
A Process Algebraic Approach to Decomposition
of Communicating SysML Blocks

Jaco Jacobs & Andrew Simpson
Department of Computer Science, University of Oxford

Wolfson Building, Parks Road
Oxford OX1 3QD

{jaco.jacobs,andrew.simpson}@cs.ox.ac.uk

Abstract—The block concept is a fundamental modelling
construct in the Systems Modeling Language (SysML), a
visual modelling language for systems engineering applications.
In a top-down systems engineering approach, an abstract
block is decomposed into concrete communicating sub-blocks.
However, the classifier behaviour of the abstract block must
be exhibited by the composition of the concrete sub-blocks.
We show how the process algebra Communicating Sequential
Processes (CSP) and its associated refinement checker, Failures
Divergence Refinement (FDR), may be used to ensure that such
decompositions are valid. We introduce a small case study in
order to validate the approach.

Index Terms—Systems Modeling Language, Communicating
Sequential Processes, Composability

I. INTRODUCTION

The demand for aggregate systems — compositions of
complex interconnected components — increases constantly;
consequently, much research has been aimed at modelling
approaches where the emphasis lies on treating a system
as part of a larger composition. The Systems Modeling
Language (SysML) [1], proposed by the Object Management
Group (OMG)1, is a graphical modelling notation suited to
specify and design systems comprised of various compo-
nents.

Modelling a system with SysML relies on the concept
of blocks — each with an associated set of states — that
communicate via events, possibly resulting in a change of
state for one or more of the communicating blocks. The
architecture of these systems allows a top-down design,
starting from an abstract level with high level concepts, down
to levels with increasingly more details. These successive
transformations allow replacing an abstract block with a
composition of concrete sub-blocks. A major drawback of
this decomposition, however, is that it is at best semi-
formal and cannot guarantee consistency between a an
abstract block and its composing sub-blocks. In this paper,
we propose a formal approach based upon Communicating
Sequential Processes (CSP) [2], a well-established process

1http://www.omg.org

algebra. In addition, the existence of Failures Divergence
Refinement (FDR) [3], the associated refinement checker
for CSP, makes translating SysML into CSP even more
appealing: the translation provides us with a formal context
in which we can evaluate and reason about behaviour
without a detailed knowledge of the underlying mathematics
of refinement.

The structure of the remainder of this paper is as follows.
In Section II we provide brief introductions to CSP and
SysML. Section III outlines our process algebraic approach
to test for the validity of a decomposition. Then, in Sec-
tion IV, we employ a small case study to validate our
contribution. Section V draws comparisons with related work
in this area. Finally, in Section VI, we conclude with a
summary of the contribution of this paper, and identify
potential areas of future research.

II. BACKGROUND

In this section we provide a necessarily brief introduction
to CSP and SysML.

A. Communicating Sequential Processes

Events are at the heart of CSP descriptions: the set
of all possible events within the context of a particular
specification is denoted Σ.

The process descriptions used in this paper can be char-
acterised by the following grammar:

P := Stop | a→ P | b & P | P1 2 P2 | P1 u P2 |
P \ H | P1 [| I |] P2 | P1 [IP1 ‖ IP2] P2

The alphabet of a CSP process P, denoted αP, is the set
of events that it is willing to communicate.

Stop is the simplest process: it is the process refuses to
communicate anything at all.

The prefixing operator, →, allows us to prefix an event
a ∈ Σ to a process P.

b & P is a guarded expression, where b is a Boolean
condition that must be satisfied in order for a process to
behave like P.

P1 2 P2 models the deterministic choice between pro-
cesses P1 and P2, where the choice is resolved by the envi-
ronment. Conversely P1 u P2 represents non-deterministic
choice where the choice is resolved internally by the process.

The hiding operator, \, internalises or hides a set of events
H from the alphabet of the process P.

Generalised parallel composition, of the form P1 [| I |] P2,
requires synchronisation on the events of I. Alphabetised
parallel composition, where we specify a synchronisation
interface IP ⊆ αP for a process P, as in P1 [IP1

‖ IP2
] P2,

requires synchronisation on the events of IP1
∩ IP2

.
It is often useful to consider a trace of the events which

a process can communicate: the set of all such possible
finite paths of events which a process P can take is written
traces [[P]]. However, it is well understood that traces on
their own are not enough to fully describe the behaviour of
a process. For a broader description of process behaviour, we
might consider what a process can refuse to do: the refusals
set of a process — the set of events which it can initially
choose not to communicate — is given by refusals [[P]].
By comparing the refusals set with the traces of a process,
we can see which events the process may perform: the
failures of a process P — written failures [[P]] — are the
pairs of the form (t,X) such that, for all t ∈ traces [[P]],
X = refusals [[P/t]] (where P/t represents the process P
after the trace t).

The FDR tool enables us to compare processes in terms of
refinement. We write P1 vM P2 when P2 refines P1 under
the model M. If we were only to consider traces, then

P1 vT P2 ⇔ traces [[P2]] ⊆ traces [[P1]]

Similarly, we can define failures refinement as

P1 vF P2 ⇔
traces [[P2]] ⊆ traces [[P1]]
∧
failures [[P2]] ⊆ failures [[P1]]

B. Systems Modelling Language

The diagrams currently present in SysML can broadly
be classified as: those that enable the modeller to describe
behavioural aspects of a design (use case, activity, sequence
and state machine); and those that allow for the specification
of structure (package, block definition, internal block and
parametric). In addition, the requirement diagram is used to
capture requirements that a design must adhere to.

The block definition diagram allows us to model the
composition of a block: this can be an abstract block that is
composed of concrete sub-blocks; alternatively, this can be
a concrete block composed of other concrete blocks.

The focus of this paper is on modelling the behavioural
aspects (and interactions) of blocks using state machines.
Each block has an associated classifier behaviour, in our case
described using a state machine. Each state machine has a

set of states, and transitions between those states. The blocks
communicate via events that act as stimuli for the associated
state machines, causing the transitions to fire and resulting in
a change of state. For the purposes of this paper, we assume
that these events correspond to synchronous call events, as
these allow us to demonstrate the relevant concepts more
clearly.

III. FORMAL APPROACH TO DECOMPOSITION

Due to limitations of space, we consider only a subset
of the available state machine constructs. However, the
fundamental principles presented extends equally well to
more complex descriptions.

A. Modelling State Machines

A state machine M is a 5-tuple (QM, qM
0 , f

M,TM,EM),
which consists of:
• the finite set of states, QM ,
• the initial state qM

0 ∈ QM ,
• the final state f M ∈ QM ,
• the finite set of transitions TM , and
• the finite set of events EM .
In addition, we define the following functions to return

for a transition:
• the source state sourceM : TM → QM;
• the target state targetM : TM → QM;
• the triggering event triggerM : TM → EM; and
• the effect2 effectM : TM → EM .

For example, effectM(t) returns the behaviour that executes
on the transition t. An effect is optional; in the case where it
is omitted, we define the function to return the empty effect
effectM(t) = ε for a transition t.

Intuitively, the formalisation maps every block’s classifier
behaviour — described by a state machine, M — to a
CSP process, by mirroring the syntactical structure of the
corresponding state machine diagram.

For a state machine, M, each state qM ∈ QM \{qM
0 , f

M} is
mapped to a local state in the corresponding CSP process,
say q. A guarded expression is then used to make the events
corresponding to the outgoing transitions of the current state
available to the environment. For example, assume that the
current state is qM

j , and we have two transitions {t1, t2}
emanating from that state, with effectM(t2) = ε. We can
then model the behaviour using the following process

M(q) =̂
(q = qM

j) & triggerM(t1)→ effectM(t1)→
M(targetM(t1))

2

(q = qM
j) & triggerM(t2)→ M(targetM(t2))

...

2In this paper we assume that every effect is also a trigger.

: A2

: C1

: C0

ibd

bbd

<<block>>
B1

<<block>>
B2

<<block>>
A2

Fig. 1. The decomposition of an abstract block into concrete sub-blocks.

The CSP process is initialised to the initial state of the
corresponding state machine by appropriately setting the
state variable. The finial state has no outgoing transitions
and is modelled by the process Stop.

B. Proposed Approach

Assume that the SysML model is comprised of a set Ω of
N communicating blocks, say Ω = {C0 . .CN−2} ∪ {AN−1},
where the blocks C0 . . CN−2 are concrete, and AN−1 is
abstract. Provided AN−1 is decomposed into K concrete
sub-blocks, B0 . . BK−1, the problem description can be
stated thus: is the suggested decomposition valid, such that
B0 . . BK−1 can be substituted for AN−1 in Ω?

A top-down systems engineering approach allows for an
abstract block, modelling behaviour at a higher level, to
be refined and decomposed into concrete realisations that
are closer to the implementation. However, the behavioural
aspects of the abstract block needs to be preserved if we are
to replace it with the concrete sub-blocks: the behaviour of
the composition should not be able to perform a sequence of
events not permitted by the higher level abstraction (block
AN−1). Clearly, we are excluding events introduced at the
lower level (blocks B0 . . BK−1) from this observation.

Assuming we have a CSP process (with an appropriate
synchronisation set) for each sub-block B0 . . BK−1, we
can form the composition using the alphabetised parallel
operator. We define the process CONCRETE as

CONCRETE =̂‖K−1
j=0 [IBj]Bj

If we consider all the possible sequences of events that
AN−1 communicate as valid, then as long as the process
CONCRETE does not communicate a sequence outside of
these valid sequences, we can use CONCRETE in the place

of AN−1. The more refined process, CONCRETE, is at least
as good as AN−1.

Stated formally, we require

AN−1 vM CONCRETE

The notion of refinement chosen will depend on our pur-
poses: if we wish the composition to not only communicate
within the valid sequences of events, but also, for a given
trace, not to refuse an event that the abstract block would
allow, we require a failures refinement. Otherwise, if we only
wish for the composition to communicate sequences that the
abstract block would, a traces refinement would suffice.

IV. CASE STUDY

The case study is based on a passenger safety system
of a vehicle, inspired by the contribution of Carrillo
et al. [4]. The passenger safety system consists of an
AccelerationSensor, a SeatbeltLock, and an
AirbagControl block. The AccelerationSensor
and SeatbeltLock are concrete; the AirbagControl
block is abstract. We propose to decompose
AirbagControl into concrete Airbag and
OccupantDetectionSensor sub-blocks, in order
to perform its function. This decomposition is natural,
as the an airbag and occupant detection sensor would
conceivably be two separate entities in a vehicle. The
occupant detection sensor detects whether there is an
occupant present in the vehicle, and, if this is the case,
whether it is an adult or infant. If an infant is detected, the
passenger is given the option to either enable or disable the
passenger’s airbag (in case of a flawed detection).

The state machine diagrams for the AirbagControl,
Airbag and OccupantDetectionSensor blocks are
shown in Figures 2, 3, and 4, respectively.

Figure 5 shows the state machine diagram for the
AccelerationSensor. The sensor is responsible for
monitoring the acceleration of the vehicle. If a hard decelera-
tion is detected, it activates the seatbelt lock; conversely, if a
deceleration consistent with impact is detected, the airbag is
deployed. The concrete sub-blocks of AirbagControl needs
to be a refinement if they are to replace the higher level
block and function correctly in the complete system.

The description of the Airbag process is shown below.
The disable and enable signals toggle the state of the airbag.
Once the airbag is deployed, its state machine does not
respond to any other events.

Airbag(q) =̂
(q = enabled) & activate→ Airbag(deployed)
2

(q = enabled) & disable→ Airbag(disabled)
2

(q = disabled) & enable→ Airbag(enabled)
2

stm AirbagControl

infantOnvacant
DetectNone

infantOff

GetEnable

DetectAdult

DectectNone

DetectInfant

GetDisable

adult deployed

DetectNone

DetectNone

Activate

Activate

Fig. 2. The state machine for the abstract AirbagControl block.

stm Airbag

enableddisabled

Enable

Disable

deployed

Activate

Fig. 3. The state machine for the Airbag block.

(q = deployed) & Stop

The process AirbagControl models the higher level be-
haviour of the airbag, depending on whether there is an
infant, an adult, or no occupant detected in the passenger
seat.

AirbagControl(q) =̂
(q = adult) & detectNone→ AirbagControl(vacant)
2

(q = adult) & activate→ AirbagControl(deployed)
...
(q = deployed) & Stop

The processes of our case study are initialised in accor-
dance with their initial state:

AIRBAGCONTROL =̂ AirbagControl(vacant)
AIRBAG =̂ Airbag(disabled)
ODS =̂ OccupantDetectionSensor(vacant)

We combine the sub-block processes (using gener-
alised parallel composition to aid readability) and define
CONCRETE thus:

CONCRETE =̂ AIRBAG [| X |] ODS \ (Σ \ Y)

stm OccupantDetectionSensor

infantOffvacant

DetectNone/Disable

infantOn

GetEnable/Enable

DetectAdult/Enable

DectectNone/Disable

DetectInfant/Enable

GetDisable/Disable

adult

DetectNone/Disable

DetectNone/Disable

Activate

Activate

Fig. 4. The state machine for the OccupantDetectionSensor block.

stm AccelerationSensor

seatLock

normal

Valid

Valid

airbagImpact

HardBreak

Impact

Fig. 5. The state machine for the AccelerationSensor block.

The set of events are given by:

X = {enable, disable, activate}
Y = {detectNone, detectInfant, detectAdult,

getEnable, getDisable, activate}

In the above, we hide all events but those of
αAirbagControl. Using FDR and the hiding operator, we
test if the decomposition is valid:

AIRBAGCONTROL vM CONCRETE

Depending on the model of refinement:
• if M = T , then the refinement holds.
• if M = F, then the refinement does not hold

and a counterexample is returned. FDR suggests that
after performing 〈detectNone〉, the concrete compo-
sition refuses all events, whereas the abstract pro-
cess would allow (not refuse) events from the set
{detectNone, detectInfant, detectAdult}. This can be
remedied by adding a Disable transition-to-self in the
disabled state of the airbag state machine. The failures
refinement now holds.

Having a formal model of the various interacting state
machines would also allow us to better ensure that the
requirements of the design are being met by the overall
model. This would bestow a formal sense of requirements
traceability.

V. RELATED WORK

Various types of UML diagrams have been given a formal
behavioural semantics in CSP. For example, Ng et al. [5]
translated state diagrams, while activity diagrams were trans-
lated by Dong et al. [6].

The application of formal methods to SysML in particular
is extremely topical: Graves et al. [7] focussed on the
integration of SysML with type theory, within the context
of aerospace engineering; CML [8] is a formal modelling
language specifically targeted at the specification and design
of systems of systems.

Moisan et al. [9] introduced an approach based on the
formalisation and subsequent verification of component pro-
tocols using the NuSMV [10] model checker.

In recent component-based verification work, Carillo et
al. [4] defined an approach using interface automata to check
whether a proposed decomposition of an abstract block into
concrete sub-blocks is valid.

VI. CONCLUSION

In this paper we have presented an approach to formalising
and verifying the decomposition of communicating SysML
blocks, in a refinement-based setting, utilising the process
algebra CSP, along with its refinement checker FDR. In
addition, we have illustrated the concepts using a small,
but realistic, case study. Using FDR, we identified several
inconsistencies between the abstract block and the proposed
concrete decompositions.

The benefit of our approach is that there is already
existing tool support available to assist in the refinement
process (with FDR being a prime example). The automated
translation from SysML diagrams to CSP is practically
achievable through the use of a model-driven engineering
framework.

Planned future work includes the development of a model-
based framework to automate the process. The focus of
the framework will be primarily the consistency checking
between diagrams of the same kind, termed intra-diagram
consistency; however, consistency checking between differ-
ent diagram kinds, termed inter-diagram consistency, will
also be a concern.

Ultimately, the fusion of formal and semi-formal methods
— where the modelling activity is largely undertaken in the
semi-formal domain, but with some underlying recourse to
formal methods — will instil more confidence in the validity
of the resulting design.

REFERENCES

[1] Object Management Group, Systems Modelling Language Specifica-
tion, version 1.3, 2012.

[2] C. A. R. Hoare, Communicating Sequential Processes. Prentice Hall,
1985.

[3] Department of Computer Science, University of Oxford & Formal
Systems Europe, Failures Divergence Refinement User Manual, ver-
sion 2.94, 2012.

[4] O. Carrillo, S. Chouali, and H. Mountassir, “Formalizing and verifying
compatibility and consistency of SysML blocks,” ACM SIGSOFT
Software Engineering Notes, vol. 37, no. 4, pp. 1–8, 2012.

[5] M. Y. Ng and M. Butler, “Towards formalizing UML state diagrams in
CSP,” in Proceedings of the 1st International Conference on Software
Engineering and Formal Methods (SEFM 2003), pp. 138–147, IEEE,
2003.

[6] X. Dong, N. Philbert, L. Zongtian, and L. Wei, “Towards formalizing
UML activity diagrams in CSP,” in Proceedings of the International
Symposium on Computer Science and Computational Technology
(ISCSCT 2008), pp. 450–453, IEEE, 2008.

[7] H. Graves and Y. Bijan, “Using formal methods with SysML in
aerospace design and engineering,” Annals of Mathematics and Arti-
ficial Intelligence, vol. 63, no. 1, pp. 53–102, 2011.

[8] J. C. P. Woodcock, A. L. C. Cavalcanti, J. S. Fitzgerald, P. G.
Larsen, A. Miyazawa, and S. Perry, “Features of CML: a formal
modelling language for systems of systems,” in Proceedings of the
7th International Conference on System of System Engineering (SOSE
2012), IEEE, 2012.

[9] S. Moisan, A. Ressouche, and J.-P. Rigault, “Behavioural substitutabil-
ity in component frameworks: a formal approach,” in Proceedings of
the Workshop on Specification and Verification of Component-Based
Systems (SAVCBS 2003), pp. 22–28, ACM, 2003.

[10] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “NuSMV: a new
symbolic model checker,” in Proceedings of the 11th International
Conference on Computer Aided Verification (CAV 1999), vol. 1633 of
Lecture Notes in Computer Science, pp. 495–499, Springer, 1999.

