Datalog Rewriting Techniques
for Non-Horn Ontologies

Mark Kaminski, Yavor Nenov, and Bernardo Cuenca Grau

Department of Computer Science
University of Oxford, UK

Abstract. We study the closely related problems of rewriting disjunc-
tive datalog programs and non-Horn DL ontologies into plain datalog
programs that entail the same facts for every dataset. We first propose
the class of markable disjunctive datalog programs, which is efficiently
recognisable and admits polynomial rewritings into datalog. Markabil-
ity naturally extends to SHZ ontologies, and markable ontologies admit
(possibly exponential) datalog rewritings. We then turn our attention to
resolution-based rewriting techniques. We devise an enhanced resolution
rewriting procedure for disjunctive datalog, and propose a second class
of SHZ ontologies that admits exponential datalog rewritings via reso-
lution. Finally, we evaluate the feasibility of our techniques over a large
corpus of ontologies, with encouraging results.

1 Introduction

Query answering over DL ontologies is a key reasoning problem for many ap-
plications. Query answering can sometimes be implemented via rewriting into
datalog, where a rewriting of a query @ w.r.t. an ontology O is a datalog program
‘P that preserves the answers to @ for any dataset. Rewriting queries into data-
log not only ensures tractability in data complexity—an important requirement
in data-intensive applications—but also enables the reuse of scalable rule-based
reasoners such as OWLim [4], Oracle’s Data Store [20], and RDFox [15].
Datalog rewriting techniques have been investigated in depth for Horn DLs,
and optimised algorithms have been implemented in systems such as Requiem
[17], Clipper [6], and Rapid [19]. Techniques for non-Horn DLs, however, have
been studied to a lesser extent. Atomic queries were shown datalog rewritable
w.r.t. DL-Litepoo ontologies [1,5]. In contrast, datalog rewritings may not exist
for ontologies expressed in the basic non-Horn DL EL£U [12,5], and sufficient
conditions that ensure rewritability were identified in [9]. Datalog rewritability
of atomic queries w.r.t. SHZ ontologies was proved NEXPTIME-complete in [3].
Our focus is on atomic queries. In this setting, rewritability for ontologies is
strongly related to the rewritability of disjunctive datalog programs into datalog:
every SHZQ ontology can be transformed into a disjunctive program that entails
the same facts for each dataset (thus preserving answers to atomic queries) [8].
In [10], we proved a characterisation of datalog rewritability for disjunctive
programs based on linearity: a restriction that requires each rule to contain at

most one IDB atom in the body. We showed that every linear disjunctive pro-
gram can be polynomially rewritten into plain datalog; conversely, every datalog
program can be polynomially translated into an equivalent linear disjunctive
datalog program. Motivated by this characterisation, we proposed weakly linear
disjunctive datalog : a language that extends both datalog and linear disjunctive
datalog, and which admits polynomial datalog rewritings. In a weakly linear
program, the linearity requirement is relaxed: instead of applying to all IDB
predicates, it applies only to those that “depend” on a disjunctive rule.

A different approach to rewriting disjunctive programs into datalog by means
of a resolution-based procedure was proposed in [5]. The procedure works by sat-
urating the input disjunctive program P such that in each resolution step at least
one of the premises is a non-Horn rule; if this process terminates, the procedure
outputs the subset of datalog rules in the saturation, which is guaranteed to be
a rewriting of P. The procedure was shown to terminate for so-called simple
disjunctive programs; furthermore, it was shown that DL-Litepoo ontologies can
be transformed into disjunctive programs that satisfy the simplicity condition.

In this paper, we present several improvements over existing techniques, and
evaluate their feasibility in practice over a large corpus of non-Horn ontologies.
In Section 3, we propose the class of markable disjunctive datalog programs, in
which the weak linearity condition from [10] is further relaxed. We show that our
extended class of programs is efficiently recognisable and that each markable pro-
gram admits a polynomial datalog rewriting. These results can be readily applied
to ontology reasoning. We first consider the “intersection” between OWL 2 and
disjunctive datalog (which we call RL"), and show that fact entailment over RL"
ontologies corresponding to a markable program is tractable in combined com-
plexity (and hence no harder than in OWL 2 RL). We then lift the markability
condition to ontologies, and show that markable SHZ-ontologies admit a (pos-
sibly exponential) datalog rewriting. In Section 4, we refine the resolution-based
rewriting procedure from [5] by further requiring that only atoms involving dis-
junctive predicates can participate in resolution inferences. This refinement can
significantly reduce the number of inferences drawn during saturation, without
affecting correctness. We then turn our attention to ontologies, and propose an
extension of the logics in the DL-Litepoo family that admits (possibly exponen-
tial) datalog rewritings. Our empirical results show that many realistic non-Horn
ontologies can be rewritten into datalog. Furthermore, we have tested the scala-
bility of query answering over the programs obtained using our techniques, with
promising results. Proofs are delegated to a technical report [11].

2 Preliminaries

We consider standard notions of terms, atoms, literals, formulae, sentences, and
entailment. A fact is a ground atom and a dataset is a finite set of facts. We
assume that equality ~ is an ordinary predicate and that each set of formu-
lae contains the axiomatisation of ~ as a congruence relation for its signature.
Clauses, substitutions, most general unifiers (MGUs), clause subsumption, tau-

L [, AC I_I;n:1 Cj Nizi Ai(x) — V;n:1 Cj()

2. JRACB R(z,y) N A(y) — B(x)

3. A C Self(R) A(z) = R(z,)

4. Self(R)C A R(z,x) = A(z)

5. RLCS R(z,y) — S(z,y)

6. RC S~ R(z,y) — S(y,x)

7. RoSCT R(z,z) NS(z,y) = T(z,y)

8. AC>mR.B A(z) = IZ™y.(R(z,y) A B(y))

9. AC<mR.B A=) NNZo R(z,23) A B(@i) = Vocicjcm Ti & T;

Table 1. Normalised axioms. A, B are atomic or T, C atomic or 1, and R, S, T atomic.

tologies, binary resolution, and factoring are as usual [2]. Clause C' 6-subsumes
D if C subsumes D and C has no more literals than D. Clause C' is redundant in
a set of clauses if C is tautological or if C is #-subsumed by another clause in the
set. A condensation of a clause C' is a minimal subset that is subsumed by C.

A rule r is a function-free sentence VaVz.[p(x, z) — ¥ (x)] where tuples of
variables « and z are disjoint, ¢(x, z) is a conjunction of distinct equality-free
atoms, and ¥ (x) is a disjunction of distinct atoms. Formula ¢ is the body of r,
and 1) is the head. Quantifiers in rules are omitted. We assume that rules are safe.
A rule is datalog if ¢(x) has at most one atom, and it is disjunctive otherwise. A
program P is a finite set of rules; it is datalog if it consists only of datalog rules,
and disjunctive otherwise. We assume that rules in P do not share variables.
For convenience, we treat T and 1 in a non-standard way as a unary and a
nullary predicate, respectively. Given a program P, Pt is the program with a
rule Q(z1,...,2,) = T(x;) for each predicate @ in P and each 1 < i < n, and
a rule — T(a) for each constant a in P. We assume that P+ C P and T does
not occur in head position in P \ Pt. We define P, as cousisting of a rule with
1 as body and empty head. We assume P; C P and no rule in P\ P, has an
empty head or L in the body. Thus, P UD = T(a) for every a in P U D, and
P UD is unsatisfiable iff P UD = L. Head predicates in P \ Pt are intensional
(or IDB) in P. All other predicates (including T) are extensional (EDB). An
atom is intensional (extensional) if so is its predicate. A rule is linear if it has
at most one IDB body atom. A program P is linear if all its rules are.

We assume familiarity with DLs. W.l.o.g. we consider normalised axioms as
in Table 1. An ontology O is SHZQ if each axiom of type 7 satisfies R = S = T;!
it is SHZ if it is SHZQ, it does not contain axioms of type 9, and each axiom of
type 8 satisfies m = 1; it is ALCHZ if it is SHZ and it has no axiom of type 7; it
is RL" if it does not contain axioms of type 8, and it is RL if it is RL" and m = 1
for each axiom of type 1 and 9. Programs obtained from RL" ontologies have
rules with bounded number of variables: fact entailment is PTIME-complete for
RL and co-NP-complete for RL" (in combined complexity).?

! SHTQ enforces additional restrictions to ensure decidability, which we omit here.
2 RL"” and RL allow for nominals, which we omit. All our results immediately extend.

Po = {Cx) > B@)VGE) (1)
G(y) A Elw,y) —» B() (2)
B(y) AB(z,y) > G@) (3) Pt
E(y,o) > By} (@)

Fig. 1. A weakly linear disjunctive datalog program

An (atomic) query is a function-free atom. A (disjunctive) program P is a
rewriting of F w.r.t. a set of predicates S if for each dataset D over the signature
of F and every fact o over S we have FUD |= a iff PUD |= . Program P is
a rewriting of F if it is a rewriting w.r.t. the set of all predicates in F, in which
case it preserves answers to all atomic queries. Hudstadt et al. [8] developed an
algorithm for transforming a SHZQ ontology into a disjunctive program that
preserves entailment of facts over non-transitive relations. This technique was
extended in [5] to preserve all facts. Thus, every SHZQ ontology O admits a
disjunctive datalog rewriting DD(O), which can be of exponential size.

3 Datalog Rewritings Based on Linearity

In [10] we proposed the class of weakly linear programs (WL), which extends both
datalog and linear disjunctive datalog. In a WL program predicates are parti-
tioned into disjunctive (i.e., those whose extension may depend on a disjunctive
rule) and datalog (those that depend solely on datalog rules). A program is WL
if all rules have at most one occurrence of a disjunctive predicate in the body.

Definition 3.1. The dependency graph Gp = (V, E, u) of a program P is the
smallest edge-labeled digraph such that:

1. V contains every predicate occurring in P;

2. r € u(P,Q) whenever P,Q € V, r € P\ P, P occurs in the body of r, and
Q occurs in the head of r; and

3. (P, Q) € E whenever (P, Q) is nonempty.

A predicate @ depends on a rule r € P if Gp has a path that ends in QQ and
imwvolves an r-labeled edge. Predicate @ is datalog if it only depends on datalog
rules; otherwise, @ is disjunctive. Program P is weakly linear (WL for short)
if each rule body in P has at most one occurrence of a disjunctive predicate.

Consider the disjunctive program Py and its dependency graph depicted in
Figure 1. Predicate C' is EDB, predicates B and G depend on Rule (1) and hence
are disjunctive, whereas F depends only on Rule (4) and hence it is datalog. Each
rule has at most one disjunctive body atom and the program is WL.

WL programs admit a polynomial rewriting [10]. Roughly speaking, they are
translated into datalog by “moving” all disjunctive body atoms to the head and
all disjunctive head atoms to the body while replacing their predicates with fresh
ones of higher arity; the new predicates are “initialised” using additional rules.

Markable Programs We next propose the class of markable disjunctive data-
log programs, which extends WL programs. A key feature of a markable program
is that one can identify a subset of disjunctive predicates, called marked predi-
cates, such that the program can be translated into datalog by “moving” only
those disjunctive atoms in a rule whose predicates are marked.

Definition 3.2. Let P be a disjunctive program. A marking of P is a set M of
disjunctive predicates in P such that:

1. Every rule in P has at most one body atom Q(t) with Q € M.
2. Every rule in P has at most one head atom Q(t) with Q ¢ M.
3. If @ € M and P is reachable from Q in Gp, then P € M.

A predicate @ is marked by M if Q € M. An atom is marked if so is its predicate.
A disjunctive program is markable if it has a marking.

Markability generalises weak linearity in the following sense.

Proposition 3.3. A disjunctive program P is WL if and only if the set of all
disjunctive predicates in P constitutes a marking of P.

Let P, extend Py with the following rules:

V(z) = C(z) VU (x) (5) Clx)ANU(z) = L (6)

The dependency graph is given next. Note that C, U, B, and G are disjunctive
as they depend on Rule (5). Thus, (6) has two disjunctive body atoms and P;
is not WL. The program, however, has markings {C, B, G} and {U, B, G}.

E©(4)

\/\/

The following proposition establishes that checking markability is tractable
and amenable to efficient implementation via reduction to 2-SAT.

Proposition 3.4. Markability can be checked in polynomial time.

Datalog Rewritability of Markable Programs We now show that markable

programs are rewritable into datalog by means of a quadratic translation =,

which extends the translation for weakly linear programs given in [10].
Consider P; and the marking M = {B,G,U}. We introduce fresh binary

predicates EY, éy, and U for every disjunctive predicate Y. Intuitively, if
a fact EG(C, d) holds in Z;(P1) U D then proving B(c) suffices for proving
G(d) in P; UD (or, in other words, we have P; UD = B(c) — G(d)). Anal-
ogously, for the unmarked disjunctive predicate C' we introduce fresh binary
predicates CY for each disjunctive predicate Y'; these predicates have a different

intuitive interpretation: if a fact CY(c,d) holds in Sy (P1) U D then P; UD
implies C(c) V U(d). To “initialise” the extension of the fresh predicates we
need the following rules for every X € M and every disjunctive predicate Y.

T@) =X (z2) (1) TACE - C¥(2,y) (9)
X (@) AX(2) > Y(y) (8) C%(z,z) - C(x) (10)

These rules encode the intended meaning of the auxiliary predicates. For
example, Rule (8) states that if X(c) holds for some constant ¢ and this is
sufficient to prove Y (d) for some d, then Y (d) holds. The key step is to “flip”
the direction of all rules in P; involving the marked predicates B, G and U by
moving all marked atoms from the head to the body and vice versa while at the
same time replacing their predicates with the relevant auxiliary predicates. Thus,
Rule (2) leads to the following rules in =y, (P;) for each disjunctive predicate Y

B (z,2) N E(z,y) — éy(yv z)

These rules are natural consequences of Rule (2) under the intended meaning of

the auxiliary predicates: if we can prove a goal Y'(z) by proving first B(x), and
E(x,y) holds, then by Rule (2) we deduce that proving G(y) suffices to prove
Y (2). In contrast to (2), Rule (1) contains no disjunctive body atoms. We “flip”
this rule as follows, for each disjunctive predicate Y:

C@) AB (2, y) A (,y) = Y(y)

Similarly to the previous case, this rule follows from Rule (1): if C(z) holds and
we can establish that Y (y) can be proved from B(x) and also from G(z), then
Y (y) must hold. In contrast to marked atoms, unmarked atoms are not moved.
So, Rules (5) and (6) yield the following rules for each disjunctive predicate Y:

V(@) AT (z,y) = C¥ (z,y) Y (z,y) = U (z,y)

And indeed, these rules are consequences of Rule (5) and (6), respectively, under
the intended meaning of the auxiliary predicates: V(x) and U(z) — Y (y) imply
C(z) VY (y) by Rule (5), while C(z) VY (y) and U(x) imply Y (y) by Rule (6).

Definition 3.5. Let P be a disjunctive program, X the set of disjunctive pred-
icates in P\ Pt, and M C X a marking of P. For each (P,Q) € X2, let P?
and P° be fresh predicates of arity arity(P) + arity(Q). Then, Zp(P) is the dat-
alog program with the rules given next, where ¢ is the conjunction of all datalog
atoms in a rule, o1 is the least conjunction of T-atoms that makes a rule safe,
all predicates P;, Q; are in X, and y, z are disjoint vectors of fresh variables:

1. every rule in P that contains no disjunctive predicates;

2. a rule o1 Ao AN QF (t5,9) AN, ﬁ?(si, y) — @R(t,y) for every rule
r=pAQ(t) /\/\jm:1 Q;(t;) = Vi, Pi(s;) € P\'Pt and every R € X, where
Q(t) is the unique marked body atom of r (and hence all P;(s;) are marked);

3. a rule o1 AN ANy QF (85, 9) ANy Pf(si,y) — R(y) for every rule
r=¢ AN Qj(t;) = Vi, Pi(si) € P\ Pr and each R € X, where r has
no marked body atoms and no unmarked head atoms;

4. a rule o1 A A /\T:1 Qf‘(tj,y) ANy F?(si,y) — PR(s,y) for every rule
r=p AN Q;(t;) = P(s)VVi_, Pi(si) € P\ Pt and each R € X, where
r has no marked body atoms, and P(s) is the unique unmarked head atom;
a rule pT — ER(y,y) for every R € M;

a rule Q(z) /\@R(z,y) — R(y) for every pair (Q,R) € M x X;

a rule o1 A Q(z) = QE(2,y) for every pair (Q,R) € (¥'\ M) x X;

a rule RE(y,y) — R(y) for every R € X\ M.

BB

The transformation is quadratic and the arity of predicates is at most doubled.
For P; and the marking M, we obtain the datalog program Z;(P;) consisting
of the following rules, where X € M and Y is disjunctive:

V(@) AT (z,y) = CV(z,y) (5 E(y,z) = E(z,y) (4)
CY(x,y) T (zy) (6 T(z) X (z,2) (7)

Cl@)AB (@) AC (2,9) = Y(@) (1) X@)AX (5,9)—Y(@) ()
B (z,2) AE(z,y) » G (y,2) (2) T@ACE) —C(zy) (9

G (x,2) ANE(z,y) = B (y,2) (3) C%x,x) = C(x) (10)

Correctness of =) is established by the following theorem.

Theorem 3.6. Let P be a disjunctive program and let M be a marking of P.
Then Ez(P) is a polynomial datalog rewriting of P.

Being a rewriting of P, Zj(P) preserves the extension of all predicates in
P. If we only want to query a specific predicate @, we can compute a smaller
program, which is linear in the size of P and preserves the extension of Q. If Q)
is datalog, each proof in P of a fact about) involves only datalog rules, and
if Q is disjunctive each such proof involves only fresh predicates X® and YQ.
Thus, in 5, we can dispense with all rules involving auxiliary predicates X

—R
or X for R# Q (if Q is datalog the rewriting has no auxiliary predicates).

Theorem 3.7. Let P be a disjunctive program, M a marking of P, S a set
of predicates in P, and P’ obtained from Zp;(P) by removing all rules with a

predicate X7 or x" for R¢ S. Then P’ is a rewriting of P w.r.t. S.

Rewriting Ontologies Our results are directly applicable to RL". In [10], we
showed tractability of fact entailment for the class of RL" ontologies correspond-
ing to WL programs. We now extend this result to markable programs.

Theorem 3.8. Checking O UD = «, for O an RL"” ontology that corresponds
to a markable program, is PTIME-complete w.r.t. data and combined complexity.

We next lift the markability condition from disjunctive programs to ontolo-
gies. Observe that the notions of dependency graph and markability naturally
extend to sets of first-order clauses (written as rules where function symbols are

allowed). We define a predicate to be disjunctive in O if it is disjunctive in the
set Fo of clauses obtained by skolemisation; we call O markable if so is Fp; and
we call a set of predicates a marking of O if it is a marking of Fp.

Example 3.9. Consider the ontology O; and its corresponding clauses Fp,:

01 ={Person C Man LI Woman, Person C Jchild.Person,
Jdmarried.Person C Person, Woman C Person, Man C Person}
Fo, ={Person(z) — Man(z) V Woman(z), Person(x) — child(z, f(z)),
Person(x) — Person(f(x)), Person(y) A married(z,y) — Person(x),
Woman(z) — Person(z), Man(x) — Person(x)}

Ontology O; is markable since the set {Person, Man, Woman} is a marking of Fo, .

As already mentioned, every normalised SHZ ontology can be rewritten into
disjunctive datalog by means of a resolution-based calculus [8, 5]. The following
lemma establishes that binary resolution and factoring preserve markability.

Lemma 3.10. Let M be a marking of a set of clauses F, and let F' be obtained
from F using binary resolution and factoring. Then M is a marking of F'.

Thus, markable SHZ ontologies admit a (possibly exponential) rewriting.

Theorem 3.11. Let O be a SHZ ontology and let M be a marking of O. Let
DD(O) be the disjunctive datalog rewriting of O as in [8, 5]. Then M is a marking
of DD(O) and =),(DD(0)) is a datalog rewriting of O.

Corollary 3.12. Checking O UD E «, for O a markable SHZ ontology is
PTIME-complete w.r.t. data and in EXPTIME w.r.t. combined complexity.

4 Resolution-Based Rewritings

Resolution provides an alternative technique for rewriting disjunctive programs
into datalog [5]. Procedure 1 saturates the input program P under binary res-
olution and positive factoring, with the restriction that two Horn clauses are
never resolved together. The procedure is compatible with redundancy elimina-
tion techniques such as tautology elimination, subsumption and condensation.
If it terminates, the procedure returns the subset of Horn clauses (equivalently,
datalog rules) in the saturation, which is guaranteed to be a rewriting of P.
We show that the separation between disjunctive and datalog predicates (Def-
inition 3.1) can be exploited to refine this procedure. The idea is to further refine
resolution by ensuring that the resolved atoms involve a disjunctive predicate.

Definition 4.1. Compile-Horn-Restricted is obtained from Procedure 1 by adding
to the definition of R in step 5 the additional restriction that the predicate in
the atoms being resolved must be disjunctive in S.

Procedure 1 Compile-Horn

Input: S: set of clauses
Output: Sg: set of Horn clauses

1: Sp :={C € § | C is a Horn clause and not a tautology }
2: S :={C € §| C is a non-Horn clause and not a tautology}
3: repeat
4: F := factors of each C1 € Sz non-redundant in Sy U Sz
5: ‘R := resolvents of each (1 € S and (2 € S5 U Sy not redundant in Sg U Si
6: for each C € FUR do
7 C’ := the condensation of C
8: Delete from Sg and Sz all clauses §-subsumed by c’
9: if ¢’ is Horn then Sy := Sy U {C’'}
10: else Sz := Sz U{C"'}

11: until FUR =0
12: return Sy

Correctness of Compile-Horn-Restricted relies on the observation that resolutions
on datalog predicates can always be delegated to the datalog reasoner and hence
do not have to be performed as part of the rewriting process.

Theorem 4.2. If Compile-Horn-Restricted terminates on a disjunctive program
P with a program P’, then P’ is a datalog rewriting of P.

The class of disjunctive programs over which Compile-Horn-Restricted termi-
nates is incomparable with the class of markable programs. Furthermore, the
rewritings produced by both approaches are also quite different. Markable pro-
grams lead to polynomial rewritings, in which the arity of predicates is increased;
rewritings computed via resolution can be much larger, but since all the datalog
rules in the rewriting are logically entailed by the original program, the arity of
predicates stays the same. In Section 5 we will discuss practical implications.

Rewriting Ontologies The procedure Compile-Horn was shown to terminate
for a class of programs called simple [5]; furthermore, DL—LiteZ'f)’jl ontologies are
transformed into disjunctive programs that satisfy the simplicity condition using
the algorithm by Hustadt, Motik and Sattler [8]. We now extend this result
by devising a sufficient condition for datalog rewritability of SHZ ontologies
via Compile-Horn-Restricted. Since transitivity axioms can be eliminated from
SHT ontologies by a polynomial transformation while preserving fact entailment
(see [8,5]), it suffices to formulate our condition for ALCHZ.? First, we adapt
the notion of simple rules in [5] as follows.

Definition 4.3. An axiom of the form dR.A T B is simple w.r.t. a set of
predicates S (or S-simple) if A ¢ S. An ontology O is S-simple if so is every
axiom of the form AR.AC B in O.

3 Note that neither Compile-Horn nor Compile-Horn-Restricted are well-suited for deal-
ing with (axiomatised) equality. Both will diverge on every disjunctive program with
equality due to the congruence axioms P(z) A xz =~y — P(y) with P disjunctive.

Note that ontology O; from Example 3.9 is not simple w.r.t. its disjunctive
predicates due to axiom Imarried.Person C Person. If, however, we replace this
axiom with Man M Woman — 1, we obtain a simple ontology, which in turn is
no longer markable. The following theorem then generalises the result in [5] to
a sufficient condition for datalog rewritability of ALCHZ ontologies.

Theorem 4.4. Let O be an ALCHZL ontology that is simple w.r.t. its disjunctive
predicates, and let DD(O) be the disjunctive datalog rewriting of O as in [5].
Compile-Horn-Restricted terminates on DD(O) with a datalog rewriting of O.

5 Evaluation

We have evaluated whether realistic ontologies can be rewritten into datalog us-
ing our approaches. We analysed 118 ontologies that use disjunctive constructs
from BioPortal, the Protégé library, and the corpus in [7]. To transform ontolo-
gies into disjunctive datalog we used KAON2 [14], which succeeded to compute
disjunctive programs for 103 ontologies.* Out of the 103 disjunctive programs,
32 were WL, and 35 were markable. Furthermore, 26 programs could be rewrit-
ten using Compile-Horn, and 27 could be rewritten using Compile-Horn-Restricted
(within 1min). Furthermore, programs produced by Compile-Horn were on av-
erage 18% larger (w.r.t. the number of rules) than those produced by Compile-
Horn-Restricted. Many of the programs obtained by KAON2 contained equality,
and hence could not be rewritten by means of resolution (see Section 4). Hence,
we additionally considered simplified versions of the 103 programs where we re-
moved all rules containing equality. Out of these, 33 turned out to be WL, and 36
were markable; as expected the effect of equality on linearity-based approaches
is rather minor. In contrast, resolution-based approaches were significantly more
effective than before: Compile-Horn succeeded in 39 cases, and Compile-Horn-
Restricted in 41 cases. The intersection between the programs rewritable using
markability and resolution turned out to be quite large: in the general case,
there were 16 programs that could be rewritten by only one approach, and in
the equality-free case only 5. Still, taken together, the two approaches succeeded
to rewrite 39 programs (38%) in the general case and 41 programs (40%) in the
equality-free case. Moreover, on average, 73% of the predicates were datalog, and
so could be queried using a datalog engine even if the disjunctive program was
not rewritable. Finally, we found that 20 out of the 103 ontologies were RL",
out of which 17 were markable. Of the remaining three, two could be rewritten
via resolution.

We have also tested scalability of query answering using datalog programs
obtained by our approach. For this, we used UOBM [13] and DBpedia, which
come with large datasets. We considered the RL" subset of UOBM, which is
equivalent to a markable program but is not datalog rewritable using Compile-
Horn-Restricted, and generated datasets for 1 to 10 universities. DBpedia is a
realistic ontology with a large dataset from Wikipedia. Since DBpedia is Horn,
we extended it with reasonable disjunctive axioms. We used RDFox as a datalog

4 We doctored the ontologies to remove constructs outside SHZQ.

HermiT
dlog disj err

Pellet
dlog disj err

Our approach
dlog disj err

Uo1| <1s 8s 6s 107s 146s 172s

U04| <1s 55s 50s 50s 2l — - —
U07| <1s 62s 3[107s 122s 20 — — —
Ul0| <1s 66s 5|176s 182s 2l — - —

Table 2. Average query answering times

engine. Performance was measured against HermiT [16] and Pellet [18]. We used
a server with two Intel Xeon E5-2643 processors and 128GB RAM. Timeouts
were 10min for one query and 30min for all queries; a limit of 100GB was allo-
cated to each task. We ran RDFox on 16 threads. Systems were compared on
individual queries (one for each predicate in the ontology) and on precomput-
ing answers to all queries. All systems succeeded to answer all queries for U01:
HermiT required 890s, Pellet 505s, and we 52s. Table 2 depicts average times
for datalog and disjunctive predicates, and number of queries on which a system
failed.® Pellet only succeeded to answer queries on U01. HermiT’s performance
was similar for datalog and disjunctive predicates. In our case, queries over the
130 datalog predicates in UOBM (88% of the 148 predicates in UOBM) were
answered instantaneously (<1s); queries over disjunctive predicates were signif-
icantly harder. Finally, due to its size, DBpedia’s dataset cannot even be loaded
by HermiT or Pellet. Still, we could compare the rewritings obtained by mark-
ing and Compile-Horn-Restricted. Since Compile-Horn-Restricted cannot compute
rewritings on per query basis, we compared the rewritings for the full ontolo-
gies only. Using RDFox, the rewritings produced by the marking approach and
Compile-Horn-Restricted precomputed the answers for all predicates in 48 and
1.5 seconds, respectively. In this case, the rewriting obtained by Compile-Horn-
Restricted performs better as it introduces fewer rules. The marking approach
introduces predicates of higher arity, which leads to a larger materialisation.

6 Conclusion

We have proposed enhanced techniques for rewriting disjunctive datalog pro-
grams and DL ontologies into plain datalog programs. Our techniques enable
the use of scalable datalog engines for data reasoning. In this paper, we have
focused on rewritings that preserve fact entailment and hence answers to atomic
queries; we are working on rewriting techniques for full conjunctive queries.

Acknowledgements This work was supported by the Royal Society, the EPSRC
projects Score!, Exoda, and MaSI?, and the FP7 project OPTIQUE.

5 Average times do not reflect queries on which a system failed.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family

and relations. J. Artif. Intell. Res. 36, 1-69 (2009)

Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Handbook of Auto-
mated Reasoning, pp. 19-99. Elsevier and MIT Press (2001)

Bienvenu, M., ten Cate, B., Lutz, C., Wolter, F.: Ontology-based data access: A
study through disjunctive datalog, CSP, and MMSNP. In: PODS. pp. 213-224
(2013), arXiv:1301.6479

Bishop, B., Kiryakov, A., Ognyanoff, D., Peikov, 1., Tashev, Z., Velkov, R.:
OWLIM: A family of scalable semantic repositories. Semantic Web 2(1), 33-42
(2011)

Cuenca Grau, B., Motik, B., Stoilos, G., Horrocks, I.: Computing datalog rewritings
beyond Horn ontologies. In: IJCAIL pp. 832-838 (2013), arXiv:1304.1402

Eiter, T., Ortiz, M., Simkus, M., Tran, T.K., Xiao, G.: Query rewriting for Horn-
SHIQ plus rules. In: AAAI pp. 726-733 (2012)

Gardiner, T., Tsarkov, D., Horrocks, I.: Framework for an automated comparison
of description logic reasoners. In: ISWC. pp. 654-667 (2006)

Hustadt, U., Motik, B., Sattler, U.: Reasoning in description logics by a reduction
to disjunctive datalog. J. Autom. Reasoning 39(3), 351-384 (2007)

. Kaminski, M., Cuenca Grau, B.: Sufficient conditions for first-order and datalog

rewritability in ELU. In: DL. pp. 271-293 (2013)

Kaminski, M., Nenov, Y., Cuenca Grau, B.: Datalog rewritability of disjunctive
datalog programs and its applications to ontology reasoning. In: AAAI (2014),
arXiv:1404.3141

Kaminski, M., Nenov, Y., Cuenca Grau, B.: Datalog rewriting techniques for non-
Horn ontologies. Tech. rep., Department of Computer Science, University of Oxford
(2014), https://krr-nas.cs.ox.ac.uk/DL-2014 /rewritings /paper.pdf

Krisnadhi, A., Lutz, C.: Data complexity in the ££ family of description logics.
In: LPAR. pp. 333-347 (2007)

Ma, L., Yang, Y., Qiu, Z., Xie, G.T., Pan, Y., Liu, S.: Towards a complete OWL
ontology benchmark. In: ESWC. pp. 125-139 (2006)

Motik, B.: Reasoning in Description Logics using Resolution and Deductive
Databases. Ph.D. thesis, Univesitat Karlsruhe (TH), Karlsruhe, Germany (2006)

Motik, B., Nenov, Y., Piro, R., Horrocks, I., Olteanu, D.: Parallel materialisation
of datalog programs in centralised, main-memory RDF systems. In: AAAT (2014)
Motik, B., Shearer, R., Horrocks, I.: Hypertableau reasoning for description logics.
J. Artif. Intell. Res. 36, 165-228 (2009)

Pérez-Urbina, H., Motik, B., Horrocks, I.: Tractable query answering and rewriting
under description logic constraints. J. Appl. Log. 8(2), 186-209 (2010)

Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical
OWL-DL reasoner. J. Web Sem. 5(2), 51-53 (2007)

Trivela, D., Stoilos, G., Chortaras, A., Stamou, G.B.: Optimising resolution-based
rewriting algorithms for DL ontologies. In: DL. pp. 464-476 (2013)

Wu, Z., Eadon, G., Das, S., Chong, E.I., Kolovski, V., Annamalai, M., Srinivasan,
J.: Implementing an inference engine for RDFS/OWL constructs and user-defined
rules in Oracle. In: ICDE. pp. 1239-1248 (2008)

