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AbstratThe submodular funtion minimization problem (SFM) is a fundamental problemin ombinatorial optimization and several fully ombinatorial polynomial-time algo-rithms have reently been disovered to solve this problem. The most general versionsof these algorithms are able to minimize any submodular funtion whose domain is aset of tuples over any totally-ordered �nite set and whose range inludes both �niteand in�nite values.In this paper we demonstrate that this general form of SFM is just one exampleof a muh larger lass of tratable disrete optimization problems de�ned by valuedonstraints. These tratable problems are haraterized by the fat that their valuedonstraints have an algebrai property whih we all a tournament pair multimor-phism. This larger tratable lass also inludes the problem of satisfying a set ofHorn lauses (Horn-SAT), as well as various extensions of this problem to larger�nite domains.Keywords: disrete optimization, onstraint satisfation problem, valued onstraintsatisfation, tratability, submodularity, tournament operation, majority operation, mod-ular deomposition.
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1 IntrodutionIn this paper we study a generi disrete optimization problem known as the valuedonstraint satisfation problem (VCSP) [49℄. This problem generalises the standardonstraint satisfation problem [22℄ by allowing di�erent osts to be assoiated with dif-ferent solutions. It provides a very general framework whih inludes many standardombinatorial optimisation problems as speial ases, inluding Max-SAT [19℄, Max-CSP [11℄, Min-Ones SAT [19℄, and Min-Cost Homomorphism [29℄.The omplexity of the VCSP depends on the types of valued onstraints whih areallowed. For ertain types of valued onstraints an optimal solution an be obtained inpolynomial time; suh onstraints are alled tratable valued onstraints.In the speial ase where eah variable has just 2 possible values, a omplete har-aterization has been obtained of all tratable lasses of valued onstraints with positivereal-valued or in�nite osts [8, 12℄. This result extends the earlier haraterizations ofthe tratable lasses for the SAT [48℄ and Max-SAT [19℄ problems.Over larger sets of possible values a omplete haraterization of the tratable asesis not yet known, but a number of examples have been identi�ed. Two important lassesof tratable valued onstraints are submodular funtions (see Example 3.7) and Hornlauses (see Example 2.4). In this paper we show that these two examples are members ofa large family of tratable valued onstraint lasses whih an be treated in a uniform way.To obtain this generalisation, we introdue a lass of operations known as tournamentoperations, and show that any set of valued onstraints assoiated with an arbitrarypair of tournament operations de�nes a tratable optimization problem.The paper is organised as follows. In Setion 2 we de�ne the standard onstraint satis-fation problem, and in Setion 3 we extend this de�nition to the more general frameworkof the valued onstraint satisfation problem and de�ne the notion of a multimorphism.In Setion 4 we onsider multimorphisms de�ned by speial kinds of operations knownas tournament operations. In Setion 5 we onsider the set of all feasible assignmentsto a valued onstraint satisfation problem, and the set of all optimal assignments, andshow that in ertain ases these sets an be eÆiently represented. In Setion 6 we begina more detailed examination of tournament operations by onsidering deompositions ofthe assoiated tournament graphs, and in Setion 7 we examine the struture of valuedonstraints whih have a tournament pair multimorphism. Using these results we showin Setion 8 that all suh valued onstraints give rise to tratable optimisation problems,and then in Setion 9 we give some examples. Finally, in Setion 10 we suggest somediretions for future researh.2 Constraints and polymorphismsIn this setion we present the terminology and notation used to desribe the standardonstraint satisfation problem (CSP) and disuss the tehniques whih have been usedto identify tratable ases. In Setion 3 we extend these ideas to the valued onstraintsatisfation problem. 2



De�nition 2.1 An instane of the onstraint satisfation problem, CSP, is a tupleP = hV;D;Ci where:� V is a �nite set of variables;� D is a �nite set of possible values;� C is a set of onstraints. Eah element of C is a pair  = h�;Ri where � is atuple of variables alled the sope of , and R is a relation over D of arity j�j alledthe onstraint relation of .De�nition 2.2 For any CSP instane P = hV;D;Ci, an assignment for P is a map-ping s : V ! D.A solution to P is an assignment whih satis�es all of the onstraints. That is, foreah h�;Ri 2 C, where � = hv1; v2; : : : ; vri, the tuple hs(v1); s(v2); : : : ; s(vr)i 2 R.Example 2.3 The standard problem of olouring the verties of a graphG with k oloursso that adjaent verties are assigned di�erent olours an be viewed as a speial aseof the CSP, where the onstraint relation of eah onstraint is the binary disequalityrelation, R6=, given by R6= = fha; bi 2 D2 j a 6= bg:For any given graph hV;Ei, we have the orresponding CSP instane hV;D;Ci, whereD = f1; 2; : : : ; kg and C = fhhvi; vji; R6=i j fvi; vjg 2 Eg.This problem is well-known to be NP-omplete when k � 3. �Example 2.4 The propositional satis�ability problem for Horn lauses, Horn-SAT, anbe viewed as a speial ase of the CSP, where the onstraint relations are relations overa 2-element set whih are spei�ed by Horn lauses. Suh relations desribe the possiblesatisfying assignments for a partiular Horn lause; for example, the relationR:x_:y_z = fh0; 0; 0i; h0; 0; 1i; h0; 1; 0i; h0; 1; 1i; h1; 0; 0i; h1; 0; 1i; h1; 1; 1igdesribes the satisfying assignments for the Horn lause :x _ :y _ z, where the value 0orresponds to false and the value 1 orresponds to true.The problem of satisfying any set of Horn lauses an be solved in linear time [23℄. �If � is a set of relations over some �xed set D, we will write CSP(�) to denote the lassof all CSP instanes where the onstraint relations of all onstraints lie in �.For ertain sets of relations � the problem CSP(�) is NP-omplete. (For example,the set fR6=g, where R6= is the disequality relation over some set D with jDj � 3, asde�ned in Example 2.3.) For other sets of relations � the problem CSP(�) an be solvedin polynomial time. (For example, the set of all relations spei�ed by Horn lauses, asde�ned in Example 2.4.)A �nite set of relations � will be alled tratable if there exists a polynomial-timealgorithm to solve CSP(�). An in�nite set of relations � will be alled tratable if all�nite subsets of � are tratable. 3



Many new tratable sets of relations have been identi�ed by investigating ertaininvariane properties of relations, known as polymorphisms [7, 25, 37℄.De�nition 2.5 A funtion f : Dm ! D is a polymorphism of a relation R � Dr iffor all ha11; : : : ; a1ri; : : : ; ham1; : : : ; amri 2 R, we also havehf(a11; : : : ; am1); : : : ; f(a1r; : : : ; amr)i 2 R:If a relation R has a polymorphism f , then we will say that R is preserved by f .Example 2.6 The relations over the 2-element domain f0; 1g whih are spei�ed byHorn lauses are preisely the relations having the polymorphism min : f0; 1g2 ! f0; 1g,whih returns the minimum of its 2 arguments.For example, if we take any 2 tuples from the relation R:x_:y_z de�ned in Exam-ple 2.4, (suh as h0; 1; 1i and h1; 0; 1i), and apply the operation min o-ordinatewise, thenwe obtain a new tuple, (h0; 0; 1i), whih is also a member of this relation.A binary operation, min, whih returns the minimum of its two arguments, an bede�ned on any �nite totally-ordered set D of arbitrary size. Hene, for eah suh D thereis an obvious generalisation to the set, �min, onsisting of all relations over D whih arepreserved by the operation min. It has been shown [38℄ that CSP(�min) is tratable forall �nite sets D. �Many other tratable sets of relations have been identi�ed, or extended, thanks to thestudy of polymorphisms [3, 4, 6, 7, 37℄. In fat, it is known that the existene of a non-trivial polymorphism of a set of relations � is a neessary ondition for tratability ofCSP(�) [35℄.De�nition 2.7 A majority operation is a funtion f : D3 ! D satisfying8x; y 2 D; f(x; x; y) = f(x; y; x) = f(y; x; x) = xIt has been shown that having a majority operation as a polymorphism is a suÆientondition for tratability of a set of relations [25, 36, 37℄. However, it is the followingmore spei� property of relations preserved by a majority operation whih is of moreinterest to us in this paper.De�nition 2.8 The projetion of a relation R of arity r onto a pair of positions iand j, whih we denote by �ijR, is the binary relation ontaining all pairs that an beextended to elements of R. That is,�ijR def= fhxi; xji j 9hx1; : : : ; xri 2 Rg:A relation R of arity r is said to be deomposable into its binary projetions ifR = fhx1; : : : ; xri 2 Dr j 8i; j 2 f1; : : : ; rg; hxi; xji 2 �ijRg:4



Lemma 2.9 ([36℄) Any relation whih is preserved by a majority operation is deom-posable into its binary projetions.Finally, we will oasionally make use of the following standard de�nitions from the�eld of onstraint satisfation [22℄.De�nition 2.10 A partial assignment to a subset W of the variables of a CSP instaneis onsistent if it satis�es all the onstraints whose sopes are ontained in W .De�nition 2.11 A CSP instane is k-onsistent if, for every subsetW of k�1 variablesand any other variable v 62W , every onsistent partial assignment to W an be extendedto a onsistent partial assignment to W [ fvg.De�nition 2.12 A CSP instane is strong k-onsistent if it is j-onsistent for allj � k.3 Valued onstraints and multimorphismsIn the onstraint satisfation problem, the aim is simply to �nd an assignment to thevariables whih satis�es all of the onstraints. In other words, standard onstraint satis-fation problems deal with feasibility rather than optimization. To provide a more generalframework, the notion of an all-or-nothing onstraint relation an be extended to the no-tion of a ost funtion whih assigns a spei�ed ost to eah possible assignment. Weuse R+to denote fu 2 R : u � 0g [ f1g.De�nition 3.1 For any set D, an order-r ost funtion on D is a funtion � : Dr !R+ whih assigns a ost f(a1; : : : ; ar) to eah ombination of values a1; : : : ; ar 2 Dr.De�nition 3.2 A ost funtion � is said to be risp if �(x1; : : : ; xr) 2 f0;1g for allhoies of hx1; : : : ; xri.A onstraint relation an be modelled by a risp ost funtion whih assigns a ost of0 to permitted assignments and a ost of 1 to disallowed assignments.De�nition 3.3 An instane of the valued onstraint satisfation problem, VCSP,is a tuple P = hV;D;Ci where:� V is a �nite set of variables;� D is a �nite set of possible values;� C is a set of valued onstraints. Eah element of C is a pair  = h�; �i where �is a tuple of variables alled the sope of , and � is a mapping from Dj�j to R+,alled the ost funtion of . 5



In the original, more general, de�nition of the Valued Constraint Satisfation Problem[49℄, osts were allowed to lie in any positive tomonoid S. Under the additional assump-tions of disreteness and the existene of a partial inverse operation, it has been shown[16℄ that suh a struture S an be deomposed into independent positive tomonoids,eah of whih is isomorphi to a subset of R+ with the operator being either standardaddition, +, or bounded addition, +k, where a +k b = minfk; a + bg. The latter aseis of some interest, beause it an be used to model the proess of branh and boundsearh (k being the ost of the best solution found so far) [42℄. However, for the purposesof this paper we shall restrit attention to the standard ase studied in MathematialProgramming where all osts lie in R+ and are ombined using standard addition.De�nition 3.4 For any VCSP instane P = hV;D;Ci, an assignment for P is amapping s : V ! D. The ost of an assignment s, denoted CostP (s), is given by thesum of the osts for the restritions of s onto eah onstraint sope, that is,CostP (s) def= Xhhv1;v2;:::;vmi;�i2C �(s(v1); s(v2); : : : ; s(vm)):A solution to P is an assignment with minimal ost.Example 3.5 We an enode the searh for a minimum ut in a weighted direted graphG as a VCSP instane P with a variable for eah node of G, domain f0; 1g, and a valuedonstraint hhi; ji; �wij i for eah direted edge hi; ji of weight wij in G, where�w(x; y) = � w if (x; y) = (0; 1)0 otherwiseIf we impose unary onstraints on the soure and target nodes to ensure that they takethe values f0g and f1g, respetively, then any minimum ut in G orresponds to the setof direted edges hi; ji whose orresponding variables are labeled (0; 1) in some solutionto P. �If � is a set of ost funtions � : Dr ! R+, for some �xed set D, we will writeVCSP(�) to denote the lass of all VCSP instanes where the ost funtions of all thevalued onstraints lie in �. A �nite set of ost funtions � will be alled tratable if thereexists a polynomial-time algorithm to solve VCSP(�). An in�nite set of ost funtions �will be alled tratable if all �nite subsets of � are tratable.To analyse the omplexity of problems of the form VCSP(�) for di�erent hoies of �we shall make use of a generalization of the notion of polymorphism whih is known as amultimorphism [12℄.De�nition 3.6 ([12℄) A list of funtions, hf1; : : : ; fmi, where eah fi is a funtion fromDm to D, is a multimorphism of a ost funtion � : Dr ! R+ if, for all ha11; : : : ; a1ri,: : :, ham1; : : : ; amri 2 Dr, we havemXi=1 �(fi(a11; : : : ; am1); : : : ; fi(a1r; : : : ; amr)) � mXi=1 �(ai1; : : : ; air) (1)6



Note that if hf1; : : : ; fmi is a multimorphism of a ost funtion �, then the averageost of a set ofm assignments is lowered, or improved by applying the funtions f1; : : : ; fmo-ordinatewise. This observation explains the following hoie of notation.Notation: The set of all ost funtions � : Dr ! R+ whih have hf1; : : : ; fmi as amultimorphism will be denoted Imp(f1; : : : ; fm).Example 3.7 A ost funtion � has the multimorphism hmin;maxi if and only if �satis�es the submodularity ondition8x; y 2 Dr �(x _ y) + �(x ^ y) � �(x) + �(y)where _ and ^ represent o-ordinatewise maximum and minimum operations respetively.Submodularity [26, 51℄ is usually de�ned over totally-ordered domains, but this de�ni-tion an be extended to the ase in whih the domain D has an arbitrary lattie struture,in whih ase _ and ^ represent o-ordinatewise join and meet operations respetively.Submodular funtion minimization (SFM) [26, 51℄ is a tratable disrete optimizationproblem whih has appliations in suh diverse areas as statistial physis [1℄ and thedesign of eletrial networks [44℄. Well-known examples of submodular funtions are theut funtion of a graph [20℄ (see Example 3.5) or of a hypergraph [27℄, and the rankfuntion of a matroid.The ellipsoid algorithm provides a polynomial-time algorithm for SFM in theory, butis not eÆient in pratie [30℄. Reently, several more eÆient polynomial-time algorithmshave been published to solve SFM [34, 50, 32, 33℄. The fat that these algorithms anbe applied to minimize a submodular funtion de�ned on a distributive lattie [32℄ (alsoknown as a ring family [50℄) has been used to show that they an be applied to submodularfuntions whih may take on both �nite and in�nite values over totally-ordered �nitedomains of arbitrary size [12℄. The omplexity of the fastest known algorithm for SFMis O((n4 + n5)minflogM;n2 logng), where n is the number of variables,  is the timeto alulate the objetive funtion  and M is the maximum absolute value of  [33℄. �Example 3.8 Bisubmodular funtions were introdued in [28℄. They are integer-valuedfuntions on f0; 1; 2gr , and an be haraterized [9, 12℄ as those funtions having the bi-nary multimorphism hmin0;max0i, where the funtions min0;max0 : f0; 1; 2g2 ! f0; 1; 2gare de�ned as follows:min0(a; b) = � min(a; b) if fa; bg 6= f1; 2g0 otherwisemax0(a; b) = � max(a; b) if fa; bg 6= f1; 2g0 otherwiseAn example of a bisubmodular funtion is the rank funtion of a delta-matroid [28℄.An integer-valued bisubmodular funtion  an be minimized in O(n5 logM) timewhere M is the maximum value of the funtion  and n is the number of variables [28℄.� 7



Example 3.9 The set of risp ost funtions over some �xed �nite totally-ordered do-main D whih all have the multimorphism hmin;mini orresponds to the tratable setof relations �min de�ned in Example 2.6 whih generalise the Horn lause satis�abilityproblem.We an generalise this lass further by dropping the requirement for the ost funtionsto be risp. This gives a larger tratable lass of ost funtions whih also allow arbitrarymonotone �nite-valued ost funtions on the same variables [9, 12℄. �We have previously shown [8℄ that a set of ost funtions over a Boolean domain istratable if it has a non-trivial multimorphism and NP-omplete otherwise. Over non-Boolean domains, the situation is more omplex, but it is known that the omplexityof any set of ost funtions over any �nite domain is haraterized by ertain algebraiproperties whih an be seen as generalised multimorphisms [13℄.4 Tournament operationsIn this setion we fous on the properties of a partiular kind of operation, whih we alla tournament operation1.De�nition 4.1 A tournament operation is a binary operation f : D2 ! D with thefollowing properties:� f is onservative, that is f(x; y) 2 fx; yg, for all x; y 2 D.� f is ommutative, that is f(x; y) = f(y; x), for all x; y 2 D.The dual of a tournament operation f is the unique tournament operation g satisfyingx 6= y ) g(x; y) 6= f(x; y), for all x; y 2 D.Note that, by de�nition, a tournament operation is neessarily idempotent, that is,f(x; x) = x, for all x 2 D.De�nition 4.2 A tournament pair is a pair hf; gi, where f and g are both tournamentoperations. A tournament pair hf; gi is alled symmetri if g is the dual of f .We will show in Setion 8 that any set of ost funtions with a tournament pair asa multimorphism is tratable. We �rst establish a partial onverse of this result: anytratable set of ost funtions ontaining all unary ost funtions whih is haraterisedby a binary multimorphism, must be haraterised by a tournament pair multimorphism(assuming that P 6= NP ).Proposition 4.3 For any binary operations f; g, if Imp(f; g) ontains all unary ostfuntions, then either hf; gi is a symmetri tournament pair or VCSP(Imp(f; g)) is NP-hard.1The reason for this hoie of terminology will be made lear in Setion 6, where we explain theonnetion between tournament operations and direted graphs.8



Proof: Sine Imp(f; g) ontains all unary ost funtions, it is an easy onsequene ofDe�nition 3.6 that 8x; y 2 D ff(x; y); g(x; y)g = fx; yg (2)It follows that hf; gi is a symmetri tournament pair if f is ommutative.Consider now the ase in whih f is not ommutative, that is, f(a; b) 6= f(b; a) forsome a; b 2 D. De�ne the binary ost funtion �XOR : D2 ! R+ as follows.�XOR(x; y) = 8<: 1 if x; y 2 fa; bg and x = y0 if x; y 2 fa; bg and x 6= y1 otherwiseUsing Equation 2 it is easily veri�ed that �XOR 2 Imp(f; g). However, VCSP(f�XORg)an be shown to be NP-hard by a polynomial-time redution from the MAX-2-SATproblem restrited to the XOR prediate, whih is known to be NP-hard [18, 19℄. Henein this ase VCSP(Imp(f; g)) is NP-hard.If we relax the onditions so that we require only risp unary funtions to be inluded,then we an still show that any tratable set of ost funtions haraterised by a binarymultimorphism must have a tournament pair as a multimorphism.Proposition 4.4 For any binary operations f; g, if Imp(f; g) ontains all risp unaryost funtions, then either Imp(f; g) � Imp(f 0; g0) for some tournament pair hf 0; g0i orVCSP(Imp(f; g)) is NP-hard.Proof: If Imp(f; g) ontains all risp unary ost funtions, then it is straightforward toverify that the funtions f; g must be onservative, and hene idempotent.For any a; b 2 D, denote the restritions of f; g on fa; bg by fab; gab. (In other words,fab is the funtion f jfa;bg�fa;bg : fa; bg2 ! fa; bg). Sine fab; gab are idempotent, thisleaves just four possibilities for eah of the funtions fab; gab. Out of these four, twoare ommutative and the other two are projetions (i.e., one of the funtions p1; p2 :fa; bg2 ! fa; bg suh that for all u; v, p1(u; v) = u and p2(u; v) = v). If both fab andgab are projetions, then Imp(f; g) ontains all risp ost funtions � : Dr ! f0;1g suhthat �(x) = 1 if x 62 fa; bgr , so Imp(f; g) is NP-hard, by a polynomial-time redutionfrom SAT.Consider now the ase in whih for eah a; b 2 D either fab or gab is ommutative (orboth). De�ne f 0; g0 : D2 ! D as followsf 0(a; b) = � f(a; b) if fab is ommutativeg(a; b) otherwiseg0(a; b) = � g(a; b) if gab is ommutativef(a; b) otherwiseClearly f 0; g0 are tournament operations. It remains to show that Imp(f; g) � Imp(f 0; g0).9



Consider an arbitrary ost funtion � : Dr ! R+ in Imp(f; g). For x; y 2 Dr, weuse f(x; y) to represent the vetor obtained by applying f oordinatewise to x and y.Applying the multimorphism property (Equation 1) twie gives�(x) + �(y) � �(g(x; y)) + �(f(x; y)) � �(p(x; y)) + �(q(x; y))where p(x; y) = f(g(x; y); f(x; y)) and q(x; y) = g(g(x; y); f(x; y)). Similarly,�(x) + �(y) � �(f(x; y)) + �(g(x; y)) � �(r(x; y)) + �(s(x; y))where r(x; y) = f(f(x; y); g(x; y)) and s(x; y) = g(f(x; y); g(x; y)). By another applia-tion of Equation 1,�(p(x; y)) + �(r(x; y)) � �(f(p(x; y); r(x; y))) + �(g(p(x; y); r(x; y)))and �(s(x; y)) + �(q(x; y)) � �(f(s(x; y); q(x; y))) + �(g(s(x; y); q(x; y)))Now it is tedious but simple (using the fat that f and g are onservative, and hekingall 16 possibilities) to show that, for all x; y 2 Df(p(x; y); r(x; y)) = f 0(x; y)g(p(x; y); r(x; y)) = f 0(x; y)f(s(x; y); q(x; y)) = g0(x; y)g(s(x; y); q(x; y)) = g0(x; y)It follows that 2�(x)+2�(y) � 2�(f 0(x; y))+2�(g0(x; y)), and hene that � 2 Imp(f 0; g0).It is interesting to note that it is possible to have the strit inlusion Imp(f; g) �Imp(f 0; g0) in the above result, as the next example shows.Example 4.5 Let D = f1; 2; 3g and let  : D2 ! f0;1g be given by  (x) = 0 ifx 2 fh1; 2i; h1; 3i; h2; 2ig and  (x) =1 otherwise. De�ne f; g : D2 ! D byf(a; b) = � a if a; b 2 f1; 2gmax(a; b) otherwiseg(a; b) = min(a; b)Then g0 = g and f 0 is given byf 0(a; b) = � min(a; b) if a; b 2 f1; 2gmax(a; b) otherwiseNow  2 Imp(f 0; g0) but  62 Imp(f; g) (sine  (2; 2) =  (1; 3) = 0 but  (f(h2; 2i; h1; 3i)) = (2; 3) =1). �10



5 The set of all feasible/optimal assignmentsFor any ost funtion � we de�ne the orresponding sets of feasible assignments andoptimal assignments in the following way.De�nition 5.1 For any ost funtion � : Dr ! R+, the set of feasible assignmentsfor �, denoted Feas(�), is de�ned as followsFeas(�) def= fx 2 Dr : �(x) <1gThe set of optimal assignments for �, denoted Opt(�), is de�ned as followsOpt(�) def= fx 2 Dr : 8y 2 Dr; �(x) � �(y)gLemma 5.2 If � : Dr ! R+ has the multimorphism hf1; : : : ; fmi, then the relationsOpt(�) and Feas(�) both have the polymorphism fi, for i = 1; 2 : : : ;m.Proof: Consider ha11; : : : ; a1ri; : : : ; ham1; : : : ; amri 2 Opt(�), and let � be the optimalvalue, i.e. � = �(a11; : : : ; a1r). It is lear that to satisfy the inequality in De�nition 3.6,we must have, for all i 2 f1; : : : ;mg,�(fi(a11; : : : ; am1); : : : ; fi(a1r; : : : ; amr)) = �The result for Opt(�) follows immediately. A similar argument gives the result forFeas(�).De�nition 5.3 If f; g are funtions from D2 to D, then we say that f absorbs g if8x; y 2 D, f(g(x; y); x) = f(g(y; x); x) = f(x; g(x; y)) = f(x; g(y; x)) = xExample 5.4 Let f be a tournament operation and g its dual. If g(x; y) = x thenf(g(x; y); x) = f(x; x) = x. Conversely, if g(x; y) = y then f(g(x; y); x) = f(y; x) = x(sine f and g are dual). Hene f absorbs g. A symmetri arguments shows that gabsorbs f . �Example 5.5 It is easy to verify that the binary funtions min and max are mutuallyabsorbing. In fat, by de�nition, any lattie operations ^ and _ are mutually absorbing.�Example 5.6 Reonsider the operations max0;min0 de�ned in Example 3.8. It is easy toverify that max0 absorbs min0, but min0 does not absorb max0 (sine min0(max0(1; 2); 1) =0 6= 1). �Lemma 5.7 Suppose that f; g : D2 ! D are idempotent and f absorbs g. If � : Dr ! R+has the multimorphism hf; gi, then the relations Feas(�) and Opt(�) are both preservedby a majority operation. 11



Proof: By Lemma 5.2, Feas(�) and Opt(�) both have the polymorphisms f and g. Nowde�ne the ternary operation h : D3 ! D, for all x; y; z 2 D, as followsh(x; y; z) def= f(f(g(x; y); g(x; z)); g(y; z)):It is easy to verify that h is a majority operation (see De�nition 2.7), sineh(x; x; z) = f(f(x; g(x; z)); g(x; z)) = f(x; g(x; z)) = xh(x; y; x) = f(f(g(x; y); x); g(y; x)) = f(x; g(y; x)) = xh(x; y; y) = f(f(g(x; y); g(x; y)); y) = f(g(x; y); y) = yThe set of polymorphisms of any relation is losed under omposition [35℄, so Feas(�)and Opt(�) both have the polymorphism h.Corollary 5.8 If � : Dr ! R+ has the multimorphism hf; gi, then Opt(�) and Feas(�)are preserved by a majority operation in eah of the following ases:1. f; g are the meet and join operations of a lattie.2. f; g are the operations max0;min0 de�ned in Example 3.8.3. f is a tournament operation and g is its dual.Proof: It is simple to verify that, in eah ase, f and g are idempotent and f absorbsg, as disussed in Examples 5.4 to 5.6.When a relation is preserved by a majority operation, and hene deomposable intobinary projetions, this provides a very ompat representation for the relation, by simplylisting the binary projetions.Proposition 5.9 If f; g : D2 ! D are idempotent binary funtions suh that, for anyost funtion � : Dn ! R+ 2 Imp(f; g) the minimum value of � an be omputed inO(T (n)) time, then eah binary projetion of Opt(�) an be omputed in O(jDj2T (n))time.Proof: Consider any � : Dn ! R+ 2 Imp(f; g). We denote by �abij the funtion on n� 2arguments obtained by �xing xi = a and xj = b, that is, we set�abij (x1; : : : ; xi�1; xi+1; : : : ; xj�1; xj+1; : : : ; xn) def=�(x1; : : : ; xi�1; a; xi+1; : : : ; xj�1; b; xj+1; : : : ; xn)Let �abij be the minimum value attained by �abij on Dn�2 and let � be the minimum valueattained by � on Dn. It follows that�ij[Opt(�)℄ = f(a; b) 2 D2 j �abij = �g:12



and thus the binary projetions of Opt(�) an be determined by alulating the valuesof � and �abij for all a; b 2 D.It follows diretly from De�nition 3.6 that if � has the multimorphism hf; gi, wheref and g are both idempotent, then �abij also has the multimorphism hf; gi. Hene all ofthese values an be omputed in O(jDj2T (n�2)+T (n)) time, and hene in O(jDj2T (n))time.Hene, in eah of the ases mentioned in Corollary 5.8, a ompat representation ofall minimizers for a given ost funtion an be found in polynomial time by using existingpolynomial-time algorithms to �nd the minimal value.Example 5.10 Consider the important speial ase of submodular funtion minimisa-tion (SFM) over a Boolean domain, f0; 1g. In this ase the relations �ij [Opt(�)℄ areBoolean binary submodular relations. By exhaustion, it is easy to show that any suhrelation an be represented as a onjuntion of 0,1 or 2 of the following relations: Xi = 0,Xi = 1, Xj = 0, Xj = 1, Xi = Xj , Xi � Xj , Xi � Xj . It follows that the set Opt(�)of optimal solutions to an SFM problem over a Boolean domain an be represented by apartial order. Ekin et al. [24℄ established the same result for Feas(�). �6 Modular deomposition of tournamentsIn this setion we introdue a number of ideas from graph theory whih will be used inSetion 7 to analyse the struture of ost funtions with a tournament pair multimor-phism.First we note that there is a one-to-one orrespondene between tournament opera-tions f and omplete digraphs G = hD;Ei given by (x; y) 2 E i� x 6= y and f(x; y) = y,for all x; y 2 D. Suh omplete digraphs are usually known as tournaments. Heneevery tournament operation has an assoiated tournament, and vie-versa.If f : D2 ! D is a tournament operation, then we will write hD; fi to represent theorresponding tournament (i.e., the omplete digraph on D with an ar from a to b ifand only if f(a; b) = a). For any B � D, we will write hB; fi, or simply B, to representthe subtournament hB; f jB2i.Two sets X;Y will be said to overlap if they interset but neither is a subset of theother.De�nition 6.1 ([21℄) Given a tournament hD; fi, a subset B � D is alled a moduleif for all  2 D � B, and all a; b 2 B, f(a; ) = a if and only if f(b; ) = b. A module isstrong if no other module overlaps it.The strong modules of a tournament hD; fi an be organized in a tree struture(known as its modular deomposition) with root D, a leaf fag for eah a 2 D andsuh that at eah internal node A the hildren A1; : : : ; Ar of A form a partition of A [21℄.De�nition 6.2 In the modular deomposition of a tournament hD; fi, a node A withhildren A1; : : : ; Ar is alled 13



� prime if 8I � f1; : : : ; rg suh that 1 < jIj < r, Si2I Ai is not a module. (We saythat A1; : : : ; Ar is a prime partition of A.)� linear if there exists an ordering of f1; : : : ; rg suh that if I � f1; : : : ; rg and1 < jIj < r, then Si2I Ai is a module if and only if the members of I are onseutivein the ordering. (We say that A1; : : : ; Ar is a linear partition of A.)All tournaments have a unique modular deomposition in whih eah node is eitherprime or linear. In fat, this deomposition an be found in O(jDj2) (and hene optimal)time [43℄. We denote this unique modular deomposition of a tournament hD; fi byMD(D; f). Consider a strong module A of a tournament hD; fi suh that jAj > 1. Ifthe subtournament hA; fi is strongly-onneted, then the node A is prime, otherwise Ais linear and A1; : : : ; Ar are its strongly-onneted omponents. Any module A whih isstrongly onneted is neessarily strong and hene has a orresponding node in MD(D; f).If A1; : : : ; Ar are the hildren of A in the modular deomposition MD(D; f), then forany i; j 2 f1; : : : ; rg we have that for all a; b 2 Ai, and all ; d 2 Aj , f(a; ) = a ,f(b; ) = b, f(b; d) = b. Hene f also de�nes a tournament operation on fA1; : : : ; Arg.We all this the tournament operation indued on fA1; : : : ; Arg by f and we abusenotation by writing f(Ai; Aj) = Ai if 8a 2 Ai, 8b 2 Aj, f(a; b) = a.A set A � D is simple with respet to the tournament operation f : D2 ! D if thereis no non-trivial ongruene lass B of elements of A whih all behave in the same waywith respet to the other elements A�B [6℄. In other words, A is simple with respet tof if and only if there is no module B of hA; fi, with 1 < jBj < jAj.The following lemma summarises the disussion above.Lemma 6.3 Let hD; fi be a tournament, let A be a module of hD; fi and suppose thatjAj > 1 and hA; fi is a strongly onneted subtournament. Then1. A is a prime node in the modular deomposition MD(D; f).2. If A1; : : : ; Ar are the hildren of A in MD(D; f), then fA1; : : : ; Arg is simple andstrongly onneted with respet to the indued tournament.7 Cost funtions with tournament pair multimorphismsIn this setion we will show that any ost funtion with a tournament pair as a multimor-phism has ertain speial properties. These results will be used in Setion 8 to establishthe tratability of Imp(f; g) for any tournament pair hf; gi.A standard tehnique of onstraint satisfation is to eliminate values from the domainsof variables when these values an be shown to be inonsistent. We will adapt thistehnique to valued onstraint satisfation by de�ning (partial) ost funtions with aredued domain.De�nition 7.1 A funtion � : D1 � : : : � Dr ! R+ is domain-redued if, for eahi 2 f1; : : : ; rg, and for eah a 2 Di 9x 2 D1 � : : :�Dr suh that x[i℄ = a and �(x) <1.14



In the literature on onstraint satisfation, a VCSP instane where every ost funtion isdomain-redued is said to be generalized ar onsistent in its underlying CSP [15, 17℄.De�nition 7.2 A funtion � : D1�D2 ! f0;1g is alled bijetive if the set fha1; a2i j�(a1; a2) = 0g is a bijetion of D1 �D2.If � : D1�D2 ! f0;1g is bijetive, then we will abuse notation and write �[a1℄ (for anya1 2 D1) to represent the unique a2 2 D2 suh that �(a1; a2) = 0.De�nition 7.3 A bijetive funtion � : D1 � D2 ! f0;1g is an isomorphism withrespet to the tournament operation f : D � D ! D, (where D1;D2 � D) if for alla; b 2 D1, f(a; b) = a, f(�[a℄; �[b℄) = �[a℄.Lemma 7.4 A bijetive funtion � : D1 � D2 ! f0;1g has a symmetri tournamentpair hf; gi as a multimorphism if and only if � is an isomorphism with respet to f (andhene also g).Proof: Using �[a℄ to represent the unique  2 D2 suh that �(a; ) = 0, we have that �has the multimorphism hf; gi if and only if for all a; b 2 D1,0 = �(a; �[a℄) + �(b; �[b℄) � �(f(a; b); f(�[a℄; �[b℄)) + �(g(a; b); g(�[a℄; �[b℄))This inequality holds if and only if f(a; b) = a preisely when f(�[a℄; �[b℄) = �[a℄.Lemma 7.5 Let � : D1 �D2 ! f0;1g be a domain-redued risp ost funtion with asymmetri tournament pair hf; gi as a multimorphism.If D1 and D2 are simple and strongly onneted with respet to f , then � is either theonstant funtion 0 or bijetive.Proof: Sine D1;D2 are simple and strongly onneted with respet to f , and therelation Feas(�) = fhd1; d2i 2 D1 � D2 j �(d1; d2) = 0g is preserved by f (by Lemma5.2), Proposition 30 of [6℄ (or the more general Lemma 3.5 of [5℄) tells us that � is eitheronstant 0 or bijetive.Lemma 7.6 Let � : D1 �D2 ! f0;1g be a domain-redued risp ost funtion with asymmetri tournament pair hf; gi as a multimorphism.Let A be a module of hD1; fi and let B = fb 2 D2j9a 2 D1; �(a; b) = 0g. Then B isa module of hD2; fi.Proof: Suppose, for a ontradition, that B is not a module of hD2; fi. Then 9b; b0 2 D2,9v 2 D2 �B suh that f(v; b) = v and f(v; b0) = b0. Sine � is domain-redued, 9u 2 D1suh that �(u; v) = 0. Suppose, without loss of generality, that f(D1 � A;A) = A, andlet a 2 A be suh that �(a; b) = 0. Then �(u; a) = a and by the multimorphism property,0 = �(u; v) + �(a; b) � �(a; v) + �(u; b)This implies that �(a; v) = 0 whih ontradits our hypothesis that v 62 B.15



De�nition 7.7 Let � : D1 �D2 ! R+ be a ost funtion and let hf; gi be a symmetritournament pair on a set D, where D1;D2 � D. Let A1; : : : ; Ar and B1; : : : ; Bs be primeor linear partitions in the modular deomposition of hD1; fi and hD2; fi, respetively.The indued risp ost funtion � : fA1; : : : ; Arg � fB1; : : : ; Bsg ! f0;1g is de�nedby �(Ai; Bj) = 0 if and only if 9a 2 Ai, 9b 2 Bj suh that �(a; b) <1.Lemma 7.8 If f; g; �; � are as in De�nition 7.7, then � 2 Imp(f; g) implies that � 2Imp(f; g).Proof: Suppose that � 62 Imp(f; g). Then, without loss of generality, there are Ai; Ajand Bk; Bm suh that f(Ai; Aj) = Ai, f(Bk; Bm) = Bk, �(Ai; Bm)= �(Aj ; Bk) = 0 but�(Ai; Bk) 6= 0. But then 9a 2 Ai; b 2 Aj;  2 Bk; d 2 Bm suh that �(a; d) < 1,�(b; ) < 1 and �(a; ) = 1. Sine f(a; b) = a and f(; d) = , we an dedue that� 62 Imp(f; g).De�nition 7.9 A ost funtion � : D1 � : : : � Dr ! R+ is �nite if �(x) < 1 for allx 2 D1 � : : : �Dr.Lemma 7.10 Let � : D1�D2 ! R+ be a domain-redued ost funtion with a symmetritournament pair hf; gi as a multimorphism.If D1 and D2 are both strongly onneted with respet to f , then either � is �nite, orthe indued risp ost funtion � on the prime partitions of D1 and D2 is bijetive.Proof: By Lemma 6.3, both D1 and D2 have prime partitions fA1; : : : ; Arg andfB1; : : : ; Bsg whih are simple and strongly onneted with respet to the indued tour-nament. Hene, by Lemma 7.5, if � is not bijetive, then � = 0. We will show that inthis ase �(a; b) <1 for any a 2 D1, b 2 D2.Suppose that a 2 Ai and b 2 Bj . Sine � is domain-redued, 9v 2 D2 suh that�(a; v) < 1. Suppose that v 2 Bk. We laim that 9w 2 Bj suh that �(a;w) < 1.Assume that f(Bj; Bk) = Bk (the argument for the ase f(Bj; Bk) = Bj is symmetri).Sine fA1; : : : ; Arg is strongly onneted, 9m 2 f1; : : : ; rg suh that f(Ai; Am) = Am.Now, sine � = 0, 9u 2 Am, 9w 2 Bj suh that �(u;w) < 1. Applying the multimor-phism property, we obtain1 > �(a; v) + �(u;w) � �(f(a; u); f(v; w)) + �(g(a; u); g(v; w))= �(u; v) + �(a;w)Therefore �(a;w) <1.Sine fA1; : : : ; Arg and fB1; : : : ; Bsg are strongly onneted, 9h; l suh that f(Ai; Al) =Ai and f(Bj; Bh) = Bh. Sine � = 0, 9 2 Al, 9d 2 Bh suh that �(; d) <1. Applyingthe multimorphism property, we obtain1 > �(a;w) + �(; d) � �(f(a; ); f(w; d)) + �(g(a; ); g(w; d))= �(a; d) + �(; w)16



Therefore 9d 2 Bh suh that �(a; d) < 1. By a similar argument we an show that9e 2 Am suh that �(e; b) <1 (where m is suh that f(Ai; Am) = Am). Then applyingthe multimorphism property gives1 > �(a; d) + �(e; b) � �(f(a; e); f(d; b)) + �(g(a; e); g(d; b))= �(e; d) + �(a; b)Thus �(a; b) <1.Lemma 7.11 Let � : D1�D2 ! R+ be a domain-redued ost funtion with a symmetritournament pair hf; gi as a multimorphism.If D1 is strongly onneted with respet to f and D2 is ayli with respet to f , then� is �nite.Proof: If D1 is strongly onneted, then it must ontain a omplete yle with respetto f , i.e., D1 = fa0; : : : ; ar�1g suh that f(ai; ai+1) = ai (for i = 0; : : : ; r � 1) with theaddition i+ 1 understood as being modulo r. Note that this omplete yle need not beHamiltonian, sine we allow repeats (i.e. ai = aj for some i 6= j).On the other hand, an ayli tournament de�nes a total order. ThusD2 = fb1; : : : ; bsgsuh that f(bi; bj) = bi if and only if i � j (and where, in this ase, bi 6= bj if i 6= j).Suppose, for ontradition, that �(ai; bj) = 1. Sine � is domain-redued, thereexists some k0 suh that �(ak0 ; bj) is �nite. Hene there must be some k suh that�(ak; bj) < �(ak+1; bj) = 1, where the addition k + 1 is again modulo r. For all h < j,we have the following multimorphism inequality:�(ak; bj) + �(ak+1; bh) � �(ak; bh) + �(ak+1; bj) = 1from whih we dedue that �(ak+1; bh) = 1. Sine � is domain-redued, there existssome m > j suh that �(ak+1; bm) is �nite. For t 2 f1; : : : ; rg, let m(t) be the smallestinteger suh that �(at; bm(t)) is �nite. We have just shown that m(k+1) > j. If m(t) > j,then for all h � j, �(at; bh) =1, so�(at; bm(t)) + �(at+1; bh) � �(at; bh) + �(at+1; bm(t)) = 1and hene for all h � j, �(at+1; bh) =1, from whih it follows that m(t+ 1) > j. Thusm(t) > j ) m(t + 1) > j (where the addition t + 1 is again modulo r). But then,by indution through the integers k + 1; k + 2; : : : ; r � 1; 0; 1; : : : ; k we an dedue thatm(k) > j, whih ontradits �(ak; bj) <1.We now extend Lemma 7.11 to any domain D2 whih is not strongly onneted.Lemma 7.12 Let � : D1�D2 ! R+ be a domain-redued ost funtion with a symmetritournament pair hf; gi as a multimorphism.If D1 is strongly onneted with respet to f and D2 is not, then � is �nite.17



Proof: If jD2j = 1 then � is �nite beause it is domain-redued. Otherwise, sineD2 is not strongly onneted, it has a partition B1; B2 (with B1; B2 6= ;) suh thatf(B1; B2) = B1. Let A1; : : : ; Ar be the prime partition of D1. Consider the indued rispost funtion � : fA1; : : : ; Arg � fB1; B2g ! f0;1g. From Lemma 7.11, we know that� = 0. We will show that �(a; b) < 1 for any a 2 Ai, b 2 B2. The proof for b 2 B1 isentirely similar.Sine � is domain redued, 9u 2 Ak (for some k 2 f1; : : : ; rg) suh that �(u; b) <1.Sine D1 is strongly onneted, 9j 2 f1; : : : ; rg suh that f(Aj ; Ak) = Ak. Sine � = 0,9v 2 Aj , 9w 2 B1 suh that �(v; w) < 1. Applying the multimorphism property, weobtain 1 > �(u; b) + �(v; w) � �(f(u; v); f(b; w)) + �(g(u; v); g(b; w))= �(u;w) + �(v; b)Therefore 9v 2 Aj suh that �(v; b) <1. By an easy indutive proof, we an show that8h 2 f1; : : : ; rg; 9z 2 Ah suh that �(z; b) <1 (3)sine for all h, there is a hain i1; : : : ; ip suh that i1 = h, ip = k and f(Aij ; Aij+1) = Aij+1(j = 1; : : : ; p� 1).Now, sine � is domain redued, 9 2 D2 suh that �(a; ) < 1. Assume thatf(; b) =  (the proof for the ase f(; b) = b is entirely similar). Sine D1 is stronglyonneted, 9m 2 f1; : : : ; rg suh that f(Ai; Am) = Am. By Equation (3) above, 9d 2 Amsuh that �(d; b) <1. Applying the multimorphism property gives1 > �(d; b) + �(a; ) � �(f(d; a); f(b; )) + �(g(d; a); g(b; ))= �(d; ) + �(a; b)Therefore �(a; b) <1.We an ombine Lemmas 7.10 and 7.12 into the following proposition.Proposition 7.13 Let � : D1 � D2 ! R+ be a domain-redued ost funtion with asymmetri tournament pair hf; gi as a multimorphism, where D1 is strongly onnetedwith respet to f .Then either D2 is strongly onneted with respet to f and the indued risp ostfuntion on the prime partitions of D1 and D2 is bijetive, or � is �nite.The �nal result we shall need shows that in some irumstanes ost funtions anbe expressed as the sum of ost funtions with smaller arity. We �rst extend to ostfuntions the de�nition of projetion given for relations in De�nition 2.8.De�nition 7.14 Given a ost funtion � : D1 � : : : � Dr ! R+, and a set of indiesI = fi1; : : : ; ipg, the projetion of � onto I is the funtion �I(�) : Di1� : : :�Dip ! R+de�ned by �I�(x1; : : : ; xp) def= minfz2D1�:::�Drjz[ij ℄=xj (j=1;:::;p)gf�(z)g18



For notational onveniene, unary and binary projetions will be denoted by �i(�) and�ij(�) rather than �fig(�) and �fi;jg(�).Note that if hf1; : : : ; fmi is a multimorphism of �, then it is also a multimorphism of�I(�) [12℄.Lemma 7.15 Let � : D1�: : :�Dr ! R+ be a ost funtion with a symmetri tournamentpair hf; gi as a multimorphism.If D1 is strongly onneted with respet to f and eah binary projetion �1j(�) is �nite,for j = 2; : : : ; r, then � = �1+�2 where �1 : D1 ! R+ is unary and �2 : D2� : : :�Dr !R+ belongs to Imp(f; g).Proof: We prove the result by indution on the arity of �. The result trivially holds if� is unary. Suppose that it holds for ost funtions of arity less than r and onsider aost funtion � of arity r > 1.If D1 is strongly onneted, then it must ontain a omplete yle with respet to f ,i.e., D1 = fa0; : : : ; ar�1g suh that f(ai; ai+1) = ai (for i = 0; : : : ; r�1) with the additioni+ 1 understood as being modulo r.Let y = hy3; : : : ; yri 2 D3 � : : : � Dr. (If r = 2, then y = hi is just the tuple oflength zero.) Consider the ost funtion  y : D1 � D2 ! R+ de�ned by  y(u; v) =�(u; v; y3; : : : ; yr). Choose an arbitrary pair a; b 2 D2, and assume without loss of gen-erality that f(a; b) = b. Sine � 2 Imp(f; g), the following inequalities follow from thede�nition of a multimorphism and the duality of f and g. y(a0; a) +  y(a1; b) �  y(a0; b) +  y(a1; a) y(a1; a) +  y(a2; b) �  y(a1; b) +  y(a2; a)... y(ar�1; a) +  y(a0; b) �  y(ar�1; b) +  y(a0; a)Consider �rst the ase in whih  y is �nite. By summing the above r inequalities we ansee that they are only ompatible when there is equality throughout.Consider now the ase in whih  y is not �nite. Without loss of generality supposethat  y(ai; a) = 1. By the hypothesis that �1j(�) is �nite for all j > 1, and sineFeas(�) is deomposable into its binary projetions (by Corollary 5.8), we must have�2k(�)(a; yk) = 1 (for some k 2 f3; : : : ; rg) or �jk(�)(yj ; yk) = 1 (for some j; k 2f3; : : : ; rg). In both ases, there is equality in all r of the above inequalities, as both sidesare in�nite.Hene, in all ases, for all u; v 2 D1, and all x; y 2 D2, y(u; x) +  y(v; y) =  y(u; y) +  y(v; x)Any binary ost funtion satisfying an identity of this form is alled modular.It is known that a binary modular ost funtion an be expressed as the sum of twounary ost funtions [9, 12℄. Therefore,  y(u; v) =  1y(u)+ 2y(v) for some unary funtions 1y : D1 ! R+, and  2y : D2 ! R+. It follows that �(u; v; y3; : : : ; yr) =  1(u; y3; : : : ; yr) +19



 2(v; y3; : : : ; yr), where  1(u; y3; : : : ; yr) =  1y(u) and  2(v; y3; : : : ; yr) =  2y(v) are (r�1)-ary ost funtions. Moreover, it is straightforward to verify that we an take  1 =�f1;3;:::;rg� 2 Imp(f; g) and  2 = � �  1. By the indutive hypothesis,  1 = �1 +  3where �1 : D1 ! R+ is unary and  3 : D3 � : : :�Dr ! R+ belongs to Imp(f; g). Hene� = �1+�2 where �2 =  3+ 2. Moreover, �2 : D2� : : :�Dr ! R+ belongs to Imp(f; g)sine �� �1 2 Imp(f; g) for any unary funtion �1.8 Tournament pair multimorphisms give tratabilityWe will �rst show that any set of ost funtions with a symmetri tournament pairmultimorphism is tratable by showing that it is possible to onstrut a reordering of thedomains of eah of the variables whih onverts the orresponding VCSP instane to aninstane of submodular funtion minimisation (SFM).It is known that every tournament hD; fi admits a perfet fatorizing permuta-tion, that is, a linear ordering of D suh that all modules are intervals in the ordering [43℄.In fat, this total ordering an be obtained by modifying f in the following way.De�nition 8.1 Let f : D2 ! D be a tournament operation. A total ordering derivedfrom f is a tournament operation f 0 : D2 ! D suh that1. for all a; b 2 D, if it is not the ase that a 2 Ai and b 2 Aj (j 6= i) where A1; : : : ; Arare the hildren of a prime node in MD(D; f), then f 0(a; b) = f(a; b).2. for all prime nodes in MD(D; f) with hildren A1; : : : ; Ar, the indued tournamentf 0 : fA1; : : : ; Arg2 ! fA1; : : : ; Arg is a total order.Theorem 8.2 If hf; gi is a symmetri tournament pair, then Imp(f; g) is tratable.Proof: Let � be a �nite subset of Imp(f; g), and let P = hV;D;Ci be any instane ofVCSP(�) and assume that V = fv1; v2; : : : ; vng.The proof proeeds in three stages. We �rst restrit the domains of the variables of Pin suh a way that every ost funtion is domain-redued. Seond, we onstrut a totalordering derived from f for eah of these restrited domains in polynomial time. Finally,we show that with these total orderings every ost funtion is submodular, and hene theminimal ost solution an be found in polynomial time.Stage 1: For the �rst step onsider the CSP instane obtained by replaing eahvalued onstraint h�; �i in C with the onstraint h�;Feas(�)i. By Corollary 5.8, all of therelations Feas(�) are preserved by a �xed majority operation, and hene by Lemma 2.9they are deomposable into binary projetions. Sine � is �nite, the maximum arity of theost funtions in � is bounded by a onstant, so we an alulate the binary projetionsof Feas(�) for eah h�; �i 2 C in polynomial time in the size of P . Furthermore eahof these binary projetions is also preserved by the same majority operation, so we haveonstruted a CSP instane P 0 with binary onstraints where eah onstraint relation ispreserved by a �xed majority operation. 20



We now establish strong 3-onsisteny in the CSP instane P 0 in O(n3jDj3) time us-ing standard onstraint-proessing tehniques [31, 14℄. The resulting CSP instane P 00has restrited domains D1;D2; : : : ;Dn for the variables v1; v2; : : : ; vn, respetively, andpossibly some new binary onstraints. By Theorem 3.5 of [36℄, the instane P 00 is strongn-onsistent, so eah value in eah restrited domain an be extended to a ompletesolution. This means that eah of the ost funtions in P are domain-redued whenlimited to these restrited domains, whih ompletes the �rst stage of the proof. Theextended VCSP instane with all the original valued onstraints of P , the restrited do-mainsD1;D2; : : : ;Dn, and binary risp ost funtions orresponding to all the onstraintsof P 00 will be denoted bP . Note that CostP = CostP but we have introdued redundantbinary onstraints in bP in order to render expliit exatly those assignments to pairs ofvariables that annot be extended to a omplete solution of �nite ost.De�ne Feasij : Di �Dj ! f0;1g to be the expliit risp ost funtion on variablesvi; vj , i.e. Feasij(a; b) = 0 i� (a; b) is a onsistent assignment to variables (vi; vj) in P 00.Stage 2: For the seond stage of the proof we need to onstrut a total orderingf 0 derived from f . In stage 3 of the proof, we will show that every ost funtion of bP isan element of Imp(f 0; g0), where g0 is the dual of f 0. Sine we allow eah Di to have itsown individual ordering, we will simplify notation by assuming, in the following, that thesets D1; : : : ;Dn are disjoint subsets of D. We an then de�ne f 0jDi separately for eahi 2 f1; : : : ; ng.By De�nition 8.1, to de�ne f 0jDi we need to hoose some total ordering for eah ofthe prime partitions in the modular deomposition of hDi; fi. Let A be a prime node inMD(Di; f), let B = fb 2 Dj j9a 2 A suh that Feasij(a; b) < 1g and let FeasAij denotethe restrition of Feasij to A�B. Now FeasAij : A�B ! R+ is domain-redued sine eahvalue in A an be extended to a omplete solution of P 00. Sine A is prime, A is stronglyonneted with respet to f , so by Proposition 7.13, there are two possible ases: either(1) FeasAij = 0 or (2) B is strongly onneted with respet to f and there is a bijetivebinary onstraint between the prime partitions of A and B. In the seond ase, B is astrongly onneted module (by Lemma 7.6) and hene, by Lemma 6.3, B is a prime nodein MD(D2; f). In this ase, let FeasAij represent the orresponding bijetive indued rispost funtion on the prime partitions of A and B.We use only these bijetive funtions FeasAij to de�ne f 0. We repeat the followingsteps until f 0 has been de�ned on all the prime partitions in the modular deompositionof eah domain. Choose some prime node A in MD(Di; f) for some i, suh that f 0 has notyet been de�ned on the prime partition fA1; : : : ; Arg of A. Choose an arbitrary orderingof A1; : : : ; Ar. For eah j suh that FeasAij 6= 0: let fB1; : : : ; Bsg be the prime partition ofB = fb 2 Dj j9a 2 A suh that Feasij(a; b) <1g; hoose the only possible ordering f 0 offB1; : : : ; Bsg suh that the bijetive funtion FeasAij is an isomorphism with respet to f 0.Beause we ensured that P 00 was strong n-onsistent, we an hoose the ordering for oneprime partition in one domain Di arbitrarily, and then propagate this hoie to all primepartitions of other domains whose ordering is now determined, without enountering anyontraditions.We repeat this arbitrary hoie of ordering and propagation until we have fully de�ned21



the total ordering f 0. At every step we simply hoose an ordering for a prime partition ofsome domain, examine the binary onstraints to neighbouring variables, and propagateas neessary. Sine there is no baktraking involved, this proess an be ompleted inpolynomial time in the size of P, and this ompletes the seond stage of the proof.Stage 3: It remains to show that every ost funtion � of bP is an element ofImp(f 0; g0), where g0 is the dual of f 0. Without loss of generality, assume that � : D1 �D2 � � � � �Dk ! R+ and that � is domain-redued.We need to show that the multimorphism inequality in De�nition 3.6 (Equation 1)holds for the tournament pair hf 0; g0i for arbitrary x; y 2 D1 � : : : � Dk. Sine thisinequality trivially holds if �(x) or �(y) is in�nite, we assume in the following that �(x)and �(y) are both �nite.We know that this multimorphism equality holds for the tournament pair hf; gi (be-ause � 2 Imp(f; g)), so we only need to onsider the ase where f 0(x; y) di�ers fromf(x; y). In other words, when there is some j 2 f1; : : : ; kg suh that x[j℄ and y[j℄ belongto distint hildren of some prime node of MD(Dj ; f). Hene, we shall assume in the fol-lowing, without loss of generality, that x[1℄ 2 A11 and y[1℄ 2 A12 where A11; A12 are distinthildren of the prime node A1 in MD(D1; f).Let A11; : : : ; A1s be the prime partition of A1. Without loss of generality, suppose thatx[1℄,y[1℄ lie in the distint parts A11,A12 (respetively) of this prime partition. Now seta11 = x[1℄, a12 = y[1℄ and selet an arbitrary element a1i from A1i for eah i = 3; : : : ; s.Sine � is domain-redued, 8i 2 f3; : : : ; sg, 9ai = ha1i ; : : : ; aki i 2 D1 � � � � �Dk suh that�(ai) <1. Set a1 = x and a2 = y. Reall that �(x) and �(y) are also �nite.Let �0 denote the ost funtion � restrited to domains D01 � � � � � D0k where D0j =faji ji = 1; : : : ; sg (j 2 f1; : : : ; kg). Note that �0 is domain-redued, sine �0(ha1i ; : : : ; aki i) <1 (i = 1; : : : ; s). Also notie that D01 is strongly onneted, sine fA11; : : : ; A1sg isstrongly onneted with respet to the indued tournament. Furthermore, the modulardeomposition MD(D01; f) onsists of a single prime node D01 with prime deompositionfa11g; : : : ; fa1sg. Sine x; y 2 D01 � � � � �D0k, it is suÆient to show that �0 2 Imp(f 0; g0).Now onsider the binary projetions �01j = �1j(�0), for j 2 f1; : : : ; kg. Sine D01 isstrongly onneted, for eah j = 2; : : : ; k, it follows from Proposition 7.13 that either(a) �01j is �nite or (b) the indued risp ost funtion �01j is bijetive. Without loss ofgenerality, suppose that �01j is bijetive for j = 2; : : : ; l and �01j is �nite for j = l+1; : : : ; k.By Lemma 7.4, D0j (j = 1; : : : ; l) are all isomorphi to D01 (with a single prime node D0jwith deomposition faj1g; : : : ; fajsg in MD(D0j ; f)).It follows that �0 an be expressed as the sum of the risp binary bijetive ostfuntions �01j (j = 2; : : : ; l) and a ost funtion  : D01�D0l+1� � � � �D0k ! R+. Hene itis suÆient to show that (a) �01j 2 Imp(f 0; g0) for j 2 f2; : : : ; lg and (b)  2 Imp(f 0; g0).We will �rst show that �01j 2 Imp(f 0; g0) for j 2 f2; : : : ; lg. We know that A1 isstrongly onneted, sine it is a prime node of MD(D1; f). Consider some j 2 f2; : : : ; lgand let Aj = fb 2 Dj j9a 2 A1 suh that Feas1j(a; b) < 1g. By Lemma 7.6, Aj is amodule. Reall that FeasA11j denotes the restrition of Feas1j to A1 � Aj. Now FeasA11jannot be �nite, sine when restrited to domainsD01�D0j it beomes bijetive. Therefore,22



by Proposition 7.13, Aj is strongly onneted and the indued risp ost funtion FeasA11jon the prime partitions of A1 and Aj is bijetive. Furthermore, by Lemma 6.3, Aj is aprime node in MD(Dj ; f). It follows that FeasA11j is an isomorphism of f 0, by the de�nitionof f 0 in stage 2. Sine �01j is also bijetive, and D01 ontains exatly one element fromeah of the parts of the prime partition of A1, �01j must also be an isomorphism of f 0.Thus, by Lemma 7.4, �01j 2 Imp(f 0; g0).Next we onsider the funtion  . Sine eah binary projetion �1j( ) is �nite, forj = l+1; : : : ; k, we an dedue, by Lemma 7.15, that  =  1+ 2 where  1 : D01 ! R+ isa unary funtion and  2 : D0l+1� : : :�D0k ! R+ is a (k� l)-ary domain-redued funtionin Imp(f; g).Now we know that  1 2 Imp(f 0; g0), sine all unary ost funtions belong to Imp(f 0; g0).The ost funtion  2 satis�es all of the relevant properties of �, but has a lower arity.Hene, by repeating the argument, as neessary, we an ontinue to redue the arity untilwe obtain the result.Theorem 8.3 If hf; gi is a tournament pair, then Imp(f; g) is tratable.Proof: Consider P 2 VCSP(Imp(f; g)). Let Feas(P) denote the CSP instane ob-tained from P by replaing eah ost funtion  by the onstraint relation Feas( ). ByLemma 5.2, the onstraint relations of Feas(P ) all have the polymorphisms f and g. Foreah variable v of Feas(P), and eah value d 2 D, let Feas(P)v=d denote the CSP instaneFeas(P) with the additional onstraint hhvi; fhdigi (i.e., the variable v must be assignedthe value d). Eah suh additional onstraint also has the polymorphisms f and g.Any lass of CSP instanes where all relations have a onservative ommutative poly-morphism an be solved in polynomial time [5℄. For eah variable v and for eah value d,if Feas(P)v=d has no solution, then we eliminate d from the domain of v. Let P 0 denotethe resulting VCSP instane. Clearly P 0 2 VCSP(Imp(f; g)).Suppose that the domain of the ith variable in P 0 ontains a pair of values a; b suhthat f(a; b) = g(a; b) = b. Let xa (respetively xb) represent an optimal solution to P 0suh that x[i℄ = a (respetively x[i℄ = b). Let � denote CostP 0 , the funtion obtained bysumming all the ost funtions of P 0. By onstrution of P 0, �(xa) <1 and �(xb) <1.Let y = f(xa; xb) and z = g(xa; xb), where f and g are applied omponentwise. Sine �has the multimorphism hf; gi, we have�(y) + �(z) � �(xa) + �(xb)Now y[i℄ = f(a; b) = b and z[i℄ = g(a; b) = b. Thus, by de�nition of xb, �(xb) � �(y) and�(xb) � �(z). Therefore 2�(xb) � �(xa) + �(xb). Hene, sine �(xb) is �nite, we have�(xb) � �(xa). It follows that the value a for the ith variable is unneessary in the searhfor a single optimal solution to P 0.Therefore, we an eliminate all values a from the domain of a variable v suh that thereexists b with f(a; b) = g(a; b) = b in the domain of the same variable. On these restriteddomains hf; gi is a symmetri tournament pair, so the result follows from Theorem 8.2.23



9 Examples of new tratable lassesIn this setion we will present examples of novel tratable sets of ost funtion whih areharaterised by having a tournament pair multimorphism. Our �rst example is loselyrelated to the set of submodular funtions, but ontains ost funtions whih are notsubmodular under any permutation of the domain D.Example 9.1 Let D = f1; 2; 3g and onsider the tournament operation de�ned byf(1; 2) = 1, f(2; 3) = 2, f(3; 1) = 3, orresponding to a yli tournament on D =f1; 2; 3g. Let g be the dual of f (i.e., g(1; 2) = 2, g(2; 3) = 3, g(3; 1) = 1)).The set Imp(f; g) ontains 3 types of ost funtions:1. all unary ost funtions � : D ! R+.2. the three binary yli permutations �k : D2 ! R+ (k = 0; 1; 2) given by�k(x; y) = � 0 if y � x+ k (mod 3)1 otherwise3. ost funtions � suh that Feas(�) � D1 � : : : � Dr with jDij � 2, for all i 2f1; : : : ; rg,Notie that no re-ordering of the domain an render �1 submodular. The proof ofTheorem 8.2 shows that (after establishing strong 3-onsisteny) any problem instaneP 2 VCSP(Imp(f; g)) is equivalent to an instane P 0 with only these types of ost fun-tions and suh that the two subproblems on1. the set V3 of variables whose domains are of size 32. the set V2 of variables whose domains are of size 2 or lessform two independent optimization problems. The former is in fat a olletion of inde-pendent optimization problems on the onneted omponents of the graph whose nodesare the variables V3 with variables vi, vj joined by an edge if and only if there is a ylipermutation onstraint between vi and vj in P 0. Eah of these optimization problemsare trivially solvable by exhaustion over at most 3 possible solutions. The assoiated op-timization problem on V2 an be transformed into a submodular funtion minimization(SFM) problem by renaming the domain value 1 in domains Di = f1; 3g. By renam-ing 1 as 4, the resulting ost funtions on the variables in V2 are submodular under theusual total order 1 < 2 < 3 < 4. The tratability of VCSP(Imp(f; g)) then followsfrom the tratability of SFM over non-Boolean domains [12℄ (whih is a straightforwardgeneralization of the tratability of SFM over Boolean domains [50, 34, 32℄). �Example 9.2 As an example of a tratable lass of valued onstraints with a non-symmetri tournament multimorphism, onsider Imp(f; h) where f is given by f(1; 2) = 1,f(2; 3) = 2, f(3; 1) = 3 (as in Example 9.1) and h is the tournament operation given by24



h(1; 2) = 2, h(2; 3) = 2, h(3; 1) = 1. As shown in the proof of Theorem 8.3, after estab-lishing generalized ar onsisteny [46℄ (i.e., eliminating from domains values whih haveno �nite extension in some valued onstraint, this operation being repeated until on-vergene), we an eliminate the value 3 from any domain ontaining the values 2 and 3.The resulting VCSP instane is an instane of SFM over a olletion of 2-valued domains,whih again is tratable. �10 ConlusionIn this paper we have shown that it is possible to unify and extend the tratable problemsof Horn lause satis�ability and submodular funtion minimization via the investigationof tournament multimorphisms.Over Boolean domains, there remain two other important tratable onstraint lasses,orresponding to 2-SAT and linear equations [8, 12℄. These lasses an both be hara-terised by having ternarymultimorphisms. Therefore an obvious avenue of future researhis the extension of tournament multimorphisms to ternary multimorphisms. Bulatov hasalready shown [4℄ that if � is a tratable lass of risp ost funtions ontaining all unaryrestritions, then � � Imp(f; g; h) for some ternary multimorphism hf; g; hi. It is an openquestion whether this generalizes to arbitrary (non-risp) ost funtions.On a more pratial level, it is known that SFM over a Boolean domain an besolved in O(n3) time when the submodular funtion � satis�es one the following extraonditions: � is symmetri [47, 45℄, � is ubi [2℄, or � is (0,1)-valued [18, 19, 40℄. Inthe ase of non-Boolean domains, a ubi-time algorithm exists for SFM when � is thesum of binary submodular funtions [10℄ or when � is the sum of ertain lasses of (0,1)-valued funtions over a lattie [11, 39, 41℄. In eah ase, the ubi-time omplexity isobtained by a redution to the Min-Cut problem. An obvious avenue of future researhis to determine whih of these ubi-time lasses generalizes to arbitrary tournament pairmultimorphisms.Referenes[1℄ Angl�es d'Auria, J-Ch., Igloi, F., Preismann, M. & Seb�o, A. \Optimal ooperationand submodularity for omputing Potts' partition funtions with a large numberof statistis", Journal of Physis A: Math. Gen. 35 (2002), pp. 6973{6983.[2℄ Billionet, A. & Minoux, M. \Maximizing a supermodular pseudo-boolean fun-tion: a polynomial algorithm for ubi funtions", Disrete Applied Mathematis12 (1985) pp. 1{11.[3℄ Bulatov, A.A. \A dihotomy theorem for onstraint satisfation problems on athree-element set", Journal of the ACM 53(1) (2006) pp. 66{120.[4℄ Bulatov, A.A. \Tratable onservative onstraint satisfation problems", Pro. 18thIEEE Symposium on Logi in Computer Siene (LICS'03), (2003) pp. 321{330.25
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