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Abstract—Indoor tracking and navigation is a fundamental
need for pervasive and context-aware smartphone applications.
Although indoor maps are becoming increasingly available, there
is no practical and reliable indoor map matching solution
available at present. We present MapCraft, a novel, robust
and responsive technique that is extremely computationally ef-
ficient (running in under 10 ms on an Android smartphone),
does not require training in different sites, and tracks well
even when presented with very noisy sensor data. Key to our
approach is expressing the tracking problem as a conditional
random field (CRF), a technique which has had great success
in areas such as natural language processing, but has yet to
be considered for indoor tracking. Unlike directed graphical
models like Hidden Markov Models, CRFs capture arbitrary
constraints that express how well observations support state
transitions, given map constraints. Extensive experiments in
multiple sites show how MapCraft outperforms state-of-the art
approaches, demonstrating excellent tracking error and accurate
reconstruction of tortuous trajectories with zero training effort.
As proof of its robustness, we also demonstrate how it is able to
accurately track the position of a user from accelerometer and
magnetometer measurements only (i.e. gyro- and WiFi-free). We
believe that such an energy-efficient approach will enable always-
on background localisation, enabling a new era of location-aware
applications to be developed.

I. INTRODUCTION

Whereas GPS is the de facto solution for outdoor position-
ing, no clear solution has as yet emerged for indoor positioning
despite intensive research and the commercial significance.
Applications of indoor positioning include smart retail, nav-
igation through large public spaces like transport hubs, and
assisted living. The ultimate objective of an indoor positioning
system is to provide continuous, reliable and accurate posi-
tioning on smartphone class devices. We identify maps as the
key to providing accurate indoor location; this is a reasonable
assumption given that indoor mapping is a high priority for
companies, such as Google, Microsoft, Apple, Qualcomm, and
so on. A map can be viewed in the broadest sense as a spatial
graph which provides constraints. At the simplest level this
takes the form of a floor plan of a building. This constrains the
allowable motion of a user - people cannot walk through walls
and can only enter a room through a door. Other maps (meta-
maps essentially) provide additional constraints or features,
such as the positions of access points, radio fingerprints, signal
strength peaks or distorted geomagnetic fields. Based on a
time-series of observations, such as inertial trajectories or
RF scans, the goal is to reconcile the observations with the
constraints provided by the maps in order to estimate the most

feasible trajectory of the user, i.e. the sequence that violates
the fewest constraints.

Existing map matching techniques, based on recursive
Bayesian filters, such as HMMs, Kalman and particle filters,
have been successfully applied to the location estimation
problem, but are limited in two ways: Firstly, they are com-
putationally expensive, and are thus typically delegated to
the cloud to run. Not only does this lead to lag and service
unavailability in connection-poor areas, it has the side-effect
of leaking detailed sensor data and precise location to a third
party. Secondly, they typically require high fidelity sensor data
to estimate accurate trajectories, leading to power drain.

Motivated by these pressing problems, we present a fresh
approach to indoor positioning that is lightweight and com-
putationally efficient, but also robust to noisy data, allowing
it to provide always-on and real-time location information to
mobile device users. The goal of the proposed approach is to
achieve similar or better accuracy as existing techniques, but
with fewer computational, space and sensor resources. Unlike
existing techniques that model the problem using directed
graphical models, the proposed MapCraft algorithm uses an
undirected graphical model, known as linear chain conditional
random fields (CRFs). The CRF model is particularly flexible
and expressive, allowing a single observation to be related
with multiple states and for multiple observations to inform
a single state. This allows us to capture correlations among
observations over time, and to express the extent to which
observations support not only states, but also state transitions.

In terms of performance, MapCraft is two to three orders
of magnitude more computationally efficient than competing
techniques, running in less than 10 msec on an Android phone,
enabling real-time location computation online. The second
advantage of MapCraft is that it offers high location accuracy
even when it uses ultra low power sensors (e.g. accelerometer
and magnetometer), whereas existing approaches rely heavily
on power hungry sensors like frequent WiFi scans to monitor
the local radio environment, or gyroscopes running at high
sampling rates to capture turns and steps. Until recently, be-
cause of the dominant cost of the main processor, deactivating
these sensors had little impact on overall power consumption.
However, with the advent of motion tracking devices, we
see a clear trend of low power digital motion processors
(DMPs), e.g. InvenSense MPU-6000/MPU-6050, able to task
and process inertial data in bursts, while the system processor
remains in a low-power sleep mode. In this new regime, the
dominant cost will not come from the processor, but from the
power hungry sensors, such as WiFi and gyroscope. Another
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Fig. 1. System architecture.

reason for gyro-free motion sensing is the anticipated growth
of the wearable device market, in which many ultra low power
chips (e.g. KMX61 and LSM303C) are not equipped with
gyroscopes. Thus, algorithms that can afford not to use these
sensors are key to offering an always-on positioning service for
a large range of low power devices. In summary, this paper’s
key contributions are:

• Lightweight map-matching: The proposed MapCraft
technique enables computationally efficient, real-time
map-matching using sensor data from multiple sources
and a floor plan.

• Robust and accurate indoor tracking with noisy tra-
jectories: We demonstrate excellent performance even
in the presence of bias, noise and distortions. As
an extreme case, we show accurate tracking can be
obtained from gyro-free dead reckoning.

• Extensive real-world validation: We achieve high
tracking accuracy in multiple environments (office,
museum, market). MapCraft outperforms existing map
matching techniques even without training.

The remainder of this paper is organized as follows: Sec. II
outlines the system architecture and Sec. III overviews existing
techniques. Sec. IV introduces the CRF model and Sec. V
proposes MapCraft, a map matching solution that uses CRFs
for indoor tracking. Sec. VI extensively evaluates MapCraft
in three indoor settings, and compares it with competing
techniques. Sec. VII concludes the paper and discusses ideas
for future work.

II. SYSTEM MODEL

The system architecture is shown graphically in Fig. 1,
and is described through the use of an example. When a user
enters a building and launches the tracking application, the
application requests a floor plan (along with other meta-data

Fig. 2. The power consumption gap between gyro-free and gyro-aided sys-
tems will increase with the emergence of digital motion processors (assuming
1000mAh battery, gyro-free current of 0.5mA and gyro-aided 4.3mA).

as generated by other systems, which could include fingerprint
maps) from the server, if not already within the cache. Note
that this is the only time that a user needs to reveal any
data about their coarse position to a third party. Sensors
on the user’s phone collect data about the motion and (ra-
dio) environment. Motion sensors can include accelerometers,
magnetometers and gyroscopes. Radio sensors can include
WiFi, Bluetooth (low energy), FM radio and so forth. Raw
sensor data is typically not immediately usable and needs to be
processed. In the case of motion data, this could include dead
reckoning trajectories based on counting steps and estimating
heading, or using full IMU tracking in the case of foot mounted
sensors. For RF data, a channel/propagation model can be
used to relate received signal strengths to physical distances.
Alternatively, raw signal strengths may be directly forwarded
to the CRF model, to be later combined with RF fingerprint
map data if available.

Maps and observations are combined using conditional
random fields, an undirected graphical model described in
Sec. IV. The CRF model is particularly well suited to this
sequential problem because it allows us to flexibly define
feature functions that capture the extent to which observations
support states and state transitions, given map constraints.
As a user moves through the building, certain paths become
unlikely, as they violate map constraints. The Viterbi algorithm
is used to efficiently find the most likely sequence of states
through the transition graph, culminating in an estimate of the
user’s location and quality thereof.

III. BACKGROUND

Before presenting our novel approach, we will first position
our work wrt the literature. We focus on techniques that
make use of widely available infrastructure, such as inertial
sensors embedded in mobile devices and wireless access points
in buildings, which we divide into three classes: 1) motion
sensing techniques that use magnetometer, accelerometer and
gyroscope data; 2) RSS-based techniques that make use of
received signal strength readings from wireless Access Points
(APs), and 3) Bayesian fusion of inertial and RSS sensor data.

A. Motion sensing

Motion sensing involves fusing data generated by inertial
measuring units (IMUs) to compute the user trajectory relative
to her initial position. Some techniques assume that IMUs are
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mounted on the foot of the person [9], [12], [31], whereas oth-
ers obtain data from IMUs embedded in consumer electronic
devices, such as smartphones [26]. Inertial motion sensing is
performed by iteratively repeating the following three tasks:
1) Motion Mode Recognition, which uses accelerometer data
to distinguish between different modes of movement (e.g.
static, walking and hand texting, walking with phone in a bag,
etc.) [26]; 2) Orientation Tracking, which uses magnetome-
ter, accelerometer and, optionally, gyroscope data to estimate
the device orientation [11], [25]; 3) Step Length Estimation,
which uses accelerometer data to estimate step length [20].
Practical challenges in motion sensing, such as the sensitivity
to phone position and the variability in user walking profiles,
are explored in [17]. In cooperative scenarios, accuracy can
further be improved by fusing inertial data with user encounter
information [7], [27]. A major challenge with motion sensing is
dealing with orientation errors due to magnetic field distortions
and sensor biases. This problem will be exacerbated when
trying to infer orientation without gyroscope, which will be
increasingly power-efficient with the advent of digital motion
processors (Fig. 2).

B. RSS-based localisation

RSS-based fingerprinting is another popular method due to
the wide availability of wireless APs, and the cost benefits of
not having to install and maintain special-purpose infrastruc-
ture. Existing techniques, such as Radar [3], PlaceLab [16]
and Horus [33], typically involve a training phase, in which
a building is surveyed and the signal strengths received at
each location from the various APs are recorded in a radio
map. Once a map is available, people can use it to deter-
mine their own location by comparing the signal strengths
that they receive from APs with those in the map. Further
techniques have been developed to deal with heterogeneous
wireless clients [13] or to exploit additional features of the
environment, e.g. FM signals [6], sound, light and color [2].
The main disadvantage of these methods is that they require
labour intensive surveying of the environment to generate radio
maps. To address this problem, there have been a number
of simultaneous localisation and mapping efforts recently that
aim to automatically build the radio map, by fusing RSS with
motion sensor data, as discussed in the next subsection.

C. Bayesian fusion of motion and RSS data

Existing fusion algorithms, such as Hidden Markov Model-
s, Kalman and Particle Filters, are typically based on Bayesian
estimation. They represent the conditional dependence struc-
ture between observation and state variables using directed
graphical models (top of Fig. 3). It is often assumed that the
sensor measurements are conditionally independent of each
other given the state. This is the basis of the Naive Bayes
model (top left of Fig. 3). The extension of this model to a
sequence of states linked through transition probabilities leads
to recursive Bayesian models, such as HMMs (top center of
Fig. 3). The joint probability distribution between all state
and observation variables is decomposed into a product of
conditional distributions (top right of Fig. 3).

p(S0:T , Z0:T ) = p(S0)p(Z0|S0)
T∏
i=1

[p(Si|Si−1)p(Zi|Si)] (1)

where S0, . . . , ST are the variables representing the real states
of a system (e.g. the locations of a person) over a time horizon
0, . . . , T , and Z0, . . . , ZT are the observation variables over the
same time period. The problem of indoor localisation is either
cast as a filtering problem (find p(St|Z1:t)), or as a smoothing
problem (p(St−k|Z1:t), where k > 0) if the user can tolerate
some delay, or as the inference problem of finding the most
likely trajectory S0:T given observations Z0:T .

Hidden Markov Models (HMM) is a special class of a
recursive Bayesian model where state variables are discrete,
and the transition model p(Si|Si−1) is a matrix. HMMs have
been widely used for map matching and location estimation,
both outdoors using road maps [10], [18], [28] as well as
indoors [23], [30], and they come in two flavours: one is the
first order HMM where states represent user locations. An
alternative is to model the transitions between pairs of locations
as the state itself. A limitation of both models is that they
do not take into account correlations between nearby inertial
observations, for example correlated magnetometer bias due to
the metal disturbances in the earth’s magnetic field. Section VI
shows how this limitation impacts the accuracy of 1st [23], [28]
and 2nd-order HMM algorithms [10].

Kalman Filters: An alternative approach is to consider the
location of a user as a continuous variable and resort to a
Kalman Filter variant (e.g. [5]). Sensor fusion is typically
performed in two steps. First, the Kalman Filter estimates the
position of a moving node after taking into account its previous
position and the inertial sensor data. Then, RSS data are used to
update the node’s position, abiding by map constraints. Similar
to first order HMMs, Kalman Filters are effective when radio
signal strengths are periodically sampled from various access
points, and fused with inertial data; however, their performance
deteriorates when we solely make use of inertial sensors and
the building’s floor plan.

Particle Filters: Another common technique for performing
online map matching is to use a particle filter [1], [4], [17],
[19], [31]. The key idea of particle filters is to approximate the
distribution p(St−1|Z1, . . . , Zt−1) by a set of particles. In each
round, these are first moved according to the transition model,
their weights are then updated according to the observation
model, and particles are then re-sampled according to their
weights. Over time, the particles typically converge to the
most likely position of the user. One of the major issues of
the particle filter is the computation time, as a large number of
particles are typically required to ensure good estimation of the
continuous probability distribution, especially when dealing
with noisy inertial data and large maps. Sec. VI shows that
our particle filter implementation (inspired by [19]) often fails
to converge when using gyro-free dead reckoned data due to
errors in orientation estimates. When it uses the full suite of
IMU data and WiFi, it converges but at much higher cost.

WiFi SLAM: Other approaches such as WiFi-based SLAM
fuse RSS and motion sensor data to simultaneously build a
map of the environment and locate the user within this map [8],
[21], [22].Recently, [32] proposed a SLAM approach that does
not exploit the full power of dead reckoning but only measures
walking steps. SLAM approaches can be seen as orthogonal to
our work: first, we assume that basic maps, i.e. floor plans, are
available and there is no need to discover them; second, we
view SLAM techniques as map generators providing optional
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input to our map matching algorithm, e.g. radio fingerprint
maps [8], or organic landmark maps [24], [29]. Once floor
plans (and optionally radio maps) are available, our focus is on
designing sensor fusion techniques that make the best possible
use of sensor measurements and maps in a way that is both
lightweight and robust.

In summary, existing techniques require either rich sensors
or intensive computation to yield good accuracy. In this paper,
we propose a novel approach to resource-efficient localisation
based on conditional random fields.

IV. CONDITIONAL RANDOM FIELDS

CRFs are undirected probabilistic graphical models intro-
duced by Lafferty et al. [15]. They have been successfully
applied to a number of tasks in computer vision (e.g. clas-
sifying regions of an image), bioinformatics (e.g. segmenting
genes in a strand of DNA), and natural language processing
(e.g. extracting syntax from natural-language text). In all
of these applications, the input is a vector of observations
Z = {Z0, . . . , ZT }, and the task is to predict a vector of latent
variables S = {S0, . . . , ST } given input Z.

Maximum Entropy Model: In order to introduce CRFs, we
must first introduce the Maximum Entropy Model (MEM). A
chain CRF is an extension of MEM for state sequences, in
the same way that a HMM extends a naive Bayes model, as
illustrated in Fig. 3. The Maximum Entropy Model assumes
that given incomplete knowledge of the probability distribution
p(S0|Z0), the only unbiased estimate is a distribution that is as
uniform as possible given training data (consisting of several
(Z0, S0) values). This implies finding the model that has the
largest possible conditional entropy:

p∗(S0|Z0) = argmax
p(S0|Z0)∈P

H(S0|Z0) (2)

where P is the set of all models consistent with the training
material. To explain the meaning of consistency, let’s consider
a set of m features f1, . . . , fm, each one of which is a function
of observation and state variables. A model is consistent with
the training material when the expected value of each feature
in the empirical distribution (training dataset) is equal to
its expected value in the model’s distribution. Each feature

thus introduces a constraint, and finding p∗(S0|Z0) becomes
a constrained optimisation problem. For each constraint a
Lagrange multiplier λi is introduced; the optimal solution in
the maximum entropy sense is log linear [14], [15]:

p∗λ(S0|Z0) ∝ exp(
m∑
i=1

λi ∗ fi(S0, Z0)) (3)

The conditional probability distribution of states given
observations is thus proportional to the exponentiated sum of
weighted features.

Linear Chain Conditional Random Fields can be viewed
as the sequence version of Maximum Entropy Models, in the
same way that HMMs is an extension of the naive Bayes clas-
sifier model. In linear chain CRFs, the conditional probability
of states given observations is proportional to the product of
potential functions that link observations to consecutive states,
as expressed in the equation below and shown in Fig. 3 (bottom
right).

p∗λ(S|Z) ∝
T∏
j=1

Ψ(Sj−1, Sj , Z, j) (4)

where j denotes the position in the observation sequence, and
Ψ are potential functions. A potential function is composed
of multiple feature functions fi, each of which reflects in
a different way how well the two states Sj−1 and Sj are
supported by the observations Z.

Ψ(Sj−1, Sj , Z, j) = exp(
m∑
i=1

λi ∗ fi(Sj−1, Sj , Z, j)) (5)

Differences between HMMs and CRFs: HMMs are directed
generative graphical models: they are trained to maximize the
joint probability distribution of observation and state variables,
which they compute as a product of state priors and conditional
probabilities of observations given states (top right of Fig. 3).
In contrast to HMMs, CRFs are undirected discriminative
models: they are trained to directly maximise the condition-
al probability of state variables given observation variables,
which they compute as a product of potential functions (bottom
right of Fig. 3). Thus, unlike HMMs, in CRFs there is no
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need to model the exact conditional probability distributions
of observations given states (or state transitions). Instead one
only has to define feature functions, as discussed in Sec. V-B.

Furthermore, the power of CRFs over HMMs lies in how
they link observations to each other and to states. CRFs are
able to model both: 1) how observations relate to individual s-
tates, as well as 2) how they relate to transitions between states.
This is very convenient for tracking systems that make use of
inertial sensor data, which naturally depend on the transition
between two locations rather than on a single location. Using
inertial observations in a HMM would complicate things by
either having to use an input-output first order HMM, where
transition probabilities depend on inertial data, or having to
model the problem as a second-order HMM, where a state
represents a transition between locations.

In HMMs observations at a given timestamp are typically
considered independent of each other given the state (naive
Bayes assumption), whereas in CRFs, it is possible to define
features that capture these dependencies. In addition, in H-
MMs, observations generated at a given step only depend on
that step’s state. In CRFs, we are flexible to define features
that link an entire chain of observations (of arbitrary length)
with a state or a state transition. This is useful when nearby
observations are perturbated with correlated errors, e.g. when a
local distortion of the magnetic field affects several consecutive
heading observations. It is further useful when using RSS
landmarks for tracking; for instance, several RSS observations
must be received after time t before deciding if the observation
at time t is a peak value.

Finally, in CRFs, it is possible to define more than one
feature function that captures the dependency between a sub-
chain of observations and a state (or state transition). New
feature functions can be used to accommodate new sensing
modalities in a natural way.

V. MAP MATCHING USING CRFS

We are now in a position to describe our algorithm, called
MapCraft, which makes use of CRFs to track people in indoor
environments1. MapCraft involves four distinct steps: 1) Map
pre-processing; 2) Definition of states and feature functions;
3) Training to determine feature weights; and 4) Inference to
estimate location over time. The first three steps are performed
once for each building by either a mobile phone or a service
in the cloud. The fourth step is performed online on the user’s
smartphone to track themselves.

A. Map pre-processing

This step takes a floor plan as input, and produces a graph
that 1) encodes a set of discrete states (locations), and 2)
represents physical constraints between discrete states imposed
by the map. This information will then be fed to the second
step, to help us define the CRF’s states and feature functions. In
our implementation, such information is obtained from maps
in various image formats. The main task is to extract edges
from the image needed to perform map structure recognition

1Since we assume that a floor plan (and optionally a radio map) is readily
available, we interchangeably refer to the tracking problem as the map
matching problem.

or reconstruction, using standard edge detection algorithms.
A graph is built on the reachable region of the map. We
first divide the graph into identical squares with edge length
e. Small e increases the computational cost while large e
degrades the map matching accuracy. A suitable choice of e
in our system is the average step length of the trajectory to
be matched, e.g. 0.8 m. The neighbours of a target vertex
are vertices which have a common geographical border with
the target vertex and pass the connectivity test as well. The
removal of unreachable vertices is important to the system
performance, because there is typically a large number of
vertices in the map that cannot be reached from the legal
region. The process of map generation and graph construction
only happens once when a new map is used in the system.

B. Definition of states and feature functions

The output of the previous step directly allows us to define
the state space of the CRF, as the set of discrete locations
encoded in the vertices of the generated graph. We are now
in a position to introduce the set of feature functions used
by MapCraft. Recall that a feature function fi defines the
degree to which observations Z support our belief about two
consecutive states (St−1 and St); the stronger the support, the
higher the value of the feature function fi(St−1, St, Z). Note
that in CRFs, we are free to use any subset of observations,
generated at a single or multiple time steps, though in most
cases, the observations that matter are those temporally close
to time t. In what follows, we specify for each feature the
subset of observations that it uses, and how it relates them to
state transitions or, in some cases, to individual states.

The first feature in our system expresses the extent to which
an inertial measurement Zint supports the transition between
states St−1 and St:

f1(St−1, St, Z
in
t ) = I(St−1, St) (6)

× (fθ1 (St−1, St, Z
θ
t ) + f l1(St−1, St, Z

l
t))

where I(St−1, St) is an indicator function equal to 1 when
states St−1 and St are connected and 0 otherwise. The inertial
observation Zint has two components: the measured length Zlt
and angle (heading) Zθt of displacement, which are assumed to
be independent. fθ1 and f l1 are the functions to relate the angle
and length to the underlying graph, respectively. The function
fθ1 is given as

fθ1 (St−1, St, Z
θ
t ) = ln

1

σθ
√

2π
− (Zθt − θ(St−1, St))2

2σ2
θ

(7)

where θ(St−1, St) is the orientation of the edge between states
St−1 and St, and σ2

θ is the heading variance of the observation
Zθt . The feature function f l1 is defined likewise.

The purpose of the second feature is to handle correlations
in heading errors in a recent time window. It does so by
measuring how well a corrected inertial measurement Zint (θ̂),
derived by rotating Zint by angle θ̂, supports the transition
between states St−1 and St:

f2(St−1, St, Z0:t) = f1(St−1, St, Z
in
t (θ̂)), (8)

The rotation angle θ̂ is estimated as the average heading
difference between the estimated and measured headings from
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time stamp t− w to t, where w is a window size parameter.

θ̂ =
w∑
i=1

Θ
(
SMLE
t−i − SMLE

t−i−1 , Z
θ
t−i
)
/w, (9)

where Θ represents the angle between two vectors, and SMLE
t

is the maximum likelihood estimate (MLE) of the state at time
t taking into account all measurement from 0 to t. MLE state
estimates are computed efficiently using the Viterbi algorithm
as explained in Sec V-D.

The third feature function is optional, and it takes into
account the signal strength observations in conjunction with a
radio fingerprint map, if it is available in a building. Unlike the
previous two feature functions, that constrain state transitions,
this feature constraints individual states.

f3(St, Z
RSS
t ) = −(St − µt)

T (Σt)
−1(St − µt), (10)

in which the observation ZRSSt is the estimated mean µt and
covariance Σt of current position given RSS fingerprint data.
This feature measures the negative squared Mahalanobis dis-
tance between the state and the RSS-based position estimate.

The CRF model used by MapCraft combines the three
features above into a potential function Ψj(Sj−1, Sj , Z, j),
which is computed as the exponentiated function of their
weighted sum as shown in Equation 5. The way that weights
λi are determined is explained in the next subsection (Training
step). However, as we will show in Section VI, in typical
indoor environments, the training step is not strictly required,
as using equal weights typically yields comparable location
accuracy to that obtained after careful weight training. Hence,
in practice the following training step can be skipped and equal
weights can be assigned to the three features above.

The power of the CRF model is that it does not constrain
us to only use the features above. Depending on the sensor
data available and the maps available, it might be useful to
extend the list of features. For example, suppose that we are in
possession of a radio map, denoted with PeakPointInMap(St),
that contains the locations where the RSSI from an access point
takes a local peak value (e.g. provided by [24]). We could then
define a fourth feature as follows:

f4(St, Zt−w:t+w) =

{
1 if Zt = max(Zt−w:t+w)

and PeakPointInMap(St)
0 otherwise

(11)

In case the building is equipped with cameras, additional
features could be added to incorporate visual sensor data. In
general, CRFs provide a flexible model where a number of
different observations can be fused into the model.

C. Training to determine feature weights

In many scenarios where CRFs are applied, the freedom
of being able to define a number of different features comes
at the cost of needing to estimate their weights. This step
requires training material T , which consists of one or more true
trajectories, paired with respective sequences of sensor obser-
vations. Training the CRFs to estimate weights is performed
by maximising the log-likelihood on the training material T :

Lλ(T ) =
∑

((S,Z)∈T )

log p∗λ(S|Z) (12)

By taking the partial derivative of the log likelihood
function with respect to each feature λj and setting it to 0,
we get the maximum entropy model constraint:

ET (fi)− E(fi) = 0 (13)

that is, the expected value of the i-th feature under the
empirical distribution ET (fi) is equal to its expected value
under the model distribution E(fi).

Setting the gradient to zero does not always give us an
analytical solution for the weights λi. This requires resorting
to iterative methods, such as iterative scaling or gradient-based
methods. Independent of the method used, one needs to be able
to compute E(fi) and ET (fi) efficiently. This is easily done
for ET (fi), since all we have to do is go over each training
sequence, sum up the weighted sum of feature functions over
all time steps, and sum up the result for all training sequences.

ET (fi) =
∑

(S,Z)∈T

T∑
j=1

fi(Sj−1, Sj , Z, j) (14)

Computing E(fi), however, is slightly more complicated
and requires the use of a dynamic programming approach,
known as the Forward-Backward algorithm, similar to the
one typically used for Hidden Markov Models. The details of
how this algorithm is applied to CRFs can be found in [14].
The time complexity of the Forward-Backward algorithm is
O(|S|2T ), where T is the length of the sequence and |S| is
the number of discrete states.

The goal of the training is to tune the feature weights λi in
Eqn. 5 in order to make the features best support the training
data. The weight actually reflects how much we trust the
corresponding feature. For instance, if we set a large weight,
e.g. 5, for feature f1(St−1, St, Z

in
t ), we can see from Eqn. 7

that it is equivalent to decreasing the length variance σ2
l and

angle variance σ2
θ much smaller, which means we consider

the length and angle measurements to be more accurate than
indicated by these variances defined in Eqn. 7. Therefore, it
is not necessary to tune the weights from training data if the
variances of measurements are well defined.

It is also worth noting that large feature weights should be
avoided, because they amplify slight differences in the feature
values of two tracking solutions into significant differences in
the potential function ψ, due to the exponential function in
Eqn. 5. We suggest that all feature weights should be chosen
from [0.5, 2], which works well in all our experiments in
different environments. It is also demonstrated in Sec. VI with
our empirical results from three different indoor environments
that the training step only has slight impact (< 10%) on
localisation accuracy. The default setting of weights equal to 1
for all features yields similar performance to weights derived
from training. Hence, in practice we do not need training
material (ground truth trajectories); we can directly proceed
to the location inference step described below.

D. Inference to estimate location over time

The final step is finding the most likely sequence of hidden
states, i.e. the most likely trajectory S∗. This requires solving
the following optimisation problem:

S∗ = argmax
S

p(S|Z), (15)
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The Viterbi algorithm, a dynamic programming algorithm,
offers an iterative solution with a worse case time complexity
of O(|S|2T ), where T is the length of the trajectory in steps
and |S| the number of states. It is similar to the Forward-
Backward algorithm used in each learning iteration, with the
subtle difference that it applies a maximisation instead of a
summing operation in each induction step. More specifically,
in each step, it evaluates the highest score δj(s) along a path
at position j that ends in each possible value s for state Sj ,
as follows, and gradually fills a lattice with these values:

δj(s|Z) = max
s′∈S

δj−1(s′)Ψj(s
′, s, Z, j) (16)

In the case of on line real-time tracking, the most recently
filled column of the lattice, which represents a discrete distribu-
tion p(Si|Z1:i) is normalised and converted into a 2D Gaussian
distribution and displayed on the user’s map. If MapCraft
is extended to employ features that use a few observations
after the current step (e.g. feature f4), a slight delay will be
introduced in displaying a user’s location. In the case of delay
tolerant off line tracking, it is possible to wait until the location
accuracy is high before performing the path backtracking step
of the Viterbi algorithm, and computing the optimal path form
the lattice.

In our implementation, we introduced two additional
heuristics. First, we observed that in steps when the estimated
location accuracy is high it is beneficial in practice to replace
the current step’s discrete distribution with its Gaussian ap-
proximation. This helps remove low probabilities far away
from the true location, and move them closer to the true
location thus slightly extending the estimated error ellipse. As
a result, our algorithm became more robust to slight over- or
under- estimation of step length which, after several steps, can
make the estimated position drift away from the true position.
The second optimisation was to use the inference step not
only for location tracking, but also to estimate heading at
each step. More specifically, when we have high confidence
in a backtracked path generated by the Viterbi algorithm, we
generate estimates of heading and compare them with the
raw heading data provided by our inertial sensors, in order to
estimate the bias of the gyroscope. We can close the loop by
correcting the gyroscope’s bias when we have high confidence
in our location estimates; we have observed that this feedback
loop further improves localisation accuracy.

VI. EVALUATION

Sites: To demonstrate the real world applicability of the
tracking system, our map matching algorithm is evaluated and
compared against competing approaches in three real-world
settings, namely an office building, a market, and a museum.
All of these have different floor plans as shown in Fig. 8 and
methods of construction which affect the obtained sensor data.
The office environment (65×35m2, where the majority of the
tests have been conducted) is a multi-storey office building
with a stone and brick construction, reinforced with metal
rebars - testing was conducted on the fourth floor. The market
(108 × 53m2) consists of a number of small shops, laid out
over a single floor. Construction is mainly brick and mortar,
with a metal roof. The museum (109×89m2) is a multi-storey
stone building with large, open spaces. Testing was conducted

on the ground floor. Overall, 500 trajectories of average length
200 m were collected over 15 days.

Participants: The variations between different people are
taken into account by acquiring data from 20 people of
different genders, heights, and ages. They may not appear
in all three sites, but each one of them has participated in
the experiments in at least two different sites. During the
experiments, the subjects held the mobile phones in their hands
and then walked anywhere in the building without planned
routes, to realistically capture real pedestrian motion, rather
than artificial, constant speed trajectories.

Devices and Implementation: Different types of mobile
phones and pads are involved in experiments, including LG
Nexus 4, Asus Nexus 7, Samsung Nexus S, Samsung Galaxy S
IV, Samsung Galaxy S III, Samsung I9100G Galaxy S II, HTC
Hero S and Huawei U8160. These mobile phones differ greatly
in terms of sensors, functionality and price. But one thing in
common is that they all run the Android operating system
no earlier than version 2.3.6. A snapshot of our application
prototype has been shown in Fig. 1.

Ground truth: To provide accurate ground truth, numbered
labels were placed along corridors and within rooms on a
3 m grid. Using the device’s camera, these were filmed
at the same time experiments were conducted. The time-
synchronized video streams were then mapped to locations
on the floorplan, and intermediate locations interpolated using
footstep timing, also obtained from the video.

Training: Fig. 7(c) shows the impact of training on the
performance of MapCraft. Training alters weights for the
various input features, away from the nominal case of weights
1 for all features (when the training iteration is 0). Several
iterations of training were run on a set of training trajectories
obtained from the office environment. The weights from each
training iteration were then applied to each of the three data
sets (trajectories from the office, museum, and market) for
cross validation. Note that the RMS error of the trajectories
in the office environment, where training was performed, is
decreased with the number of training iterations, but only
slightly (up to 9%). The RMS error of market and museum
trajectories also do not vary much; it can even slightly increase
because the training is performed in a different environment
than testing. This implies that training is not critical to good
performance and in practice, it can be skipped. The remainder
of experiments, which are conducted with weights 1 for all
features, show that MapCraft is accurate without requiring
careful training to a particular environment.

Competing Approaches: We compare MapCraft with several
state-of-the-art map matching algorithms. For readability, their
names reveal the underpinning Bayesian estimation technique
with references that point to source papers with implementa-
tion details: 1) HMM [28]: This algorithm uses a first order
HMM, where states represent discrete positions, with equal
transition probabilities between neighboring states (regardless
of the vertex degree). An typical example is VTrack [28] which
works very well using ground truth position estimates from
GPS as observations. Seitz et al. [23] extends VTrack and
obtains the underlying graph of HMM from RSS rather than
GPS, by also exploiting position estimates from the inertial
trajectory as observations; 2) HMM-IO [23]: This is an Input-
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Fig. 4. Matched trajectories using MapCraft and competing approaches with gyro-free and gyro-aided simple raw trajectories.

Output first order HMM; the difference from the first order
HMM is that inertial data is not used to generate observations
at each step, but to calculate the transition probability between
consecutive states; 3) HMM2 [10]: In the second-order HMM,
states are path segments connecting two locations in the map.
Observations encompass both inertial displacement vectors
and RSS-based position estimates. Transition and observation
models are defined as in AutoWitness [10]; 4) PF: This algo-
rithm uses a particle filter implementation similar to Zee [19].
Specifically, A total number of 2000 particles are used. We
also implement similar step counting algorithm and exactly
the same particle update as Eqns. (3) and (4) in [19] with
the stride length variation δi uniformly distributed within
±30% of the estimated stride length and heading perturba-
tion βi ∼ N (0, 10◦). Generally speaking, these competing
approaches work well with simple structure trajectories, e.g.
those generated in major corridors in a building, as shown in
Fig. 4. It is demonstrated below that the accuracy of these
approaches decrease dramatically with tortuous trajectories
shown in Fig. 8.

A. Performance Comparison

Accuracy/Sensor Tradeoff: The goal of the first experiment,
which was conducted in the office site, is to explore the
tradeoff between sensor usage and position accuracy. Different
sensors provide different accuracy in location or heading
estimations. For instance, gyro sensors help improve heading
estimates, esp. in the presence of magnetic field distortions,
as are typically encountered in indoor settings. WiFi scans
provide helpful information about absolute location. Fig. 5
shows three different regimes of map matching with increasing
levels of sensor usage: 1) accelerometer and magnetometer
only; 2) full inertial sensing: accelerometer, magnetometer,

and gyroscope (no WiFi; 3) full inertial sensing with periodic
WiFi RSS measurements. Notice that MapCraft significantly
outperforms competing algorithms under all three regimes,
typically resulting in errors two to three-fold lower than
the next best approach (2000 particles are used in PF-based
approach).

Specifically, Fig. 5(a)) shows the error CDF with only
accelerometer and magnetometer measurements, such as would
be used in a system aiming to consume minimal energy. The
lack of gyro readings makes the heading estimation very inac-
curate, especially in areas with high concentrations of metal.
As a consequence, the whole raw trajectory is very noisy.
These distorted trajectories greatly deteriorate the performance
of existing methods whilst our approach remains robust to
noisy sensors. One of the key reasons is the use of feature
f2 that handles heading error correlations. Fig. 5(b) shows
the error distributions with full inertial measurements. The
gyroscope provides more accurate heading estimation over a
short period of time. However, over time, the accumulated error
becomes excessively large. However, due to the features in our
system, the accumulated error is gradually reduced in each
step, which guarantees the accuracy of the heading estimation
and yields accurate matching results. Fig. 5(c) shows the
error CDF with periodic WiFi measurements, taken every 16
seconds. These are used, in conjunction with a radio finger-
print map, to provide absolute position estimates. With these
measurements, the performance of HMM and PF improves
significantly. However, the performance of MapCraft increases
further still with the combination of relative and absolute
measurements. This is because it captures more features of
the measurements across both time and space.

Execution time and memory use: Next, we investigate the
cost of MapCraft on a mobile phone (LG Nexus 4). We
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Fig. 5. Error CDFs for various map matching approaches with increasing number of sensors a) gyro-free and b) gyro-aided and c) wifi- and gyro-aided.
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Fig. 6. Comparisons of (a) execution time, (b) memory usage and (c) convergence distances of the various map matching approaches.

show that, not only it is more accurate, but it also offers
significant computational and memory savings compared to
existing approaches. This makes it lightweight and practical to
run on resource-constrained mobile devices such as phones and
wearable sensors. For a highly responsive pedestrian tracking
application, the processing time for each step should be less
than 300ms. Meanwhile, the memory limit for a single appli-
cation on current Android platform is 20 MB. Any algorithm
with requirements exceeding these limits is not suitable for
real-time pedestrian tracking with existing hardware. Fig. 6
shows the execution time and RAM usage of the various map
matching algorithms2. Time (ms) in Fig. 6(a) is estimated as
the average time to process a single step over the trajectories
generated in the office site. Approaches using Viterbi decoding
(CRFs, HMM, HMM2) have a time complexity of O(N2T ) in
theory (N is the number of vertices). But different formulations
of graph have different sparsity degree, resulting in varying
run time costs. Note that MapCraft outperforms the other
approaches, with an execution time of 10 ms, whilst obtaining
the lowest RMS error.

The memory requirements of the various approaches are
shown in Fig. 6(b). HMM2 in its current form cannot be
deployed on an Android device due to the very high RAM
usage of approximately 50 Mbyte. This is because it is based

2The execution time and memory usage of MapCraft are first tested in LG
Nexus 4. All algorithms including MapCraft are implemented and tested in
Matlab. Then the execution time and memory usage of other approaches are
scaled relative to the values from the MapCraft real tests.

on a second order HMM which leads to exponential memory
usage with the number of states as the entire transition matrix
needs to be stored. HMM(Seitz) and PF are close to the
limits of an Android application. HMM(VTrack) and MapCraft
consume a similar amount of RAM (4 Mbytes), but the RMSE
of VTrack is considerably higher.

Convergence distance: The proposed and competing algo-
rithms are designed for online tracking. However, in the
absence of WiFi measurements and without knowledge of the
initial pose, they initially incur a convergence cost, which
we measure as the average minimum distance needed for
the algorithm to find the correct location within an error
of 3 m. Fig. 6(c) shows that for 97% of cases, MapCraft
converges within 50 m and the next best, HMM2, within 60 m.
The HMM (Seitz) and PF approach show considerably worse
performance, in some cases never converging. Even with a
very large number of particles (100k), the PF approach fails
to converge in many cases due to impoverishment. VTrack is
unable to estimate the correct location, as it requires a good
initial starting point estimation. Note that when WiFi-aiding
is used, all algorithms provide a good location estimate after
2-4 m.

Discussion: The underlying reason for the superiority of
MapCraft in tracking accuracy is the ability to model dis-
placements of inertial trajectories without prior assumptions,
as we have discussed in Section IV. The first-order HMM
matches the locations rather than the displacements of the
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raw trajectory to possible location sequences in the map,
and thus its performance can be easily degraded with a
very noisy raw trajectory due to the increasingly accumulated
location error from the inertial measurements. We have to
make prior assumptions on the transition and observation
probability distributions for HMM and HMM2, which are only
approximations of the real world scenarios. In addition, the
HMM category (HMM, HMM2, and HMM-IO) all assume the
independence of observations given the state but unfortunately
different observations are likely to be correlated, both spatially
and temporally. As explained in Section IV, CRF makes no
similar assumptions, which makes it easy to capture these
dependence and accurately model the tracking process as it
is. As a result, CRF has better accuracy in general, especially
with torturous trajectories in long-term tracking.

The PF approach is sensitive to motion sensing errors,
especially the heading bias caused by magnetic disturbance of
metallic objects, which is ubiquitous in indoor environments.
In our experiments, the magnetic disturbance from one big
metallic object usually lasts for 5 to 15 meters and can be as
large as 30 degrees, which is very likely to mislead all particles
into the wrong room, especially with very tortuous trajectories
generated in our experiments. Since the PF approach only
has local information about the region covered by particles,
if all particles enter a wrong room it is hard to recover to the
correct position. Furthermore, if the heading bias comes at the
beginning of the tracking process, it is difficult for the particle
filter to converge without knowledge of the initial pose of the
pedestrian.

The MapCraft is lightweight in both running time and
memory usage because it neither stores transition or emis-
sion matrices (only several feature functions) nor performs
expensive matrix operations. The HMM category, especially
HMM2 whose state space is much bigger, take more running
time and memory for processing transitions and emissions. The
running time and memory usage of HMM-IO are comparable
to MapCraft when the number of features is small, e.g. 2
or 3 in our experiments because the transition and emission
probabilities are computed in a real-time manner.

The running time and memory usage of particle filter large-
ly depends on the number of particles. The major computation
cost comes from checking whether the position update of each
particle violates the map constraints. The results shown in
Fig. 6 are obtained with 2000 particles.

B. Robustness

The next set of experiments are performed to examine
the robustness of MapCraft and its applicability to real world
scenarios. It must be emphasized that all these results are for
the WiFi-free case, i.e. the only input to the system is a floor
plan and IMU data. The results that we had with WiFi were
even better, but we do not show them for space reasons.

Long-term tracking: First, we studied the repeatability of
accuracy results as we run MapCraft for long time periods,
resulting in inertial trajectories that are increasingly distorted
with respect to the true trajectory. Fig. 7(a) shows the results
of an experiment where the same route was followed 50 times
in the office environment by different people with different
mobile phones and the resulting trajectories calculated. Note

that although the raw inertial measurements are significantly
different each time, the map-matched trajectories are very
similar. This shows that the map matching process is able
to accurately reconstruct the correct trajectory, in spite of
excessive and varying metal-induced distortions to the heading
estimation.

Multi-site performance: We then studied the robustness of
MapCraft in a variety of environments, namely an office
building, a museum and a supermarket.

Very complex and tortuous trajectories typically are the
weakness of inertial tracking systems, due to drift and the
absence of absolute anchor measurements. However, by using
the map matching approach, very accurate reconstruction can
be provided even when the user executes a complex trajectory.
This is shown in Figure 8. The cumulative distribution function
of location errors in the three environments are shown in
Fig. 7(b).

The room-level accuracy, defined as the percentage of
matched trajectories entering the correct room, and overall 97
percentile accuracy is shown in Table I. The room level accu-
racy is above 90% in all environments, which demonstrates the
applicability of our approach to tackling real-world navigation
problems. This compares well with other approaches based on
extensive and multimodal radio fingerprinting [6].

TABLE I. RMS ERROR, 97 PERCENTILE ACCURACY AND
ROOM-LEVEL ACCURACY OF MAPCRAFT IN THREE SITES.

Site office museum market
RMS error (m) 1.69 1.14 1.83

97 percentile (m) 4.10 2.37 4.53
Number of rooms 20 15 29
Room entry-events 357 360 82

Room identification (%) 93.0 100 96.3

Impact of training: Finally we studied the impact of training
on the tracking accuracy of MapCraft. Consistent with what we
have discussed in Section IV, the feature weights trained from
ground truth trajectory do not provide significant accuracy
improvements, as shown in Fig. 7(c). To demonstrate the
robustness of MapCraft over the feature weights, we only
train the model with ground truth trajectories from the office
environment and apply the same weights to all three exper-
iment sites. It is observed from Fig. 7(c) that the change
in accuracy after ten iterations are less than 30 percent.
Note that there is a slight increase in the museum site after
training over five iterations. and then the accuracy remains
unchanged henceforth. Fig. 7(c), feature weights used in all
three experiment site are the same weights trained from the
ground truth trajectories in office environment.

VII. CONCLUSION

We demonstrated the merit of a novel map matching
technique, based on the application of conditional random
fields. We have shown how it is robust, being able to operate
with very noisy sensor data; lightweight, running in under 10
ms on a smartphone; and accurate, achieving the lowest RMS
errors compared with other state-of-the-art approaches. It does
not require per-site training, which will allow for easy and
widespread adoption, as the only information that is required
to use our approach is a floorplan. In the future, our system has
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the potential to make crowd-sourcing of WiFi fingerprints prac-
tical, without requiring time-consuming manual scans. This is
because MapCraft is able to establish a user’s position using
only dead-reckoned trajectories and a floorplan, without any
external information such as a starting location or knowledge
of WiFi access point locations. We believe that MapCraft has
widespread application to a number of domains, as this single
approach can be used with a wide variety of sensors and
map information. One particularly relevant area is estimating
location online and in real-time in resource-constrained body-
worn sensors. In summary, we have presented a system that
addresses the very pressing problem of providing accurate, low
power, indoor tracking, that is responsive, robust and scalable.
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