
Computing Datalog Rewritings
for Disjunctive Datalog Programs
and Description Logic Ontologies

Mark Kaminski, Yavor Nenov, and Bernardo Cuenca Grau

Department of Computer Science
University of Oxford, UK

Abstract. We study the closely related problems of rewriting disjunc-
tive datalog programs and non-Horn DL ontologies into plain datalog
programs that entail the same facts for every dataset. We first propose
the class of markable disjunctive datalog programs, which is efficiently
recognisable and admits polynomial rewritings into datalog. Markabil-
ity naturally extends to SHI ontologies, and markable ontologies admit
(possibly exponential) datalog rewritings. We then turn our attention to
resolution-based rewriting techniques. We devise an enhanced rewriting
procedure for disjunctive datalog, and propose a second class of SHI
ontologies that admits exponential datalog rewritings via resolution. Fi-
nally, we focus on conjunctive query answering over disjunctive datalog
programs. We identify classes of queries and programs that admit datalog
rewritings and study the complexity of query answering in this setting.
We evaluate the feasibility of our techniques over a large corpus of on-
tologies, with encouraging results.

1 Introduction

Answering conjunctive queries is a key reasoning problem for many applications
of ontologies. Query answering can sometimes be implemented via rewriting into
datalog, where a rewriting of a query q w.r.t. an ontology O is a datalog program
P that preserves the answers to q for any dataset. Rewriting queries into datalog
not only ensures tractability in data complexity—an important requirement in
data-intensive applications—but also enables the reuse of scalable rule-based
reasoners such as OWLIM [4], Oracle’s Data Store [21], and RDFox [16].

Datalog rewriting techniques have been investigated in depth for Horn De-
scription Logics (i.e., DLs whose ontologies can be normalised as first-order Horn
clauses), and optimised algorithms have been implemented in systems such as
Requiem [18], Clipper [6], and Rapid [20]. Techniques for non-Horn DLs, how-
ever, have been studied to a lesser extent, and only for atomic queries.

If we restrict ourselves to atomic queries, rewritability for non-Horn DL on-
tologies is strongly related to the rewritability of disjunctive datalog programs
into datalog: every SHIQ ontology can be transformed into a (positive) disjunc-
tive datalog program that entails the same facts for every dataset (and hence

2 Mark Kaminski, Yavor Nenov, and Bernardo Cuenca Grau

preserves answers to all atomic queries) [8].1 It is well-known that disjunctive
datalog programs cannot be generally rewritten into plain datalog. In particular,
datalog rewritings may not exist even for disjunctive programs that correspond
to ontologies expressed in the basic DL ELU [11, 5], and sufficient conditions
that ensure rewritability were identified in [9]. Deciding datalog rewritability of
atomic queries w.r.t. SHI ontologies was proved NExpTime-complete in [3].

In our previous work [10], we proved a characterisation of datalog rewritabil-
ity for disjunctive programs based on linearity: a restriction that requires each
rule to contain at most one IDB atom in the body. It was shown that every linear
disjunctive program can be polynomially rewritten into plain datalog; conversely,
every datalog program can be polynomially translated into an equivalent linear
disjunctive datalog program. We then proposed weakly linear disjunctive data-
log, which extends both datalog and linear disjunctive datalog, and which admits
polynomial datalog rewritings. In a weakly linear program, the linearity require-
ment is relaxed: instead of applying to all IDB predicates, it applies only to those
that “depend” on a disjunctive rule.

A different approach to rewriting disjunctive programs into datalog by means
of a resolution-based procedure was proposed in [5]. The procedure works by sat-
urating the input disjunctive program P such that in each resolution step at least
one of the premises is a non-Horn rule; if this process terminates, the procedure
outputs the subset of datalog rules in the saturation, which is guaranteed to be
a rewriting of P. The procedure was shown to terminate for so-called simple
disjunctive programs; furthermore, it was shown that ontologies expressed in
certain logics of the DL-Litebool family [1] can be transformed into disjunctive
programs that satisfy the simplicity condition.

If we wish to go beyond atomic queries and consider general conjunctive
queries, it is no longer possible to obtain query-independent datalog rewritings.
Lutz and Wolter [12] showed that for any non-Horn ontology (or disjunctive
program) O there exists a conjunctive query q such that answering the (fixed)
q w.r.t. (fixed) O and an input dataset is co-NP-hard; thus, under standard
complexity-theoretic assumptions no datalog rewriting for such q and O exists.
To the best of our knowledge, no rewriting techniques for arbitrary CQs w.r.t.
non-Horn ontologies and programs have been developed.

In this paper, we propose significant enhancements over existing techniques
for rewriting atomic queries [10, 5], which we then extend to the setting of ar-
bitrary conjunctive queries. Furthermore, we evaluate the practical feasibility
of our techniques over a large corpus of non-Horn ontologies. Specifically, our
contributions are as follows.

In Section 3, we propose the class of markable disjunctive datalog programs,
in which the weak linearity condition from [10] is further relaxed. We show
that our extended class of programs is efficiently recognisable and that each
markable program admits a polynomial datalog rewriting. These results can
be readily applied to ontology reasoning. We first consider the “intersection”

1 Disjunctive datalog typically allows for negation-as-failure, which we don’t consider
since we focus on monotonic reasoning.

Computing Datalog Rewritings for Disjunctive Programs and Ontologies 3

between OWL 2 and disjunctive datalog (which we call RLt), and show that
fact entailment over RLt ontologies corresponding to a markable program is
tractable in combined complexity (and hence no harder than in OWL 2 RL [15]).
We then lift the markability condition to ontologies, and show that markable
SHI-ontologies admit a (possibly exponential) datalog rewriting.

In Section 4, we refine the resolution-based rewriting procedure from [5] by
further requiring that only atoms involving disjunctive predicates can participate
in resolution inferences. This refinement can significantly reduce the number of
inferences drawn during saturation, without affecting correctness. We then focus
on ontologies, and propose an extension of the logics in the DL-Litebool family
that admits (possibly exponential) datalog rewritings.

In Section 5, we shift our attention to conjunctive queries and propose classes
of queries and disjunctive datalog programs that admit datalog rewritings. Fur-
thermore, we discuss the implications of these results to ontology reasoning.

We have implemented and evaluated our techniques on a large ontology repos-
itory. Our results show that many realistic non-Horn ontologies can be rewritten
into datalog. Furthermore, we have tested the scalability of query answering over
the programs obtained using our techniques, with promising results.

The proofs of our technical results can be found in an extended version of the
paper available online: https://krr-nas.cs.ox.ac.uk/RR2014/report.pdf

2 Preliminaries

We consider standard notions of terms, atoms, literals, formulae, sentences, and
entailment. A fact is a ground atom and a dataset is a finite set of facts. We
assume that equality ≈ is an ordinary predicate and that each set of formu-
lae contains the axiomatisation of ≈ as a congruence relation for its signature.
Clauses, substitutions, most general unifiers (MGUs), clause subsumption, tau-
tologies, binary resolution, and factoring are as usual [2]. Clause C θ-subsumes
D if C subsumes D and C has no more literals than D. Clause C is redundant in
a set of clauses if C is tautological or if C is θ-subsumed by another clause in the
set. A condensation of a clause C is a minimal subset that is subsumed by C.

A rule r is a function-free sentence ∀x∀z.[ϕ(x, z) → ψ(x)] where tuples of
variables x and z are disjoint, ϕ(x, z) is a conjunction of distinct equality-free
atoms, and ψ(x) is a disjunction of distinct atoms. Formula ϕ is the body of r,
and ψ is the head. Quantifiers in rules are omitted. We assume that rules are safe.
A rule is datalog if ψ(x) has at most one atom, and it is disjunctive otherwise. A
program P is a finite set of rules; it is datalog if it consists only of datalog rules,
and disjunctive otherwise. We assume that rules in P do not share variables.
For convenience, we treat > and ⊥ in a non-standard way as a unary and a
nullary predicate, respectively. Given a program P, P> is the program with a
rule P (x1, . . . , xn) → >(xi) for each predicate P in P and each 1 ≤ i ≤ n, and
a rule → >(a) for each constant a in P. We assume that P> ⊆ P and > does
not occur in head position in P \ P>. We define P⊥ as consisting of a rule with
⊥ as body and empty head. We assume P⊥ ⊆ P and no rule in P \ P⊥ has an

4 Mark Kaminski, Yavor Nenov, and Bernardo Cuenca Grau

1.
dn

i=1Ai v
⊔m

j=1 Cj

∧n
i=1Ai(x)→

∨m
j=1 Cj(x)

2. ∃R.A v B R(x, y) ∧A(y)→ B(x)
3. A v Self(R) A(x)→ R(x, x)
4. Self(R) v A R(x, x)→ A(x)
5. R v S R(x, y)→ S(x, y)
6. R v S− R(x, y)→ S(y, x)
7. R ◦ S v T R(x, z) ∧ S(z, y)→ T (x, y)

8. A v ≥mR.B A(x)→ ∃≥my.(R(x, y) ∧B(y))
9. A v ≤mR.B A(z) ∧

∧m
i=0R(z, xi) ∧B(xi)→

∨
0≤i<j≤m xi ≈ xj

Table 1. Normalised axioms. A,B are atomic or >, C atomic or ⊥, and R,S, T atomic.

empty head or ⊥ in the body. Thus, P ∪ D |= >(a) for every a in P ∪ D, and
P ∪D is unsatisfiable iff P ∪D |= ⊥. Head predicates in P \ P> are intensional
(or IDB) in P. All other predicates (including >) are extensional (EDB). An
atom is intensional (extensional) if so is its predicate. A rule is linear if it has
at most one IDB body atom. A program P is linear if all its rules are.

We assume familiarity with DLs. W.l.o.g. we consider normalised axioms as
in Table 1. An ontology O is a finite set of axioms. An ontology O is SHIQ if
each axiom of type 7 satisfies R = S = T ;2 it is SHI if it is SHIQ, it does not
contain axioms of type 9, and each axiom of type 8 satisfies m = 1; it is ALCHI
if it is SHI and it has no axiom of type 7; it is RLt if it does not contain
axioms of type 8, and it is RL if it is RLt and m = 1 for each axiom of type 1
and 9. Programs obtained from RLt ontologies have rules with bounded number
of variables: fact entailment is PTime-complete for RL and co-NP-complete for
RLt (in combined complexity).3

A conjunctive query (CQ) q is a datalog rule of the form ϕ(x,y) → Aq(x),
with Aq a distinguished query predicate uniquely associated with q. A CQ is
Boolean if Aq is propositional, and it is atomic if ϕ(x,y) consists of a single
atom. A (disjunctive) program P is a rewriting of q w.r.t. a set of sentences F
if for each dataset D over the signature of F and each tuple of constants a we
have F ∪ D ∪ {q} |= Aq(a) iff P ∪D |= Aq(a). Program P is a rewriting of F if
for each dataset D and each fact α over the signature of F we have F ∪ D |= α
iff P ∪ D |= α. Clearly, P is a rewriting of F if and only if P is a rewriting of
every atomic query over the signature of F . Hudstadt et al. [8] developed an
algorithm for transforming a SHIQ ontology into a disjunctive program that
preserves entailment of facts over non-transitive relations. This technique was
extended in [5] to preserve all facts. Thus, every SHIQ ontology O admits a
disjunctive datalog rewriting DD(O), which can be of exponential size.

2 SHIQ enforces additional restrictions to ensure decidability, which we omit here.
3 RLt and RL allow for nominals, which we omit. All our results immediately extend.

Computing Datalog Rewritings for Disjunctive Programs and Ontologies 5

P0 = {C(x)→ B(x) ∨G(x) (1)

G(y) ∧ E(x, y)→ B(x) (2)

B(y) ∧ E(x, y)→ G(x) (3)

E(y, x)→ E(x, y) } (4)

B

C E

G

(1)

(1)

(2)

(3)

(3)(2) (4)

Fig. 1. A weakly linear disjunctive datalog program

3 Datalog Rewritings Based on Linearity

In [10], we proposed the class of weakly linear programs (WL), which extends
both datalog and linear disjunctive datalog. In a WL program predicates are par-
titioned into disjunctive (i.e., those whose extension may depend on a disjunctive
rule) and datalog (those that depend solely on datalog rules). A program is WL
if all rules have at most one occurrence of a disjunctive predicate in the body.

Definition 3.1. The dependency graph GP = (V,E, µ) of a program P is the
smallest edge-labeled digraph such that:

1. V contains every predicate occurring in P;
2. r ∈ µ(P,Q) whenever P,Q ∈ V , r ∈ P \ P>, P occurs in the body of r, and

Q occurs in the head of r; and
3. (P,Q) ∈ E whenever µ(P,Q) is nonempty.

A predicate Q depends on a rule r ∈ P if GP has a path that ends in Q and
involves an r-labeled edge. Predicate Q is datalog if it only depends on datalog
rules; otherwise, Q is disjunctive. Program P is weakly linear (WL for short)
if each rule body in P has at most one occurrence of a disjunctive predicate.

Consider the disjunctive program P0 and its dependency graph depicted in
Fig. 1. Predicate C is EDB, predicates B and G depend on Rule (1) and hence
are disjunctive, whereas E depends only on Rule (4) and hence it is datalog.
Each rule has at most one disjunctive body atom and the program is WL.

WL programs admit a polynomial rewriting [10]. Roughly speaking, they are
translated into datalog by “moving” all disjunctive body atoms to the head and
all disjunctive head atoms to the body while replacing their predicates with fresh
ones of higher arity; the new predicates are “initialised” using additional rules.

Markable Programs We next propose the class of markable disjunctive data-
log programs, which extends WL programs. A key feature of a markable program
is that one can identify a subset of disjunctive predicates, called marked predi-
cates, such that the program can be translated into datalog by “moving” only
those disjunctive atoms in a rule whose predicates are marked.

Definition 3.2. Let P be a disjunctive program. A marking of P is a set M of
disjunctive predicates in P such that:

6 Mark Kaminski, Yavor Nenov, and Bernardo Cuenca Grau

1. Every rule in P has at most one body atom Q(t) with Q ∈M .

2. Every rule in P has at most one head atom Q(t) with Q /∈M .

3. If Q ∈M and P is reachable from Q in GP , then P ∈M .

A predicate Q is marked by M if Q ∈ M . An atom is marked if so is its
predicate. A disjunctive program is markable if it has a marking.

Markability generalises weak linearity in the following sense.

Proposition 3.3. A disjunctive program P is WL if and only if the set of all
disjunctive predicates in P constitutes a marking of P.

Let P1 extend P0 with the following rules:

V (x)→ C(x) ∨ U(x) (5) C(x) ∧ U(x)→ ⊥ (6)

The dependency graph is given next. Note that C, U ,B, andG are disjunctive
as they depend on Rule (5). Thus, (6) has two disjunctive body atoms and P1

is not WL. The program, however, has markings {C,B,G} and {U,B,G}.

V B

U C E

⊥ G

(5)(5)

(6) (6)

(1)

(1)

(2)

(3)

(3)(2) (4)

Checking markability of a disjunctive program P is amenable to efficient
implementation via reduction to 2-SAT. To this end, we first associate with
every predicate Q in P a distinct propositional variable XQ. Then, for each rule
ϕ∧P1(s1)∧· · ·∧Pn(sn)→ Q1(t1)∨· · ·∨Qm(tm) ∈ P, where ϕ is the conjunction
of all datalog atoms in the rule, we associate the following binary clauses:

1. ¬XPi
∨ ¬XPj

for all 1 ≤ i < j ≤ n ;

2. ¬XPi
∨XQj

for all 1 ≤ i ≤ n and 1 ≤ j ≤ m;

3. XQi ∨XQj for all 1 ≤ i < j ≤ m.

Clauses of the form (1) indicate that at most one body atom in the rule may
be marked. By (2), if a body atom is marked, then so must be all head atoms.
Finally, (3) ensures that at most one head atom may be unmarked. The resulting
set N of propositional clauses is quadratic in the size of P. Moreover, N is
satisfiable if and only if P has a marking, and every model I of N yields a
marking MI = {Q | Q occurs in P and XQ ∈ I }. Since 2-SAT is solvable in
linear time, we obtain the following.

Proposition 3.4. Markability can be checked in time quadratic in the size of
the input program.

Computing Datalog Rewritings for Disjunctive Programs and Ontologies 7

Datalog Rewritability of Markable Programs We now show that markable
programs are rewritable into datalog by means of a quadratic translation ΞM ,
which extends the translation for weakly linear programs given in [10].

Consider P1 and the marking M = {B,G,U}. We introduce fresh binary

predicates B
Y

, G
Y

, and U
Y

for every disjunctive predicate Y . Intuitively, if a

fact B
G

(c, d) holds in ΞM (P1) ∪ D then proving B(c) suffices for proving G(d)
in P1 ∪ D (or, in other words, we have P1 ∪ D |= B(c) → G(d)). Analogously,
for the unmarked disjunctive predicate C we introduce fresh binary predicates
CY for each disjunctive predicate Y ; these predicates have a different intuitive
interpretation: if a fact CU (c, d) holds in ΞM (P1)∪D then P1∪D entails C(c)∨
U(d). To “initialise” the extension of the fresh predicates we need the following
rules for every X ∈M and every disjunctive predicate Y .

>(x)→ X
X

(x, x) (7)

X
Y

(x, y) ∧X(x)→ Y (y) (8)

>(y) ∧ C(x)→ CY (x, y) (9)

CC(x, x)→ C(x) (10)

These rules encode the intended meaning of the auxiliary predicates. For
example, Rule (8) states that if X(c) holds for some constant c and this is
sufficient to prove Y (d) for some d, then Y (d) holds. The key step is to “flip”
the direction of all rules in P1 involving the marked predicates B, G and U by
moving all marked atoms from the head to the body and vice versa while at the
same time replacing their predicates with the relevant auxiliary predicates. Thus,
Rule (2) leads to the following rules in ΞM (P1) for each disjunctive predicate Y :

B
Y

(x, z) ∧ E(x, y)→ G
Y

(y, z)

These rules are natural consequences of Rule (2) under the intended meaning of
the auxiliary predicates: if we can prove a goal Y (z) by proving first B(x), and
E(x, y) holds, then by Rule (2) we deduce that proving G(y) suffices to prove
Y (z). In contrast to (2), Rule (1) contains no disjunctive body atoms. We “flip”
this rule as follows, for each disjunctive predicate Y :

C(x) ∧BY
(x, y) ∧GY

(x, y)→ Y (y)

Similarly to the previous case, this rule follows from Rule (1): if C(x) holds and
we can establish that Y (y) can be proved from B(x) and also from G(x), then
Y (y) must hold. In contrast to marked atoms, unmarked atoms are not moved.
So, Rules (5) and (6) yield the following rules for each disjunctive predicate Y :

V (x) ∧ UY
(x, y)→ CY (x, y) CY (x, y)→ U

Y
(x, y)

And indeed, these rules are consequences of Rule (5) and (6), respectively, under
the intended meaning of the auxiliary predicates: V (x) and U(x)→ Y (y) imply
C(x) ∨ Y (y) by Rule (5), while C(x) ∨ Y (y) and U(x) imply Y (y) by Rule (6).

Definition 3.5. Let P be a disjunctive program, Σ the set of disjunctive pred-
icates in P \ P>, and M ⊆ Σ a marking of P. For each (P,Q) ∈ Σ2, let PQ

8 Mark Kaminski, Yavor Nenov, and Bernardo Cuenca Grau

and P
Q

be fresh predicates of arity arity(P) + arity(Q). Then, ΞM (P) is the dat-
alog program with the rules given next, where ϕ is the conjunction of all datalog
atoms in a rule, ϕ> is the least conjunction of >-atoms that makes a rule safe,
all predicates Pi, Qj are in Σ, and y, z are disjoint vectors of fresh variables:

1. every rule in P that contains no disjunctive predicates;

2. a rule ϕ> ∧ ϕ ∧
∧m

j=1Q
R
j (tj ,y) ∧

∧n
i=1 P

R

i (si,y) → Q
R

(t,y) for every rule

r = ϕ∧Q(t)∧
∧m

j=1Qj(tj)→
∨n

i=1 Pi(si) ∈ P \P> and every R ∈ Σ, where
Q(t) is the unique marked body atom of r;

3. a rule ϕ> ∧ ϕ ∧
∧m

j=1Q
R
j (tj ,y) ∧

∧n
i=1 P

R

i (si,y) → R(y) for every rule

r = ϕ ∧
∧m

j=1Qj(tj)→
∨n

i=1 Pi(si) ∈ P \ P> and each R ∈ Σ, where r has
no marked body atoms and no unmarked head atoms;

4. a rule ϕ> ∧ ϕ ∧
∧m

j=1Q
R
j (tj ,y) ∧

∧n
i=1 P

R

i (si,y)→ PR(s,y) for every rule

r = ϕ∧
∧m

j=1Qj(tj)→ P (s)∨
∨n

i=1 Pi(si) ∈ P \P> and each R ∈ Σ, where
r has no marked body atoms, and P (s) is the unique unmarked head atom;

5. a rule ϕ> → R
R

(y,y) for every R ∈M ;

6. a rule Q(z) ∧QR
(z,y)→ R(y) for every pair (Q,R) ∈M ×Σ;

7. a rule ϕ> ∧Q(z)→ QR(z,y) for every pair (Q,R) ∈ (Σ \M)×Σ;
8. a rule RR(y,y)→ R(y) for every R ∈ Σ \M .

The transformation is quadratic and the arity of predicates is at most doubled.
For P1 and the marking M = {B,G,U}, we obtain the datalog program ΞM (P1)
consisting of the following rules, where X ∈M and Y is disjunctive:

C(x) ∧BY
(x, y) ∧GY

(x, y)→ Y (y) (1’)

B
Y

(x, z) ∧ E(x, y)→ G
Y

(y, z) (2’)

G
Y

(x, z) ∧ E(x, y)→ B
Y

(y, z) (3’)

V (x) ∧ UY
(x, y)→ CY (x, y) (5’)

CY (x, y)→ U
Y

(x, y) (6’)

E(y, x)→ E(x, y) (4)

>(x)→ X
X

(x, x) (7)

X(x) ∧XY
(x, y)→ Y (y) (8)

>(y) ∧ C(x)→ CY (x, y) (9)

CC(x, x)→ C(x) (10)

In total, this yields 41 rules. Additionally, ΞM (P1) contains the rules in ΞM (P1)⊥
and an axiomatisation of ≈ (which can be omitted since ≈ does not occur in the
above rules). Correctness of ΞM is established by the following theorem.

Theorem 3.6. Let P be a disjunctive program and let M be a marking of P.
Then ΞM (P) is a polynomial datalog rewriting of P.

ΞM (P) preserves answers to all atomic queries over P. If we only want to
query a specific predicate Q, we can compute a smaller program, which is linear
in the size of P and preserves the extension of Q. If Q is datalog, each proof in
P of a fact about Q involves only datalog rules, and if Q is disjunctive each such

proof involves only fresh predicates XQ and X
Q

. Thus, in ΞM we can dispense

with all rules involving auxiliary predicates XR or X
R

for R 6= Q (if Q is datalog
the rewriting has no auxiliary predicates).

Computing Datalog Rewritings for Disjunctive Programs and Ontologies 9

Theorem 3.7. Let P be a program, M a marking of P, S a set of predicates,

and P ′ obtained from ΞM (P) by removing all rules with a predicate XR or X
R

for R /∈ S ∪ {⊥}. Then P ′ is a rewriting of P w.r.t. all atomic queries over S.

Rewriting Ontologies Our results are directly applicable to RLt. In [10],
we showed tractability of fact entailment for the class of RLt ontologies cor-
responding to WL programs. The following theorem extends this result to the
more general class of markable programs.

Theorem 3.8. Checking O ∪ D |= α, for O an RLt ontology that corresponds
to a markable program, is PTime-complete w.r.t. data and combined complexity.

We next lift the markability condition from disjunctive programs to SHI
ontologies. Observe that the notions of dependency graph and markability natu-
rally extend to sets of first-order clauses (written as rules where function symbols
are allowed). We define a predicate to be disjunctive in O if it is disjunctive in
the set FO of clauses obtained by skolemisation; we call O markable if so is FO;
and we call a set of predicates a marking of O if it is a marking of FO.

Example 3.9. Consider the ontology O1 and its corresponding clauses FO1 :

O1 = {Person v Man tWoman,Person v ∃parent.Person,
∃married.Person v Person,Woman v Person,Man v Person}

FO1
= {Person(x)→ Man(x) ∨Woman(x),Person(x)→ parent(x, f(x)),

Person(x)→ Person(f(x)),Person(y) ∧married(x, y)→ Person(x),

Woman(x)→ Person(x),Man(x)→ Person(x)}

OntologyO1 is markable since the set {Person,Man,Woman} is a marking of FO1
.

As already mentioned, every normalised SHI ontology can be rewritten into
disjunctive datalog by means of a resolution-based calculus [8, 5]. The following
lemma establishes that binary resolution and factoring preserve markability.

Lemma 3.10. Let M be a marking of a set of clauses F , and let F ′ be obtained
from F using binary resolution and factoring. Then M is a marking of F ′.

Thus, markable SHI ontologies admit a (possibly exponential) rewriting.

Theorem 3.11. Let O be a SHI ontology and let M be a marking of O. Then
M is a marking of DD(O) and ΞM (DD(O)) is a datalog rewriting of O (where
DD(O) is defined as in [5]).

Corollary 3.12. Checking O ∪ D |= α, for O a markable SHI ontology is
PTime-complete w.r.t. data and in ExpTime w.r.t. combined complexity.

10 Mark Kaminski, Yavor Nenov, and Bernardo Cuenca Grau

Procedure 1 Compile-Horn
Input: S: set of clauses
Output: SH : set of Horn clauses

1: SH := {C ∈ S | C is a Horn clause and not a tautology}
2: SH := {C ∈ S | C is a non-Horn clause and not a tautology}
3: repeat
4: F := factors of each C1 ∈ SH non-redundant in SH ∪ SH
5: R := resolvents of each C1 ∈ SH and C2 ∈ SH ∪ SH not redundant in SH ∪ SH
6: for each C ∈ F ∪R do
7: C′ := the condensation of C
8: Delete from SH and SH all clauses θ-subsumed by C′

9: if C′ is Horn then SH := SH ∪ {C′}
10: else SH := SH ∪ {C

′}
11: until F ∪R = ∅
12: return SH

4 Resolution-Based Rewritings

Resolution provides an alternative technique for rewriting disjunctive programs
into datalog [5]. Procedure 1 saturates the input program P under binary res-
olution and positive factoring, with the restriction that two Horn clauses are
never resolved together. The procedure is compatible with redundancy elimina-
tion techniques such as tautology elimination, subsumption and condensation.
If it terminates, the procedure returns the subset of Horn clauses (equivalently,
datalog rules) in the saturation, which is guaranteed to be a rewriting of P.

We show that the separation between disjunctive and datalog predicates (Def-
inition 3.1) can be exploited to refine this procedure. The idea is to further refine
resolution by ensuring that the resolved atoms involve a disjunctive predicate.

Definition 4.1. Compile-Horn-Restricted is obtained from Procedure 1 by adding
to the definition of R in step 5 the additional restriction that the predicate in
the atoms being resolved must be disjunctive in S.

Correctness of Compile-Horn-Restricted relies on the observation that resolutions
on datalog predicates can always be delegated to the datalog reasoner and hence
do not have to be performed as part of the rewriting process.

Theorem 4.2. If Compile-Horn-Restricted terminates on a disjunctive program
P with a program P ′, then P ′ is a datalog rewriting of P.

The class of disjunctive programs over which Compile-Horn-Restricted termi-
nates is incomparable with the class of markable programs. Moreover, the rewrit-
ings produced by both approaches are quite different. Markable programs lead
to polynomial rewritings, in which the arity of predicates is increased; rewritings
computed via resolution can be much larger, but since all the datalog rules in the
rewriting are logically entailed by the original program, the arity of predicates
stays the same. In Section 6 we will discuss practical implications.

Computing Datalog Rewritings for Disjunctive Programs and Ontologies 11

Rewriting Ontologies The procedure Compile-Horn was shown to terminate
for a class of programs called simple [5]; furthermore, DL-LiteH,+

bool ontologies are
transformed into disjunctive programs that satisfy the simplicity condition using
the algorithm by Hustadt, Motik and Sattler [8]. We now extend this result
by devising a sufficient condition for datalog rewritability of SHI ontologies
via Compile-Horn-Restricted. Since transitivity axioms can be eliminated from
SHI ontologies by a polynomial transformation while preserving fact entailment
(see [8, 5]), it suffices to formulate our condition for ALCHI.4 First, we adapt
the notion of simple rules in [5] as follows.

Definition 4.3. An axiom of the form ∃R.A v B is simple w.r.t. a set of
predicates S (or S-simple) if A /∈ S. An ontology O is S-simple if so is every
axiom of the form ∃R.A v B in O.

Note that ontology O1 from Example 3.9 is not simple w.r.t. its disjunctive
predicates due to axiom ∃married.Person v Person. If, however, we replace this
axiom with Man uWoman → ⊥, we obtain a simple ontology, which in turn is
no longer markable. The following theorem then generalises the result in [5] to
a sufficient condition for datalog rewritability of ALCHI ontologies.

Theorem 4.4. Let O be an ALCHI ontology that is simple w.r.t. its disjunctive
predicates. Then Compile-Horn-Restricted terminates on DD(O) with a datalog
rewriting of O.

5 Conjunctive Queries

By the results in [12], disjunctive programs cannot be rewritten to datalog in a
query-independent way while preserving answers to CQs. Nonetheless, rewriting
techniques for atomic queries can still be used to answer specific queries, which
can be appended to the program as additional rules.

Rewriting CQs using markability This observation immediately suggests
how our markability condition in Section 3 can be applied to rewriting CQs.

Proposition 5.1. Let P be a disjunctive program, let M be a marking of P,
and let q be a CQ with at most one atom marked by M . Then, ΞM (P ∪ {q}) is
a rewriting of q w.r.t. P.

Indeed, M constitutes a marking of P ∪ {q} if and only if q contains at most
one body atom marked by M . From this, we obtain the following result, which
applies equally to disjunctive programs and RLt ontologies.

4 Note that neither Compile-Horn nor Compile-Horn-Restricted are well-suited for deal-
ing with (axiomatised) equality. Both will diverge on every disjunctive program with
equality due to the congruence axioms P (x) ∧ x ≈ y → P (y) with P disjunctive.

12 Mark Kaminski, Yavor Nenov, and Bernardo Cuenca Grau

Proposition 5.2. Let F be a disjunctive program (or an RLt ontology), let M
be the set of all (minimal) markings of F , and let q be a (Boolean) CQ. If there
is some M ∈M that marks at most one atom of q, then answering the (fixed) q
w.r.t. (fixed) F and an arbitrary dataset is a tractable problem.

Example 5.3. Consider the following RLt ontology O and query q:5

O = {A v B t C}
q = R(x, y) ∧R(y, z1) ∧R(y, z2) ∧B(z1) ∧ C(z2)→ Aq(x)

The empty ontology is a rewriting of O, which can be determined using marka-
bility or resolution. Indeed, for every dataset D and fact α we have O ∪ D |= α
iff D |= α. The empty ontology, however, is not a rewriting of q, as witnessed by
the following dataset D, for which O ∪D ∪ {q} |= Aq(a) but D ∪ {q} 6|= Aq(a):

{R(a, b1), R(a, b2), R(b1, c1), R(b1, c2), R(b2, c2), R(b2, c3), B(c1), A(c2), C(c3)}

Clearly, M = {B} is a marking of O, and q contains one marked atom. Then
P = ΞM (O∪{q}) has the following rules, with X ∈ {B,Aq} and Y ∈ {B,C,Aq}:

A(x) ∧BY
(x, y)→ CY (x, y) (11)

A
Y

q (x, u) ∧R(x, y) ∧R(y, z1) ∧R(y, z2) ∧ CY (z2, u)→ B
Y

(z1, u) (12)

>(x)→ X
X

(x, x) (13)

X(x) ∧XY
(x, y)→ Y (y) (14)

>(y) ∧ C(x)→ CY (x, y) (15)

CC(x, x)→ C(x) (16)

Figure 2 shows a derivation of Aq(a) from P ∪ D.

Although this approach is immediately applicable to disjunctive programs
and hence to RLt ontologies, it only transfers to SHI(Q) ontologies if q corre-
sponds to a normalised SHI(Q) axiom. The reduction in [8, 5] from SHI(Q) to
disjunctive datalog is only complete for inputs equivalent to SHIQ ontologies.

Rewriting CQs via resolution The resolution-based approach naturally ex-
tends to a class of CQs satisfying certain conditions closely related to simplicity.

Definition 5.4. Let S be a set of unary and binary predicates. A CQ q is S-
simple if for some variable x in q all of the following conditions are satisfied:

1. if q is not Boolean, then Aq(x) is the head atom of q;
2. Every S-atom (i.e., atom whose predicate is in S) in q is of the form B(x),

R(x, x), S(x, y), or T (y, x); and

5 This example is based on a personal communication with Carsten Lutz.

Computing Datalog Rewritings for Disjunctive Programs and Ontologies 13

Aq(a)

B
Aq

(c1, a)

A
Aq
q (a, a)

>(a)

(13)

R(a, b1) ∈ D CAq (c2, a)

B
Aq

(c2, a)

A
Aq
q (a, a)

>(a)

(13)

R(a, b2) ∈ D CAq (c3, a)

>(a) C(c3) ∈ D

(12)

R(b2, c2) ∈ D R(b2, c3) ∈ D

A(c2) ∈ D

(12)

R(b1, c1) ∈ D R(b1, c2) ∈ D

B(c1) ∈ D
(14)

(11)

(15)

Fig. 2. Derivation of Aq(a) from ΞM (O ∪ {q}) ∪ D in Example 5.3

3. every variable y 6= x occurs in at most one S-atom in q.

Example 5.5. Consider the following RLt ontology O and queries q1, q2:

O = {Person v Man tWoman,∃married.Person v Person}
q1 = Man(x) ∧married(x, y)→ Aq1(x)

q2 = Man(x) ∧married(x, y) ∧Woman(y)→ Aq2(x)

Ontology O is simple w.r.t. the set S = {Man,Woman} of the disjunctive pred-
icates in O. Query q1 is S-simple while q2 is not. It is straightforward to verify
that Compile-Horn-Restricted terminates on O ∪ {q1} but not on O ∪ {q2}.

Theorem 5.6. Let O be an RLt ontology that is simple w.r.t. the set S of the
disjunctive predicates in O. Then Procedure Compile-Horn-Restricted terminates
on O ∪ {q} with a datalog rewriting of q w.r.t. O for every S-simple CQ q.

Consequently, answering any (fixed) CQ q over any (fixed) ontology O satis-
fying the conditions of Theorem 5.6 is a tractable problem.

6 Evaluation

Rewritability Experiments We have evaluated whether realistic ontologies
can be rewritten into datalog using our approaches. We analysed 118 ontologies
that use disjunctive constructs from BioPortal, the Protégé library, and the cor-
pus in [7]. To transform ontologies into disjunctive datalog we used KAON2 [14],
which succeeded to compute disjunctive programs for 103 ontologies.6 Out of the

6 We doctored the ontologies to remove constructs outside SHIQ. The modified on-
tologies can be found on https://krr-nas.cs.ox.ac.uk/RR2014/ontologies.tar.bz2

14 Mark Kaminski, Yavor Nenov, and Bernardo Cuenca Grau

Linearity Resolution HermiT Pellet
dlog disj err all err all err all err

U01 <1s 12s 1 <1s 1 47s 0 147s 5
U04 <1s 87s 1 1s 1 57s 1 — —
U07 <1s 168s 2 2s 1 122s 1 — —
U10 <1s 53s 5 3s 1 196s 1 — —

Table 2. Average times for answering UOBM’s 15 standard queries

103 disjunctive programs, 32 were WL, and 35 were markable. Furthermore, 26
programs could be rewritten using Compile-Horn, and 27 could be rewritten us-
ing Compile-Horn-Restricted.7 In both cases, the average time for computing a
rewriting was below 1s (where the average is taken over the successful runs).
Despite the potentially exponential blowup, the increase in program size was
modest in practice: 49% for Compile-Horn and 34% for Compile-Horn-Restricted
on average w.r.t. the number of rules.

Many of the programs obtained by KAON2 contained equality, and hence
could not be rewritten by means of resolution (see Section 4). Hence, we addi-
tionally considered simplified versions of the 103 programs where we removed
all rules containing equality. Out of these, 33 turned out to be WL, and 36
were markable; as expected the effect of equality on linearity-based approaches
is rather minor. In contrast, resolution-based approaches were significantly more
effective than before: Compile-Horn succeeded in 39 cases, and Compile-Horn-
Restricted in 41 cases. Again, computing a successful rewriting took less that 1s
on average in both cases. The increase in program size was even smaller than
before: 16% for Compile-Horn and 6% for Compile-Horn-Restricted on average.

Both Compile-Horn and Compile-Horn-Restricted succeeded on some ontolo-
gies that were not simple w.r.t. disjunctive predicates. At the same time, being
worst-case exponential, both algorithms failed to rewrite (within 1h) one simple
ontology and two that were simple w.r.t. disjunctive predicates.

The intersection between the programs rewritable using markability and res-
olution turned out to be quite large: in the general case, there were 16 programs
that could be rewritten by only one approach, and in the equality-free case only 5.
Still, taken together, the two approaches succeeded to rewrite 39 programs (38%)
in the general case and 41 programs (40%) in the equality-free case. Moreover,
on average, 73% of the predicates were datalog, and so could be queried using
a datalog engine even if the disjunctive program was not rewritable. Finally, we
found that 20 out of the 103 ontologies were RLt, out of which 17 were markable.
Of the remaining three, two could be rewritten via resolution.

CQ Answering We have also tested scalability of CQ answering over the
UOBM benchmark [13]. We considered the RLt subset of UOBM without equal-

7 We ran the rewritability experiments on a laptop with a 2.5GHz Intel Core i5 pro-
cessor and 8GB RAM, and set a timeout of 1h per ontology.

Computing Datalog Rewritings for Disjunctive Programs and Ontologies 15

ity,8 and generated datasets for 1 to 10 universities (denoted as U01-U10). Fur-
thermore, we considered the 15 standard queries in the benchmark. While not
markable, our test ontology can be converted to a markable (in fact, WL) pro-
gram by the algorithm in [10]. Moreover, it is rewritable using Compile-Horn-
Restricted (but not using Compile-Horn). We used RDFox as a datalog engine,
and measured performance against HermiT [17] and Pellet [19]. We used a server
with two Intel Xeon E5-2643 processors and 128GB RAM. Systems were com-
pared on individual queries with a timeout of 10min per query. We ran RDFox on
16 threads. Table 2 shows average query answering times, and number of queries
on which a system failed.9 The time spent on computing the rewritings10 is not
included into the query answering times since query rewriting can be done in a
data-independent way.

Pellet could only answer queries on U01. It timed out on 5 queries, and was
much slower on the remaining queries than the other systems.

Using the linearity-based approach we could answer queries for all datasets.
From the 15 test queries, 7 were disjunctive (i.e., contained at least one disjunc-
tive atom), and 8 were datalog. One disjunctive query could not be rewritten.
Datalog queries were answered instantaneously (<1s) for all datasets. Disjunc-
tive queries were much harder, and performance on those was comparable to
HermiT. Memory-outs were encountered for U07 (1 query) and U10 (4 queries).
For all rewritable queries, computing the rewriting (including the conversion to
a WL program) took less that 1s.

The resolution-based approach was clearly superior to the others. Only one
query could not be rewritten, and all the remaining queries could be answered
almost instantaneously even for the largest dataset (query rewriting itself took
26s on average). In contrast to the linearity-based approach, rewritings obtained
by resolution introduce no predicates of higher arity, and thus lead to smaller
materialisations. Also, there was no significant difference in query answering
times for datalog and disjunctive queries. Once again, the increase in program
size was modest (4.6 times on average). Notably, computing the rewritings took
26s on average—considerably longer than with the linearity-based approach.

7 Conclusion

We have proposed enhanced techniques for rewriting disjunctive datalog pro-
grams and DL ontologies into plain datalog programs. Our techniques enable
the use of scalable datalog engines for data reasoning, and our experiments sug-
gest practical feasibility of our approach. In the near future, we are planning to
extend our results for CQ answering to capture larger classes of queries.

Acknowledgements This work was supported by the Royal Society, the
EPSRC projects Score!, ExODA, and MaSI3, and the FP7 project OPTIQUE.

8 Equality makes the resolution-based approach non-applicable.
9 Average times do not reflect queries on which a system failed.

10 Query rewriting was performed with a 1h timeout per query.

16 Mark Kaminski, Yavor Nenov, and Bernardo Cuenca Grau

References

1. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family
and relations. J. Artif. Intell. Res. 36, 1–69 (2009)

2. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Handbook of Auto-
mated Reasoning, pp. 19–99 (2001)

3. Bienvenu, M., ten Cate, B., Lutz, C., Wolter, F.: Ontology-based data access: A
study through disjunctive datalog, CSP, and MMSNP. In: PODS. pp. 213–224
(2013), arXiv:1301.6479

4. Bishop, B., Kiryakov, A., Ognyanoff, D., Peikov, I., Tashev, Z., Velkov, R.: OWLim:
A family of scalable semantic repositories. Semantic Web J. 2(1), 33–42 (2011)

5. Cuenca Grau, B., Motik, B., Stoilos, G., Horrocks, I.: Computing datalog rewritings
beyond Horn ontologies. In: IJCAI (2013), arXiv:1304.1402

6. Eiter, T., Ortiz, M., Šimkus, M., Tran, T.K., Xiao, G.: Query rewriting for Horn-
SHIQ plus rules. In: AAAI. pp. 726–733 (2012)

7. Gardiner, T., Tsarkov, D., Horrocks, I.: Framework for an automated comparison
of description logic reasoners. In: ISWC. pp. 654–667 (2006)

8. Hustadt, U., Motik, B., Sattler, U.: Reasoning in Description Logics by a Reduction
to Disjunctive Datalog. J. Autom. Reasoning 39(3), 351–384 (2007)

9. Kaminski, M., Grau, B.C.: Sufficient conditions for first-order and datalog
rewritability in elu. In: Description Logics. pp. 271–293 (2013)

10. Kaminski, M., Nenov, Y., Cuenca Grau, B.: Datalog rewritability of disjunctive
datalog programs and its applications to ontology reasoning. In: AAAI (2014)

11. Krisnadhi, A., Lutz, C.: Data complexity in the EL family of description logics.
In: LPAR (2007)

12. Lutz, C., Wolter, F.: Non-uniform data complexity of query answering in descrip-
tion logics. In: KR (2012)

13. Ma, L., Yang, Y., Qiu, Z., Xie, G.T., Pan, Y., Liu, S.: Towards a complete OWL
ontology benchmark. In: ESWC. pp. 125–139 (2006)

14. Motik, B.: Reasoning in Description Logics using Resolution and Deductive
Databases. Ph.D. thesis, Univesität Karlsruhe (TH), Karlsruhe, Germany (2006)

15. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2
Web Ontology Language Profiles. W3C Recommendation (2009)

16. Motik, B., Nenov, Y., Piro, R., Horrocks, I., Olteanu, D.: Parallel materialisation
of datalog programs in centralised, main-memory rdf systems. In: AAAI (2014)

17. Motik, B., Shearer, R., Horrocks, I.: Hypertableau Reasoning for Description Log-
ics. J. Artif. Intell. Res. 36, 165–228 (2009)

18. Pérez-Urbina, H., Motik, B., Horrocks, I.: Tractable query answering and rewriting
under description logic constraints. J. Appl. Log. 8(2), 186–209 (2010)

19. Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical
OWL-DL reasoner. J. Web Sem. 5(2), 51–53 (2007)

20. Trivela, D., Stoilos, G., Chortaras, A., Stamou, G.B.: Optimising resolution-based
rewriting algorithms for dl ontologies. In: DL. pp. 464–476 (2013)

21. Wu, Z., Eadon, G., Das, S., Chong, E.I., Kolovski, V., Annamalai, M., Srinivasan,
J.: Implementing an inference engine for RDFS/OWL constructs and user-defined
rules in Oracle. In: ICDE. pp. 1239–1248 (2008)

