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AbstratIn this paper we investigate the use of a system of multivariate polynomials torepresent the restritions imposed by a olletion of onstraints. The advantage ofusing polynomials to represent onstraints is that it allows many di�erent forms ofonstraints to be treated in a uniform way. Systems of polynomials have been widelystudied, and a number of general tehniques have been developed, inluding algo-rithms that generate an equivalent system with ertain desirable properties, alled aGr�obner Basis. General algorithms to ompute a Gr�obner Basis have doubly expo-nential omplexity, but we observe that for the systems we use to desribe onstraintproblems over �nite domains a Gr�obner Basis an be omputed more eÆiently thanthis. We also desribe a family of algorithms, related to the alulation of Gr�obnerBases, that an be used on any system of polynomials to ompute an equivalent sys-tem in polynomial time. We show that these modi�ed algorithms an simulate thee�et of the loal-onsisteny algorithms used in onstraint programming. Finally,we desribe how these algorithms an be used in a similar way to loal onsistenytehniques to solve ertain broad lasses of onstraint problems in polynomial time.1 IntrodutionThe onstraint programming paradigm [17℄ involves modelling a real-world problem asa set of variables together with a set of onstraints; the onstraints restrit the allowedombinations of values that an be simultaneously assigned to the variables. As well asapturing many pratial omputational problems, this very general paradigm inludes anumber of speial ases orresponding to problems with partiular forms of onstraints,suh as Integer Programming and Satisfiability. The study of eÆient ways torepresent and solve suh onstraint problems is urrently a very ative area of researhwithin arti�ial intelligene [17℄.In a onstraint programming system eah variable has to be assigned a value fromsome spei�ed (often �nite) domain, and eah onstraint desribes the set of allowedombinations of values for some subset of the variables. A onstraint may sometimesbe spei�ed expliitly, by listing the allowed (or disallowed) ombinations of values ina table. More often, a onstraint is spei�ed impliitly by using some ombination ofavailable prediates, equations, inequalities and logial onnetives.In this paper we explore the use of systems of polynomials to speify onstraints. Wewill say that a system of polynomials allows a partiular ombination of values for a setof variables if the simultaneous assignment of those values to the variables makes all ofthe polynomials in the system evaluate to zero. Suh an assignment is alled a solutionto the system of polynomials.The use of systems of polynomials has been onsidered a number of times in theonstraints literature [2, 13, 14, 16℄, but is typially used to represent onstraints onontinuous variables. Here we fous on the use of polynomials to represent �nite-domainonstraints. The advantage of representing suh onstraints using polynomials is thatthey an then be treated in a uniform way along with ontinuous onstraints, allowingthe development of very general onstraint-solving tehniques. Another advantage is thatsystems of polynomials an be proessed by standard omputer algebra pakages suh as1



Mathematia and REDUCE, so our approah helps to unify onstraint programmingwith other forms of mathematial programming. The approah of using polynomials torepresent �nite-domain onstraints has previously been explored by Clegg, Edmonds andImpagliazzo, but only for the speial ase of Satisfiability problems [6℄.Polynomials provide a very exible and generi representation for problems from awide variety of areas, and they have been intensively studied. In partiular, Buhberger [4℄showed that for any system of polynomials it is possible to ompute an equivalent systemwith a number of desirable properties, whih he alled a Gr�obner Basis. Given a Gr�obnerBasis, it is possible to obtain the solutions to a system of polynomials very easily (ordetermine that it has no solutions). A Gr�obner Basis provides a onvenient representationfor the whole set of solutions whih an be used to answer a wide range of questionsabout them, suh as the orrelations between individual variables, or the total numberof solutions.In general, the omplexity of omputing a Gr�obner Basis for a system of polynomialsis doubly exponential in the size of the system, exept in ertain speial ases. However,we show in Setion 5 that for the systems we use to represent onstraints over �nitedomains this omplexity is only singly exponential, and so is omparable with othergeneral searh tehniques. In Setion 6 we disuss a modi�ed form of the algorithm foromputing a Gr�obner Basis whih runs in polynomial time, but is inomplete, in thesense that it omputes a system whih is not neessarily a Gr�obner Basis. The systemomputed by our modi�ed algorithm has the same solutions as the original system andrepresents a set of equivalent onstraints whih is loally onsistent. We show in Setion 7that this modi�ed form of the algorithm an be used to ahieve the same bene�ts as theloal-onsisteny algorithms whih are widely used in onstraint proessing. Finally, inSetion 8 we disuss the use of adaptive onsisteny tehniques for systems of polynomials.2 Polynomials, Varieties and IdealsIn this setion we introdue the basi onepts related to polynomials whih are usedthroughout the paper. For a more detailed introdution see, for example, [8℄.De�nition 2.1. Let K be any �eld and fx1; : : : ; xng a set of variables. A polyno-mial p(x1; : : : ; xn) over K with variables x1; : : : ; xn is a �nite sum of terms of theform �x1�1 � � � xn�n , where � 2 K and �i 2 f0; 1; 2; : : :g, i = 1; : : : ; n. A single prod-ut x1�1 � � � xn�n is alled a monomial2 over fx1; : : : ; xng.The set of all polynomials over K with variables x1; : : : ; xn, together with the standardaddition and multipliation operations, forms a ring, whih is denoted K [x1 ; : : : ; xn℄. Asystem of polynomials is a set of polynomials whih all belong to the same polynomialring; this set may be �nite or in�nite.2Unfortunately, the words \term" and \monomial" are used by some authors the opposite way round!Here we follow the terminology of [8℄. 2



De�nition 2.2. Let P be a system of polynomials from K [x1 ; : : : ; xn℄. The variety ofP , denoted V (P ), is the set of all solutions to P , that is,V (P ) = fh �1; : : : ; �n i 2 K n : 8p 2 P ; p(�1; : : : ; �n) = 0g :De�nition 2.3. An ideal I over the polynomial ring K [x1 ; : : : ; xn℄ is a system of poly-nomials from K [x1 ; : : : ; xn℄ whih satis�es the following onditions:1. For all f1; f2 2 I we have that f1 + f2 2 I;2. For all u 2 K [x1 ; : : : ; xn℄ and all f 2 I we have that uf 2 I.De�nition 2.4. Let fp1; : : : ; pmg be a �nite system of polynomials from K [x1 ; : : : ; xn℄.The ideal generated by fp1; : : : ; pmg, denoted I (fp1; : : : ; pmg), is given byI (fp1; : : : ; pmg) = ( mXi=1 uipi : ui 2 K [x1 ; : : : ; xn℄) :Given a �nite system of polynomials P = fp1; : : : ; pmg, from K [x1 ; : : : ; xn℄, it is easyto see that the ideal generated by P has exatly the same set of solutions as the originalsystem, that is, V (I (P )) = V (P ).Example 2.5. In this example, assume the polynomials are drawn from C [x; y; z℄, whereC is the �eld of omplex numbers.The ideal I (fx+ y; y + zg) has variety fh a;�a; a i : a 2 C g.The ideal I (fx(x� 1); y + x� 3; z � xg) has variety fh 0; 3; 0 i ; h 1; 2; 1 ig. �There are two standard ways to ombine ideals to obtain new ideals:De�nition 2.6. The sum of two ideals I and J , denoted by I + J , is de�ned by I + J =ff + g : f 2 I; g 2 Jg. The produt of two ideals I and J , denoted by I � J , is de�nedby I � J = ffg : f 2 I; g 2 Jg.These two standard ways of ombining two ideals have a straightforward e�et on theorresponding varieties, as the next result indiates.Lemma 2.7 ([8℄). For any pair of ideals I and J , we have:1. V (I + J) = V (I) \V (J);2. V (I � J) = V (I) [V (J).Furthermore, given two �nite systems of polynomials, they an be ombined in straight-forward ways to obtain generating sets for the sum and produt of their orrespondingideals, as the next result indiates.Lemma 2.8 ([8℄). For any pair of ideals I = I (fp1; : : : ; pmg) and J = I (fq1; : : : ; qlg),we have: 3



1. I + J = I (fp1; : : : ; pm; q1; : : : ; qlg);2. I � J = I (fpiqj : i 2 f1; : : : ;mg; j 2 f1; : : : ; lgg).Combining Lemmas 2.7 and 2.8, if we have two �nite systems of polynomials, eahwith an assoiated set of solutions, then it is easy to obtain a new system of polynomialswhose solutions are preisely the union or intersetion of these two sets of solutions.For example, in the ase of the intersetion, we simply onatenate the two systems ofpolynomials.3 Representing Constraints by Systems of PolynomialsIn this setion we show how various forms of onstraint an be mapped to a system ofpolynomials whose set of solutions is preisely the set of ombinations of values allowedby the onstraint. If we do this for eah onstraint in a problem, then by the observationabove, we an simply onatenate the systems of polynomials we obtain to reate a systemwhih represents the entire problem.We shall assume for simpliity that eah variable in the onstraints we are trying torepresent has a spei�ed domain of possible values, and that these values are representedby natural numbers. Hene eah onstraint allows some set of tuples of natural numbers.We shall represent a onstraint over some subset of the variables x1; : : : ; xn by asystem of polynomials from C [x1 ; : : : ; xn℄. The solutions to this system will be preiselythe assignments (of natural numbers) that satisfy the onstraint.First note that we an restrit the domain of possible values for eah individualvariable to a spei�ed �nite set by inluding in our system a polynomial of the followingform for eah variable.De�nition 3.1. The domain polynomial of a variable x with domain D is the poly-nomial Qj2D(x � j).In this paper we shall assume that all the variables have �nite domains and we willalways inlude a domain polynomial for eah variable in the system used to represent aonstraint (even though they are sometimes redundant). This has the advantage3 thatit makes our solution methods omplete, and provides a simple bound on the omplexity(see Setions 4 and 5). Note that the system of polynomials onsisting of just the domainpolynomials for the variables x1; : : : ; xr represents the rather trivial onstraint whihallows all possible ombinations of values (from the domains) for these variables.Example 3.2. [Constant onstraints℄ Probably the simplest non-trivial form of on-straint on a olletion of variables hx1; : : : ; xr i is a onstant onstraint whih allowsonly a single assignment, say h �1; : : : ; �r i, assigning �i to xi for i = 1; : : : ; r. This on-straint is easily represented by the system of polynomials fx1� �1; x2� �2; : : : ; xr � �rg,whih has just one solution orresponding to the single allowed assignment. �3It has the further tehnial advantage that it ensures that the ideals generated by our systems ofpolynomials are radial [3, Lemma 8.19℄. 4



Example 3.3. [Disjuntive onstraints℄ Some forms of onstraint, suh as the propo-sitional lauses used in the Satisfiability problem, are spei�ed as a disjuntion ofsimpler onstraints. Using Lemmas 2.7 and 2.8, it follows that any suh onstraint anbe represented by the system of polynomials onsisting of the set of all produts of allthe polynomials in the systems representing the disjunts. For example, onsider thepolynomial Qi2f1;:::;rg(xi � �i). This polynomial is satis�ed if, for some i 2 f1; : : : ; rg,we have that xi is assigned �i. In other words, at least one of the xi's is assigned theassoiated �i. This type of polynomial an therefore be used to represent a lause in aninstane of Satisfiability, by setting eah �i to either 0 or 1, depending on whetherthe orresponding literal in the lause is negative or positive. For example, the lause:x _ y _ :z is represented by the polynomial x(y � 1)z, whih is equal to xyz � xz. �Example 3.4. [Linear Equations℄ Any linear equation involving variables x1; : : : ; xr anbe written in the form p(x1; : : : ; xr) = 0, where p is a speial form of polynomial in whihP�i � 1 for all terms �x1�1 � � � xr�r . This means that any onstraint whih is expressedby one or more linear equations is naturally represented by a system of polynomials. Thisinludes many of the onstraints enountered in Integer Programming problems. �Example 3.5. [Inequality℄ Consider the onstraint \x � y" over the variables x and ywhih eah have the domain f1; 2; : : : ; dg. The set of solutions to this onstraint an berepresented by the system of polynomials P = fpi(x; y) : i = 1; : : : ; dg, wherepi(x; y) = Y1�j�i(x� j) Yi+1�j�d(y � j): �Example 3.6. [Table onstraints℄ Any onstraint whih spei�es an expliit list of al-lowed ombinations an be seen as a disjuntion of onstant onstraints, so in priniplewe an use the methods desribed in Examples 3.2 and 3.3 to build a suitable system ofpolynomials to represent suh onstraints. However, in pratie this method has a majorlimitation, in that it may produe systems of huge size.Fortunately, there is a more sophistiated algorithm whih omputes a system ofpolynomials with a spei�ed �nite set of solutions in polynomial time in the size of thatset [5℄. In other words, there is a known algorithm whih an be used to �nd a system ofpolynomials to represent any onstraint spei�ed by an expliit list of allowed tuples inpolynomial time. �The examples above illustrate how onstraints spei�ed in various ways an be mappedto systems of polynomials whose solutions are preisely the ombinations of values allowedby the onstraints.4 Gr�obner BasesOne we have onstruted a system of polynomials whose solutions are preisely theassignments that satisfy a given olletion of onstraints, there are a number of questions5



we may wish to ask, suh as: Does this system of polynomials have a solution? Does x3take the value 7 in all solutions? In this setion we examine ways in whih a system ofpolynomials an be manipulated to obtain a new system with the same set of solutionswhih makes answering suh questions easier.Note that any two systems of polynomials whih generate the same ideal have thesame sets of solutions, sine the variety of a system of polynomials is equal to the varietyof the ideal that it generates. It turns out that a system of polynomials is partiularlyonvenient to work with if it is a Gr�obner Basis for the ideal that it generates. To de�nethis property, we �rst have to de�ne an ordering for the monomials in our polynomials.De�nition 4.1. A monomial ordering, �, on a set of variables fx1; : : : ; xng is a totalordering on monomials over fx1; : : : ; xng whih satis�es the onditions:1. For all monomials �1, �2 and �3 we have �1 � �2 ) �1 � �3 � �2 � �3;2. Every non-empty set of monomials has a smallest element with respet to �.Example 4.2. One important monomial ordering is the lexiographi ordering, �lex,whih is de�ned byx1�1 � � � xn�n �lex x1�1 � � � xn�n () h�1; : : : ; �n i < h�1; : : : ; �n i ;where the ordering on tuples of natural numbers is the usual lexiographi ordering. �Example 4.3. Another important monomial ordering is the total degree lexio-graphi ordering, �d-lex, whih is de�ned byx1�1 � � � xn�n �d-lex x1�1 � � � xn�n () �X�i <X �i�_�X�i =X�i� ^ h�1; : : : ; �n i < h �1; : : : ; �n iwhere the ordering on tuples of natural numbers is the usual lexiographi ordering. �One we have ordered the monomials, we an identify a distinguished term in everypolynomial, in the following way.De�nition 4.4. Given a monomial ordering � on the set of variables fx1; : : : ; xng anda non-zero polynomial u = Pi �i�i from K [x1 ; : : : ; xn℄, where eah �i 2 K and eah �iis a monomial over fx1; : : : ; xng, the leading monomial (lm) of u is the maximum ofthe �i under the monomial ordering �. If the leading monomial is �j (for some j), thenthe leading term (lt) of u is �j�j.Example 4.5. Consider the polynomial 4x3 + 2y2 + xy in the polynomial ring C [x; y℄.Under the lexiographi ordering, with x � y, the leading monomial is y2 whilst theleading term is 2y2. Under total degree lexiographi ordering, with x � y, the leadingmonomial is x3 whilst the leading term is 4x3. �Using the notion of leading term we an now de�ne a form of division algorithm formulti-variate polynomials. 6



De�nition 4.6. For any system of polynomials P = fp1; : : : ; pmg from K [x1 ; : : : ; xn℄,and any polynomial u 2 K [x1 ; : : : ; xn℄, a remainder of u on division by P , denotedujP , is obtained by repeatedly performing the following \redution" rule until it annot befurther applied:Choose any i 2 f1; : : : ;mg suh that lt(pi) divides some term � of u and replae uwith u � �lt(pi)pi.Unfortunately, in the general ase the remainder of a given polynomial on divisionby a given system of polynomials is not uniquely de�ned. This is beause the resultof performing the division algorithm in De�nition 4.6 is not unique: it an produedi�erent results depending on the order in whih the polynomials in P are onsidered.Furthermore, in general, even when a polynomial f is in the ideal I (P ), it is not alwaysthe ase that fjP = 0. For example, x annot be redued by either polynomial in thesystem fx2 + x; x2g, although it an learly be written as the �rst polynomial minus theseond, and hene belongs to the ideal generated by this system.De�nition 4.7 ([4, 3℄). A system of polynomials G from K [x1 ; : : : ; xn℄ is alled aGr�obnerBasis (with respet to a given monomial ordering) if it satis�es the property that ujG isuniquely de�ned for any u 2 K [x1 ; : : : ; xn℄.One very useful property of a Gr�obner Basis is that it an be used to determinewhether a given polynomial belongs to the ideal that the basis generates, as the nextresult shows.Theorem 4.8 ([8℄). If G is a Gr�obner Basis, then fjG = 0 if and only if f 2 I (G).The next example demonstrates the use of a Gr�obner Basis to provide a onvenientrepresentation for a table onstraint.Example 4.9. The following relation over the set D = f 1; 2; 3; 4 g appeared in [12,Example 13℄ where it was used as an example of a relation having a large amount ofsymmetry: R = f h 1; 2; 2; 3; 4 i ; h 1; 2; 2; 4; 3 i ; h 1; 2; 3; 1; 2 i ;h 2; 4; 2; 3; 4 i ; h 2; 4; 2; 4; 3 i ; h 2; 4; 3; 1; 2 i g :If we onsider this relation as a onstraint on the variables h a; b; ; d; e i, then it an berepresented by the following system of polynomials:G = f e3 � 9e2 + 26e� 24 ; b2 � 6b+ 8 ;d+ 2e2 � 13e + 17 ; 2� e2 + 7e� 16 ; 2a� b g :This system of polynomials is a Gr�obner Basis (with respet to the lexiographi mono-mial order where e � b � d �  � a). The two uni-variate polynomials in the set Gorrespond to unary onstraints: they indiate that the seond omponent of any so-lution satisfying the onstraint has to be in f 2; 4 g and the last omponent has to be7



in f 2; 3; 4 g. The remaining polynomials in the set G are bi-variate: they indiate rela-tionships whih were impliit in R and whih are revealed by the Gr�obner Basis. Thefat that these polynomials are linear in the variables d;  and a indiates that for anyh b; e i 2 f 2; 4 g � f 2; 3; 4 g there is exatly one h a; b; ; d; e i 2 R and vie versa. In par-tiular, if h a; b; ; d; e i 2 R then d = �2 e2+13 e�17,  = ( e2�7 e+16 )=2, and a = b=2.�One remarkable result established by Buhberger is that given any �nite system ofpolynomials, and any �xed monomial ordering, it is possible to ompute a new systemof polynomials whih generates the same ideal and is a Gr�obner Basis [4, 8℄. One wayto do this is to use Algorithm 1, whih is known as Buhberger's Algorithm [4, 8℄4. Thealgorithm makes use of a onstrut alled the S-polynomial of two given polynomials,whih is de�ned as follows.De�nition 4.10. Given two monomials x1�1 � � � xn�n and x1�1 � � � xn�n, their lowestommon multiple (lm) is x1max(�1;�1) � � � xnmax(�n;�n).Given two polynomials u1 and u2 and a monomial ordering, the S-polynomial of u1and u2, denoted S-Pol (u1; u2), islm(lm(u1); lm(u2))lt(u1) u1 � lm(lm(u1); lm(u2))lt(u2) u2 :Example 4.11. Let p = x3 + z3 and q = y3 + z3, and take a total degree lexiographiordering with z � y � x. Then we have S-Pol (p; q) = y3z3 � x3z3.Note that although the leading terms of the two polynomials are eliminated in thealulation of their S-polynomial, the result may have a leading monomial whih is higherin the monomial ordering than either of these original leading terms, as this exampleshows. �Example 4.12. Consider a set Q of domain polynomials orresponding to distint vari-ables. Note that eah domain polynomial in Q is uni-variate, and the leading terms ofany two domain polynomials for distint variables do not share a variable. This impliesthat the S-polynomial of any two domain polynomials in Q is redued by those two poly-nomials to zero (see Lemma 3.3.1 of [1℄). Hene, applying Buhberger's Algorithm toQ will not hange the set. It follows that any set of domain polynomials orrespondingto any olletion of distint variables is a Gr�obner Basis with respet to any monomialordering. �Example 4.13. Reall from Example 3.5 that the onstraint \x � y" over the variablesx and y whih eah have the domain f1; 2; : : : ; dg an be represented by the system ofpolynomials P = fpi(x; y) : i = 1; : : : ; dg, wherepi(x; y) = Y1�j�i(x� j) Yi+1�j�d(y � j):4More sophistiated and eÆient re�nements of this algorithm have been developed, and are generallyused in pratie, but this simple version is suÆient to illustrate the tehnique and allow a straightforwardomplexity analysis. 8



Algorithm 1 Buhberger's Algorithm1: GIVEN: P : Set of initial polynomials2: RETURNS: G: Gr�obner Basis3: BEGIN: G := P , T := ffg1; g2g : fg1; g2g � Gg4: while T 6= ; do5: Selet fg1; g2g from T and set T := T n ffg1; g2gg6: h := S-Pol (g1; g2)7: h0 := hjG8: if h0 6= 0 then9: T := T [ ffg; h0g : g 2 Gg10: G := G [ fh0g11: end if12: end whileWhatever monomial ordering we hoose, P is a Gr�obner Basis. To see this, it is suÆientto show that S-Pol (pa; pb) jP = 0 for all a; b 2 f1; : : : ; dg. Without loss of generalityassume a < b. Then the greatest ommon divisor of pa and pb is:Y1�j�a(x� j) Yb+1�j�d(y � j)After dividing both polynomials by this, the �rst will beome a polynomial only in y, andthe seond a polynomial only in x. The result then follows by Lemma 3.3.1 of [1℄. �One we have omputed a Gr�obner Basis, it is then muh easier to obtain the solutionsto the original set of polynomials (or determine that there are no solutions). In partiular,we an deide whether the system has a solution using the following well-known result(proved in [3, Theorem 7.40℄).Theorem 4.14 (Hilbert's Nullstellensatz). Let K be an algebraially losed �eld and Ibe an ideal in K [x1 ; : : : ; xn℄. The variety V (I) is empty if and only if I ontains thepolynomial 1.Hene to deide whether a system of polynomials has any solutions we an simply al-ulate a Gr�obner Basis (with respet to any monomial ordering) and then hek whetherit ontains a polynomial that is a non-zero onstant. If so, the system has no solutions.Otherwise, at least one solution exists.Example 4.15. A olletion of benhmark instanes of the Satifiability problem areprovided at www.satlib.org. These an easily be onverted to systems of polynomi-als and then passed to a omputer algebra pakage, suh as Mathematia, to obtain aGroebner Basis.Some of these benhmark instanes ontain random 3-lauses. For example, the in-
9



stane \uf20-01" ontains 91 random 3-lauses over 20 variables, as follows:fx4 _ :x18 _ x19; x3 _ :x5 _ x18; :x5 _ :x8 _ :x15;_ x7 _ :x16 _ :x20; :x7 _ x10 _ :x13; :x9 _ :x12 _ x17; � � � ;x9 _ x17 _ :x19; :x2 _ x12 _ x17; x4 _ :x5 _ :x16g:A straightforward mapping to polynomials as desribed in Example 3.3 gives the followingsystem of 91 polynomials:f(1� x4) x18 (1� x19) ; (1� x3)x5 (1� x18) ; x5x8x15;(1� x7) x16x20; x7 (1� x10) x13; x9x12 (1� x17) ; � � � ;(1� x9) (1� x17) x19; x2 (1� x12) (1� x17) ; (1� x4)x5x16g:If we ombine this system with domain polynomials xi(xi�1), restriting eah variable xito the Boolean values 0 or 1, then the in-built GroebnerBasis ommand of Mathematiaalulates the following Gr�obner Basis for the ombined system in around 2 seonds5:fx20 � 1; x219 � x19; x18 � x19; x17 � 1; x16; x15 � 1; x14 � 1; x13x19;x213 � x13; x12; x11 � x19; x10x19 � x19; x13x10 � x10 + x19; x210 � x10; x9x19 � x19;x13x9 � x9 � x13 + 1; x9x10 � x19; x29 � x9; x8x19 � x19; x13x8 � x8 + x19; x8x10 � x8;x8x9�x19; x28�x8; x7; x6x19; x13x6�x6�x13�x19+1; x10x6�x6�x10+1; x6x9�x9+x19;x6x8; x26 � x6; x5; x4x19 � x19; x13x4 � x4 + x19; x4x10 � x10; x4x9 � x19; x4x8 � x8;x6x4 � x4 � x6 + 1; x24 � x4; x3 � x19; x2 � x19; x1 + x19 � 1g:By Theorem 4.14, this indiates that this instane is soluble. Furthermore, many ofthe polynomials in this basis are linear, indiating that the orresponding variables have�xed values in all solutions. For example, variable x20 must be assigned the value 1 inall solutions. �One we have determined that a system has a solution, we an build suh a solutionby onstruting progressively larger satisfying partial assignments whih we an verifywill extend to a omplete solution.One way to do this is to generate a Gr�obner Basis G for the system just one. Wean then hek whether any partiular partial assignment s extends to a solution byheking whether the polynomial ps whih forbids preisely that assignment is in theideal generated by G. To do this we simply have to ompute psjG. If psjG = 0, then psis in the ideal, and hene the assignment s annot be part of a solution, otherwise ps isnot in the ideal, and hene s an be extended to a solution.An alternative method is to add polynomials representing the partial assignment(reall Example 3.2) to the system and regenerate the Gr�obner Basis. We then useHilbert's Nullstellensatz to determine the satis�ability of the new system. Sine we anonstrut solutions in this way without baktraking, all solutions to a problem with nvariables, eah with d possible values, an be found with at most n� d iterations.5All timings reported in this paper were obtained using Mathematia 5.2 running under Windows XPon a Pentium 4 proessor running at 3.2GHz. 10



5 ComplexityFor a general system of polynomials P , the worst-ase omplexity of Buhberger's Algo-rithm is doubly exponential in the size of P [3, Page 513℄, and hene it an only be usedwith on�dene for very small systems.However, the systems of polynomials we are onsidering have the speial property thatthey ontain a domain polynomial for eah variable, limiting the possible values for thatvariable to a �xed �nite set. We will now show that in this speial ase the omplexity ofBuhberger's Algorithm is only singly exponential, and hene essentially no worse thanother general solution methods for �nite domain onstraint satisfation problems, suhas baktrak searh.Lemma 5.1. Let P be a system of polynomials over x1; : : : ; xn whih ontains a domainpolynomial for eah variable of degree at most d. The total number of new polynomialsadded to P by Buhberger's Algorithm is at most dn, eah of whih ontains at most dnmonomials.Proof. Note that in Algorithm 1 eah polynomial h is redued by P before being addedto the set G. If any term of h ontains any variable x whose exponent is larger than d,then it will be redued by the domain polynomial to give a lower power of x. Moreover,eah new polynomial added to G must have a di�erent leading monomial from all urrentmembers of G, or else it will be further redued before being added. The number ofdistint monomials over x1; : : : ; xn, where eah power is at most d � 1 is dn. Further,eah of these monomials has at most dn monomials with this property whih preede itin any monomial ordering, so eah polynomial added ontains at most dn monomials.Lemma 5.1 shows that the number of times that we an generate a new non-zeropolynomial (line 8 of Algorithm 1) is bounded by dn. Eah of these adds at most jP j+dnelements to T (line 9). Therefore, the entral loop (lines 4-12) exeutes at most jP j2 +(jP j+dn)dn < (jP j+dn)2 times. Calulating the S-polynomials and redued polynomials(lines 6 and 7) are both polynomial in the size of their input (also polynomial-size injP j+ dn). Therefore, Algorithm 1 runs in polynomial time in jP j+ dn.On the other hand, our next example demonstrates that a Gr�obner Basis representinga onstraint problem an be very large, even for some very simple problems.Example 5.2. Consider the onstraint problem with variables x1; : : : ; xn (eah withdomain f1; : : : ; dg) and a line of inequality onstraints x1 � x2 � � � � � xn.We an onstrut a system of polynomials, P , whose solutions are the solutions to thisonstraint problem simply by ombining the Gr�obner Bases for the inequality onstrainton eah pair of adjaent variables, as given in Example 3.5. However, the resulting systemof dn polynomials is not a Gr�obner Basis for the ideal generated by P , as we shall nowdemonstrate.For any set J = fi1; i2; : : : ; idg suh that 1 � i1 � i2 � � � � � id � n, we de�ne thepolynomial pJ as follows: pJ(xi1 ; : : : ; xid) = (xi1 � 1)(xi2 � 2) � � � (xid � d): Note thatany solution to the onstraint problem we are onsidering is a solution to pJ = 0, sopJ 2 I (P ). But this means that this ideal ontains polynomials whih have as leading11



monomials all possible monomials of total degree d. It is known [8℄ that the leadingmonomials of the polynomials in any Gr�obner Basis generate all the leading monomialsof all polynomials in the ideal. Hene P is not a Gr�obner Basis. However, the muh largerset of polynomials, ontaining all �n+d�1n�1 � polynomials of the form pJ , an be shown tobe a Gr�obner Basis with respet to any monomial ordering.For example, when n = 10 and d = 5 this set of polynomials ontains �149 � = 2002polynomials. It takes more than 7 minutes to alulate this Gr�obner Basis using Mathe-matia. �Example 5.2 shows that the size of the Gr�obner Basis grows rapidly with n and d in thisase, whatever monomial ordering is used, and an be expensive to ompute, even thoughthe underlying onstraint problem is very straightforward. This is beause the Gr�obnerBasis enodes information about all of the relationships that an be dedued between allof the variables in the problem. In the next setion we onsider modifying Buhberger'sAlgorithm to obtain a system of polynomials whih enodes only loal relationships amongthe variables.6 A Weaker Form of BasisIn order to obtain a polynomial-time variant of Buhberger's Algorithm, we will nowdesribe a modi�ed form of the basi algorithm whih will generally be inomplete, inthe sense that it generates a system of polynomials whih may not always be a Gr�obnerBasis, but an still provide useful information, as we will establish below. This approahhas been previously studied by Clegg et al. [6℄ for the speial ase of onstraint problemsover Boolean domains (that is, for instanes of the Satisfiability problem). In thissetion we will extend their approah to a more general setting by de�ning a new formof basis for a polynomial system.We �rst de�ne a link between Gr�obner Bases and a ertain proof system.De�nition 6.1. Given a system of polynomials P from K [x1 ; : : : ; xn℄ we de�ne a derivation-proof from P of a polynomial f to be a sequene of polynomials h f1; : : : ; fb i suh thatfb = f, and for i = 1; : : : ; b, we have:9p 2 P [ ff1; : : : ; fi�1g;9u 2 K [x1 ; : : : ; xn℄; fi = pu _9fj; fk 2 ff1; : : : ; fi�1g; fi = fj + fkIf there exists a derivation-proof of f from P , then we denote this by P ` f.Notie that a polynomial f has a derivation-proof from some system of polynomialsP if and only if f is in the ideal generated by P . Hene, by Theorem 4.8, given a Gr�obnerBasis G, and a polynomial f, fjG = 0 if and only if G ` f.In order to obtain more eÆient algorithms for proessing polynomials we will nowrestrit the notion of a derivation-proof, in order to de�ne a weaker form of proof system,and a orrespondingly weaker notion of basis. We do this by restriting the polynomialsthat an be used in a derivation. 12



De�nition 6.2. A derivation-proof h f1; : : : ; fb i is alled a �-proof if the polynomialderived at every step satis�es a spei�ed property � (that is, �(fi) holds, for i = 1; : : : ; b).If there exists a �-proof of f from P then we write P `� f.We will say that a system of polynomials G is a �-basis if, for any polynomial fsatisfying �, fjG = 0 if and only if G `� f.Our next theorem will establish a suÆient ondition for a system of polynomialsto be a �-basis, for a broad lass of properties �. The proof is similar in style to theusual proof that \Buhberger's S-pair riterion" is a suÆient ondition to establish aGr�obner Basis (see, for example, [8, Page 83, Theorem 6℄). First we need some tehnialde�nitions, and a standard lemma.De�nition 6.3. Given a system of polynomials P , and a property �, we say that apolynomial f has a �-representation over P if f an be written as Pi pihi where eahpi 2 P , and eah pihi satis�es �.Given a system of polynomials P , and a monomial ordering �, we say that a polyno-mial f is semi-reduible over P with respet to � if f an be written as Pi pihi whereeah pi 2 P , and eah pihi satis�es lm(pihi) � lm(f).Lemma 6.4 ([8, Page 81, Lemma 5℄). Suppose we have a linear sum of polynomialsPsi=1 ifi, where i 2 K and lm(fi) = � for all i.If lm(Psi=1 ifi) � �, then Psi=1 ifi is a linear sum, with oeÆents in K , of theS-polynomials S-Pol (fj; fk) for 1 � j; k � s. Furthermore, lm(S-Pol (fj; fk)) � � foreah j; k.Theorem 6.5. Let � be a monomial ordering, and let � be a property of polynomialssuh that if �(f) holds, and lm(g) � lm(f), then �(g) also holds.Let Q be a system of polynomials suh that, for all q1; q2 2 Q, if S-Pol (q1; q2) satis�es�, then S-Pol (q1; q2) is semi-reduible over Q with respet to �.Then for any polynomial p satisfying � the following are equivalent:1. Q `� p;2. p is �-representable over Q;3. p is semi-reduible over Q with respet to �;4. pjQ = 0Proof. We �rst show that (2), (3).To establish that (2) ) (3), assume for ontradition that there exists some polyno-mial p whih is �-representable over Q but not semi-reduible over Q with respet to �.Sine p is �-representable, we know that p an be expressed asPhiqi, where eah qi 2 Qand eah hiqi satis�es �. Sine p is not semi-reduible, we know that in any suh repre-sentation lm(p) � maxiflm(hiqi)g. Choose a representation for whih maxiflm(hiqi)g isminimal (aording to �) and all this monomial �p.13



If we set I = fi : lm(hiqi) = �pg, then we obtain:p =Xi2I lt(hi)qi +Xi2I (hi � lt(hi))qi +Xi62I hiqiwhere all of the polynomials in the �rst summation have leading monomial �p, and allpolynomials in the other summations have a leading monomial whih is stritly smaller(aording to �).By Lemma 6.4, we an express the �rst summation as a linear sum of S-polynomialsof pairs of lt(hi)qi terms. We an then rewrite these S-polynomials, as follows, where wewrite Ljk for lm(lt(qj); lt(qk)):S-Pol (lt(hj)qj ; lt(hk)qk) = �plt(hj) lt(qj) lt(hj)qj � �plt(hk) lt(qk) lt(hk)qk= �plt(qj) qj � �plt(qk) qk= �pLjk � Ljklt(qj) qj � Ljklt(qk) qk�= �pLjk S-Pol (qj; qk) :By Lemma 6.4, eah S-Pol (lt(hj)qj ; lt(hk)qk) has leading monomial stritly smallerthan �p, and hene so does eah S-Pol (qj; qk). By our hoie of property �, this meansthat eah S-Pol (qj; qk) satis�es �. By our assumption about Q, this mean that eahS-Pol (qj; qk) is semi-reduible over Q with respet to �. Hene we an express eahS-Pol (lt(hj)qj ; lt(hk)qk) as a sum of polynomials from Q with polynomial oeÆientswhere eah term in the summation has leading monomial stritly smaller than �p. Thisontradits the minimality of �p and hene establishes the result that (2)) (3).The onverse is straightforward: by the hoie of property �, it follows immediatelyfrom De�nition 6.3 that any polynomial whih is semi-reduible and satis�es � is also�-representable. Hene (3)) (2).Next we show that (1) , (2). Let p be any polynomial suh that Q `� p. We willshow that p is �-representable over Q by indution on the length of the �-proof of p fromQ (see De�nition 6.1). For the base ase, if p = qu, for some q 2 Q, and p satis�es �,then p is learly �-representable over Q.Now assume that p has a �-proof of length i, and the result holds for all shorterproofs.If p = fju for some fj with a shorter proof, then we know by the indution hypothesisthat fj is �-representable over Q, and hene semi-reduible over Q with respet to �,by the argument above. This means that fj = Phiqi where lm(hiqi) � lm(fj). Henep =Phiqiu where lm(hiqiu) � lm(fju) = lm(p). Hene in this ase p is semi-reduibleover Q with respet to �, and hene �-representable, by the argument above.If p = fj + fk for some fj ; fk with shorter proofs, then we know by the indutionhypothesis that fj and fk are �-representable over Q. Adding these representations givesa �-representation for p over Q. 14



Hene, in all ases p is �-representable, so we have shown that (1)) (2).The onverse is immediate from De�nition 6.3 and De�nition 6.1, sine any polynomialwhih is �-representable over a set Q learly has a �-proof from Q.Finally, we show that (3), (4). Assume for ontradition that there exists a polyno-mial p satisfying � whih is semi-reduible over Q with respet to �, but with pjQ 6= 0.Chose suh a polynomial whose leading monomial is as small as possible (aording to�). Sine p is semi-reduible, we know that p an be expressed as Phiqi, where eahqi in Q and eah hiqi satis�es lm(hiqi) � lm(p). In this summation there must exist atleast one hiqi suh that lm(hiqi) = lm(p), and for this value of i we have lt(qi)j lt(p).Now onsider the polynomial p0 = p� lt(p)lt(qi)qi.By the results above, Q `� p. Hene Q `� p0, so p0 is also semi-reduible over Q withrespet to �, by the results above. Sine the leading monomial of p0 is stritly smallerthan the leading monomial of p, we know by the hoie of p that p0jQ = 0. Howeverthis implies that pjQ = 0, whih ontradits the hoie of p. Hene we have shown that(3)) (4).The onverse follows immediately from De�nition 4.6, sine any polynomial whihredues to 0 over Q must be semi-reduible over Q.We have shown that the onditions desribed in Theorem 6.5 are suÆient to ensurethat the system of polynomials Q is a �-basis. Now onsider a modi�ed form of the origi-nal Buhberger Algorithm, as shown in Algorithm 1, whih only onsiders S-polynomialswhih satisfy the property �. In other words, the algorithm only performs lines 7-11 whenthe S-polynomial h satis�es �. Suh a modi�ed form of the algorithm will be alled a�-trunated Buhberger Algorithm. When � is a property of the form spei�ed in The-orem 6.5, the system of polynomials omputed by a �-trunated Buhberger Algorithmwill satisfy the onditions of Theorem 6.5, and hene will be a �-basis.Even though a �-basis omputed in this way is not guaranteed to be a Gr�obner Basis,it does generate the same ideal as the original system of polynomials, and an revealsigni�ant information about this ideal, and hene the orresponding set of solutions.Moreover, we will show below that for some lasses of problems omputing a �-basis inthis way (for an appropriate hoie of �) is suÆient to deide whether any solutionsexist.Moreover, for some hoies of the property �, the time omplexity of the �-trunatedBuhberger Algorithm is muh lower than the time omplexity of the omplete BuhbergerAlgorithm.The �rst spei� property � that we onsider is based on the total degree of themonomials ourring in a polynomial. We will say that a polynomial satis�es the property[degree � m℄ if, for eah of its monomials x1�1 � � � xn�n , the sum of the exponentsPni=1 �iis at most m. We �rst need to ensure that the monomial ordering we are using has theproperty that if �1 satis�es the [degree � m℄ property, and �2 � �1, then �2 also satis�esthe [degree � m℄ property. Suh an ordering is alled a gradedmonomial ordering. Manysuh orderings exist, inluding the standard total degree lexiographi ordering [3, 8℄ (seeExample 4.3). 15



Lemma 6.6. Let P be a system of polynomials from K [x1 ; : : : ; xn℄. The total number ofnew polynomials added to P by the [degree � m℄-trunated Buhberger Algorithm usingany graded monomial ordering is at most �n+mm �, eah of whih ontains fewer than �n+mm �,monomials.Proof. Similar to the proof of Lemma 5.1, exept that the number of distint monomialsover x1; : : : ; xn satisfying [degree � m℄ is �n+mm �, and eah of these therefore has fewerthan �n+mm �, monomials whih preede it in any graded monomial ordering.By a similar argument to the argument given for the full algorithm above, this resultimplies that the trunated algorithm is polynomial-time in jP j and �n+mm �. The value of�n+mm � is O(nm), and therefore polynomial in n for �xed m.7 Loal ConsistenyIn this setion we show that the loal onsisteny algorithms used in onstraint program-ming an be expressed by �-proofs on the orresponding systems of polynomials, for asuitable hoie of property �. By relating this property to the property [degree � m℄onsidered in the previous setion, we show that a loal onsisteny algorithm an besimulated by a trunated Buhberger Algorithm, and hene any information obtainedby enforing loal onsisteny an be obtained by performing a trunated BuhbergerAlgorithm.A onstraint problem is said to be strong k-onsistent if any onsistent assignmentto k � 1 or fewer variables an be extended to a onsistent assignment to any additionalvariable. Strong k-onsisteny an be enfored in polynomial-time (for any �xed k) [7℄.One method of ahieving this is given in Algorithm 7.1.Algorithm 7.1 (Enforing strong (k+1)-onsisteny).1. For eah set of k or fewer variables, de�ne a new onstraint, equal to the relationaljoin of the projetions of all onstraints onto those variables.2. Replae eah onstraint by the relational join of that onstraint with the projetionsof all other onstraints onto its variables.3. Repeat (2) until no hanges are made.It is known that, for several broad lasses of onstraint problems, the existene ofa solution an be deided by enforing strong k-onsisteny. These inlude problemswith bounded tree-width [11℄ and problems where the onstraints are binary and max-losed [15℄.We now observe that if our original onstraints eah involve at most k variables,then the operations desribed in Algorithm 7.1 only ever involve onstraints on k orfewer variables. These operations an be simulated using operations on polynomialsrepresenting the onstraints in suh a way that the polynomials omputed never involvemore than k variables. (For example, projetion of a onstraint onto some subset of16



variables an be simulated using the Extension Theorem [8, Page 115℄ on some Gr�obnerBasis of the system whih is generated using a lexiographi monomial ordering.)We will say that a polynomial satis�es the property [#vars � k℄ if it involves at mostk variables. Reall that if some system of polynomials over at most k variables has nosolution then, by Hilbert's Nullstellensatz, any Gr�obner Basis of this system must ontaina onstant polynomial. This implies that there is a [#vars � k℄-proof of 1 from thesepolynomials.Now onsider any onstraint problem represented by a system of polynomials P , whereeah polynomial in P satis�es [#vars � k℄. Our observations above imply that, if applyingstrong (k+1)-onsisteny to this onstraint problem results in an empty onstraint, thenthere must be a [#vars � k℄-proof of 1 from P .Unfortunately, the property [#vars � k℄ does not satisfy the onditions of Theo-rem 6.5 with any standard monomial ordering, and it does not seem to be possible toverify diretly whether a polynomial has a [#vars � k℄-proof of 1 using a [#vars � k℄-trunated Buhberger Algorithm. However, the next two results show that the existeneof a [#vars � k℄-proof of 1 implies the existene of a [degree � k � (d � 1) + 1℄-proof of1, where d is the maximum domain size.Lemma 7.2. Let Q be a set of domain polynomials for x1; : : : ; xn, with degree at most d.For any polynomial u from K [x1 ; : : : ; xn℄, if u satis�es [#vars � k℄, then ujQ is uniquelyde�ned, and satis�es both [#vars � k℄ and [degree � k � (d� 1)℄.Proof. By Example 4.12, any set of domain polynomials forms a Gr�obner Basis, and sowe an redue any polynomial by this set and obtain a unique result.If a monomial in u is redued by the domain polynomial for variable x, it must haveontained x and therefore the resulting monomials introdued annot ontain any morevariables than the monomial being redued. This means that redution by the domainpolynomials preserves the property [#vars � k℄.After all possible redutions have been performed, no monomial an ontain a powerof any variable higher than d � 1, else it ould be further redued. As no monomialan ontain more than k variables, this means all monomials must satisfy [degree �k � (d� 1)℄.Theorem 7.3. Let p1; : : : ; pm; u be polynomials from K [x1 ; : : : ; xn℄, and let Q be a set ofdomain polynomials for x1; : : : ; xn, of degree at most d. If eah pi satis�es [#vars � k℄,and fp1; : : : ; pmg `[#vars�k℄ u, thenfp1jQ; : : : ; pmjQg [Q `[degree�k�(d�1)+1℄ ujQ :Proof. We �rst note that d � k � (d � 1) + 1, so eah domain polynomial in Q satis�es[degree � k� (d� 1) + 1℄. Moreover, by Lemma 7.2, the polynomials p1jQ; : : : ; pmjQ andujQ also all satisfy [degree � k � (d� 1) + 1℄.Assume that the derivation-proof of u from fp1; : : : ; pmg is given by the list of poly-nomials h f1; : : : ; fb i. By indution on the length of this proof, b, we shall show that wean obtain a [degree � k � (d� 1) + 1℄-derivation of ujQ from fp1jQ; : : : ; pmjQg [Q.17



If fb is derived by adding two earlier polynomials fj and fk, then it is straightforwardto show that fbjQ = fjjQ + fkjQ, so by the indution hypothesis we are done.If fb is derived by multiplying some polynomial p from the set fp1; : : : ; pmg[ff1; : : : ; fb�1gby some arbitrary polynomial h from K [x1 ; : : : ; xn℄, then, without loss of generality, wemay assume that h is a polynomial onsisting of a single variable, say x. There are thentwo ases to onsider:� (px)jQ = (pjQ)x; this means that fbjQ = (pjQ)x, so by the indution hypothesis,we are done.� (px)jQ 6= (pjQ)x; this an only happen if (pjQ)x ontains some monomials where theexponent of x is equal to the degree of qi, where qi is the domain polynomial for x.In this ase we an subtrat appropriate multiples of qi to obtain (px)jQ, and hene,by the indution hypothesis, obtain a (possibly longer) [degree � k � (d � 1) + 1℄-proof of fijQ from fp1jQ; : : : ; pmjQg [Q.It follows from Theorem 7.3 that we an hek for the existene of a [#vars � k℄-proofindiretly, using a [degree � m℄-trunated Buhberger Algorithm, for m = k� (d�1)+1.Hene, for a �xed domain size d, any onstraint problem whih an be deided by strongk-onsisteny an be deided in polynomial-time by a trunated Buhberger Algorithm.8 Adaptive ConsistenyAnother loal onsisteny method whih is ommonly used in onstraint programming isto vary the level of onsisteny whih is enfored during the solution proess dependingon the loal struture of the onstraints. This tehnique is known as adaptive onsis-teny [10℄, and is often implemented using a general algorithmi framework alled buketelimination [9℄.The buket elimination algorithm for a onstraint problem proeeds as follows. It�rst orders the variables of the problem, and then partitions the onstraints into separateolletions, known as bukets. Eah buket is assoiated with a partiular variable. Thebuket assoiated with variable x ontains all the onstraints involving the variable xwhih do not involve any variables ourring higher in the ordering. In other words, eahonstraint is alloated to the buket whih is assoiated with whihever of the variablesof that onstraint ours highest in the ordering. Bukets are then proessed in order,aording to the hosen variable ordering on their assoiated variables, from highest tolowest. When the buket assoiated with a variable x is proessed, an \elimination proe-dure" is performed over all the onstraints in that buket, yielding a new onstraint thatdoes not involve the variable x. This new onstraint spei�es the \e�et" of the variablex on the remainder of the problem. In other words, it allows just those ombinationsof values that are allowed by the onstraints in the buket along with some value for x.The new onstraint is then plaed in the appropriate (lower) buket and the proessingontinues until all bukets are proessed, or some onstraint is generated whih allows nosolutions, in whih ase the problem is delared to be insoluble.18
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9 ConlusionWe have shown how polynomials provide a powerful general language for expressing manydi�erent forms of onstraint problems.One a problem has been expressed with a orresponding system of polynomials,we have desribed a standard tehnique to �nd a new system of polynomials with thesame set of solutions, alled a Gr�obner Basis. A Gr�obner Basis provides a onvenientrepresentation of all the solutions to a system of polynomials and hene of all solutions tothe original onstraint problem. It an be omputed using a standard omputer algebrapakage, and an be used to answer many di�erent questions about the solutions in astraightforward way.We have also shown that we may trunate the standard Gr�obner Basis algorithmby de�ning a property whih all polynomials added to the system must satisfy. If thisproperty is suitably spei�ed, then the algorithm generates a useful system of polynomialswith the same solutions in polynomial time, albeit not normally a Gr�obner Basis. Wehave demonstrated that we an use this trunated algorithm to ahieve a kind of loalonsisteny whih an simulate the k-onsisteny algorithms ommonly used in onstraintprogramming.Finally we have shown that adaptive onsisteny tehniques for onstraint problemsan be implemented very easily using Gr�obner Basis tehniques.This paper presents our initial �ndings on using Gr�obner Basis tehniques for solvingonstraint problems. Obvious diretions for future researh are to determine for whihlasses of onstraint problems these tehniques an eÆiently �nd solutions, and to re�nethe tehniques so that they an be implemented more eÆiently.Referenes[1℄ W. Adams and P. Loustaunau. An Introdution to Gr�obner Bases. Graduate Studiesin Mathematis. Amerian Mathematial Soiety, 1994.[2℄ A. Aiba, K. Sakai, Y. Sato, D. Hawley, and R. Hasegawa. Constraint logi pro-gramming language CAL. In Proeedings of the International Conferene on FifthGeneration Computer Systems, pages 263{76. Ohmsha Publishers, 1988.[3℄ T. Beker and V. Weispfenning. Gr�obner Bases A Computational Approah toCommutative Algebra. Graduate Texts in Mathematis. Springer, 1993.[4℄ B. Buhberger. Gr�obner bases: An algorithmi method in polynomial ideal the-ory. In R. Bose, editor, Multidimensional Systems Theory, Mathematis and ItsAppliations, hapter 6, pages 184{232. D. Reidel Publishing Company, 1985.[5℄ B. Buhberger and M. Moeller. The onstrution of multivariate polynomials withpreassigned zeros. In Computer Algebra, EUROCAM 82, number 144 in LNCS,pages 24{31, 1982. 20
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