and

(iii) there is no D′′⊆D such that D′⊂D′′ and mods(D′′,Σ) 6= ∅.
We denote by DRep(KB) the set of all data repairs for KB .

Example 5 The Datalog+/– ontology KB in Example 1 has six data repairs:
r1 = {directs(john, d1), supervises(tom, john), directs(tom, d1),manager(tom, d1)},
r2 = {directs(john, d1), supervises(tom, john), directs(tom, d2),manager(tom, d1)},
r3 = {directs(john, d1), directs(tom, d1),works in(john, d1),works in(tom, d1),

manager(tom, d2)},
r4 = {directs(john, d1), directs(tom, d2),works in(john, d1),works in(tom, d1),

manager(tom, d2)},
r5 = {supervises(tom, john), directs(tom, d1),works in(john, d1),

works in(tom, d1),manager(tom, d1)},
r6 = {supervises(tom, john), directs(tom, d2),works in(john, d1),

works in(tom, d1),manager(tom, d1)}.

8 RR-14-04

Data repairs play a central role in the notion of consistent answer for a query to an ontology, which are
intuitively the answers relative to each ontology built from a data repair.

Definition 7 (Consistent Answers) Let KB = (D,Σ) be a Datalog+/– ontology, and Q be a BCQ. Then,
Yes is a consistent answer forQ to KB , denoted KB |=Cons Q, iff it is an answer forQ to each KB ′= (D′,Σ)
with D′ ∈DRep(KB).

Example 6 Consider the ontology KB from our running example. The atom emp(john) can be derived
from every data repair, as each contains either the atom works in(john, d1) or the atom directs(john, d1).
Thus, BCQ Q= emp(john) is true under the consistent answer semantics.

In accordance with the principle of minimal change, incision functions that make as few changes as
possible when applied the set of clusters are called optimal incision functions.

Definition 8 (Optimal Incision Function) Given a Datalog+/– ontology KB = (D,Σ), an incision func-
tion χ is optimal iff for every B ⊂ χ(clusters(KB)), it holds that mods(D −B,Σ) = ∅.

The following theorem shows the relationship between an optimal incision function and data repairs
for a Datalog+/– ontology KB = (D,Σ). More concretely, every data repair corresponds to the result of
removing from D all ground atoms according to some optimal incision χ(clusters(KB)) and vice versa.

Theorem 1 Let KB = (D,Σ) be a Datalog+/– ontology. Then, D′ is a data repair, i.e., D′ ∈DRep(KB),
iff there exists an optimal incision function χopt such that D′ = D − χopt(clusters(KB)).

The next result shows that deciding consistent answers for guarded and linear Datalog+/– is co-NP-
complete in the data complexity.

Theorem 2 Given a guarded Datalog+/– ontology KB and a BCQ Q, deciding whether KB |=Cons Q is
co-NP-complete in the data complexity. Hardness hold even when KB is linear.

3.2 Relationship to Intersection Semantics

An alternative semantics that considers only the atoms that are in the intersection of all data repairs was
presented in [9] for DL-Lite ontologies. This semantics yields a unique way of repairing inconsistency; the
consistent answers are intuitively the answers that can be obtained from that unique set. Here, we define the
intersection semantics for Datalog+/– ontologies KB .

Definition 9 (Intersection Semantics) Let KB = (D,Σ) be a Datalog+/– ontology, andQ be a BCQ. Then,
Yes is a consistent answer for Q to KB under the intersection semantics, denoted KB |=ICons Q, iff it is an
answer for Q to KB I = (DI ,Σ), where DI =

⋂
{D′ |D′ ∈ DRep(KB)}.

Example 7 Consider the Datalog+/– ontology KB = (D,Σ) of the running example. Analyzing the set of
all its data repairs, it is easy to verify that DI = {manager(tom, d1)}.

The following theorem shows the relationship between the incision function χall, which is defined by
χall(clusters(KB)) =

⋃
cl∈clusters(KB) cl, and consistent answers under the intersection semantics. Intu-

itively, answers relative to the intersection semantics can be obtained by removing from D all atoms partic-
ipating in some cluster, and answering the query using the resulting database.

RR-14-04 9

Theorem 3 Let KB = (D,Σ) be a Datalog+/– ontology, and Q be a BCQ. Then, we have KB |=ICons Q iff
(D−χall(clusters(KB)) ∪ Σ |= Q.

The next result shows that deciding consistent answers on guarded Datalog+/– ontologies is co-NP-
complete in the data complexity. Note that in Section 4.1, we show that deciding whether KB |=ICons Q
becomes tractable for linear Datalog+/– ontologies.

Theorem 4 Given a guarded Datalog+/– ontology KB and a BCQ Q, deciding whether KB |=ICons Q is
co-NP-complete in the data complexity.

4 Lazy Answers

In the following, we present a new semantics for consistent query answering in Datalog+/– ontologies.
The motivation behind this new semantics is that the exact procedure is too expensive to be computed in
any reasonable-sized Datalog+/– ontology, but at the same time the intersection semantics is unnecessarily
restrictive in the set of answers that can be obtained from a query. We propose an alternative to consistent
query answering in Datalog+/– ontologies, under which answers are at least as complete as those that can
be obtained under the intersection semantics.

We first define the notion of k-cut of clusters. Let χk-cut be a function defined as follows for cl ∈
cluster(KB):

χk-cut(cl) =

{C1, . . . , Cm} m > 1, Ci ⊂ cl, |Ci| 6 k,

s.t. mods(cl − Ci,Σ) 6= ∅
and 6 ∃C ′i s.t. C ′i ⊂ C and
mods(cl − C ′i,Σ) 6= ∅};

{cl} if no such Ci exists.

(1)

Intuitively, given a cluster cl, its k-cut χk-cut(cl) is the set of minimal subsets of cl of cardinality at most k,
such that if they are removed from cl, what is left is consistent with respect to Σ.

We next use the k-cut of clusters to define a new type of incision functions, called k-lazy functions, as
follows.

Definition 10 Let KB = (D,Σ) be a Datalog+/– ontology, and k> 0. A k-lazy function for KB is defined
as χlazy(k, clusters(KB)) =

⋃
cl∈clusters(KB) ccl, where ccl ∈ χk-cut(cl).

The above k-lazy functions are indeed incision functions.

Proposition 1 Let KB = (D,Σ) be a Datalog+/– ontology, and k> 0. All k-lazy functions for KB are
incision functions.

The function χlazy is the basis of lazy repairs, as defined next. Intuitively, k-lazy repairs are built by
analyzing ways in which to remove at most k atoms in every cluster.

Definition 11 (k-Lazy Repair) Let KB = (D,Σ) be a Datalog+/– ontology, and k> 0. A k-lazy repair for
KB is any set D′=D − χlazy(k, clusters(KB)), where χlazy(k, clusters(KB)) is a k-lazy function for KB .
LRep(k,KB) denotes the set of all such repairs.

10 RR-14-04

Example 8 Consider again our running example and the clusters in KB from Example 4. Let k= 1,
then we have that χ1-cut(cl1) = {d1 : {directs(tom, d1)}, d2 : {directs(tom, d2)}}, and that χ1-cut(cl2) =
{e1 : {supervises(tom, john)}, e2 : {directs(john, d1)}}. There are four possible incisions: ins1 = d1∪e1,
ins2 = d1 ∪ e2, ins3 = d2 ∪ e1, and ins4 = d2 ∪ e2. Thus, there are four 1-lazy repairs, with lrepi = D −
insi; for example, lrep1 = {directs(john, d1), directs(tom, d2), works in(john, d1), works in(tom, d1),
manager(tom, d1)}.

We can now define k-lazy answers for a query Q as the set of atoms that are derived from every k-lazy
repair.

Definition 12 (k-Lazy Answers) Let KB = (D,Σ) be a Datalog+/– ontology, Q be a BCQ, and k >
0. Then, Yes is a k-lazy answer for Q to KB , denoted KB |=k-LCons Q, iff it is an answer for Q to each
KB ′= (D′,Σ) with D′ ∈LRep(k,KB).

Section 4.1 shows that lazy answers for atomic BCQs can be computed efficiently in linear Datalog+/–.
The following proposition states some properties of k-lazy repairs and lazy answers: each lazy repair is
consistent relative to Σ, and only atoms that contribute to an inconsistency are removed by a k-lazy function
for KB .

Proposition 2 Let KB = (D,Σ) be a Datalog+/– ontology, and k> 0. Then, for every D′ ∈LRep(k,KB),
(a) mods(D′,Σ) 6= ∅, and (b) if β ∈D and β 6∈D′, then there exists some B⊆D such that mods(B,Σ) 6= ∅
and mods(B ∪ {β},Σ) = ∅.

Proposition 2 shows that lazy repairs satisfy properties that are desirable for any belief change operator
to have [8]. However, the incisions performed by function χlazy(k, clusters(KB)) are not always, minimal
relative to set inclusion, i.e., if there is no subset of a cluster of size at most k that satisfies the conditions in
Definition 1, then the whole cluster is removed, and therefore not every lazy repair is a data repair.

The consistent answers semantics from Definition 7 is a cautious semantics to query answering, since
only answers that can be entailed from every data repair are deemed consistent. Traditionally, the alternative
to this semantics is a brave approach, which in our framework would consider an answer as consistent if
it can be entailed from some data repair. In the case of Example 8 with k= 1, works in(john, d1) and
works in(tom, d1) are lazy consequences of KB , which are clearly not consistent consequences of KB .
However, a brave approach for query answering would allow both supervise(tom, john) and directs(john, d1)
as answers. In this respect, lazy answers are a compromise between brave and cautious approaches: although
it is “braver” than the cautious approach, it does not allow to derive mutually inconsistent answers.

Proposition 3 Let KB = (D,Σ) be a Datalog+/– ontology, Q be a CQ, and ansLCons(k,Q,D,Σ) be the
set of lazy answers for Q given k. Then, for any k> 0, mods(ansLCons(k,Q,D,Σ),Σ) 6= ∅.

Proof. Suppose by contradiction that mods(ansLCons(k,Q,D,Σ),Σ) = ∅, then there is a negative con-
straint υ ∈ ΣNC for which body(υ) maps through homomorphism h to some atoms in ansLCons(k,Q,D,Σ);
let these atoms be b1, . . . , bn. If {b1, . . . , bn} ⊂ ansLCons(k,Q,D,Σ), then by Definition 12, we have that
(D′,Σ) |= b1 ∧ . . . ∧ bn for every D′ ∈ LRep(k,KB). But this means that body(υ) maps to atoms in D′ for
every D′ ∈ LRep(k,KB), and therefore mods(D′,Σ) = ∅, which contradicts result (a) in Proposition 2. 2

The next proposition shows that the same property holds if we consider the union of k-lazy answers for
different values of k.

RR-14-04 11

Theorem 5 Let KB = (D,Σ) be a Datalog+/– ontology and a Q a CQ. If for any k> 0 we have Uk =⋃
06i6k ansLCons(k,Q,D,Σ), then we have that mods(Uk,Σ) 6= ∅.

Proof. We proceed by induction on k. Without loss of generality, in the following we assume that ΣNC is a
normalized set of negative constraints (cf. Definition 2).
Base Case: If k = 0, then by Proposition 2, we have that ansLCons(0, Q,D,Σ) is clearly consistent.

Inductive Case: Suppose that mods(
⋃

06i6k−1 ansLCons(i, Q,D,Σ),Σ) 6= ∅; we then want to prove that
mods(

⋃
06i6k ansLCons(i, Q,D,Σ),Σ) 6= ∅.

Suppose by contradiction that mods(
⋃

06i6k ansLCons(i, Q,D,Σ),Σ) = ∅. By definition, we have that

⋃
06i6k

ansLCons(i, Q,D,Σ) =
⋃

06i6k−1

ansLCons(i, Q,D,Σ) ∪ ansLCons(k,Q,D,Σ)

and, by the inductive hypothesis and Proposition 2, respectively, we have
⋃

06i6k−1 ansLCons(i, Q,D,Σ)
and ansLCons(k,Q,D,Σ) are consistent relative to Σ. Then it must be the case that the inconsistency ap-
pears as the result of taking the union of both sets. This is, there existsA ⊆

⋃
06i6k−1 ansLCons(i, Q,D,Σ)

and B ⊆ ansLCons(k,Q,D,Σ) such that for some υ ∈ ΣNC, body(υ) homomorphically maps to A ∪ B
(and it does not map to any proper subset ofA∪B). Also, it must thatB 6⊆

⋃
06i6k−1 ansLCons(i, Q,D,Σ)

and A 6⊆ ansLCons(k,Q,D,Σ), otherwise it would contradict the inductive hypothesis and Proposition 2.
Now, we look at the k-lazy repairs for KB ; if all of them are i-lazy repairs for some i < k, then

we have (
⋃

06i6k−1 ansLCons(i, Q,D,Σ),Σ) |= B, which is again a contradiction. Therefore, there are
new lazy repairs in LRep(k,KB) such that they all derive B, which means that there must exist a cluster
cl ∈ clusters(KB ,Σ) such that (cl,Σ) |= B and there is no k − 1-cut c such that mods(cl − c,Σ) 6= ∅.
However, if this is the case, sinceA andB are inconsistent together, by Definition 4 we have that (cl,Σ) |= A
as well; but this is a contradiction since it implies that A 6⊆

⋃
06i6k−1 ansLCons(i, Q,D,Σ), since there is

no i-cut with i < k that satisfies Equation 1 for cl, and thus χi−cut(cl) = {cl} for all i < k. 2

Theorem 5 shows that lazy answers can be used to obtain answers that are not consistent answers but
are nevertheless consistent as a whole. We say that a (B)CQ Q is entailed under the union-k-lazy semantics
for some k> 0 iff (Uk,Σ) |= Q.

We now analyze the relationship between the different semantics discussed in this paper. The following
proposition shows the relationship between the intersection semantics and the lazy semantics.

Proposition 4 Let KB = (D,Σ) be a Datalog+/– ontology, and Q be a BCQ. Then, (a) if KB |=ICons Q,
then KB |=k-LCons Q, for any k > 0, and (b) KB |=ICons Q iff KB |=0-LCons Q.

We next show how consistent and lazy answers are related.

Proposition 5 Let KB = (D,Σ) be a Datalog+/– ontology, and Q be a BCQ. There is k > 0 such that
KB |=Cons Q iff KB |=k-LCons Q.

Clearly, Proposition 5 entails that if we take the union of the lazy answers up to the k from the proposition,
then the resulting set of lazy answers is complete with respect to the consistent answers.

Example 9 shows that, in our running example, the 2-lazy answers correspond exactly to the consistent
answers.

Example 9 In Example 8, if k= 2, then we have that χ2-cut(cl1) =χ1-cut(cl1) and χ2-cut(cl2) =χ1-cut(cl2)∪
{{works in(tom, d1), works in(john, d1)}}. We can easily see that LRep(2,KB) = DRep(KB).

12 RR-14-04

The following (simpler) example shows the effects of changing the value of k as well as the results from
Theorem 5.

Example 10 Consider the CQ Q(X,Y) = p(X) ∧ q(Y) and an Datalog+/– ontology KB = (D,Σ):
D = {p(a), p(b), p(c), p(d), p(e), p(f), q(g), q(h), q(i), q(j)};
ΣT = {};
ΣNC = {p(a) ∧ p(b)→ ⊥, p(b) ∧ p(d)→ ⊥, p(d) ∧ p(e)→ ⊥, p(d) ∧ p(f)→ ⊥

q(g) ∧ q(h)→ ⊥, q(h) ∧ q(i)→ ⊥}
The set of clusters in KB is clusters(KB ,Σ) = {cl1 : {p(a), p(b), p(d), p(e), p(f)}, cl2 : {q(g), q(h), q(i)}.
For k = 0, the only 0-lazy repair is lrep0 = {p(c), q(j)}, which coincides withDI ; the set of 0-lazy answers
(and the answers under the intersection semantics) to Q(X,Y) is {p(c), q(j)}.

For k = 1, note that there is no way of removing one element from cl1 making the rest consistent;
therefore, the only possible cut removes the whole cluster. On the other hand, there is one 1-cut for cl2,
namely {q(h)}. Therefore, we have only one 1-lazy repair lrep1 = {p(c), q(j), q(i), q(g)}. The set of
1-lazy answers to Q(X,Y) is {p(c), q(j), q(i), q(g)}.

With k = 2, there are two 2-cuts for cl1 and two for cl2: χ2-cut(cl1) = {{p(a), p(d)}, {p(b), p(d)}} and
χ2-cut(cl2) = {{q(h)}, {q(g), q(i)}}. In this case there are four 2-lazy repairs and the set of 2-lazy answers
to Q(X,Y) is {p(c), p(e), p(f), q(j)}.

For k = 3, we have χ3-cut(cl1) = {{p(a), p(d)}, {p(b), p(d)}, {p(b), p(e), p(f)}} and χ3-cut(cl2) =
χ2-cut(cl2) = {{q(h)}, {q(g), q(i)}}. The set of 3-lazy repairs coincide with the set of repairs and therefore
the set of 3-lazy answers to Q(X,Y) is the set of consistent answers, namely {p(c), q(j)}.

Finally,
⋃

06i63 ansLCons(i, Q,D,Σ) = {p(c), q(j), q(i), q(g), p(e), p(f)}, which is clearly consistent
relative to ΣNC.

The following theorem shows that BCQ answering for guarded Datalog+/– ontologies under k-lazy
semantics is co-NP-hard. Despite this result, we show in the next section that for linear Datalog+/–, atomic
BCQ answering under k-lazy answers is tractable.

Theorem 6 Given a guarded Datalog+/– ontology KB and a BCQ Q, deciding KB |=k-LCons Q is co-NP-
hard in the data complexity.

After the formal presentation of lazy answers, based on the concept of incision functions, we can now
provide an algorithm that computes lazy answers to conjunctive queries to Datalog+/– ontologies. The
algorithm uses the concept of finite chase graph [3] for a given ontology KB = (D,Σ), which is a graph
consisting of the necessary finite part of chase(D,Σ) relative to query Q, i.e., the finite part of the chase
graph for D and Σ such that chase(D,Σ) |= Q.

Algorithm lazyConsistent (see Fig. 1) first computes the set of clusters in KB using subroutine find-
Clusters. Next, for each cluster, function χk-cut is constructed by removing each possible subset (of size
at most k) of the cluster in turn and checking if the remaining tuples are consistent (and that the subset in
question is not a superset of an incision already found – cf. line 7). If so, then the set is added as a possible
“incision” for the cluster. The loop in line 10 considers all possible ways of choosing one incision for each
cluster that has incisions associated with it. A lazy repair then arises from each such possible combination
by removing the incisions from D. The answer is finally computed using these repairs.

Algorithm findClusters (Figure 2) computes the set of clusters in a given guarded Datalog+/– ontol-
ogy. The algorithm works in the following way: for each ground negative constraint, the chase graph
w.r.t. the constraint’s body is obtained, i.e., taking the body of a constraint as a conjunctive query. If

RR-14-04 13

Algorithm lazyConsistent(KB = (D,Σ), Q = (
∧n
i=1 ai), k)

1. incisions:= new (empty) mapping of type 〈atomSet, set of atomSet〉;
2. LRepairs:= new (empty) set of type atomSet;
3. clusters:= findClusters(KB);
4. for every cl ∈ clusters do
5. for i = 1 to min(k, |cl|) do
6. for every set A ⊆ cl with |A| = i do
7. if (6 ∃A′ ∈ incisions(cl) such that A′ ⊂ A) and

mods(cl−A,Σ) 6= ∅ then
8. set incisions(cl):= incisions(cl) ∪A ;
9. fixedClusters := union of all sets C ∈ clusters such that incisions(C) = ∅;

10. for every set of atoms Ri resulting from every possible way of choosing an
atom from each υ in domain(incisions) do

11. LRepairs:= LRepairs ∪ {(D −Ri)− fixedClusters};
12. return Yes iff Yes is an answer for Q to (lrep,Σ) ∀lrep ∈ LRepairs;

Figure 1: Computing k-lazy answers for a BCQ Q to KB .

chase(KB , body(υ)) |= body(υ), then we know that constraint υ is violated in KB . Note that the grounding
of negative constraints can be obtained by producing a queryQ(X) consisting of the body of the non-ground
constraint with X containing all universally quantified variables in the constraint. The set of answers for
Q(X) over KB gives us the constants needed to correctly ground the set of constraints. As we mentioned
above, the notion of α-kernel comes from [11] and it represents a minimal set of sentences in the knowledge
base that entail sentence α. In the same spirit, algorithm findKernels (Figure 3) allows to compute the set of
minimal subsets ofD (ground atoms belonging to level 0 of the chase graphG) that, together with ΣT , entail
the body of a ground constraint υ; that is, body(υ)-kernels correspond to the set culprits(KB , {υ}). These
sets are identified by “following up” the edges in the chase graph from the atoms in body(υ) until D (level 0
in the chase graph) is reached. Note however, that we cannot just do the same for every constraint and then
merge the resulting sets that overlap in order to compute the clusters. The problem is that, in general, it
is not that case that culprits(KB) =

⋃
υ∈ΣNC

culprits(KB , {υ}). For this reason Algorithm findClusters
performs further checking of minimality among “potential” culprits before merging overlapping ones. The
following example shows how Algorithm findClusters works over our running example.

Example 11 Consider the Datalog+/– ontology from Example 1 with the addition of the following con-
straint (only for this example) υ4 : manager(X,D) ∧ manager(Y,D) ∧ supervises(X,Y) → X = Y ;
formula υ4 says that two different persons cannot be both managers and one supervise the other at the same
time. Algorithm findClusters first computes the set of ground negative constraints corresponding to KB .
We have then, Σ′NC =

{ υ1 : supervises(tom, john) ∧ manager(john, d1)→ ⊥,
υ2 : supervises(tom, john) ∧ works in(tom, d1) ∧ directs(john, d1)→ ⊥,
υ3 : directs(tom, d1) ∧ directs(tom, d2) ∧ d1 6= d2 → ⊥,
υ4 : manager(tom, d1) ∧ manager(john, d1) ∧ supervises(tom, john) ∧ tom 6= john→ ⊥}

Second, the chase graph for each individual ground constraint is computed with respect to KB . Figure 4
shows the chase graph computed for constraint υ1 ∈ Σ′NC, i.e, G = chase(KB , Q() = body(υ1)).

The calls to Algorithm findKernels within Algorithm findClusters compute the following sets:

14 RR-14-04

Algorithm findClusters(KB = (D,Σ))
1. PCul = ∅;
2. Let Σ′NC be the set of ground negative constraints and EGDs from KB ;
3. for every ground υ ∈ Σ′NC do
4. compute chase graph g:= chaseGraph (body(υ), D,ΣT);
5. kerυ:= new (empty) mapping of type 〈atom, atomSet〉;
6. PCυ:= findKernels(Σ, g, body(υ), kerυ);
7. for every c ∈ PCυ do
8. if no c′ ∈ PCul is such that c′ ⊂ c then
9. PCul = PCul ∪ {c};

10. if there exists c′ ∈ PCul such that c ⊂ c′ then
11. PCul = (PCul− c′) ∪ {c};
12. Merge pairs of elements in PCul that overlap (repeat until no more exist);
13. return PCul;

Figure 2: Computing clusters of a guarded Datalog+/– ontology KB .

findKernels(ΣT , G, body(υ1)) = {cul1 : {supervises(tom, john), directs(john, d1), works in(john, d1)}},
findKernels(ΣT , G, body(υ2)) = {cul2 : {supervises(tom, john), directs(john, d1), works in(tom, d1)}},
findKernels(ΣT , G, body(υ3)) = {cul3 : {directs(tom, d1), directs(tom, d2)}},
findKernels(ΣT , G, body(υ4)) = {cul4 : {supervises(tom, john), directs(john, d1), works in(john, d1),
manager(tom, d1)}, cul5 : {supervises(tom, john), directs(john, d1),works in(john, d1),works in(tom, d1),
directs(tom, d1)}}.

After analyzing constraints υ1, υ2, and υ3, we have that PCul = {cul1, cul2, cul3}. The minimality
check in line 6 fails for cul4 and cul5 since cul1 ⊂ cul4 and cul1 ⊂ cul5, then neither cul4 nor cul4 are added
to PCul. When the algorithm reaches line 11 we have PCul = culprits(KB) (cf. Example 3), and finally the
algorithm returns {cul1 ∪ cul2, cul3} = clusters(KB) (cf. Example 4).

The following proposition shows that Algorithm findClusters correctly computes the set of clusters in
KB .

Proposition 6 Let KB = (D,Σ) be a guarded Datalog+/– ontology. Algorithm findClusters(KB) cor-
rectly computes the set clusters(KB).

The next result shows that lazyConsistent is correct.

Theorem 7 Let KB = (D,Σ) be a guarded Datalog+/– ontology,Q be a BCQ, and k > 0. Algorithm lazy-
Consistent correctly computes the k-lazy answers for Q to KB .

4.1 Tractable k-lazy answers for Linear Datalog+/–

In this section we analyze k-lazy answers for a particular sublanguage of Datalog+/– called linear Datalog+/–
; linear Datalog+/– consists of linear TGDs, i.e., TGDs that have a unique atom in the body. We show that
for linear Datalog+/– ontologies k-lazy answers for BCQs can be computed efficiently, i.e., in polynomial
time in the data complexity.

RR-14-04 15

Algorithm findKernels
(
TGDs ΣT , chaseGraph G,Groundα =

∧
i=1,...,n ai,

Mapping of type 〈atom, atomSet〉 kernels
)

1. for every ai ∈ α such that ai belongs to level 0 of G do
2. insert (ai, {{ai}}) in kernels;
3. for every TGD σ ∈ ΣT do
4. for every ai ∈ α such that homomorphism h maps head(σ) to ai do
5. let b1, ..., bm be nodes in G such that ∃ an edge (bj , ai) in G with label σ;
6. kerσ:= findKernels

(
G, h(

∧
i=1,...,m bi), kernels

)
;

7. if kernels[ai] 6= null then kernels[ai]:= kernels[ai] ∪ kerσ;
8. else insert (ai, kerσ) in kernels;
9. out:=

{⋃
ai∈α keri | keri ∈ kernels[ai]

}
;

10. remove from out non minimal sets i.e., no set c remains such that c ⊆ c′ and c′ ∈ out;
11. return out;

Figure 3: Computing the α-kernels for a conjunction of ground atoms α in a guarded Datalog+/– ontology.

works_in(john,d1)

s1

directs(john,d1) 0 0

emp(john) 1

supervises(tom,john) 0

manager(john,d1) 1

s2
s3 s3

works_in(tom,d1) 0 directs(tom,d1) 0

manager(tom,d1) 0

directs(tom,d2) 0

emp(tom) 1

s3 s3
s1

s1

s1

Figure 4: Chase graph for the Datalog+/– ontology KB from Example 1.

The following result shows that the clusters in a linear Datalog+/– ontology can be computed in polyno-
mial time. The main reason for this is that due to the restrictions of linear TGDs there is only a polynomial
number of ways of deriving an atom, and since we assume that the set Σ is fixed, we can follow up the
derivations of each atom in the body of each constraint in ΣNC in polynomial time in the size of the database.

Proposition 7 Let KB = (D,Σ) be a linear Datalog+/– ontology. Algorithm findClusters(KB) runs in
polynomial time in |D|.

We can also show that k-lazy answers can be decided in polynomial time in the data complexity. This
refers to the parameterized complexity of the problem (the size of the cut as the parameter), and follows, in
part, from the set of clusters and their k-cuts being computable in polynomial time in the data complexity for
linear Datalog+/–. Furthermore, in the linear case, derivations from different clusters without their k-cuts
can be handled independently from each other. This property follows directly from the following result.

Lemma 2 Let KB = (D,Σ) be a linear Datalog+/– ontology, Q a BCQ and S = s1, . . . , sn be such that⋃
si∈S si ⊆ D and the si’s are pairwise disjoint. Then,

⋃
si∈S chase(si,Σ) = chase(

⋃
si∈S si,Σ).

Algorithm lazyConsistent can be adapted to run in polynomial time as shown in Figure 5. It is impor-
tant to note that the property mentioned above, exploited in the algorithm, works only for linear TGDs; in

16 RR-14-04

Algorithm lazyConsistentLinear
(
KB = (D,Σ), Q = (

∧n
i=1 ai), k

)
1. incisions:= new (empty) mapping of type 〈atomSet, set of atomSet〉;
2. clusters:= findClusters(KB);
3. compute mapping incisions; // as done in lines 4–8 in Algorithm lazyConsistent
4. if (DI = D −

⋃
cl∈clusters cl,Σ) |= Q then return Yes;

5. cons:= ∅;
6. for every cl ∈ clusters do
7. if incisions(cl) 6= ∅ then
8. consClust:= chaseInt(KB , DI , cl, incisions(cl));
9. cons:= cons ∪ consClust;

10. if cons |= Q then return Yes;
11. else return No;

Figure 5: Computing k-lazy answers for a BCQ Q to a linear Datalog+/– ontology KB .

the general case, for guarded TGDs, it is necessary to look at every possible combination of cuts across all
clusters, as it is done in Algorithm lazyConsistent. The procedure used in line 8 of Algorithm lazyConsis-
tentLinear computes the intersection of consequences yielded by each cut to a cluster, which is equivalent
to computing the intersection of their groundings. The following definition states which atoms belong to
this set.

Definition 13 Given a linear Datalog+/– ontology KB = (D,Σ), a set of atoms DI , and a cluster cl with a
corresponding set of k-cuts incisions(cl), an atom a belongs the set chaseInt(KB , DI , cl, incisions(cl)) iff
for every cj ∈ incisions(cl) there exists atom bj such that there exists a homomorphism between a and bj
with bj ∈ cl − cj .

The above definition aims to capture situations as the one shown in the following example.

Example 12 Suppose that for a given cluster clwe have incisions(cl) = {c1, c2, c3, c4} such that chase(DI∪
(cl− c1),Σ) = {p(a, Y), q(b)}, chase(DI ∪ (cl− c2),Σ) = {q(a), p(X,Y)}, chase(DI ∪ (cl− c3),Σ) =
{p(a, c), q(X)}, and chase(DI∪(cl−c4),Σ) = {p(Y,Z), q(Y)}}. Then, the output of chaseInt is {p(a, c)}.
Note that if we only consider cuts c1, c2, and c4, then the output is {p(a, Y)}, whereas if we only consider
c2 and c4 we get {q(a), p(X,Y)}.

Proposition 8 Let KB = (D,Σ) be a linear Datalog+/– ontology. Algorithm lazyConsistentLinear(KB)
correctly computes the k-lazy answers for Q to KB in polynomial time in the data complexity.

5 Query Rewriting for FO-rewritable Fragments of Datalog+/– under the
Intersection Semantics

First-order (FO) rewritability of queries over an ontology allows to transform them into FO queries that can
be executed over the database alone, i.e., the new queries embed the dependencies and constraints of the
ontology. Since an FO query can be translated into an equivalent SQL expression, query answering can
be delegated to a traditional relational DBMS, thus exploiting any underlying optimizations. The sublan-
guage of Datalog+/– with linear TGDs is FO-rewritable [12]. Recently, [13] presents a rewriting algorithm,

RR-14-04 17

inspired by resolution in logic programming, which deals with so-called sticky-join sets of TGDs, a non-
guarded fragment of Datalog+/– defined by a testable condition based on variable marking; this language
includes the sets of linear TGDs and allows restricted forms of joins. However, this algorithm corresponds
to the standard (non-inconsistency-tolerant) semantics for query answering. More recently, [14] presents
a rewriting procedure for inconsistency-tolerant query answering in DL-LiteA ontologies under the inter-
section semantics; DL-LiteA belongs to the DL-Lite family of tractable DLs, which can all be expressed in
linear Datalog+/– (with negative constraints).

Under standard query answering in Datalog+/–, a class of TGDs is FO-rewritable iff for every set of
TGDs Σ in that class, and every BCQ Q, there exists a FO query QΣ such that (D,Σ) |= Q iff D |= QΣ,
for every database D. In this section, we show that any class of TGDs that is FO-rewritable under standard
query answering is FO-rewritable for consistent query answering under the intersection semantics. This
means that, for every set Σ composed of arbitrary sets ΣT and ΣNC of TGDs and negative constraints,
respectively, and every BCQ Q, there exists an FO query QΣ such that (D,Σ) |=ICons Q iff D |= QΣ, for
every database D, as long as standard query answering is FO-rewritable for the class of of TGDs to which
ΣT belongs. Here, QΣ encodes the set of TGDs and the enforcement of the negative constraints so that they
reflect the intersection semantics for query answering.

In the following, let FORew be the set of sublanguages of Datalog+/– that are FO-rewritable and for
which the size of the output query is polynomial in the data complexity. Each S ∈ FORew determines a
class of TGDs, denoted as S TGDs. We sometimes refer to ontologies defined over a language S ∈ FORew
as S Datalog+/– ontologies.

The rewriting of a BCQ Q relative to a set Σ of S TGDs, with S ∈ FORew and negative constraints is
accomplished in two steps. First, we analyze how to rewrite the negative constraints into Q in a way that
the rewriting enforces the intersection semantics, i.e., KB |=ICons Q iff D |= Q′, where Q′ is the rewriting
of Q obtained by enforcing the constraints in ΣNC. This is done independently of the set of TGDs. Second,
both the query and the negative constraints in ΣNC may need to be rewritten relative to the set of TGDs.
For this second part, we assume that for each sublanguage S ∈ FORew there exists an algorithm TGD-
rewriteS such that its output TGD-rewriteS(IC) contains the set of first order formulas that correspond to
the rewriting of the set of (negative) constraints IC. An example of such an algorithm can be found in [13]
for the set of sticky-join TGDs.

5.1 TGD-Free Case

We first focus on the FO rewriting of a BCQ Q relative to an ontology without TGDs ΣNC by enforcing the
negative constraints in ΣNC, i.e., on obtaining (D,ΣNC) |=ICons Q iffD |=Q′, whereQ′ is the enforcement of
ΣNC in Q. Intuitively, in order to compute the intersection semantics, we seek to establish a correspondence
between the minimization of negative constraints in query answering process and the minimization inher-
ently encoded in culprits. For sake of clarity of presentation and without loss of generality, given the result
in Lemma 1, in this section we will consider normalized (negative) constraints, as defined in Definition 2.

Example 13 Consider the Datalog+/– ontology KB from Example 1, KB is a multi-linear Datalog+/– on-
tology [3] (cf. Section 5.3). Given a BCQQ = supervises(tom, john), the normalized instances of constraint
υ1 within N (ΣNC Q), are the following:

υ1,1 : supervises(tom, john) ∧ manager(john, D)→ ⊥,
υ1,2 : supervises(john, tom) ∧ manager(tom, D)→ ⊥,
υ1,3 : supervises(tom, tom) ∧ manager(tom, D)→ ⊥, and
υ1,4 : supervises(john, john) ∧ manager(john, D)→ ⊥.

18 RR-14-04

Algorithm Enforcement(BCQ Q = ∃G, normalized negative constraints IC)
Here, G is a quantifier-free formula, and ∃G is the existential closure of G.
1. F := G;
2. for every υ ∈ IC do
3. for every C ⊆Q, C 6= ∅, that unifies with B⊆ body(υ) via mgu γC,B do
4. if for no υ′ ∈ IC, body(υ′) maps isomorphically to B′ ⊂ body(υ) then
5. F := F ∧ ¬∃G ((

∧
X∈var(C)X = γC,B(X)) ∧ γC,B(body(υ)))

(where ∃GR is the existential closure of R
relative to all variables in R that are not in G);

6. return ∃F .

Figure 6: Computing the enforcement of a normalized set of NCs IC relative to a BCQ Q.

The next step in the FO rewriting of a BCQ Q by enforcing the negative constraints is to identify the set
of normalized negative constraints that must be enforced in Q, i.e., the normalized negative constraints that
must be satisfied so that only the consistent answers under the intersection semantics are entailed from D.

As usual, two atoms a and b unify iff there exists a substitution γ (called a unifier for a and b) such
that γ(a) = γ(b). A most general unifier (mgu) is a unifier for a and b, denoted γa,b, such that for any other
unifier γ for a and b, there exists a substitution γ′ such that γ = γ′ ◦ γa,b. Note that mgus are unique up to
variable renaming.

Definition 14 Let ΣNC be a set of negative constraints, υ ∈N (ΣNC, Q), and Q be a BCQ. Then, υ needs to
be enforced in Q iff there exists C ⊆Q, C 6= ∅, such that C unifies with B⊆ body(υ) via some mgu γC,B ,
and there exists no υ′ ∈ N (ΣNC, Q) such that body(υ′) maps isomorphically to B′ ⊂ body(υ).

Example 14 Consider the Datalog+/– ontology KB from Example 13, BCQ Q = supervises(tom, john)
and the normalization of constraint υ1 showed in Example 13. Though we have not shown the complete set
N (ΣNC, Q), we can easily see that the only normalized instances of constraint υ1 that must be enforced are
υ1,1 and υ1,3. If we take, υ1,1, for instance, we have that the set C1 = {supervises(tom, john)} unifies with
B1 = {supervises(tom, john)} via the mgu γC1,B1 = {}.

Example 15 Consider N (ΣNC, Q) from Example 2, and the BCQ Q = ∃Xq(X). Then, neither υ′1 nor υ′2
need to be enforced in Q, while υ′3 needs to be enforced in Q.

Algorithm Enforcement (see Fig. 6) performs the rewriting of a query Q by embedding all negative
constraints that must be enforced. The following example shows how the algorithm works for the ontology
KB from Example 1.

Example 16 Coming back to Example 14, the enforcement of ΣNC in query Q= supervises(tom, john) ∧
works in(tom, d1), returned by Algorithm Enforcement in Fig. 6, is given by:
(Q ∧ ∀D,Y ¬

(
supervises(tom, john) ∧ ∧works in(tom, d1) ∧ manager(john, D)

)
∧

¬
(
supervises(tom, john) ∧ works in(tom, d1) ∧ directs(Y, d1)

)
∧

¬
(
supervises(tom, john) ∧ works in(tom, D) ∧ directs(Y,D) ∧D 6= d1

)
).

Ignoring the TGDs ΣT , we have (D,ΣNC) 6|=ICons Q, since Q 6∈ DI = {manager(tom, d1)}; DI is the
intersection of all data repairs in (D,ΣNC). As expected, we see that D 6|= Enforcement(Q,N (ΣNC, Q)).

RR-14-04 19

We now establish the correctness of Algorithm Enforcement. The following proposition is used in
the proof of the main correctness result in Theorem 8 below. It states that to answer a query under the
intersection semantics, it is only necessary to look at the set of normalized negative constraints that need to
be enforced in Q.

Proposition 9 Let KB = (D,ΣNC) be a Datalog+/– ontology without TGDs, and Q be a BCQ. Let ΣQ ⊆
N (ΣNC, Q) be the set of constraints that must be enforced in Q. Then, KB |=ICons Q iff (D,ΣQ) |=ICons Q.

Theorem 8 shows the correctness of Algorithm Enforcement. It is important to note that here we
are now only assuming a Datalog+/– ontology of the form KB = (D,Σ) where Σ contains only negative
constraints, i.e., no rewriting relative to TGDs is needed. Though the above results are valid for general
Datalog+/– ontologies, Theorem 8 only holds for Datalog+/– ontologies that do not have TGDs.

Theorem 8 Let KB = (D,ΣNC) be a Datalog+/– ontology without TGDs, and Q be a BCQ. Then,
KB |=ICons Q iff D |= Enforcement(Q,N (ΣNC, Q)).

5.2 General Case

We now concentrate on the general problem of rewriting a BCQ Q relative to a set of negative constraints
and S TGDs ΣNC ∪ ΣT , with S ∈ FORew. To this end, we have to generalize the enforcement of ΣNC

in Q described in the previous section. The following result is used to show that to enforce ΣNC in Q, it
is possible to rewrite the body of the negative constraints first and then to enforce the new set of negative
constraints (containing all possible rewritings of the negative constraints relative to ΣT) in Q. It follows
immediately from the soundness and completeness assumed of Algorithm TGD-rewriteS .

Lemma 3 Let KB = (D,Σ) with Σ = ΣNC ∪ ΣT be a Datalog+/– ontology, ΣRew be the set of all negative
constraints F →⊥ such that F ∈ TGD-rewriteS(body(υ), ΣT) for some υ ∈ΣNC. Then, culprits(KB) =
culprits(KB ′), where KB ′ = (D,ΣRew).

As an immediate consequence, query answering in S Datalog+/– under the intersection semantics is
invariant to rewriting the negative constraints relative to the TGDs. This result follows immediately from
Lemma 3 and Theorem 3.

Proposition 10 Let KB = (D,Σ), Σ = ΣNC ∪ ΣT , be an S Datalog+/– ontology, with S ∈ FORew.
Let ΣRew be the set of all negative constraints F →⊥ such that F ∈ TGD-rewriteS(body(υ), ΣT) for
some υ ∈ΣNC. Then, KB |=ICons Q iff (D,ΣRew ∪ ΣT) |=ICons Q.

The following example illustrates the rewriting of the set of negative constraints in the running example
relative to a corresponding set of TGDs.

Example 17 Consider υ1 = supervises(X,Y)∧manager(Y)→⊥ from ΣNC in Example 1. Then, the rewrit-
ing of body(υ1) relative to ΣT is given by:

TGD-rewriteS(body(υ1),ΣT) = {rw1 : supervises(X,Y) ∧ manager(Y,D),
rw2 : supervises(X,Y) ∧ works in(Y,D)∧
directs(Y,D)} .

Similarly, we have that TGD-rewriteS(body(υ2),ΣT) = {body(υ2)}, and TGD-rewriteS(body(υ3),
ΣT) = {body(υ3)}. (Recall that υ3 is treated as the negative constraint directs(X,D) ∧ directs(X,D′)∧
D 6= D′→⊥.) Hence, ΣRew = {rw1 → ⊥, rw2 → ⊥, υ2, υ3}.

20 RR-14-04

Algorithm rewriteICons(BCQ Q, set of negative constraints and S TGDs ΣNC ∪ ΣT)
1. ΣRew := {F → ⊥ | F ∈TGD-rewriteS(body(υ),ΣT) for some υ ∈ ΣNC};
2. Qrw := TGD-rewriteS(Q,ΣT);
3. out := ∅;
4. for each Q ∈ Qrw do
5. out := out ∪ Enforcement(Q,N (ΣRew, Q));
6. return out.

Figure 7: Rewriting a BCQ Q relative to a set of negative constraints and FO-rewritable S TGDs Σ under
the intersection semantics; see Fig. 6 for Algorithm Enforcement.

Algorithm rewriteICons in Figure 7 computes the rewriting of a BCQ Q relative to a set of negative
constraints and S TGDs Σ = ΣNC ∪ ΣT . The algorithm works as follows. First, the rewriting of the bodies
of the negative constraints in ΣNC are computed relative to ΣT , using algorithm TGD-rewriteS . Then,
similarly, the rewriting of Q is computed relative to ΣT . Finally, for each query in the rewriting of Q, the
algorithm enforces the normalization of the rewritten set of negative constraints. The following example
illustrates how Algorithm rewriteICons works.

Example 18 Consider again the BCQQ=∃Dmanager(john, D) to the Datalog+/– ontology Σ = ΣNC∪ΣT

from Example 1. First, algorithm rewriteICons computes ΣRew, the rewriting of ΣNC relative to ΣT ,
as shown in Example 17. Second, Q is rewritten relative to ΣT , obtaining Qrw = {directs(john, D) ∧
works in(john, D), manager(john, D)}.
We have that for Q′ = directs(john, D) ∧ works in(john, D), N (ΣRew, Q

′) = {
rw1,1 : supervises(X, john) ∧ manager(john, D) ∧ X 6= john→ ⊥,
rw1,2 : supervises(john, Y) ∧ manager(Y,D) ∧ Y 6= john→ ⊥,
rw1,3 : supervises(john, john) ∧ manager(john, D)→ ⊥,
rew2,1 : supervises(john, Y) ∧ directs(Y,D) ∧ works in(Y,D) ∧ Y 6= john→ ⊥,
rew2,2 : supervises(X, john) ∧ directs(john, D) ∧ works in(john, D) ∧ X 6= john→ ⊥,
rew2,3 : supervises(john, john) ∧ directs(john, D) ∧ works in(john, D)→ ⊥,
υ2,1 : supervises(john, Y) ∧ directs(Y,D) ∧ works in(john, D) ∧ Y 6= john→ ⊥,
υ2,2 : supervises(X, john) ∧ directs(john, D) ∧ works in(X,D) ∧ X 6= john→ ⊥,
υ2,3 : supervises(john, john) ∧ directs(john, D) ∧ works in(john, D)→ ⊥,
υ3,1 : directs(john, D) ∧ directs(john, D′) ∧ D 6= D′ → ⊥}.

Clearly, none of the normalized instances of rw1 need to be enforced since there is noC ⊆ Q′, withC 6=
∅, that unifies with B ⊆ body(rw1,j) with 1 6 j 6 3. However, all the other constraints in N (ΣRew, Q

′)
need to be enforced. We now show how the different constraints are enforced following the for loop in line 2
in Algorithm Enforcement. For ease of presentation, and without loss of generality, we only consider the
largest sets C ⊆ Q′ that unify with part of the body of some constraint.

Consider constraint rw2,1: we have C = directs(john, D) ∧ works in(john, D), B = directs(Y,D) ∧
works in(Y,D), and γC,B = {[Y/john]}. We enforce the constraint by adding the following formula:

¬
(

Y = john ∧ supervises(john, john) ∧ directs(john, D)∧
works in(john, D) ∧ Y 6= john

) (2)

For constraint rw2,2, we have C = directs(john, D) ∧ works in(john, D) and B = directs(john, D) ∧

RR-14-04 21

works in(john, D). This constraint is enforced by adding the following formula:

¬∃X
(
supervises(X, john) ∧ directs(john, D) ∧ works in(john, D) ∧X 6= john

)
(3)

Continuing with constraint rw2,3, we have C = directs(john, D) ∧ works in(john, D), and B =
directs(john, D) ∧ works in(john, D). The following formula enforces this constraint:

¬
(
supervises(john, john) ∧ directs(john, D) ∧ works in(john, D)

)
(4)

For constraint υ2,1, C = directs(john, D) ∧ works in(john, D), B = directs(Y,D) ∧ works in(john, D),
and γC,B = {[Y/john]}. We enforce the constraint by adding the following formula:

¬
(
Y = john ∧ supervises(john, john) ∧ directs(john, D) ∧ works in(john, D) ∧ Y 6= john

)
(5)

Now consider constraint υ2,2: we have C = directs(john, D) ∧ works in(john, D), B = directs(john, D) ∧
works in(X,D). We enforce it by adding the following:

¬∃X
(
supervises(X, john) ∧ directs(john, D) ∧ works in(X,D) ∧X 6= john

)
(6)

Next, for constraint υ2,3 we have C = directs(john, D) ∧ works in(john, D), B = directs(john, D) ∧
works in(john, D). This is enforced by the formula:

¬
(
supervises(john, john) ∧ directs(john, D) ∧ works in(john, D)

)
(7)

Finally, consider constraint υ3,1: we have C = directs(john, D), B = directs(john, D). We enforce this
constraint by adding the following formula:

¬∃D′
(
directs(john, D) ∧ directs(john, D′) ∧ D 6= D′

)
(8)

The enforcement of N (ΣRew, Q
′) to Q′ is

Q1 = directs(john, D) ∧ works in(john, D)∧
¬∃X

(
supervises(X, john) ∧ directs(john, D) ∧ works in(john, D) ∧X 6= john

)
∧

¬
(
supervises(john, john) ∧ directs(john, D) ∧ works in(john, D)

)
∧

¬∃X
(
supervises(X, john) ∧ directs(john, D) ∧ works in(X,D) ∧X 6= john

)
∧

¬∃D′
(
directs(john, D) ∧ directs(john, D′) ∧ D 6= D′

)
Note that formulas (2) and (5) are logically equivalent to true; for this reason, we do not include them in the
final enforcement. The enforcement of N (ΣRew, Q

′′) to Q′′, where Q′′ = manager(john, D) is Q2 =

manager(john, D) ∧ ¬∃X
(
supervises(X, john) ∧ manager(john, D) ∧ (X 6= john

)
∧(

supervises(john, john) ∧ manager(john, D)
)

Finally, the output of algorithm rewriteICons is out = {Q1, Q2} (≡ Q1 ∨ Q2). Both Q1 and Q2 are false
on the database D from Example 1, and so the consistent answer for Q under the intersection semantics is
false, which is correct since DI =

⋂
D′∈DRep(KB)D

′= {works in(john, d1),works in(tom, d1)}, and thus
KB 6|=ICons Q.

The following theorem shows the correctness of Algorithm rewriteICons.

Theorem 9 Let KB = (D,Σ) with Σ = ΣNC ∪ ΣT be an S Datalog+/– ontology with S ∈ FORew, and Q
be a BCQ. Then, KB |=ICons Q iff D |=

∨
F∈rewriteICons(Q,Σ) F .

22 RR-14-04

5.3 Concrete Classes of FO Rewritable Sets of TGDs

The most basic class of TGDs that are FO rewritable under the intersection semantics is that of linear
TGDs (cf. Section 2). The main weakness of linear TGDs is that they do not allow joins in their bodies.
Multi-linear TGDs relax this restriction: each atom in the body a multi-linear TGD is a guard. Ontology
KB in our running Example 1 is multi-linear, this is because TGD σ3 is a multi-linear TGD. Nevertheless,
the joins that can be represented are very restrictive for multi-linear TGDs. In our running example, a
multi-linear TGD cannot express that an employee that is also a manager supervises some other employee:
emp(X) ∧ manager(X,D) → ∃Y supervises(X,Y) is not multi-linear. The following, more expressive
class of TGDs, allows to represent this kind of joins without losing FO rewritability.

The class of sticky sets of TGDs is defined in [15] by by a syntactic criterion that is easily testable, which
is as follows. For every database D, assume that during the chase of D regarding a set Σ of TGDs, we apply
a TGD σ ∈ Σ which has a variable V appearing more than once in its body. Assume also that V maps (via
a homomorphism) on the symbol z, and that by virtue of this application the atom a is generated. In this
case, for each atom b ∈ body(σ) we say that a is derived from b. Then, z appears in a, and in all atoms
resulting from some chase derivation sequence starting from a, “sticking” to them (hence the name “sticky”
sets of TGDs). The definition of sticky sets of TGDs is based heavily on a variable-marking procedure
called SMarking. This procedure accepts as input a set of TGDs Σ, and marks the variables that occur in
the body of the TGDs of Σ. Formally, SMarking(Σ) works as follows. First, we do the following: for each
TGD σ ∈ Σ, and for each variable V in body(σ), if there exists an atom a in head(σ) such that V does
not appear in a, then we mark each occurrence of V in body(σ). Then, we apply exhaustively (i.e., until
a fixpoint is reached) the propagation step: if a marked variable in body(σ) appears at position φ, then for
every TGD σ′ ∈ Σ (including the case σ = σ′), we mark each occurrence of the variables in body(σ′) that
appear in head(σ′) at the same position φ.

For each pair of TGDs 〈σ, σ′〉 ∈ Σ× Σ (including the case σ = σ′), if a universally quantified variable
V occurs in head(σ) at positions φ1, . . . , φm for m > 1, and there exists an atom a ∈ body(σ′) such that
at each position φ1, . . . , φm a marked variable occurs, then we mark each occurrence of V in body(σ). The
formal definition of sticky sets of TGDs follows.

Definition 15 A set Σ of TGDs is sticky if there is no TGD σ ∈ SMarking(Σ) such that a marked variable
occurs in body(σ) more than once.

The class os sticky set set of TGDs considered together with negative constraints and functional depen-
dencies (special case of EGDs) is strictly more expressive than DL-LiteA, DL-LiteR, and DL-LiteF [15].
Joins are restricted so the interaction with the TGDs does not make query answering undecidable; however,
the set is still quite expressive, for instance many realistic sets of multi-valued dependencies are sticky.

Example 19 Consider Datalog+/– ontology KB from Example 1 and let:

σ4 : temp emp(X) ∧ works in(Y,D) ∧ directs(X,D)→ intern(Y,X,D)

belong to Σ; now, KB is a sticky Datalog+/– ontology. TGD σ4 expresses that a temporal employee working
in a department is an intern that responds to whoever directs that department.

Finally, an even more expressive FO rewritable class of sets of TGDs are those so-called Sticky-join [16].
Sticky-join sets of TGDs extend both sticky sets of TGDs and linear TGDs. Similarly to sticky sets of

RR-14-04 23

TGDs, sticky-join sets are defined by a testable condition based on variable marking. However, the variable-
marking for this class is more sophisticated, i.e., checking whether a set of TGDs is sticky-join, is PSPACE-
hard [16]. Notice that the identification problem under (multi-)linear TGDs and sticky sets of TGDs is
feasible in PTIME [15].

6 Related Work

In the database community, the field of database repairing and consistent query answering (CQA) has
gained much attention since the work of [17], which provided a model-theoretic construct of a database re-
pair. The most widely accepted semantics for querying a possibly inconsistent database is that of consistent
answers, which yields the set of tuples (atoms) that appear in the answer to the query over every possible
repair. CQA enforces consistency at query time as an alternative to enforcing it at the instance level, as
conventional data cleaning techniques do. This allows to focus on a smaller portion of the database for
which repairs can be computed more easily. Furthermore, techniques have been developed, so that it is not
necessary to materialize every possible repair. The work of [18] addresses the basic concepts and results of
the area of CQA.

More recently, several works have focused on inconsistency handling for several classes of DLs, adapt-
ing and specializing general techniques previously considered for traditional logics [19, 20, 21, 22, 23].
In [24], a comparison between four different approaches to handling inconsistency in DL-based ontologies
is presented: consistent ontology evolution, repairing inconsistencies, reasoning with inconsistent ontolo-
gies, and ontology versioning. In [25] a survey (up to 2007) of existing approaches for handling inconsis-
tencies in DL-based ontologies is presented, the authors analyze different works from the literature and their
corresponding usability on practical problems. The work in [9] studies the adaptation of CQA for DL-Lite
ontologies. In that work, the intersection semantics is presented as a sound approximation of consistent
answers, which for the DL-Lite family is easier to compute, as well as the closed ABox version for both
of them, which considers the closure of the set of assertional axioms (ABox, or extensional database) by
the terminological axioms (TBox, or intensional database). The data and combined complexity of the se-
mantics were studied in [26] for a wider spectrum of DLs. The tractability results obtained in this paper
for consistent answers and intersection semantics for linear Datalog+/– ontologies generalize the previous
work for the DL-Lite family. In [26], intractability results for query answering were found for EL⊥ under
the intersection semantics, and a non-recursive segment of that language was proved to be computable in
polynomial time. These languages are incomparable with linear Datalog+/– in the sense that neither sub-
sumes the other. More recently, in [27], another family of approximations to CQA are proposed, also for
the DL-Lite family. The k-support semantics allows to (soundly) approximate the set of queries entailed
under the CQA semantics, based on k subsets of the database that consistently entail q; on the other hand,
the k-defeater semantics approximates complete approximations seeking sets that contradict the supporters
for q. Both semantics are FO-rewritable for any ontological language for which standard CQ answering is
FO-rewritable as well, and can be used in conjunction to over- and under-approximate consistent answers.
In contraposition to these approaches, the lazy semantics is novel in the sense that it does not seek an ap-
proximation to consistent answers, aiming instead to produce answers that do not violate the set of negative
constraints using the value k to restore consistency with the smallest possible changes.

Along the line of shifting focus away from consistent answers, the work in [28] proposes, instead of
identifying the consistent answers to a given query, to warn the user about the presence of suspect elements
in the query result. This is similar to the idea in artificial intelligence to associate with a conclusion the
information that it is paraconsistent or defeasible, i.e., the opposite conclusion could be supported as well.

24 RR-14-04

Moreover, note that a set of answers that does not contain any suspicious ones may still be an inconsistent
set of information since functional dependencies with respect to attributes not involved in the query may be
violated in this set, a CQA approach would return such answers but no extra information about them. This
approach differs from CQA in the sense that it provides more information about the answers and which can
be specially valuable in the case where there are no (or very few) consistent answers, and it is, in principle,
also much less costly since it avoids the complexity associated with searching for minimal repairs.

Arenas et al. [17] propose a method to compute consistent query answers based on query rewriting that
applies to FO queries without disjunction or quantification, and databases with only binary universal in-
tegrity constraints without considering TGDs. The rewriting applies to and produces FO queries. When
a literal in the query can be resolved with an integrity constraint, the resolvent forms a residue. All such
residues are then conjoined with the literal to form its expanded version. If a literal that has been expanded
appears in a residue, the residue has to be further expanded until no more changes occur. A rewriting method
for a larger subset of conjunctive queries but that is limited to primary key FDs (a special case of EGDs) was
proposed in [29]. The work [18] summarizes some of the main results of the area of CQA. Most recently,
in [14], the authors explore FO-rewritability of DL-Lite ontologies under the intersection and closed ABox
semantics; both semantics were first introduced in [9]. The rewritability results obtained in this paper for
consistent answers under the intersection semantics for linear Datalog+/– ontologies significantly generalize
the previous work for DL-LiteA. In [30], the author studies and formulates general conditions to prove that a
FO-rewriting exists or not for DL-Litecore for consistent instance checking. In the paper, the key to show ex-
istence of a rewriting lies in the identification of specific types of conflict chains (the way in which conflicts
interact with each other relative to the query) that can appear in a given ontology. Following up that line
of work, the recent work in [31], provides a fine-grained complexity analysis that aims to understand what
makes consistent answers so hard to compute even for simple ontologies consisting of class subsumption and
class disjointness. The author identifies that the number of quantified variables in the conjunctive query has
a dramatic effect on determining the complexity of query answering under the consistent answers semantics.
The results in the paper show that (1) consistent query answering is always first-order rewritable for con-
junctive queries of at most two quantified variables, (2) the problem has polynomial data complexity when
there are two quantified variables, and (3) a necessary and sufficient condition for first-order rewritability
is identified for queries with at most two quantified variables. Furthermore, a novel inconsistency tolerant
semantics that is a sound approximation to consistent answers is presented. This semantics which is define
as the answers that can be derived in the intersection the closure of the repairs, is a finer approximation than
the intersection semantics and query answering for DL-Lite ontologies is first-order rewritable for arbitrary
conjunctive queries. Finally, the work in [32] develops a query rewriting algorithm for DL-LiteA with iden-
tification (key constraints) and denial assertions (negative constraints) under the intersection semantics. The
results in that paper apply to a less expressive language than the one studied here, therefore the technique
developed here are no simple generalizations of the one from [32].

A very important area of research related to inconsistency management is that of belief change the-
ory [33, 34]. Belief change theory focuses on modeling the changes to belief sets (sets of formulas closed
under consequence) and belief bases (sets of formulas not necessarily closed under consequence). In any
practical database application, only belief bases are relevant, and hence, in this paper, we borrow the notions
of incision functions and kernels from [11]. Belief contraction is the process of removing beliefs from a
knowledge base (and/or the input). In [11], a formal model of contraction of a sentence α is presented based
on the selection among elements that contribute to make the knowledge base KB imply α. The minimal
subsets of KB that imply α are called α-kernels. Incision functions are defined to formally capture the ele-
ments of each α-kernel that are to be discarded. The approach of CQA is then, in part, similar to contraction

RR-14-04 25

by falsum, i.e., remove from the knowledge base sentences so ⊥ (inconsistency) is not implied any longer.
For this reason, we make use of culprits that correspond exactly to ⊥-kernels in Datalog+/– ontologies. The
main difference between belief contraction and CQA is, however, that CQA does not seek to get rid of the
inconsistent information but to provide an inconsistency-tolerant method of reasoning, or in our case, of
query answering. No sentences are removed from the knowledge base; instead, a model of the consistent,
certain, information is created and used in the process of answering queries despite the contradictions that
may exist. Belief revision and contraction techniques have also been developed for DLs-based ontologies.
In [35], the authors focus on the problem of ontology evolution, defined as the timely adaptation of an on-
tology to changes and the consistent management of these changes. A generalization of the AGM postulates
is proposed for revision to DLs. Furthermore, two revision operators are described, one for which whenever
an concept assertion or a general concept inclusion is involved in a conflict, the axioms are weakened, by
either removing the assertion or removing the individuals in the that cause the problems in the concept inclu-
sion. Finally, an alternative revision operator to refine the weakening: the weakening of a concept assertion
corresponds to the weakening of its atomic concepts, i.e., dropping some individuals which are related to
the individual that is in conflict; this refinement allows, in some cases, to maintain more information in the
knowledge base through out the revision process.

Another important and also well-studied area is that of paraconsistent reasoning. Paraconsistent meth-
ods allow contradictory information to be derived and introduced without trivialization, i.e., the principle
of explosion does not hold. Paraconsistent logics were introduced in the 60s, and logics of inconsistency
were later developed [36, 37, 38, 39, 40]. The work of [38] introduced a four valued logic that was used
for handling inconsistency in logic programming [41] and extended to the case of bilattices [42]. More re-
cently, [43] proposes a 4-valued logic for P -Datalog (logic programs with negations in the bodies, but not in
the heads, of the rules) for querying databases obtained from multiple sources that can contain inconsistent
information. The information stored in the knowledge base is marked as true or inconsistent (this is done
through a merging process). The framework is based on the paraconsistent (3-valued) logic LFI1 [44] and
allows to infer new facts and the facts in the answers are classified as true, false, inconsistent, or unknown,
according to the proposed well-founded semantics. The main difference with Belnap’s 4-valued logic is that
this work considers a total order on the logic’s values instead of partial orders. The work in [45] defines
a 3-valued paraconsistent semantics for the well-known description logic SHIQ [46]. The paraconsistent
semantics of SHIQ is based on Kleene’s 3-valued logics [47, 48]. The main difference of the approaches
based on these logics is that they identify inconsistency with the lack of knowledge, i.e, the value inconsis-
tent characterizes undefined information, whereas in other approaches, such as the one in [43], it stands for
overdefined (inconsistent) information (actually, a fourth value is added in [43] to characterize undefined in-
formation). The authors in [45] claim that the choice of 3-valued logic over 4-valued ones makes more sense
in a multi-agent setting and the Semantic Web, also allows to simplify the underlying formalism. In fact,
a faithful translation of the formalism into a 2-valued description logic is provided, which allows to adapt
and use existing tools and reasoners SHIQ [46]. A four-valued semantics to SROIQ (a DL that underlies
OWL 2) is proposed, as well its impact for several tractable description logics around OWL 2. The approach
has the advantage of being reducible to reasoning under classical semantics and the transformation required
is linear in the size of the knowledge base. Interestingly, the authors show that the four-valued semantics
can be adapted for DL-Lite without losing the property mentioned above, preserving the tractability of rea-
soning in such DL. The main difference between these paraconsistent approaches and the work presented
here is in the expressiveness of the underlying language; we focus on a more lightweight class of ontolo-
gies which allows, in principle, for more efficient query evaluation. Furthermore, CQA is only interested
in certain answers, i.e., data that is known to be true irrespectively of how the conflicts are resolved in the

26 RR-14-04

knowledge base. In this sense, the work in the area of paraconsistent reasoning is more general than ours
since they further refine the classifications of answers that are not guaranteed to be true under every possible
model/repair.

Within Artificial Intelligence, many other efforts trying to deal with potentially inconsistent information
have been developed in the last four decades. Frameworks such as default logic [49] can be used to represent
a database DB with integrity constraints IC as a default logic theory where the background theory consists
of the IC and the facts in D constitutes the defaults rules, i.e., a fact in D is assumed to be true if it can
be assumed to be true. Maximal consistent subsets [50], inheritance networks [51], and others were used
to generate multiple plausible consistent scenarios (or “extensions”), and methods to draw inferences were
developed that examined truth in all (or some) extensions. [52] extended annotated logics of inconsistency
developed in [41] to handle a full first order case, while [53] developed similar extensions to handle inher-
itance networks. Syntactic approaches have also been adopted such as the one discussed in [54]; finally,
argumentation methods [55, 56, 57] have been used for handling uncertainty and inconsistency by means
of reasoning about how certain contradictory arguments defeat each other. Other important contributions
include [58]. There is also increasingly interest on measuring inconsistency. The work in [59] proposes a
semantics of weighted maximal consistent subsets as a way of reasoning in inconsistent systems. Though
inconsistent, the system still contains semantic information that provides evidence of the truth of a sentence.
A weight on maximal consistent subsets is then computed as combination of that evidence, the quantity of
semantic information of the system, and the set of models of its maximal consistent subsets. In [60], the
authors review the measures of information and contradiction in the literature and to study the potential
practical use of such theories in inconsistency tolerant reasoning systems. In [61], a measure to quantify the
inconsistency of a full first order knowledge base is presented with applications to analyzing ontological and
temporal knowledge. The measure is based on the models of tolerant logic, which is a first order four-valued
logic; these models are based on bistructure, i.e., a pair of classical interpretations: One interpretations for
the satisfaction of atoms, and the other one for the satisfaction of negative literals. Given a bistructure, a
simple measure of inconsistency gives the proportion of the tuples in the bistructure that are in conflict. The
amount of conflict in a bistructure is the number of tuples that are both true and false. This is normalized
by the total number of tuples that are possible in the interpretations, which is a function of the size of the
domain. This measure of inconsistency is then generalized to sets of bistructures and models. The repre-
sentation of degree of inconsistency in the form of a rational function provides a summary of the nature of
the inconsistency for any domain size and it provides a direct way of comparing knowledge bases in terms
of their respective rational functions. As pointed out in [62], the approaches to measure inconsistency either
take into account the number of formulas that are required to produce an inconsistency, or the proportion
of the language that is affected by the inconsistency, this is, the more propositional variables affected, the
more inconsistent the base. In [62], Hunter et. al. proposes an alternative measure takes into account both
the number of variables affected by the inconsistency and the distribution of the inconsistency among the
formulae of the base. They use existing inconsistency measures in order to define a game in coalitional
form, and then to use the Shapley value to obtain an inconsistency measure that indicates the contribution
of each formula to the overall inconsistency in the knowledge base. The work in [10] proposes an axiomatic
definition of a dirtiness measure. The work draws the attention to the notion of a cluster and explains the im-
portance of such unit in measuring inconsistency in a database. Furthermore, the axioms proposed allow to
describe measures based on the variation of values within a data set, making it possible to use of well known
statistical measures. More recently, [63] shows that the notion of inconsistency is a multi-dimensional con-
cept where different measures provide different insights. The authors also explore relationships between
measures of inconsistency and measures of information in terms of the trade-offs they identify when using

RR-14-04 27

for inconsistency resolution or management.

7 Summary and Outlook

We have developed a general framework based on incision functions that allows to define different seman-
tics for query answering in Datalog+/– ontologies. Within this framework, we proposed a novel semantics,
called the k-lazy answers, for inconsistency-tolerant query answering that relaxes the notion of (data) re-
pairs. Among the benefits of this semantics, we distinguish: (i) for any given k, it yields a superset of the
answers yielded by the intersection semantics; (ii) for any k, the union of i-lazy answers, with 0 6 i 6 k,
is guaranteed to be consistent—we call these the union-k-lazy answers; and (iii) both k-lazy and its derived
union-k-lazy semantics can be computed in polynomial time in the data complexity under fixed parameter
assumptions for linear Datalog+/–. These results show that it is possible to go beyond the restricted possi-
bilities of classical consistent query answering and obtain useful answers while maintaining tractability.

We also show that our framework captures previously studied inconsistency-tolerant semantics (ex-
tended in this work for Datalog+/– ontologies). Furthermore, we studied the complexity of query answering
for both guarded and linear Datalog+/– under the different semantics. Finally, we show that query answering
in linear Datalog+/– is first-order rewritable under the intersection semantics, and therefore very efficiently
computable in the data complexity.

Future work will focus on the implementation and empirical evaluation of our framework over synthetic
and real-world data. Furthermore, we will continue to investigate possible generalizations of lazy answers
as well as more expressive languages, in pursuit of possible ways in which soundness and completeness
may be approached without losing scalability.

References

[1] T. Lukasiewicz, M. V. Martinez, G. I. Simari, Inconsistency handling in Datalog+/– ontologies, in:
Proc. of ECAI, 2012, pp. 558–563.

[2] T. Lukasiewicz, M. V. Martinez, G. I. Simari, Inconsistency-tolerant query rewriting for linear
Datalog+/–, in: Proc. of Datalog, 2012, pp. 123–134.

[3] A. Calı̀, G. Gottlob, T. Lukasiewicz, A general Datalog-based framework for tractable query answering
over ontologies, J. Web Sem. 14 (2012) 57–83.

[4] C. Beeri, M. Y. Vardi, The implication problem for data dependencies, in: Proc. of ICALP, Vol. 115 of
LNCS, 1981, pp. 73–85.

[5] A. Calı̀, G. Gottlob, M. Kifer, Taming the infinite chase: Query answering under expressive relational
constraints, in: Proc. of Description Logics, 2008.

[6] R. Fagin, P. G. Kolaitis, R. J. Miller, L. Popa, Data exchange: Semantics and query answering, Theor.
Comput. Sci. 336 (1) (2005) 89–124.

[7] A. Deutsch, A. Nash, J. B. Remmel, The chase revisited, in: Proc. of PODS, 2008, pp. 149–158.

[8] S. O. Hansson, Semi-revision, J. Appl. Non-Classical Logic (7) (1997) 151–175.

28 RR-14-04

[9] D. Lembo, M. Lenzerini, R. Rosati, M. Ruzzi, D. F. Savo, Inconsistency-tolerant semantics for de-
scription logics, in: Proc. of RR, 2010, pp. 103–117.

[10] M. V. Martinez, A. Pugliese, G. I. Simari, V. S. Subrahmanian, H. Prade, How dirty is your relational
database? An axiomatic approach, in: Proc. of ECSQARU, 2007, pp. 103–114.

[11] S. O. Hansson, Kernel contraction, The Journal of Symbolic Logic 59 (3) (1994) 845–859.

[12] A. Calı̀, G. Gottlob, T. Lukasiewicz, A general Datalog-based framework for tractable query answering
over ontologies, in: Proc. of PODS, 2009, pp. 77–86.

[13] A. Calı̀, G. Gottlob, A. Pieris, Query rewriting under non-guarded rules, in: Proc. of AMW, 2010.

[14] D. Lembo, M. Lenzerini, R. Rosati, M. Ruzzi, D. F. Savo, Query rewriting for inconsistent DL-Lite
ontologies, in: Proc. of RR, 2011, pp. 155–169.

[15] A. Calı̀, G. Gottlob, A. Pieris, Advanced processing for ontological queries, Proc. of VLDB 3 (1–2)
(2010) 554–565.

[16] A. Calı̀, G. Gottlob, A. Pieris, Query answering under non-guarded rules in Datalog+/–, in: Proc. of
RR, 2010, pp. 1–17.

[17] M. Arenas, L. E. Bertossi, J. Chomicki, Consistent query answers in inconsistent databases, in: Proc.
of PODS, 1999, pp. 68–79.

[18] J. Chomicki, Consistent query answering: Five easy pieces, in: Proc. of ICDT, 2007, pp. 1–17.

[19] S. Schlobach, R. Cornet, Non-standard reasoning services for the debugging of description logic ter-
minologies, in: Proc. of IJCAI, 2003, pp. 355–362.

[20] B. Parsia, E. Sirin, A. Kalyanpur, Debugging OWL ontologies, in: Proc. of WWW, 2005, pp. 633–640.

[21] Z. Huang, F. V. Harmelen, A. T. Teije, Reasoning with inconsistent ontologies, in: Proc. of IJCAI,
2005, pp. 349–350.

[22] G. Qi, J. Du, Model-based revision operators for terminologies in description logics, in: Proc. of IJCAI,
2009, pp. 891–897.

[23] Y. Ma, P. Hitzler, Paraconsistent reasoning for OWL 2, in: Proc. of RR, 2009, pp. 197–211.

[24] P. Haase, F. V. Harmelen, Z. Huang, H. Stuckenschmidt, Y. Sure, A framework for handling inconsis-
tency in changing ontologies, Springer, 2005, pp. 353–367.

[25] D. A. Bell, G. Qi, W. Liu, Approaches to inconsistency handling in description-logic based ontologies,
in: Proc. of OTM Workshops, 2007, pp. 1303–1311.

[26] R. Rosati, On the complexity of dealing with inconsistency in description logic ontologies, in: Proc.
of IJCAI, 2011, pp. 1057–1062.

[27] M. Bienvenu, R. Rosati, Tractable approximations of consistent query answering for robust ontology-
based data access, in: Proc. of IJCAI, 2013, pp. 775–781.

RR-14-04 29

[28] O. Pivert, H. Prade, Detecting suspect answers in the presence of inconsistent information, in: Proc. of
FoIKS, 2012, pp. 278–297.

[29] A. Fuxman, R. J. Miller, First-order query rewriting for inconsistent databases, J. Comput. Syst. Sci.
73 (4) (2007) 610–635.

[30] M. Bienvenu, First-order expressibility results for queries over inconsistent DL-Lite knowledge bases,
in: Proc. of Description Logics, 2011.

[31] M. Bienvenu, Inconsistency-tolerant conjunctive query answering for simple ontologies., in: Y. Kaza-
kov, D. Lembo, F. Wolter (Eds.), Proc. of DL, Vol. 846, CEUR-WS.org, 2012.

[32] D. Lembo, M. Lenzerini, R. Rosati, M. Ruzzi, D. F. Savo, Inconsistency-tolerant first-order rewritabil-
ity of DL-Lite with identification and denial assertions, in: Proc. of Description Logics, 2012.

[33] C. E. Alchourron, P. Gardenfors, D. Makinson, On the logic of theory change: Partial meet contraction
and revision functions, The Journal of Symbolic Logic 50 (2) (1985) 510–530.

[34] P. Gardenfors, Knowledge in flux: modeling the dynamics of epistemic states, MIT Press, Cambridge,
Mass., 1988.

[35] G. Qi, W. Liu, D. A. Bell, A revision-based approach to handling inconsistency in description logics,
Artif. Intell. Rev. 26 (1-2) (2006) 115–128.

[36] N. da Costa, On the theory of inconsistent formal systems, N. Dame J. of Formal Logic 15 (4) (1974)
497–510.

[37] P. Besnard, T. Schaub, Signed systems for paraconsistent reasoning, J. Autom. Reas. 20 (1) (1998)
191–213.

[38] N. Belnap, A useful four valued logic, Modern Uses of Many Valued Logic (1977) 8–37.

[39] J. Grant, Classifications for inconsistent theories, N. Dame J. of Formal Logic 19 (3) (1978) 435–444.

[40] L. Cholvy, A modal logic for reasoning with contradictory beliefs which takes into account the number
and the reliability of the sources, in: Proc. of ECSQARU, 2005, pp. 390–401.

[41] H. A. Blair, V. S. Subrahmanian, Paraconsistent logic programming, Theor. Comp. Sci. 68 (2) (1989)
135–154.

[42] M. Fitting, Bilattices and the semantics of logic programming, J. Log. Program. 11 (1–2) (1991) 91–
116.

[43] S. de Amo, M. S. Pais, A paraconsistent logic programming approach for querying inconsistent
databases, Int. J. Approx. Reasoning 46 (2) (2007) 366–386.

[44] S. d. Amo, W. A. Carnielli, J. a. Marcos, A logical framework for integrating inconsistent information
in multiple databases, in: Proc. of FoIKS, Springer-Verlag, London, UK, 2002, pp. 67–84.

[45] L. A. Nguyen, A. Szalas, Three-valued paraconsistent reasoning for semantic web agents, in: Proc. of
KES-AMSTA, Springer-Verlag, 2010, pp. 152–162.

30 RR-14-04

[46] I. Horrocks, U. Sattler, S. Tobies, Reasoning with individuals for the description logic SHIQ, in:
Proc. of ICAD, Springer-Verlag, London, UK, 2000, pp. 482–496.

[47] S. C. Kleene, Introduction to metamathematics, Bibl. Matematica, North-Holland, Amsterdam, 1952.

[48] A. Bloesch, A tableau style proof system for two paraconsistent logics., N. Dame J. of Formal Logic
34 (2) (1993) 295–301.

[49] R. Reiter, A logic for default reasoning, Artif. Intel. 13 (1-2) (1980) 81–132.

[50] C. Baral, S. Kraus, J. Minker, Combining multiple knowledge bases, TKDE 3 (2) (1991) 208–220.

[51] D. Touretzky, The mathematics of inheritance systems, Morgan Kaufmann, 1986.

[52] M. Kifer, E. L. Lozinskii, A logic for reasoning with inconsistency, J. Autom. Reasoning 9 (2) (1992)
179–215.

[53] K. Thirunarayan, M. Kifer, A theory of nonmonotonic inheritance based on annotated logic, Artif.
Intell. 60 (1) (1993) 23–50.

[54] S. Benferhat, D. Dubois, H. Prade, Some syntactic approaches to the handling of inconsistent knowl-
edge bases: A comparative study part 1: The flat case, Studia Logica 58 (1) (1997) 17–45.

[55] G. R. Simari, R. P. Loui, A mathematical treatment of defeasible reasoning and its implementation,
Artif. Intell. 53 (2-3) (1992) 125–157.

[56] P. M. Dung, On the acceptability of arguments and its fundamental role in nonmonotonic reasoning,
logic programming and n-person games, Artif. Intell. 77 (1995) pp. 321–357.

[57] H. Prakken, G. Sartor, Argument-based extended logic programming with defeasible priorities, J. Appl.
Non-Classical Logic 7 (1).

[58] S. Benferhat, D. Dubois, J. Lang, H. Prade, A. Saffiotti, P. Smets, A general approach for inconsistency
handling and merging information in prioritized knowledge bases, in: Proc. of KR, 1998, pp. 466–477.

[59] E. L. Lozinskii, Resolving contradictions: A plausible semantics for inconsistent systems, J. Autom.
Reasoning 12 (1) (1994) 1–31.

[60] A. Hunter, S. Konieczny, Approaches to measuring inconsistent information, in: Inconsistency Toler-
ance, 2005, pp. 191–236.

[61] J. Grant, A. Hunter, Analysing inconsistent first-order knowledgebases, Artif. Intell. 172 (8-9) (2008)
1064–1093.

[62] A. Hunter, S. Konieczny, On the measure of conflicts: Shapley inconsistency values, Artif. Intell.
174 (14) (2010) 1007–1026.

[63] J. Grant, A. Hunter, Measuring the good and the bad in inconsistent information, in: Proc. of IJCAI,
AAAI Press, 2011, pp. 2632–2637.

RR-14-04 31

Appendix: Proofs

Proof of Theorem 1. (⇒) SupposeD′ ∈DRep(KB). For each cluster i ∈ clusters(KB), let ci = i−D′ and
ci = i − ci = i ∩D′. Note that ci contains the atoms in i that were removed from D when computing D′,
while ci is the complement of ci relative to i, i.e., it contains the atoms in i that remain in D′. Clearly,
ci ⊆ D′, and since D′ is consistent relative to Σ, so is ci. Suppose some c′i ⊂ ci exists such that c′i = i− c′i
is consistent relative to Σ (i.e., it would have been possible to remove a subset of ci, and the result could
have also been consistent). If this is the case, then ci ⊂ c′i, and so there exists at least one atom β ∈ c′i − ci
such that β 6∈ D′. This means that D′ ∪ {β} is consistent relative to Σ, and therefore D′ is not a data repair,
leading to a contradiction. As a result, there is no c′i ⊂ ci such that c′i = i− c′i is consistent relative to Σ.

Let C =
⋃
i∈clusters(KB) ci, with ci as above, and so D′=D−C. It remains to show that C is an optimal

incision. Clearly, C ⊆
⋃
i∈clusters(KB) i by construction of the ci’s. Also, sinceD′ = D−C, andD′ is a data

repair for KB , it holds that mods(D − C,Σ) 6= ∅. Therefore, C is an incision function over clusters(KB).
Furthermore, suppose that C is not optimal. Then, some B ⊂ C exists such that mods(D − B,Σ) 6= ∅.
Hence, B =

⋃
i∈clusters(KB) c

′
i, and c′i ⊂ ci and mods(i− c′i,Σ) 6= ∅ for some i ∈ clusters(KB). But this is

not possible, as argued above. Therefore, C is optimal.

(⇐) Suppose there is an optimal incision χopt(clusters(KB)) over KB such thatD′ = D−χopt(clusters(KB)).
We now prove that

(i) D′ ⊆ D,

(ii) D′ is consistent relative to Σ, i.e., mods(D′,Σ) 6= ∅, and

(iii) no D′′ ⊆ D exists such that D′ ⊂ D′′ and mods(D′′,Σ) 6= ∅.

(i) holds trivially. (ii) also holds, since χopt is an incision function, and thus mods(D′,Σ) 6= ∅, by the defini-
tion of incision functions. To prove (ii), suppose someD′′⊆D exists such thatD′⊂D′′ and mods(D′′,Σ) 6=
∅. Then, some B⊂χopt(clusters(KB)) exists such that mods(D−B,Σ) 6= ∅, but this contradicts the fact
that χopt(clusters(KB)) is an optimal incision over KB . Thus, D′ is a data repair. 2

Proof of Theorem 2. As for membership in co-NP, deciding whether KB 6|=Cons Q can be done by guessing
and verifying some D′ ∈ DRep(KB) such that (D′,Σ) 6|=Q. This can be done in polynomial time in the
data complexity in the guarded and the linear case. In particular, verifying that D′ ∈DRep(KB) is possible
in polynomial time by checking that (D′,Σ) is consistent and that every (D′′,Σ) with larger D′′⊆D,
containing one atom more, is inconsistent.

Hardness for co-NP follows from the result that deciding ABox assertions from DL-Litecore knowl-
edge bases under the consistent answer semantics is co-NP-hard in the data complexity [9], since guarded
Datalog+/– generalizes DL-Litecore [3]. 2

We next prove the following two lemmas, which will be used in the proofs of Theorem 3 and Proposi-
tions 1 and 2.

Lemma 4 Let KB = (D,Σ) be a Datalog+/– ontology. For every α ∈ D, we have that α 6∈ cl for every
cl ∈ clusters(KB) iff α ∈ D′ for every D′ ∈ DRep(KB).

Proof. (⇒) Suppose α∈D and α 6∈ cl for every cl∈ clusters(KB). Towards a contradiction, suppose
α 6∈D′ for some D′ ∈DRep(KB). By Theorem 1, there is an optimal incision function χopt such that

32 RR-14-04

D′=D − χopt(clusters(KB)). But this contradicts α 6∈ cl for every cluster cl. Thus, we have that α∈D′
for all D′ ∈DRep(KB).

(⇐) Conversely, suppose α∈D′ for every D′ ∈DRep(KB). Towards a contradiction, suppose α∈ cl for
some cl∈ clusters(KB). Hence, there is at least one culprit c = {q1, ..., qk, α} ⊆ cl. Note that any data
repair can only have a strict maximal subset of c that is consistent relative to Σ, otherwise the whole set
would be inconsistent, and each of these sets is obtained by removing exactly one element from c. Let D′

be an arbitrary data repair. Then, A= (D′ − cl)∪{q1, ..., qk} is consistent relative to Σ, since any set of
elements that could conflict with {q1, ..., qk} belongs to cl and so was removed. Let D′′=A ∪ r, where
r ⊂ cl is the largest strict subset of cl such that A ∪ r is consistent relative to Σ. We now show that D′′ is a
repair. Clearly, D′′⊆D and, by construction, D′′ is consistent relative to Σ. All other elements in D −D′′
are elements from cl in conflict with qi, so there is no strict superset of D′′ that is consistent relative to Σ.
Thus, D′′ is a repair and α 6∈ D′′, which is a contradiction. Hence, α 6∈ cl for every cl ∈ clusters(KB). 2

Lemma 5 Let KB = (D,Σ) be a Datalog+/– ontology. Then, every α∈D belongs to at most one cluster
cl∈ clusters(KB).

Proof. Towards a contradiction, suppose α∈D belongs to two different cl1, cl2 ∈ clusters(KB). Hence,
α∈ c1⊆ cl1 and α∈ c2⊆ cl2 for two culprits c1 and c2, which implies cl1 = cl2, a contradiction. Hence,
every α∈D belongs to at most one cl∈ clusters(KB). 2

We are now ready to prove Theorem 3 and Propositions 1 and 2.

Proof of Theorem 3. We prove that DI =Dall, where:

DI =
⋂
D′∈DRep(KB)D

′ and
Dall = D − χall(clusters(KB)) = D −

⋃
cl∈clusters(KB) cl .

Let α∈DI . That is, α∈D′ for all D′ ∈DRep(KB). By Lemma 4, the latter is equivalent to α 6∈ cl for all
cl∈ clusters(KB). That is, α 6∈

⋃
cl∈clusters(KB) cl, which is in turn equivalent to α∈Dall. 2

Proof of Theorem 4. As for membership in co-NP, deciding whether KB 6|=ICons Q can be done by guessing
and verifying some D?⊆ D such that (D?,Σ) 6|=Q, and, for every α∈D−D?, some D′α ∈ DRep(KB)
such that α 6∈D′α. Note that the latter implies that D? is the intersection of a collection of data repairs,
which in turn implies DI ⊆D? for the intersection DI of all data repairs. Hence, (D?,Σ) 6|=Q implies
(DI ,Σ) 6|=Q, since “|=” is monotonic. The above guessing and verifying can be done in polynomial time
in the data complexity in the guarded and the linear case.

Hardness for co-NP follows from the result that deciding ABox assertions from EL⊥ knowledge bases
under the consistent answer semantics is co-NP-hard in the data complexity [26], since guarded Datalog+/–
generalizes EL [3] and (as easily seen) also EL⊥. 2

Proof of Proposition 1. To prove that χlazy(k, clusters(KB)) is indeed an incision function, we have to
show that:

(i) χlazy(k, clusters(KB)) ⊆
⋃
cl∈clusters(KB) cl and

(ii) mods(D − χlazy(k, clusters(KB)),Σ) 6= ∅.

(i) By definition, χlazy(k, clusters(KB)) =
⋃
cl∈clusters(KB)ccl, where ccl ∈χk-cut(cl) is a subset of cl of size

at most k.

RR-14-04 33

(ii) Suppose mods(D−χlazy(k, clusters(KB)),Σ) = ∅. Recall that
χlazy(k, clusters(KB)) =

⋃
cl∈clusters(KB) ccl, where ccl ∈χk-cut(cl). Then, there exists a minimal set culp =

{α1, ..., αn} ⊆ D − χlazy(k, clusters(KB)) such that mods(culp,Σ) = ∅. This is only possible (since, by
Lemma 5, clusters are disjoint sets of atoms) if for the cluster cl containing culp, the set ci selected from
χk-cut(cl) is such that it does not contain culp. If this is the case, then mods(cl − ci,Σ) = ∅, but this is not
possible by the definition of χk-cut(cl). As a result, mods(D − χlazy(k, clusters(KB)),Σ) 6= ∅. 2

Proof of Proposition 2. (a) Given that D′ = D− χlazy(k, clusters(KB)), where χlazy(k, clusters(KB)) is
a k-lazy function for KB , and, since by Proposition 1, χlazy(k, clusters(KB)) is an incision function over
clusters(KB), the statement follows directly from Definition 5.

(b) If β ∈D and β 6∈D′, then β ∈χlazy(k, clusters(KB)). Thus, by Lemma 5, there exists a unique cluster
cl such that β ∈ cl. Let B= cl−χlazy(k, clusters(KB)). Clearly, B⊆D, β 6∈B, and B contains the atoms
in cl that still remain in D′. As argued in (a), mods(D′,Σ) 6= ∅, and so mods(B,Σ) 6= ∅. By the definition
of χlazy(k, clusters(KB))), if β ∈χlazy(k, clusters(KB)), then there exists some ci ∈χk-cut(cl) with β ∈ ci.
By Equation 1, we have that there exists no c′i⊂ ci such that mods(cl− c′i,Σ) 6= ∅. It thus follows that
mods(cl − (ci − {β}),Σ) = mods(B ∪ {β},Σ) = ∅. 2

The following lemma will be used in the proof of Proposition 4.

Lemma 6 Let KB = (D,Σ) be a Datalog+/– ontology, and α ∈ D. Then, KB |=ICons α iff α 6∈ cl for
every cl ∈ clusters(KB).

Proof. (⇒) Suppose KB |=ICons α. Since α∈D, and data repairs are maximal subsets of D, it thus follows
that α belongs to every data repair. By Lemma 4, α 6∈ cl for every cl ∈ clusters(KB).

(⇐) Suppose α 6∈ cl for every cl∈ clusters(KB). By Lemma 4, α∈D′ for every D′ ∈DRep(KB). Hence,
α belongs to the intersection of all data repairs, which in turn implies KB |=ICons α. 2

We are now ready to prove Proposition 4.

Proof of Proposition 4. (a) Let KB |=ICons Q. That is, (DI ,Σ) |= Q, where DI =
⋂
D′∈DRep(D,Σ)D

′.
By Lemma 6, each αi ∈DI is such that αi 6∈ cl for every cl∈ clusters(KB). Thus, for any k> 0, it holds
that αi 6∈ cj for any cj ∈χk-cut(cl) and cluster cl. Hence, for every αi ∈DI , we have αi ∈ lrep, for every
lrep∈LRep(k, KB), and so KB |=k-LCons αi. Thus, KB |=k-LCons Q.

(b) Since χ0-cut(cl) = cl for every cl∈ clusters(KB), the only lazy repair for k= 0 is given by:

lrep =D−χlazy(0, clusters(KB)) = D −
⋃

cl∈clusters(KB)

cl = D −
⋃

cl∈clusters(KB)

χall(cl).

By Theorem 3, KB |=ICons Q is equivalent to KB |=0-LCons Q. 2

Proof of Proposition 5. By Theorem 1, the consistent answers for query Q can be computed using
χopt(clusters(KB)). The difference between Definitions 8 and 10 is that in the latter, χk-cut(cl) makes
an additional constraint bounding the size of the incisions by k. Clearly, χlazy(k, clusters(KB)) may not be
optimal (i.e., the minimal cut needed to make the cluster consistent might be greater than k in which case the
whole cluster is removed). However, given i∈ clusters(KB), there exists ki> 0 such that it is the minimum
natural number for which χki-cut(i) =χ(ki+n)-cut(i) for all n> 1. Let k be the maximum of those ki across
all i∈ clusters(KB). Then, χlazy(k, clusters(KB)) =χopt(clusters(KB)). It thus follows that KB |=Cons Q
iff KB |=k-LCons Q, for the above k. 2

34 RR-14-04

Proof of Theorem 6.
We prove co-NP-hardness by a reduction from the co-NP-complete problem of deciding the validity of

propositional formulas in 3-DNF. Let Φ = C1 ∨ · · · ∨ Cm be an instance of 3-DNF validity, where the Ci’s
are conjunctions containing exactly three literals, and X is the set of n propositional variables occurring in
Φ. We now construct an instance of k-lazy BCQ evaluation.

Let ∆ =X , and we have the predicates pQ and pnull of arity 0, the predicates T and F of arity 1, and
for each combination B among FFF, FFT, . . . , TTT the predicate pB of arity 3.

The databaseD comprises (i) pnull, (ii) all T (V) andF (V) with V ∈X , and (iii) all pB1B2B3(V1, V2, V3)
such that Φ contains the clauseCi =L1∧L2∧L3, whereBi =T (resp.,Bi =F) iffLi =Vi (resp., Li =¬Vi).
The set of guarded TGDs ΣT contains (i) for each combination B=B1B2B3 among FFF, FFT, . . . ,
TTT , the guarded TGD pB1B2B3(V1, V2, V3)∧B1(V1)∧B2(V2)∧B3(V3)→ pQ, and (ii) for each variable
V ∈X , the guarded TGD T (V) ∧ F (V)→ pnull. The set of negative constraints ΣNC contains (i) for each
V ∈X , a constraint T (V)∧F (V)∧ pnull→⊥, and (ii) the constraint pnull→⊥. Finally, the BCQ is given
by Q= pQ. Clearly, this instance can be constructed in polynomial time.

We now prove that Φ is valid iff Yes is an (n + 1)-lazy answer for Q to KB = (D,ΣT ∪ ΣNC). Note
that clusters(KB) = {D}, and any way of choosing one of T (Vj) or F (Vj) for j ∈{1, . . . , n} (i.e., any
truth value assignment over X), along with pnull to remove from D (an incision of size n+ 1) produces an
(n+ 1)-lazy repair.
(⇒) Let Φ be valid. Thus, at least one of the TGDs with head pQ has its body satisfied in each of the lazy
repairs, and therefore the query Q is entailed from KB under the lazy semantics.
(⇐) If Yes is an (n+ 1)-lazy answer for Q to KB , then Q is entailed from every (n+ 1)-lazy repair. Thus,
the body of at least one of the TGDs with head pQ is satisfied in every lazy repair. So, for every truth
assignment, some clause evaluates to true. That is, Φ is valid. 2

The following Lemma will be useful in proving Propositon 6.

Lemma 7 Let KB = (D,Σ) be a guarded Datalog+/– ontology and G = (V,E) be the chase graph for
KB for a conjunction of ground atoms α. Algorithm findKernels(G,α) computes the set of minimal subsets
c of D such that (c,ΣT) |= α.

Proof. We want to prove that c ∈ findKernels(G,α) iff c ⊆ D, (c,ΣT) |= α, and there is no c′ ⊂ c such
that (c′,ΣT) |= α.

Let α be a conjunction of ground atoms of the form α = a1 ∧ . . . ∧ an W.l.o.g. suppose that KB |= α,
since, otherwise, we can easily verify that the algorithm returns the empty set as desired.

(⇒) First we show that if c ∈ findKernels(G,α) then c ⊆ D, (c,ΣT) |= α, and there is no c′ ⊂ c such
that (c′,ΣT) |= α.
We will prove this result by induction on k, the total number of TGDs applied in G in chase(KB). The
application of a TGD σ corresponds to the existence of a homomorphism h that maps body(υ) to a set of
atoms in the chase computed so far. Therefore, if a single TGD is applied under different homomorphisms
in the chase procedure, then each of them counts as a different application.
Base case: If k = 0, no TGD was applied, then it must be the case that α ⊆ D and that findKernels(G,α) =
{{α}}. Clearly, (findKernels(G,α),ΣT) |= α and it is trivially a minimal set in that sense.
Suppose that for k > 0, for each c ∈ findKernels(G,α), c ⊆ D, (c,ΣT) |= α, and there is no c′ ⊂ c such
that (c′,ΣT) |= α.
Let’s prove that for k+ 1, for each c ∈ findKernels(G,α), c ⊆ D, (c,ΣT) |= α and there is no c′ ⊂ c such
that (c′,ΣT) |= α.

RR-14-04 35

Let c be an arbitrary element in findKernels(G,α). From line 10 in the algorithm we can see that c has
the form c = c1 ∪ . . . ∪ cn, where ci ∈ kernels[ai], with 1 6 i 6 n. If ci = {ai} then, by the base case,
ci is a minimal subset of D such that (ci,ΣT) |= ai. Otherwise, by construction of the mapping kernels,
there exists σ and a homomorphism h such that h(head(σ)) maps to ai with body(σ) = b1 ∧ . . . ∧ bm.
Let c′1, . . . , c

′
m be such that c′j ∈ kernels[h(bj)] with 1 6 j 6 m. By the inductive hypothesis, each c′j

is a minimal subset of D such that (c′j ,ΣT) |= h(bj), since the number of TGDs needed to derive any of
the atoms in the body of σ must be smaller than k + 1 by construction of the chase graph. Furthermore,
since each c′j is a minimal subset of D needed to derive h(bj), then (

⋃
16j6m c

′
j ,ΣT) |= h(body(σ)) and

(
⋃

16j6m c
′
j ,ΣT) |= α. Therefore, it must be the case that for some ci ∈ kernels(ai), ci =

⋃
16j6m c

′
j , so

ci is a minimal subset of D such that (ci,ΣT) |= ai. Then, every ci is a minimal subset of D necessary
to derive ai and, by the checks performed in line 10 of the algorithm, we have that

⋃
16i6n ci is a minimal

subset of D such that (
⋃

16i6n ci,ΣT) |= a1 ∧ . . . ∧ an = α.
(⇐) Second, we show that for every c ⊆ D such that (c,ΣT) |= α and there is no c′ ⊂ c such that

(c′,ΣT) |= α, we have that c ∈ findKernels(G,α). As before we assume that KB |= α and prove this
result by induction on k, the total number of TGDs applied in G.
Base case: If k = 0 then c = α ⊂ D and trivially findKernels(G,α) = {{α}}.
Suppose that for k > 0, for each c ⊂ D such that (c,ΣT) |= α and there is no c′ ⊂ c such that (c′,ΣT) |= α,
then c ∈ findKernels(G,α).
Let’s prove that for k + 1, for each c ⊂ D such that (c,ΣT) |= α and there is no c′ ⊂ c such that
(c′,ΣT) |= α, then c ∈ findKernels(G,α).
Let c be an arbitrary set such that c ⊂ D, (c,ΣT) |= α, and there is no c′ ⊂ c such that (c′,ΣT) |= α. Let b
be an arbitrary atom in c. Since c is minimal then either b = ai for some ai ∈ α, or b is necessary to derive
ai. If the first case is true, then the algorithm inserts the set {b} into kernels[ai], and thus b belongs to some
set c′ ∈ findKernels(G,α).

If b 6= ai for every ai ∈ α, then it must be the case that there exists a TGD σ and a homomorphism h
such that h(head(σ)) maps to some ai ∈ α, and b belongs to a β-kernel where β = h(body(σ)). As we can
see in line 6, it must be the case that b ∈ cb with cb ∈ findKernels(G, h(body(σ))). By construction of the
algorithm, we have then that b ∈ kerai with kerai ∈ kernels[ai]. Furthermore, since every b ∈ c is necessary
to derive some ai ∈ α (and the fact that c is minimal) then, it must be the case that c =

⋃
ai∈α kerai , with

kerai ∈ kernels[ai]. So, we have that c ∈ findKernels(G,α). 2

Proof of Proposition 6.
Lemma 7 shows that given a ground conjunction of atoms α, algorithm findKernels (KB , α) computes

the set of all minimal subsets c of D such that (c,ΣT) |= α. Algorithm findClusters(KB) computes then
for each ground negative constraint υ, the set of all minimal subsets cυ such that (cυ,ΣT) |= body(υ). Take
an arbitrary υ and cυ, it is clear then that mods(cυ,ΣT ∪ {υ})) = ∅, then findKernels (KB , body(υ)) =
culprits(KB , {υ}). We want to prove that before line 7 PCul = culprits(KB), i.e., c ∈ PCul iff c ∈
culprits(KB).

(⇒) If c ∈ PCul then we want to show that c ∈ culprits(KB). If c ∈ PCul then, by Lemma 7, c ⊆ D,
(D,ΣT) |= body(υ) for some υ ∈ ΣNC. Furthermore, by the checks made in lines 8 and 10, there is no
other element in c′ ∈ PCul such that c′ ⊆ c, then c ∈ culprit(KB).

(⇐) If c ∈ culprits(KB), then we want to show that c ∈ PCul. Suppose that c ∈ culprits(KB) but
c 6∈ PCul. If c ∈ culprits(KB) then mods(c,Σ) = ∅, but then it must be the case that (c,ΣT) |= body(υ)
for some υ ∈ ΣNC. Then, at some point the algorithm computed PCυ and c ∈ PCυ. Then, either (1) c was
not added to PCul or (2) it was added but a strict subset of c replaced it further along in the computation

36 RR-14-04

of PCul. If (1) is the case, then there was already an element c′ in PCul such that c′ ⊂ c. But then
(c′,ΣT) |= body(υ′), so mods(c′,Σ) = ∅, which is not possible because c is a culprit in KB . If (2) is the
case then further along in the computation of PCul, a set c′ replaced c because c′ ⊂ c, but again, if this is the
case then (c′,ΣT) |= body(υ′) and mods(c′,Σ) = ∅, which is impossible. Then, by contradiction, it must
the case that c ∈ PCul.

To finalize the proof that Algorithm findClusters(KB) correctly computes the set clusters(KB), it only
rests to say that line 12 computes the transitive closure of the overlapping relation Θ over PCul, i.e., over
the set of culprits(KB). 2

Proof of Theorem 7. The algorithm first computes the set of clusters of KB . Lines 5–8 test each subset A
of cardinality at most k in each cluster: ifA can be removed and consistency is restored, and there is no strict
subset satisfying these conditions, then A is added as a possible incision for that cluster. Lines 10 and 11
directly apply Definition 11 with the results obtained above: for each possible way of choosing a subset
to make an incision, a k-lazy repair is built by removing this set from D. Finally, the algorithm directly
applies Definition 12 to compute the set of k-lazy answers. 2

The following Lemma helps in proving Proposition 7.

Lemma 8 Let KB = (D,Σ) be a linear Datalog+/– ontology and α be an atom. Then the set of all minimal
subsets c of D such that (c,ΣT) |= α is polynomial in |D|.

Proof. Without loss of generality suppose that KB |= α. We will prove this result by induction on k, the
number of TGDs applied in G to obtain α, where G = (V,E) is the chase graph for KB . Let kernels(α)
be the set of all minimal subsets c of D such that (c,ΣT) |= α.

Base case: If k = 0 then α ∈ D and then kernels(α) = {{a}}.
Suppose that for k > 0, it holds that |kernels(α)| ∈ O(poly(|D|)), where poly(|D|) is a polynomial

over |D|.
Let’s prove that for k + 1, the size of kernels(a) is polynomial in the size of D. Let Ω ⊆ ΣT be the

set of TGDs that are applicable to α, then kernels(α) =
⋃
σ∈Ω kernels(body(σ)), Clearly, |kernels(α)| 6

|Ω| ×maxσ∈Ω{|kernels(body(σ))|}. But, for any σ ∈ Ω, body(σ) needs exactly one application of a TGD
less than what is needed for α, and then by the inductive hypothesis we have that |kernels (body(σ))| ∈
O(poly(|D|)).

Therefore, we have (with a slight abuse of notation) |kernels(α)| 6 |Ω| × O(poly(|D|)), and thus
|kernels(α)| is polynomial in data complexity. 2

Proof of Proposition 7.
The grounding of the constraints in ΣNC can be done in polynomial time since we are assuming that

both ΣNC and ΣT are fixed. Furthermore for a given ground constraint υ of the form b1 ∧ . . . ∧ bn → ⊥,
there is a polynomial number of ways of computing each bi from KB , by Lemma 8, which ensures that for
linear Datalog+/– ontologies algorithm findKernels(KB , body(υ)) runs in polynomial time for an arbitrary
ground constraint υ. The checks for minimality in lines 8 and 10 involve going through a polynomially sized
set of potential culprits a polynomial number of times. Finally, the merge of overlapping culprits (since there
is a polynomial number of them) can also be done in polynomial time over |D|. 2

Proof of Lemma 2
(⊆) First, we show that if an atom α is such that α ∈

⋃
si∈S chase(si,Σ) then α ∈ chase(

⋃
si∈S si,Σ).

RR-14-04 37

If α ∈
⋃
si∈S chase(si,Σ) then α ∈ chase(si,Σ) for some si ∈ S, and therefore there exists ker ⊆ si

such that chase(ker,Σ) |= α and there is no ker′ ⊂ ker such that chase(ker,Σ) |= α. By the mono-
tonicity of the chase procedure, we have that ker ⊆ chase(si,Σ) ⊆ chase(

⋃
si∈S si,Σ), and therefore

α ∈ chase(
⋃
si∈S si,Σ).

(⊇) Second, we show that if an atomα is such thatα ∈ chase(
⋃
si∈S si,Σ) thenα ∈

⋃
si∈S chase(si,Σ).

Suppose that α ∈ chase(
⋃
si∈S si,Σ) and α 6∈

⋃
si∈S chase(si,Σ). Since KB is a linear Datalog+/– ontol-

ogy, it must be the case that every minimal ker ⊆
⋃
si∈S si such that (ker,Σ) |= α, is a singleton. Therefore,

every such ker belongs to some si ∈ S and, by monotonicity of the chase procedure, ker ∈ chase(si,Σ),
which is a contradiction since this implies that α ∈

⋃
si∈S chase(si,Σ). 2

Proof of Proposition 8.
We have to show that the output of Algorithm lazyConsistentLinear(KB , Q, k) is correct, i.e., given

KB and a BCQ Q, Yes is the output of the algorithm iff KB |=k-LCons Q.
(⇒) First, we show that if the algorithm outputs Yes then KB |=LCons Q.

If Yes is the output of the algorithm then either (1) (DI ,Σ) |= Q or (2) cons |= Q. If (1) is true, then by Theo-
rem 3 we have that KB |=k-LCons Q. Otherwise, if cons |= Q, we have that

⋃
cl∈clusters(KB) chaseInt(KB , DI ,

cl, incisions(cl)) |= Q. Suppose by contradiction that KB 6|=k-LCons Q; then there exists a lazy repair
lrep ∈ LRep(k,KB) such that (lrep,Σ) 6|= Q, which means that there is at least one atom α ∈ Q such that
(lrep,Σ) 6|= α. Since KB is linear, then each α-kernel is a singleton for KB . Therefore, for every β ⊆ D
such that (β,Σ) |= α, β ∈ cl for some cl ∈ clusters(KB). Let cl be an arbitrary cluster; since lrep 6|= α,
by Definition 11, it must the case that there exists ccl ∈ χk-cut(cl) such that ccl contains every β ∈ cl such
that (β,Σ) |= α. Then, we have that chaseInt(KB , DI , cl, incisions(cl)) 6|= α and this is true for every clus-
ter cl ∈ clusters(KB). Therefore, we have that

⋃
cl∈clusters(KB) chaseInt(KB , DI , cl, incisions(cl)) 6|= Q,

which is a contradiction.
(⇐) Second, we show that if KB |=LCons Q then Yes is the output of the algorithm.

Suppose by contradiction that the algorithm returns No, then for some α ∈ Q, neither (DI ,Σ) |= α nor⋃
cl∈clusters(KB) chaseInt(KB , DI , cl, incisions(cl)) |= α. Clearly, (DI ,Σ) |= α then the algorithm would

answer Yes in line 4, leading to a contradiction. Now, since it holds that
⋃
cl∈clusters(KB) chaseInt(KB , DI , cl,

incisions(cl)) 6|= α then, by Lemma 2 it cannot be the case that α is derived from elements across multiple
clusters, and then it must be the case that chaseInt(KB , DI , cl, incisions(cl)) 6|= α for every cluster cl.
Suppose that chase(cl,Σ) |= α, then chaseInt(KB , DI , cl, incisions(cl)) 6|= α iff chase(cl − ci,Σ) 6|= α
for some ci ∈ incisions(cl) = χk-cut(cl). Then, at least one k-cut performed over cl prohibits us from
deriving α. This is a contradiction since this would mean that there exists some lrep ∈ LRep(k,KB) such
that for every cluster the corresponding k-cut used prohibits from deriving α, and then KB 6|=LCons α and
thus KB 6|=LCons Q.

Finally, as shown in Proposition 7, the clusters in a linear Datalog+/– ontology KB can be computed in
polynomial time in the data complexity. Furthermore, the incisions for every cluster, the individual chase
procedures performed, and the chaseInt can also be computed in polynomial time in the size of |D|. 2

Proof of Lemma 1. It is sufficient to show that the set of all instances of N (ΣNC, Q) relative to ∆∪∆N

coincides with the set of all instances of ΣNC relative to ∆∪∆N . Each υ ∈N (ΣNC, Q) is obtained from
some υo ∈ΣNC by applying a substitution and adding inequalities to the body of υo. Each instance υ′ of υ
with satisfied inequalities is thus also an instance of υo. Conversely, each instance υ′o of υo ∈ΣNC substitutes
the variables of υo by elements of ∆∪∆N . Consider then all such inserted elements different from constants
in ΣNC∪ΣT and Q as new variables, distinct from each other and the previous constants. This defines some
υ ∈N (ΣNC, Q), which has υ′o as an instance. 2

38 RR-14-04

Proof of Proposition 9. By Theorem 3, KB = (D,ΣNC) |=ICons Q is equivalent to (D−
⋃
c∈culprits(KB) c) |=

Q. By Lemma 1, the latter is in turn equivalent to (D−
⋃
c∈culprits(KB ′) c) |= Qwith KB ′ = (D,N (ΣNC, Q)).

That is, there exists a ground substitution σ such that σ(Q)⊆D and, for every c∈ culprits(KB ′), it holds
that c∩σ(Q) = ∅. Equivalently, there exists a ground substitution σ such that σ(Q)⊆D and, for ev-
ery υ ∈N (ΣNC, Q) and ground substitution σ′ satisfying all inequalities of υ, if σ′(body(υ)) is minimal
and σ′(body(υ))∩σ(Q) 6= ∅, then σ′(body(υ)) 6⊆D. Equivalently, (?) there exists a ground substitution
σ such that σ(Q)⊆D and, for every υ ∈N (ΣNC, Q) and ground substitution σ′′ satisfying all inequali-
ties of υ, if σ′′(γC,B(body(υ))) is minimal (under set inclusion) and σ′′(γC,B(body(υ)))∩σ(Q) 6= ∅, then
σ′′(γC,B(body(υ))) 6⊆D, where γC,B is an mgu for some C ⊆Q, C 6= ∅, and some B⊆ body(υ). Ob-
serve now that the existence of some υ′ ∈N (ΣNC , Q) such that body(υ′) maps isomorphically to some
B′⊂ body(υ) implies that no ground instance of υ (where all inequalities are satisfied) is minimal. Con-
versely, if σ′′(γC,B(body(υ))) is minimal, then no υ′ ∈N (ΣNC , Q) exists such that body(υ′) maps isomor-
phically via some ι to some B′⊂ body(υ), as otherwise it would be the case that σ′′(γC,B(ι(body(υ′))))⊂
σ′′(γC,B(body(υ))), and thus σ′′(γC,B(body(υ))) would not be minimal. Hence, (?) is equivalent to the
existence of a ground substitution σ such that σ(Q)⊆D and, for every υ ∈ΣQ and ground substitution σ′′

satisfying all inequalities of υ, if (σ′′(γC,B(body(υ))) is minimal and) σ′′(γC,B(body(υ)))∩σ(Q) 6= ∅, then
we have σ′′(γC,B(body(υ))) 6⊆D, where γC,B is an mgu for some C ⊆Q, C 6= ∅, and some B⊆ body(υ).
Equivalently, there exists a ground substitution σ such that σ(Q)⊆D and, for every c∈ culprits(KBQ) with
KBQ = (D,ΣQ), it holds that c∩σ(Q) = ∅. The latter is equivalent to (D −

⋃
c∈culprits(KBQ) c) |= Q. By

Theorem 3, equivalently, (D,ΣQ) |=ICons Q. 2

Proof of Theorem 8. By the proof of Proposition 9, KB = (D,ΣNC) |=ICons Q iff there exists a ground
substitution σ such that σ(Q)⊆D and, for each υ ∈ΣQ and ground substitution σ′′ satisfying all inequalities
of υ, if σ′′(γC,B(body(υ)))∩σ(Q) 6= ∅, then σ′′(γC,B(body(υ))) 6⊆D, where γC,B is an mgu for some
C ⊆Q, C 6= ∅, and some B⊆ body(υ). The latter is equivalent to the existence of a ground substitution
σ such that σ(Q)⊆D and, for each υ ∈ΣQ and ground substitution σ′′ satisfying all inequalities of υ, if
σ(X) = σ′′(γC,B(X)) for all X ∈ var(C), then σ′′(γC,B(body(υ))) 6⊆D, where γC,B is an mgu for some
C ⊆Q, C 6= ∅, and some B⊆ body(υ). This is in turn equivalent to D |= Enforcement(Q,N (ΣNC, Q)). 2

Proof of Lemma 3.
(⊆) We first prove that culprits(KB ,Σ) ⊆ culprits(KB ′) with KB ′ = (D,ΣRew).

Let c ∈ culprits(KB), then there exists υ ∈ ΣNC such that (c,ΣT) |= body(υ). Clearly, υ ∈ ΣRew, so either
c ∈ culprits(KB ′) or there exists c′ ∈ culprits(KB ′) such that c′ ⊂ c, c′ unifies with body(υ′), and body(υ′)
maps isomorphically to B ⊂ body(υ). If υ′ ∈ ΣNC, then c would not be a culprit. Then it must be the case
that υ′ ∈ ΣRew and υ′ 6∈ ΣNC. Therefore, body(υ′) is a rewriting relative to ΣT of a constraint υ′′ ∈ ΣNC.
Then, it must be the case that (c′,ΣT) |= body(υ′′), but this is a contradiction since υ′′ ∈ ΣNC and therefore
c cannot be a culprit for KB .

(⊇) Now, we prove that culprits(KB ′) ⊆ culprits(KB ,Σ) with KB ′ = (D,ΣRew). .
Let c ∈ culprits(KB ′); then there exists υ ∈ ΣRew such that body(υ) unifies with c. If υ ∈ ΣNC then
c ∈ culprits(KB) as long as there is no c′ ∈ culprits(KB) such that c′ ⊂ c. Suppose there exists such c′; then
there exists υ′ ∈ ΣNC such that (c′,ΣT) |= body(υ′), and body(υ′) maps isomorphically to B ⊂ body(υ).
However, such υ′ must also belong to ΣRew, in which case c would not be a minimal inconsistent set in
(D,ΣRew), which is a contradiction. If υ 6∈ ΣNC, then body(υ) is the rewriting relative to ΣT of a body(υ′′)
where υ′′ ∈ ΣNC. If this is the case, then, υ′′ also belongs to ΣRew, and therefore there must exists c′

with c′ ⊂ c such that c′ unifies with body(υ′). But this is a contradiction since c would not be culprit in
culprits(KB ′). 2

RR-14-04 39

Proof of Theorem 9.
(⇒) Let KB |=ICons Q. Then, by Proposition 10, (D,ΣRew ∪ΣT) |=ICons Q. By Theorem 3, this means

that (D −
⋃
c∈culprits(KB ′) c,ΣT) |= Q where KB ′ = (D,ΣRew ∪ ΣT). By the correctness of algorithm

TGD-rewriteS , we have that for an arbitrary database D′, it holds that (D′,ΣT) |= Q iff D′ |= Q′ for some
Q′ ∈ TGD-rewriteS(Q,ΣT). Let D′ = D−

⋃
c∈culprits(KB ′) c, and we have that (D−

⋃
c∈culprits(KB ′) c) |=

Q′. By Lemma 3, we have that (D−
⋃
c∈culprits(KB ′′) c) |= Q′ where KB ′′ = (D,ΣRew), and by Theorem 3,

(D,ΣRew) |=ICons Q
′. By Theorem 8, we get D |= Enforcement(Q′,N (ΣRew, Q)) for some Q’. Since

Q′ ∈ TGD-rewriteS(Q,ΣT), it thus follows D |=
∨
F∈rewriteICons(Q,Σ) F .

(⇐) Let D |=
∨
F∈rewriteICons(Q,Σ) F . Then, D |= Enforcement(Q′,N (ΣRew, Q)) for some Q′ ∈ TGD-

rewriteS(Q,ΣT). Then, by Theorem 8, we have that (D,ΣRew) |=ICons Q
′, and thus (D,ΣRew∪ΣT) |=ICons

Q′. Also, by Proposition 10, we have that (D,ΣNC ∪ ΣT) |=ICons Q
′. That is, by Theorem 3, (D −⋃

c∈culprits(KB) c) |= Q′. Given that Q′ is a rewriting of Q relative to ΣT , by the correctness of algorithm
TGD-rewriteS , we have that, for an arbitrary database D′, if D′ |= Q′ then (D′,ΣT) |= Q′. Let D′ =
D −

⋃
c∈culprits(KB). Then, we obtain (D −

⋃
c∈culprits(KB), ΣT) |= Q. Finally, by Theorem 3, we have

KB |=ICons Q. 2

