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Abstract—Many wireless applications require a propagation
model that describes the attenuation of the transmitted signal as
a function of the distance between devices. Such channel models
are derived commonly from signal strength measurements, and
assume that the true distances between wireless terminals are
known. In practice, however, the true distances may be unavail-
able or difficult to obtain, for instance in mobile scenarios or in
the absence of line-of-sight. These conditions typically occur in
forested environments, urban areas, etc. This paper addresses the
problem of path loss model parameter estimation in presence of
erroneous distance measurements, such as the ones derived from
the GPS positions. We provide a model for the uncertainties,
and study the impact of distance errors on the estimation of a
log-distance channel model.

Our main conclusion is that the path loss model can be
estimated with a reasonable accuracy from unreliable distances,
provided that the measurements are taken at distances beyond
a few standard deviations of the GPS positioning error. In case
the maximum communication range does not allow such large
distances, we provide a method to correct the erroneous channel
model. Real-world measurements are used in order to validate
our approach.

Index Terms—Propagation, channel characterization and mod-
eling, GPS, ad-hoc networks, wireless LANs.

I. INTRODUCTION

SMART phones may be used to set up communication
where infrastructure support is unavailable or not depend-

able, such as in remote areas or catastrophe scenarios [1].
Likewise, vehicles may form ad-hoc networks (VANET) to
provide increased road safety and improved traffic manage-
ment [2]. In wireless networks such as these, it is often helpful
to estimate the relationship between device-to-device distance
and received power. This is typically expressed in the form of
a propagation model, which can be used to design adequate
wireless protocols.

Various types of propagation models exist (see Section 2)
with different degrees of accuracy and complexity, as well as
specific details about the environment. For the applications
mentioned, generic models are more useful, as they are
applicable to a wide range of scenarios. For this reason, we
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focus on the estimation of the log-distance path loss model in
this paper.

Many mobile devices used today are equipped with some
form of positioning information, typically GPS, which can be
used directly to estimate the path loss model. However, GPS
positioning is prone to errors, that have a negative impact in
distance estimation and in turn diminish the accuracy of the
estimated propagation model.

We address this problem in the context of a practical use-
case, that of ad-hoc communication in a forested environment
among smart phones using WiFi. This use-case is motivated by
a feasibility study for a smart phone-based information system
for firefighters [3]. After analyzing the impact of GPS posi-
tioning errors on the estimation of the range between devices
and consequently on the estimated propagation model, we
derive guidelines for the design of future device-to-device path
loss measurement campaigns, and propose a practical method
to correct those errors based on Monte Carlo simulations. The
conclusions we present are applicable to any outdoor scenario,
provided that a good estimate of the standard variation of the
GPS positioning error is available.

Our main contributions are as follows:

1) a model of the impact of GPS positioning errors on the
ranging and path loss model estimation;

2) a method to improve path loss estimation using only
GPS distances;

3) guidelines for designing measurement campaigns for
path loss model estimation that reduce the impact of
GPS errors.

In the next section, we present an overview of related
work. In Section III, we describe the methodology for channel
data collection and modeling, and present results using real-
world measurements. In Section IV, we discuss the impact of
GPS errors on the path loss model estimation. In Section V,
we provide guidelines for measurement data collection and a
path loss model parameter retrieval methodology. Finally, we
conclude in Section VI.

II. RELATED WORK

The log-distance path loss model [4] is one of the most
widely used models to describe the behavior of radio wave
propagation. Many of the works in this field address outdoor
communication between a mobile user and a base station,
which is usually tall or positioned in a high location. This
is the case in [5], which presents path loss, scattering and
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multipath delay statistics for digital cellular telephony, mea-
sured in urban context with distances in the range of 1.5 to 6.5
kilometers. The channel models in [6] are estimated for the 5.3
GHz range in urban mobile communications, with distances
up to a few hundred meters. The map-based method is used
to determine the distances precisely in those papers. Another
relevant work is [7], which tackles user-to-user communication
in a multi-floored building scenario. Its approach to modeling
is to start from the standard path loss model formula and then
expand it with additional factors in order to account for the
effects of walls and office partitions.

A comprehensive survey of empirical path loss models for
forested environments may be found in [8]. Typically such
models are additive with respect to the free space path loss
model [4]. The modified exponential decay (MED) model [9]
is the basis for most empirical models concerning propagation
in forests. MED uses the formula A = αfβdγ , where the
extra attenuation A is given in dB, and f identifies the signal
frequency and d the tree depth. Parameters α, β and γ may
be estimated from measured data. Given the wide variety of
factors affecting propagation in forests (such as tree species,
disposition of the trees, foliation), it is very difficult to find
an universal set of values. The contribution of the various
empirical models found in literature is to propose values that
aim to be the most general possible, but these are strongly
conditioned by the scenario in which data was obtained.
Table I lists some of those models and corresponding param-
eter values. There is also a family of models based on the
modified gradient model, such as the Maximum Attenuation
(MA) [10] and Nonzero Gradient (NZG) [10] models. These
models require additional parameters that are specific to the
measurement geometry and/or methodology. Both modified
exponential decay and modified gradient models describe
essentially propagation through canopies or at canopy-level.
In [11], the authors analyze propagation at trunk level. Based
on an extensive data set, the log-distance path loss model
is shown to be the most accurate of existing models. An
improved version of this model is proposed by incorporating
scenario-specific parameters, namely tree density and trunk
diameter. In summary, existing models for propagation in
forests are tightly dependent on the particular conditions in
which measurements take place. The application scope of our
approach is not limited to forests, so we opted not to use such
specialized models and use the more general log-distance path
loss model.

Concerning measurement campaigns in forests, a large
number of works, such as [15] and [16], focus on the prop-
agation of GSM signals, in the 1900 MHz band. Propagation
studies on the 2.4 GHz band are usually related to wireless
sensor networks, which use lower transmission power and
thus have limited range compared to typical WiFi or VANET
communications [17]. None of these works clarifies which
distance measuring method was used, nor account for distance
measurement errors or for their impact on the accuracy of the
estimated model. The only factor deemed relevant is the range
of distances. The use of GPS positioning for distance calcula-
tion finds substantial application in many VANET propagation
studies, but the reality of GPS errors and their impact in model
estimation is also not mentioned [18]–[20].

TABLE I: Parameters for various empirical models based on
the MED model. f is set in GHz for the Weissberger model,
and MHz for all others; d is in meters for all models.

Model Note α β γ

Weissberger [9]
0 < d < 14m 1.33 0.284 0.588
14 < d < 400m 0.45 0.284 1

ITU [12] d < 400m 0.2 0.3 0.6

COST 235 [13] Not foliated 26.6 -0.2 0.5
Foliated 15.6 -0.009 0.26

FITU [14]
Not foliated 0.37 0.18 0.59
Foliated 0.39 0.39 0.25

Regarding positioning technology for outdoor scenarios, the
Global Positioning System (GPS) [21] has become one of
the most widely used technologies. It allows a user equipped
with a GPS receiver to know its location with some degree of
accuracy by receiving the signal broadcasted by a constellation
of satellites. Some empirical studies address the performance
and accuracy of consumer-grade GPS receivers in forest
settings. In [22], six commercial receivers in the range of
$150 to $320 (values of 2005) were tested in static conditions.
Measurements were taken in open sky, under young forest
canopy, and under closed forest canopy. For the later scenario,
the reported values of average positioning error vary between
2.7 and 11.4 meters, depending on the device. The work
in [23] provides an updated version of these results, but only
for two devices and under heavy canopy conditions. Reported
values for the average positioning error were 4.0 and 6.9
meters. Studies about GPS position accuracy in smart phones
are scarce. One example is the work of [24], which analyses
the location accuracy of the iPhone obtained from different
information sources (GPS, cell ID, WiFi) in different settings
(rural and urban, and indoor).

To the best of our knowledge, the problem of estimating a
path loss model from distances that have errors has not yet
been addressed in the existing literature.

III. MEASUREMENT COLLECTION AND PARAMETER

ESTIMATION

We model the received signal power using a log-distance
path loss model, whose formula in the logarithmic domain is
given by

ρ[dBm](d) = ρ0 − 10 α log

(
d

d0

)
+Xρ, (1)

where ρ is the received signal strength (in dBm units) at an
arbitrary distance d from the transmitter, and ρ0 is the received
signal strength at reference distance d0 in the far field (typi-
cally 1 meter). The logarithmic signal strength measurements
ρ are affected by normal fading, Xρ ∼ N (0, σρ). In the
following discussion, the term RSSI (Received Signal Strength
Indicator) refers to the discrete readings of the received signal
power ρ that are typically delivered by the drivers of wireless
interface cards. The values of parameters α, ρ0 and σρ for each
specific scenario are estimated using distance-RSSI data pairs
obtained in a measurement campaign, and then calculating the
line that best fits the data.

A laser-beam range meter could be used to determine the
distances, but that would require line-of-sight between devices.
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Fig. 1: Experimental setting.

This becomes impractical for very large numbers of mea-
surements or in mobile scenarios. A more practical solution
is to record the coordinates obtained from the GPS receiver
incorporated in the devices at different test distances, along
with RSSI. However, since GPS positions contain errors, this
solution requires a clearer understanding of how GPS-based
distances affect the estimation of path loss model parameters,
compared to the case when the actual distances are used. In
Section III-A, we explain the methodology we used to collect
measurement sets of RSSI and distance data. Results on path
loss model estimation in the presence of GPS errors can be
found in Section III-B.

A. Data Collection Methodology

We divided our measurement campaign into two phases.
The first phase consisted of collecting pairs of RSSI and GPS
measurements at known distances, to study the impact of GPS
errors. In the second phase, we collected only RSSI and GPS
samples. As a motivating example, we took measurements in
a forested area where the majority of trees were stone pines
(Pinus pinea). The height of the devices was considerably
lower than the begin of the canopies (~1.5 m vs. ~6 m). The
ground between transmitter and receiver was mostly covered
with grass and small weeds. Most readings were taken in
line-of-sight, or with a small number of tree trunks between
receiver and transmitter. A small subset of the readings was
taken with vegetation in-between, specifically bushes and
smaller trees, most of them slightly taller than a human.
Their density ranged from a single plant to a compact set of
these. Figure 1 shows the various settings. The measurement
equipment consisted of three standard, off-the-shelf, consumer
electronics smart phones: one Samsung Galaxy Nexus S to
act as access point (AP), which we call Device A, and two
Samsung Galaxy Nexus to act as mobile receivers, referred to
as devices B1 and B2. All models ran Android OS, and ran an
application that stored GPS and WiFi RSSI values obtained
from the Android APIs.

In the first phase of the measurements (henceforth called
Phase 1), we placed device A at a fixed location, on top
of a tripod of 1.5 meters, and set it in AP mode. This
device periodically sent beacons announcing its presence to
devices that aspired to join its network. It also recorded GPS
measurements at a rate of 1 Hz. We then sequentially placed
devices B1 and B2 together at several pre-defined distances
from device A. For convenience, we call these distances “true
distances”. Their values were 0, 1, 2, 4, 8, 16, 32 and 64

(xAP,yAP)

1m
2m

4m

8m

16m

R1

R2

R3

R4

(a) Phase 1 of measurements – static case. The true distances
were measured using a laser-based range meter. Solid lines show
the radials along which readings were taken. Dashed lines mark
the distances at which data was taken.

R2

R4

(b) Phase 2 of the measurements – zig-zag walk. No true distances
are available. Solid lines are the radials along which readings were
taken. Dashed lines limit the data collection area for each radial.
Gradient area marks data collection area for radial R4.

Fig. 2: Spatial arrangement of measurements.

meters, and we verified them in loco using a laser range meter.
We chose these specific distances because they are equally
spaced in logarithmic scale. At each true distance, we held
devices B1 and B2 at a height of 1.5 meters, and each device
recorded roughly 3 minutes of GPS and RSSI data, at an
average rate of one GPS measurement every second and one
RSSI measurement every two seconds. We repeated the same
procedure for four radials roughly 45 degrees apart, as shown
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in Figure 2a. Device A recorded GPS measurements during
the entire duration of each radial.

In the second phase of the measurements (henceforth called
Phase 2), we again placed device A at a fixed location, set it
in AP mode and activated it to record GPS measurements.
We held devices B1 and B2 at a height of 1.5 meters next to
the AP and initiated the recording application, collecting pairs
of RSSI and GPS coordinates with the same frequencies as in
Phase 1. We then carried them away from device A, following
a zig-zag path that oscillated around each radial within a
45◦ angle approximately. We repeated the same procedure for
the other three radials. Device A recorded constantly GPS
coordinates during each radial measurement. Figure 2b shows
the corresponding spatial arrangement.

B. Path Loss Model Parameter Estimation

From the data collected in Phase 1 of the measurements,
we obtain a set of GPS coordinates and RSSI values for
each true distance. We compute the distances by pairing,
via time-stamp, the coordinates recorded by device A and
each device B (B ∈ {B1,B2}), and applying the Great Circle
distance formula. This formula allows accurate computation
of distances between points in a sphere whose positions are
defined by decimal degrees. For convenience, we call distances
calculated in this manner “GPS distances”. During the analysis
of the data, we found large clusters of consecutive, repeated
GPS coordinates. We conclude that this range of commercial-
grade devices may tend to fix on a set of coordinates if they do
not detect significant movement for some time, in order to save
energy. We substituted these clusters by a single measurement,
to which we associated the median of the RSSI values of that
cluster.

It is now possible to compute the parameters of the path
loss model using two different data sets from Phase 1. In
one case, we pair the RSSI measurements with the actual
distances (obtained with a laser range meter). We call this
the “true model”. In the other case, we pair the RSSI values
with the GPS distances, and we call this the “GPS model”.
Equations (2) and (3) describe both models as follows:

ρ(d) = ρ0 − 10 α log(d) +Xρ, (2)

ρ(d) = ρ̃0 − 10 α̃ log(dGPS) + Yρ. (3)

We perform regression over the two data sets using the Least
Squares (LS) estimator which, for the true model, is also the
maximum likelihood estimator. The parameters obtained from
the measured data are shown in Table II.

In Figure 3, our estimated model is shown against models
proposed in literature. While for small distances the literature
models are consistent with our data, they stray at larger
distances. As mentioned in Section II, most models reported
in literature focus on propagation through canopies. For large
distances, the extra-attenuation factor of the canopy models,
which grows exponentially with distance, takes the overhand
in the total attenuation. Given that our measurements were
taken mostly in line-of-sight, with only a very few occasional
trunks or canopies between devices, our data does not show
the effect of the additional attenuation, being best fitted by the

TABLE II: Model parameters derived from true and GPS
distances using the Least Squares Estimator.

Phase Model ρ0 α σρ

1st
True -42.63 2.22 5.64
GPS -24.82 3.00 9.56

2nd GPS -42.86 2.13 7.34
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Fig. 3: Measured RSSI data and “true” path loss model
compared to literature models. See Table I for references.

log-distance path loss model. This explanation is supported
also by the results in [11].

The GPS model exhibits overestimated parameter values
α, ρ0 and σρ compared to the true model. Figure 4a shows
both models derived from Phase 1 measurement data. It also
depicts the RSSI measurements at the distances provided by
the GPS measurements, to give further insight on how their
positions on the RSSI-distance plane condition the regression
method. In Section IV, we provide a model for the erroneous
distances, and analyse in more detail the impact of GPS errors
on distance estimation.

As for the Phase 2 measurement data (see Figure 4b), for
which the exact distance was not recorded, we observe fairly
different parameters when compared with the GPS model
in the first phase (see Figure 4a). We expected them to be
more similar, because both are computed using error prone
GPS distances. However, unaccounted factors, such as user
mobility, may explain this behavior. In the second phase of
the measurements, more states of the channel fading are being
captured due to the obstruction by trees, the user’s body, and
different device orientations.

IV. DISTANCE ESTIMATION IN PRESENCE OF GPS ERRORS

After discussing the previous motivating example, we now
address the problem of estimating the distance between two
GPS-equipped devices from error prone coordinates. Towards
this end, we characterize the nature of the GPS errors, and
provide a model for these errors. This model will help explain
the difference between the true path loss model and the GPS
path loss model.
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(b) Phase 2 measurement data and models – zig-zag walk

Fig. 4: Path loss models using the Least-Squares estimator. The true distances are marked by vertical dashed lines.

The accuracy of GPS is affected mainly by two factors:
the geometry of the satellites visible to the user, and the
quality of the distance estimate between satellite and user
(pseudo-range). Concerning the first factor, the geometrical
arrangement of the satellites in the sky impacts the space of
possible user locations. A numerical metric named Geometric
Dilution of Precision (GDOP) is often used to quantify the
quality of a particular arrangement. On its turn, pseudo-range
estimates are affected by errors that have a variety of sources.
These can be the quality of the user’s GPS receiver, attenuation
of the satellite signal by the ionosphere and troposphere, noise
and multipath effects, and accuracy of the ephemeris data
contained in the satellite signal. Due to the diversified nature
of the error sources, positioning errors can be categorized
into systematic and non-systematic errors. Systematic errors
affect all receivers within a certain area in similar manner,
and hence are modelled as an identical position bias for all
receivers. They are caused by atmosphere, quality of GDOP
and ephemeris errors. Non-systematic errors are random in
their nature, affecting each receiver and each measurement
in a unique way. They are caused mainly by pseudo-range
errors, multipath propagation, receiver noise, clock jitters and
numerical errors.

We now derive a model for the error that affects distances
computed from GPS coordinates. In this discussion, we as-
sume local Euclidean coordinates, given that the scale of the
distances we are using is small enough for the curvature of
the Earth to be neglected. Our GPS position error model (see
Figure 5) accounts for the distinction between the two types
of errors mentioned earlier. Systematic positioning errors are
modeled as a bias vector with respect to the actual position
that is equal for all devices. Non-systematic positioning errors
are modeled independently for each Euclidean coordinate as
zero-mean circularly symmetric Gaussian random variables.

Given the exact Euclidean coordinates of the two terminals
A and B, (xA, yA) and (xB, yB) respectively, the Euclidean
coordinates corresponding to the measured GPS positions may

A B bias

bias

(xA, yA) = (0, 0) (xB, yB) = (0, d)
d

dGPS

(xA,GPS,m, yA,GPS,m) (xB,GPS,m, yB,GPS,m)

Fig. 5: Characterization of the measured GPS distances.

be written as

(xA,GPS, yA,GPS) = (xA, yA) + (bx,A, by,A) + (εx,A, εy,A),

(xB,GPS, yB,GPS) = (xB, yB) + (bx,B, by,B) + (εx,B, εy,B),

where the errors εx,A, εy,A, εx,B, εy,B ∼ N (0, σGPS) are
assumed to be mutually independent, and σGPS is the standard
deviation of the GPS positioning errors in each coordinate
(x, y). The aggregated systematic errors along each axis are
equal for both terminals, i.e., bx,A = bx,B and by,A = by,B,
effecting a translation of the terminal positions with no im-
pact on the distance, as shown in Figure 5. For simplicity,
we choose the local two-dimensional Euclidean system of
coordinates with the origin centered at the exact location of
device A, and with the abscissa-axis pointing in the direction
of the device B, i.e., (xA, yA) = (0, 0) and (xB, yB) = (d, 0).
Therefore, the expression of the GPS-based Euclidean distance
between A and B reduces to

dGPS =
√
(εyA + εyB)

2 + (εxA + εxB + d)2. (4)

Consequently, dGPS follows a Rice distribution with the lo-
cation parameter being the actual distance d, and the scale
parameter

√
2σGPS, i.e., dGPS ∼ Rice(d,

√
2σGPS). The proba-

bility density function (p.d.f.) of the GPS distances given the
actual distance is

p(dGPS|d) = d

2σ2
GPS

exp

(
d2GPS + d2

4σ2
GPS

)
I0

(
d · dGPS

2σ2
GPS

)
, (5)

where I0(·) is the zero-order modified Bessel function of first
kind.



2358 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 13, NO. 5, MAY 2014

Next, we provide a simple method to estimate the variance
of the GPS error in each coordinate. The advantage of the
proposed method is that the true coordinates of A and B are
not required, the true distance being sufficient. Some receivers
provide reliability information on the estimated position that
can be used, for example, in a weighted LS estimation of the
path loss model. Here, we assume that such information is
unavailable, and we estimate an overall “average” reliability
of the GPS position estimates. The second raw moment of
the Rice distribution, μ′

2, can be analytically related to the
variance of the GPS coordinates as

μ′
2 � E

[
d2GPS

]
= 4σ2

GPS + d2. (6)

Empirically, the second raw moment of the GPS-based dis-
tances μ′

2 can be obtained from the measured data by simply
averaging the squared GPS distances. However, there are
multiple true distances di. We compute the empirical second
raw moment for each of the true distance, μ′

2(di), and use LS
to estimate the overall variance of the GPS coordinates

σ̂2
GPS =

1

4N

N∑
i=1

μ′
2(di)− d2i . (7)

Finally, we compare the histogram of the measured GPS
distances obtained in Phase 1 with the Rice p.d.f. predicted
by our model for each true distance. Figure 6 shows the
normalized histograms of the GPS-based distances (dotted
lines), and the Rice p.d.f. corresponding to that true distance
d ∈ {1, 2, 4, 8, 16, 32, 64} (solid lines). The true distance at
which we took the respective GPS measurements is marked
by a thick vertical solid line. Our model proves able to
predict the major trends of the data. The overall standard
deviation for GPS coordinates estimated using Equation (7)
is σ̂GPS = 10.09 meters. It may be noticed that for very
small distances, i.e., d � 3

√
2σGPS ≈ 42 meters1, the GPS

distances are overestimated by far, i.e, the mode of the Rice
p.d.f. corresponds to a value much larger than the true distance.
For larger distances, i.e., d > 3

√
2σGPS, the Rice p.d.f. is

very close to a normal p.d.f. with the mode slightly larger
than the true distance. In conclusion, we observe that GPS
errors hamper significantly the distance estimation between
two devices if the actual distance is smaller than 3

√
2σGPS.

V. COPING WITH DISTANCE ERRORS IN PATH LOSS

MODEL ESTIMATION

The error model for GPS distances introduced in the
previous section can be used to improve path loss model
parameter estimation. We begin this section by detailing the
process by which GPS errors condition the estimation of the
model parameters, and use this analysis to learn how can
measurement campaigns be designed in order to mitigate the
impact of such errors. Then, we provide a method based on
Monte Carlo simulations to retrieve the true model parameters
from measurements affected by GPS errors.

1The factor
√
2 appears due to the fact that the scale parameter of the standard Rice

p.d.f. would be σGPS, whereas in our case, it is
√
2σGPS. The factor of three corresponds

to the ratio d/σGPS for which a standard Rice p.d.f. can be approximated by a Gaussian
p.d.f..
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Fig. 6: Normalized histograms of the GPS distances measured
at each true distance.

A. Guidelines for Selecting the Measurement Distances

In this section, we provide a selection policy concerning
the distances at which measurements should be taken to
mitigate the impact of GPS errors. We start by explaining the
mechanism by which GPS errors impact parameter estimation
using a linear regression method. In the previous section, we
have seen that GPS distances tend to over-estimate by far
small true distances. Consequently, for such distances, the
RSSI values are paired with GPS distances larger than those at
which we actually took them. This causes the distance-RSSI
data pairs to be shifted to right side of the distance-RSSI
plane. Due to this phenomenon, the estimated line departs
from the true model, resulting in the GPS model. For large
distances, the GPS distances are closer to the true distances.
The corresponding distance-RSSI pairs are not shifted signif-
icantly, and therefore the perturbation they introduce in the
path loss model estimation is little. Figure 7 illustrates the
perturbed data, the mean and standard deviations for the RSSI-
GPS distances pairs taken at each true distance, and the true
and GPS models.
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Fig. 7: Error metrics for the data measured at each true
distance.

TABLE III: Model parameters and Root Mean Square Error
(RMSE) if using the measurements taken at subsets of the true
distances.

Model d [m] ρ0 α σρ RMSE [dBm]
True 1...64 -42.63 2.22 5.64 -

Range

1...64 -24.82 3.00 9.30 11.70
2...64 -25.20 3.06 9.32 11.03
4...64 -26.27 3.05 9.31 10.19
8...64 -24.63 3.17 9.37 11.00

16...64 -30.85 2.85 9.27 7.18
32...64 -38.44 2.44 9.36 2.55

Based on this knowledge, a simple approach to improve
the model estimation is to take more measurements at large
distances, since those are less affected by GPS errors. Ta-
ble III shows the regression using only measurements taken
at different subsets of the true distances d, where d ∈
{1, 2, 4, 8, 16, 32, 64}. We keep the maximum true distance
constant, while varying the minimum true distance to be
considered. We observe that, as we restrict the data set to
the measurements taken at larger true distances, the estimated
model tends to the true model. From our data sets, the
largest distances available are 32 and 64 meters. Although
the condition d > 3

√
2σGPS ≈ 42 meters (see Section IV)

is satisfied just approximately for the lower distance, the
corresponding estimated GPS model is the closest to the true
model.

This conclusion allows us to propose guidelines for the
selection of the distances at which measurements should be
taken. If the communication range allows, the measurements
should be taken at true distances larger than 3

√
2σGPS. Other-

wise, the model derived from the GPS distances needs to be
corrected. A correction method is provided in the next section.

B. Retrieving the True Model from Imprecise Distances

In many practical scenarios, true distance measurements
are not available and GPS distances need to be used instead.
This is the typical case when the GPS positioning that comes

embedded in wireless devices and RSSI measurements from
the wireless driver are used to derive a channel model. Note
that direct estimation of the true distances from the GPS
distances is not possible due to the insufficient number of i.i.d.
samples that are taken at a fixed distance, especially in mobile
scenarios. Therefore, we propose a simulation-based method2

to improve the path loss model estimation. The essence of
this method lies in the fact that the RSSI samples used for
estimating both the true and the GPS model are the same.
This equality is shown in the following equations.

ρ(d) = ρ0 − 10 α log(d) (8)

ρ(d) = ρ̃0 − 10 α̃ log(dGPS) (9)

Both equations hold in Least Squares sense, and therefore
fading variance needs not to be included. As we assume that
only GPS distances were recorded during the measurements,
we can only compute the parameters of the GPS model ρ̃0 and
α̃. Our method consists of defining a set of known reference
distances, which are then perturbed according to the GPS error
model of Section IV. The resulting simulated GPS distances
are mapped into RSSI samples using the GPS model obtained
from the measured data. Using the equality between (8) and
(9), we pair the simulated RSSI values with the reference
distances. By applying a regression method, we are able to
retrieve corrected path loss parameters α and ρ0 that are closer
to the true model than if erroneous distance measurements had
been used.

A crucial aspect of this procedure is the selection of the
set of known reference distances. As seen in the previous
subsection, the quality of the model parameters output by the
regression method is very much affected by the distribution of
the measured data with respect to the corresponding true dis-
tances. Therefore, we use Monte Carlo simulation to generate
a set of simulated true distances d̂i that resemble the actual
true distances di as closely as possible. This ensures that the
estimated model is correct. Our method consists of selecting
the simulated true distances in such a way that the correspond-
ing erroneous distances d̂GPSi

resemble the compound p.d.f.
p(dGPSi |di) associated with the measured GPS distances dGPSi .
We use the direct and inverse cumulative distribution function
(c.d.f.) methods [25, Sec. 3.3] for this purpose. The direct
c.d.f. method maps samples taken from a random variable
X with some proposal distribution pX(x) into a uniformly
distributed random variable U ∼ U(0; 1) using the c.d.f. of
X as transformation function (by the uniform transformation
theorem [25, Sec. 3.3.1]). Then, the inverse c.d.f. method maps
U into a random variable Y that follows a target distribution
pY (y) using the inverse c.d.f. of Y as transformation function
(by the inverse transformation theorem [25, Sec. 3.3.1]). In
other words, pX(x) is used as a proposal distribution in order
to sample from pY (y). In our case, we use this procedure to
sample from a proposal compound distribution of simulated
erroneous distances δ̂GPSi

in a way that the distribution of the
transformed samples matches the compound p.d.f. p(dGPSi

|di)
corresponding to the measured GPS distances dGPSi . In the

2Our attempt to derive a closed-form, or iterative estimator for the path loss model
parameters (e.g. maximum likelihood) led to intractable calculations. Many of the Rice
p.d.f parameters have complicated expression (e.g. moments are expressed in terms of
Laguerre polynomials), and the expression of the density itself contains a Bessel function.
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TABLE IV: The sampling procedure that generates samples
from the p.d.f. of the measured GPS distances, and the
corresponding simulated true distances pairs.

1.
Generate initial reference distances:
δ̂i ∼ U(0,maxi dGPSi

), i = 1, . . . , N

2.
Simulate the GPS errors:
δ̂GPSi

∼ Rice(δ̂i,
√
2σGPS)

3.
Transform the resulting distances:
δ̂GPSi

−→ vi = PD(δ̂GPSi
) ∼ U(0, 1)

4. Transform vi −→ d̂GPSi = P−1
V (vi) ∼ p(dGPSi |di)

5.
Transform the uniform true distances to the simulated
true distances: d̂i = P−1

V (PD(δ̂i))

6.
Return: simulated true distances d̂i and the simulated
GPS distances d̂GPSi

end, our procedure outputs a set of simulated true distances
d̂i paired with a set of simulated GPS distances d̂GPSi whose
distribution matches the one of the measured GPS distances.
However, given that the mapping of the true distances di into
GPS distances dGPSi

is not bijective, there is no guarantee
that the distribution of the true distances will be reproduced
exactly.

We now decribe the procedure in more detail. We start
by generating an initial set of reference distances uniformly
distributed between zero and the maximum GPS distance
recorded, i.e., δ̂i ∼ U(0,maxi dGPSi), i = 1, . . . , N . We
then perturb each reference distance δ̂i according to a Rice
p.d.f. with the location parameter δ̂i and the scale parameter√
2σGPS, i.e., δ̂GPSi

∼ Rice(δ̂i,
√
2σGPS). The standard devi-

ation σGPS is the one computed from the empirical data in
Section IV, using Equation (7). We then map the samples
δ̂GPSi

of the proposal distribution to a standard uniform random
variable vi ∼ U(0, 1), using the c.d.f. of the samples them-
selves (by the uniform transformation theorem). We denote
the corresponding direct c.d.f. transformation δ̂GPSi

−→ vi, by
PD(·). Then, we map the samples vi to the target distribution
of the measured GPS distances by using the inverse c.d.f.
method, with the corresponding transformation vi −→ d̂GPSi ,
denoted by P−1

V (·), where PV (·) is the empirical c.d.f. of
the measured GPS distances. We obtain the simulated true
distances by applying the same direct and inverse transforma-
tions to the original uniformly distributed reference distances
δ̂i. The sampling procedure is summarized in Table IV.

This approach is able to approximate the true model param-
eters with good accuracy. Figure 8 shows the histograms of the
path loss parameters α and ρ0 estimated by 10000 independent
runs of the Monte Carlo simulations. Based on the shape of the
histogram, we assumed a normal distribution for the estimation
error, and the confidence intervals were computed accordingly.
The standard deviation for the estimated path loss exponent
α̂ is around 0.1, whereas for the estimated reference RSSI ρ̂0
is around 2dB. The true model parameters lie between one
and two standard deviations with respect to the mean of the
distribution of the estimated parameters. Table V presents the
true model parameters and the mean values for the parameters
estimated by the Monte Carlo simulations. Although the
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Fig. 8: Histograms of occurrences for the α̂ and ρ̂0 values in
10000 runs of the Monte Carlo simulation. Thick vertical line
corresponds to true value.

TABLE V: The true model parameter values, the mean of the
estimated parameters obtained from the Monte Carlo simula-
tion, and the parameters derived from plain GPS distances.

Model ρ0 α
True -42.63 2.22
Mean of MC runs -39.51 2.04
GPS -24.82 3.00

procedure does not guarantee retrieval of the exact true model
parameters, it provides considerable improvement over the
GPS model parameters.

VI. CONCLUSION

This work analysed the impact of positioning and distance
errors on the estimation of a path loss model, using consumer-
electronics (smart phones) communicating in the 2.4 GHz
ISM band. We conclude that distances obtained from GPS
measurements lead to the overestimation of communication
range, and show that this is caused by the distance errors
that result from GPS inaccuracy. We further modeled the
impact of position errors on the distance estimation and
provide guidelines for the selection of the distances at which
measurements should be taken for path loss model parameter
estimation. As a rule of thumb, if the communication range
is sufficiently large, the measurements should be taken at
distances larger than 3

√
2σGPS. Otherwise, the path loss model

derived from error prone GPS distances has to be corrected. A
simulation-based method to correct the model estimated from
erroneous distances was provided. A forested scenario was
used as an example, but the presented analysis is applicable to
any outdoor scenario. The only requirement is a good estimate
of the standard deviation of the GPS positioning error.
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[17] J. Fernandez, I. Cuiñandas, and M. Sánchez, “Radioelectric propagation
in a deciduous tree forest at wireless networks frequency bands,” in
Proc. 2011 European Conference on Antennas and Propagation, pp.
3274–3278.

[18] T. Mangel, O. Klemp, and H. Hartenstein, “5.9 GHz inter-vehicle
communication at intersections: a validated non-line-of-sight path-loss
and fading model,” EURASIP J. Wireless Commun. Netw., vol. 2011,
no. 1, p. 182, Nov. 2011.

[19] M. Boban, T. T. V. Vinhoza, M. Ferreira, J. Barros, and O. Tonguz,
“Impact of vehicles as obstacles in vehicular ad hoc networks,” IEEE
J. Sel. Areas Commun., vol. 29, no. 1, pp. 15–28, Jan. 2011.

[20] C. Sommer, S. Joerer, and F. Dressler, “On the applicability of two-ray
path loss models for vehicular network simulation,” in Proc. 2012 IEEE
Vehicular Networking Conference, pp. 64–69.

[21] National Coordination Office for Space-Based Positioning, Navigation,
and Timing. Official U.S. Government information about the Global
Positioning System (GPS) and related topics. Url: http://www.gps.gov/.

[22] M. G. Wing, A. Eklund, and L. D. Kellogg, “Consumer-grade global
positioning system (gps) accuracy and reliability,” J. Forestry, vol. 103,
no. 4, pp. 169–173, 2005.

[23] M. G. Wing and A. Eklund, “Performance comparison of a low-cost
mapping grade global positioning systems (GPS) receiver and consumer
grade GPS receiver under dense forest canopy,” J. Forestry, vol. 105,
no. 1, pp. 9–14, 2007.

[24] P. A. Zandbergen, “Accuracy of iphone locations: a comparison of
assisted GPS, WiFi and cellular positioning,” Trans. in GIS, vol. 13,
pp. 5–25, 2009.

[25] J. V. Candy, Bayesian Signal Processing: Classical, Modern and Particle
Filtering Methods. New York, NY, USA: Wiley-Interscience, 2009.

Pedro M. Santos (S’13) received his M.Sc. degree
in Electrical and Computer Engineering from the
University of Porto, Portugal, in 2009, and since
then is pursuing the Ph.D. degree at the same
institution. He develops his work at Instituto de
Telecomunicações, and the main topics of his thesis
are channel modelling and wireless ad hoc commu-
nications. He was awarded a Doctoral Scholarship
from the Portuguese Foundation for Science and
Technology in 2009. His general interests are wire-
less communications and computer architectures.

Traian E. Abrudan (S’02-M’09) received the D.Sc.
degree (with honors) from Aalto University, Finland
(formerly known as Helsinki University of Tech-
nology) in 2008, and the M.Sc. degree from the
Technical University of Cluj-Napoca, Romania in
2000.

During 2001-2010, he was a member of
SMARAD (Finnish Centre of Excellence in SMArt
RADios and Wireless Research) which has been
selected as Center of Excellence in research by The
Academy of Finland. He was awarded with Nokia

Scholarship in 2004 and 2006.
During September 2010-2013, he was a postdoctoral researcher at Faculty

of Engineering, University of Porto (FEUP), Portugal, and member of Instituto
de Telecomunicações (IT) Porto.

Since with October 2013, he has been a postdoctoral researcher at the
Department of Computer Science, University of Oxford. Dr. Abrudan’s
research focuses on practical indoor localization and navigation systems,
wireless transceiver algorithms, and sensing. His fundamental research topics
include applied parameter estimation, numerical optimization and sensor array
signal processing.

Ana Aguiar (S’94-M’98-S’02-M’09) graduated in
Electrical and Computer Engineering from the Fac-
ulty of Engineering University of Porto (FEUP), Por-
tugal, in 1998, and received her Ph.D. in Telecom-
munication Networks from the Technical University
of Berlin, Germany, in 2008. She is an assistant pro-
fessor at FEUP since 2009, with research interests
in wireless networking and mobile sensing systems,
specifically vehicular networks, crowd sensing, and
machine-to-machine communications. She also con-
tributes to several inter-disciplinary projects in the

fields of intelligent transportation systems and well-being (stress). She began
her career as an RF engineer working for cellular operators, and she worked
at Fraunhofer Portugal AICOS on service-oriented architectures and wireless
technologies applied to ambient assisted living. She has published in and is
reviewer for several IEEE and ACM conferences and journals.

João Barros (S’98-M’04-SM’11) is an Associate
Professor of Electrical and Computer Engineering
at the University of Porto and Founding Director of
the Institute for Telecommunications (IT) in Porto,
Portugal. He also teaches at the Porto Business
School and co-founded two recent startups, Stream-
bolico and Veniam, commercializing wireless video
and vehicular communication technologies, respec-
tively. He received his undergraduate education in
Electrical and Computer Engineering from the Uni-
versidade do Porto (UP), Portugal and Universitaet

Karlsruhe, Germany, and the Ph.D. degree in Electrical Engineering and
Information Technology from the Technische Universitaet Muenchen (TUM),
Germany.


