Quantum Proofs for Classical Theorems

Ronald de Wolf

Oxford, October 24, 2014
Unexpected proofs: Complex numbers

How to prove the following identity about real numbers

\[\cos(x + y) = \cos(x) \cos(y) - \sin(x) \sin(y) \] ?

Go to complex numbers!

\[e^{ix} = \cos(x) + i \sin(x) \]

\[
\begin{align*}
\cos(x + y) &= \Re(e^{i(x+y)}) \\
&= \Re(e^{ix} e^{iy}) \\
&= \Re(\cos(x) \cos(y) - \sin(x) \sin(y) + i \cos(x) \sin(y) + i \sin(x) \cos(y)) \\
&= \cos(x) \cos(y) - \sin(x) \sin(y)
\end{align*}
\]
How to prove the following identity about real numbers

$$\cos(x + y) = \cos(x) \cos(y) - \sin(x) \sin(y)$$
How to prove the following identity about *real* numbers

\[\cos(x + y) = \cos(x) \cos(y) - \sin(x) \sin(y) \ ? \]

Go to *complex* numbers!

\[e^{ix} = \cos(x) + i \sin(x) \]
How to prove the following identity about real numbers:

\[\cos(x + y) = \cos(x) \cos(y) - \sin(x) \sin(y) \]

Go to complex numbers!

\[e^{ix} = \cos(x) + i \sin(x) \]

\[\cos(x + y) \]
How to prove the following identity about real numbers

\[\cos(x + y) = \cos(x) \cos(y) - \sin(x) \sin(y) \]?

Go to complex numbers!

\[e^{ix} = \cos(x) + i \sin(x) \]

\[\cos(x + y) = \Re(e^{i(x+y)}) \]
How to prove the following identity about real numbers

\[\cos(x + y) = \cos(x) \cos(y) - \sin(x) \sin(y) \]

Go to complex numbers!

\[e^{ix} = \cos(x) + i \sin(x) \]

\[\cos(x + y) = \Re(e^{i(x+y)}) = \Re(e^{ix} e^{iy}) \]
Unexpected proofs: Complex numbers

How to prove the following identity about real numbers

$$\cos(x + y) = \cos(x) \cos(y) - \sin(x) \sin(y)$$

Go to complex numbers!

$$e^{ix} = \cos(x) + i \sin(x)$$

$$\cos(x + y) = \Re(e^{i(x+y)}) = \Re(e^{ix} e^{iy})$$

$$= \Re(\cos(x) \cos(y) - \sin(x) \sin(y) + i \cos(x) \sin(y) + i \sin(x) \cos(y))$$
How to prove the following identity about real numbers

\[\cos(x + y) = \cos(x) \cos(y) - \sin(x) \sin(y) \]

Go to complex numbers!

\[e^{ix} = \cos(x) + i \sin(x) \]

\[\cos(x + y) = \Re(e^{i(x+y)}) = \Re(e^{ix}e^{iy}) \]

\[= \Re(\cos(x) \cos(y) - \sin(x) \sin(y) + i \cos(x) \sin(y) + i \sin(x) \cos(y)) \]

\[= \cos(x) \cos(y) - \sin(x) \sin(y) \]
Unexpected proofs: Probabilities

Theorem: Every graph \((V, E)\) with \(m\) edges contains a bipartite subgraph with \(m/2\) edges.

Proof:
1. Pick vertex-set \(T \subseteq V\) at random.
2. Set \(X_{ij} = \begin{cases} 1 & \text{if edge } (i, j) \text{ "crosses" (between } T \text{ and } T) \\ 0 & \text{otherwise} \end{cases}\)
3. \(\mathbb{E}[X_{ij}] = \Pr[\text{edge } (i, j) \text{ crosses}] = 1/2\)
4. Expected number of crossing edges:
 \(\mathbb{E} \left[\sum_{(i, j) \in E} X_{ij} \right] = \sum_{(i, j) \in E} \mathbb{E}[X_{ij}] = \sum_{(i, j) \in E} 1/2 = m/2\)
5. But then there is a \(T\) with at least \(m/2\) crossing edges!
Theorem: Every graph \((V, E)\) with \(m\) edges contains a bipartite subgraph with \(m/2\) edges

Proof:
1. Pick vertex-set \(T \subseteq V\) at random
2. Set \(X_{ij} = \begin{cases} 1 & \text{if edge (i, j) "crosses" (between } T \text{ and } T) \\ 0 & \text{otherwise} \end{cases} \)
3. \(E[X_{ij}] = \Pr[\text{edge (i, j) crosses}] = 1/2\)
4. Expected number of crossing edges:
\[
E\left[\sum_{(i, j) \in E} X_{ij} \right] = \sum_{(i, j) \in E} E[X_{ij}] = \sum_{(i, j) \in E} 1/2 = m/2
\]
5. But then there is a \(T\) with at least \(m/2\) crossing edges!
Unexpected proofs: Probabilities

Probabilistic method (Erdős, Alon & Spencer)

Theorem: Every graph \((V, E)\) with \(m\) edges contains a bipartite subgraph with \(m/2\) edges.
Unexpected proofs: Probabilities

Probabilistic method (Erdős, Alon & Spencer)

Theorem: Every graph \((V, E)\) with \(m\) edges contains a bipartite subgraph with \(m/2\) edges

Proof:

1. Pick vertex-set \(T \subseteq V\) at random
Unexpected proofs: Probabilities

Probabilistic method (Erdős, Alon & Spencer)

Theorem: Every graph \((V, E)\) with \(m\) edges contains a bipartite subgraph with \(m/2\) edges

Proof:

1. Pick vertex-set \(T \subseteq V\) at random
2. Set \(X_{ij} = \begin{cases}
1 & \text{if edge } (i, j) \text{ “crosses” (between } T \text{ and } \overline{T}) \\
0 & \text{otherwise}
\end{cases}\)
Unexpected proofs: Probabilities

Probabilistic method (Erdős, Alon & Spencer)

Theorem: Every graph \((V, E)\) with \(m\) edges contains a bipartite subgraph with \(m/2\) edges

Proof:
1. Pick vertex-set \(T \subseteq V\) at random
2. Set \(X_{ij} = \begin{cases} 1 & \text{if edge } (i, j) \text{ "crosses" (between } T \text{ and } \overline{T}) \\ 0 & \text{otherwise} \end{cases}\)
3. \(\mathbb{E}[X_{ij}]\)
Unexpected proofs: Probabilities

Probabilistic method (Erdős, Alon & Spencer)

Theorem: Every graph (V, E) with m edges contains a bipartite subgraph with $m/2$ edges

Proof:
1. Pick vertex-set $T \subset V$ at random
2. Set $X_{ij} = \begin{cases} 1 & \text{if edge (}i, j\text{) “crosses” (between } T \text{ and } \overline{T}\text{)}} \\ 0 & \text{otherwise} \end{cases}$
3. $\mathbb{E}[X_{ij}] = \Pr[\text{edge (}i, j\text{) crosses}]$
Unexpected proofs: Probabilities

Probabilistic method (Erdős, Alon & Spencer)

Theorem: Every graph (V, E) with m edges contains a bipartite subgraph with $m/2$ edges

Proof:

1. Pick vertex-set $T \subseteq V$ at random
2. Set $X_{ij} = \begin{cases} 1 & \text{if edge } (i, j) \text{ “crosses” (between } T \text{ and } \overline{T}) \\ 0 & \text{otherwise} \end{cases}$
3. $\mathbb{E}[X_{ij}] = \text{Pr[edge } (i, j) \text{ crosses}] = 1/2$
Unexpected proofs: Probabilities

Probabilistic method (Erdős, Alon & Spencer)

Theorem: Every graph \((V, E)\) with \(m\) edges contains a bipartite subgraph with \(m/2\) edges

Proof:

1. Pick vertex-set \(T \subseteq V\) at random
2. Set \(X_{ij} = \begin{cases} 1 & \text{if edge } (i, j) \text{ “crosses” (between } T \text{ and } \overline{T}) \\ 0 & \text{otherwise} \end{cases}\)
3. \(\mathbb{E}[X_{ij}] = \Pr[\text{edge } (i, j) \text{ crosses}] = 1/2\)
4. Expected number of crossing edges:

\[
\mathbb{E}\left[\sum_{(i,j) \in E} X_{ij}\right]
\]
Unexpected proofs: Probabilities

Probabilistic method (Erdős, Alon & Spencer)

Theorem: Every graph \((V, E)\) with \(m\) edges contains a bipartite subgraph with \(m/2\) edges

Proof:
1. Pick vertex-set \(T \subseteq V\) at random
2. Set \(X_{ij} = \begin{cases} 1 & \text{if edge } (i, j) \text{ “crosses” } (\text{between } T \text{ and } \overline{T}) \\ 0 & \text{otherwise} \end{cases}\)
3. \(\mathbb{E}[X_{ij}] = \Pr[\text{edge } (i, j) \text{ crosses}] = 1/2\)
4. Expected number of crossing edges:
\[
\mathbb{E} \left[\sum_{(i,j) \in E} X_{ij} \right] = \sum_{(i,j) \in E} \mathbb{E}[X_{ij}]
\]
Unexpected proofs: Probabilities

Probabilistic method (Erdős, Alon & Spencer)

Theorem: Every graph \((V, E)\) with \(m\) edges contains a bipartite subgraph with \(m/2\) edges

Proof:

1. Pick vertex-set \(T \subseteq V\) at random
2. Set \(X_{ij} = \begin{cases} 1 & \text{if edge } (i, j) \text{ “crosses” (between } T \text{ and } \overline{T}) \\ 0 & \text{otherwise} \end{cases}\)
3. \(E[X_{ij}] = \Pr[\text{edge } (i, j) \text{ crosses}] = 1/2\)
4. Expected number of crossing edges:
 \[
 E \left[\sum_{(i,j) \in E} X_{ij} \right] = \sum_{(i,j) \in E} E[X_{ij}] = \sum_{(i,j) \in E} \frac{1}{2}
 \]
Unexpected proofs: Probabilities

Probabilistic method (Erdős, Alon & Spencer)

Theorem: Every graph \((V, E)\) with \(m\) edges contains a bipartite subgraph with \(m/2\) edges

Proof:

1. Pick vertex-set \(T \subseteq V\) at random
2. Set \(X_{ij} = \begin{cases} 1 & \text{if edge } (i, j) \text{ “crosses” (between } T \text{ and } \overline{T}) \\ 0 & \text{otherwise} \end{cases} \)
3. \(E[X_{ij}] = Pr[\text{edge } (i, j) \text{ crosses}] = 1/2\)
4. Expected number of crossing edges:

\[
E \left[\sum_{(i,j) \in E} X_{ij} \right] = \sum_{(i,j) \in E} E[X_{ij}] = \sum_{(i,j) \in E} \frac{1}{2} = m/2
\]
Unexpected proofs: Probabilities

Probabilistic method (Erdős, Alon & Spencer)

Theorem: Every graph \((V, E)\) with \(m\) edges contains a bipartite subgraph with \(m/2\) edges

Proof:

1. Pick vertex-set \(T \subseteq V\) at random
2. Set \(X_{ij} = \begin{cases} 1 & \text{if edge } (i, j) \text{ “crosses” (between } T \text{ and } \overline{T}) \\ 0 & \text{otherwise} \end{cases} \)
3. \(E[X_{ij}] = \Pr[\text{edge } (i, j) \text{ crosses}] = 1/2\)
4. Expected number of crossing edges:
 \[
 \mathbb{E} \left[\sum_{(i,j) \in E} X_{ij} \right] = \sum_{(i,j) \in E} \mathbb{E}[X_{ij}] = \sum_{(i,j) \in E} \frac{1}{2} = m/2
 \]
5. But then there is a \(T\) with at least \(m/2\) crossing edges!
Unexpected proofs: Information theory

\[
\sum_{i=0}^{d} \binom{n}{i}
\]

for \(d \leq n/2\).

At most \(2nH\left(\frac{d}{n}\right)\), where \(H(\cdot)\) is the binary entropy function.

Information-theoretic proof:

1. Define \(S = \{x \in \{0, 1\}^n : |x| \leq d\}\), then \(|S| = \sum_{i=0}^{d} \binom{n}{i}\).

2. Let \(X = X_1 \ldots X_n\) be a uniformly random element of \(S\).

3. Then \(\Pr[X_i = 1] \leq \frac{d}{n}\), so \(H(X_i) \leq H\left(\frac{d}{n}\right)\).

4. \(\log |S| = H(X) \leq n \sum_{i=1}^{d} H(X_i) \leq nH\left(\frac{d}{n}\right)\).

5. Exponentiating both sides finishes the proof.
Unexpected proofs: Information theory

▶ How much is \(\sum_{i=0}^{d} \binom{n}{i} \), for \(d \leq n/2 \)?

▶ At most \(2^n H \left(\frac{d}{n} \right) \), where \(H(\cdot) \) is binary entropy function.

Information-theoretic proof:
1. Define \(S = \{ x \in \{0, 1\}^n : |x| \leq d \} \), then \(|S| = \sum_{i=0}^{d} \binom{n}{i} \).
2. Let \(X = X_1 \ldots X_n \) be uniformly random element of \(S \).
3. Then \(\Pr[X_i = 1] \leq \frac{d}{n} \), so \(H(X_i) \leq H \left(\frac{d}{n} \right) \).
4. \(\log |S| = H(X) \leq n \sum_{i=1}^{d} H(X_i) \leq n H \left(\frac{d}{n} \right) \).
5. Exponentiating both sides finishes the proof.
Unexpected proofs: Information theory

- How much is $\sum_{i=0}^{d} \binom{n}{i}$, for $d \leq n/2$?
Unexpected proofs: Information theory

- How much is \(\sum_{i=0}^{d} \binom{n}{i} \), for \(d \leq n/2 \)?

- At most \(2^{nH(d/n)} \), where \(H(\cdot) \) is binary entropy function.
Unexpected proofs: Information theory

- How much is $\sum_{i=0}^{d} \binom{n}{i}$, for $d \leq n/2$?

- At most $2^{nH(d/n)}$, where $H(\cdot)$ is binary entropy function

- Information-theoretic proof:

1. Define $S = \{ x \in \{0,1\}^n : |x| \leq d \}$, then $|S| = \sum_{i=0}^{d} \binom{n}{i}$

2. Let $X = X_1 \ldots X_n$ be uniformly random element of S

3. Then $\Pr[X_i = 1] \leq d/n$, so $H(X_i) \leq H(d/n)$

4. $\log |S| = H(X) \leq n \sum_{i=1}^{n} H(X_i) \leq nH(d/n)$

5. Exponentiating both sides finishes the proof
Unexpected proofs: Information theory

How much is \[
\sum_{i=0}^{d} \binom{n}{i}, \text{ for } d \leq n/2?
\]

At most \(2^n H(d/n)\), where \(H(\cdot)\) is binary entropy function

Information-theoretic proof:

1. Def \(S = \{x \in \{0, 1\}^n : |x| \leq d\}\)
Unexpected proofs: Information theory

- How much is \(\sum_{i=0}^{d} \binom{n}{i} \), for \(d \leq n/2 \)?

- At most \(2^{nH(d/n)} \), where \(H(\cdot) \) is binary entropy function

- Information-theoretic proof:

 1. Def \(S = \{ x \in \{0, 1\}^n : |x| \leq d \} \), then \(|S| = \sum_{i=0}^{d} \binom{n}{i} \)
Unexpected proofs: Information theory

- How much is \(\sum_{i=0}^{d} \binom{n}{i} \), for \(d \leq n/2 \)?

- At most \(2^{nH(d/n)} \), where \(H(\cdot) \) is binary entropy function

- Information-theoretic proof:
 1. Define \(S = \{ x \in \{0, 1\}^n : |x| \leq d \} \), then \(|S| = \sum_{i=0}^{d} \binom{n}{i} \)
 2. Let \(X = X_1 \ldots X_n \) be uniformly random element of \(S \)
Unexpected proofs: Information theory

- How much is \(\sum_{i=0}^{d} \binom{n}{i} \), for \(d \leq n/2 \)?
- At most \(2^{nH(d/n)} \), where \(H(\cdot) \) is binary entropy function

Information-theoretic proof:

1. Define \(S = \{ x \in \{0, 1\}^n : |x| \leq d \} \), then \(|S| = \sum_{i=0}^{d} \binom{n}{i} \)
2. Let \(X = X_1 \ldots X_n \) be uniformly random element of \(S \)
3. Then \(\Pr[X_i = 1] \leq d/n \)
Unexpected proofs: Information theory

How much is \(\sum_{i=0}^{d} \binom{n}{i} \), for \(d \leq n/2 \)?

At most \(2^n H(d/n) \), where \(H(\cdot) \) is binary entropy function.

Information-theoretic proof:

1. Define \(S = \{ x \in \{0, 1\}^n : |x| \leq d \} \), then \(|S| = \sum_{i=0}^{d} \binom{n}{i} \)
2. Let \(X = X_1 \ldots X_n \) be uniformly random element of \(S \)
3. Then \(\Pr[X_i = 1] \leq d/n \), so \(H(X_i) \leq H(d/n) \)
Unexpected proofs: Information theory

- How much is \(\sum_{i=0}^{d} \binom{n}{i} \), for \(d \leq n/2 \)?
- At most \(2^{nH(d/n)} \), where \(H(\cdot) \) is binary entropy function
- Information-theoretic proof:

1. Define \(S = \{ x \in \{0, 1\}^n : |x| \leq d \} \), then \(|S| = \sum_{i=0}^{d} \binom{n}{i} \)
2. Let \(X = X_1 \ldots X_n \) be uniformly random element of \(S \)
3. Then \(\Pr[X_i = 1] \leq d/n \), so \(H(X_i) \leq H(d/n) \)
4. \(\log |S| \)
Unexpected proofs: Information theory

- How much is \(\sum_{i=0}^{d} \binom{n}{i} \), for \(d \leq n/2 \)?
- At most \(2^n H(d/n) \), where \(H(\cdot) \) is binary entropy function

Information-theoretic proof:

1. Define \(S = \{ x \in \{0, 1\}^n : |x| \leq d \} \), then \(|S| = \sum_{i=0}^{d} \binom{n}{i} \)
2. Let \(X = X_1 \ldots X_n \) be uniformly random element of \(S \)
3. Then \(\Pr[X_i = 1] \leq d/n \), so \(H(X_i) \leq H(d/n) \)
4. \(\log |S| = H(X) \)
How much is \[\sum_{i=0}^{d} \binom{n}{i} \], for \(d \leq n/2 \)?

At most \(2^{nH(d/n)} \), where \(H(\cdot) \) is binary entropy function.

Information-theoretic proof:

1. Define \(S = \{ x \in \{0, 1\}^n : |x| \leq d \} \), then \(|S| = \sum_{i=0}^{d} \binom{n}{i} \)
2. Let \(X = X_1 \ldots X_n \) be uniformly random element of \(S \)
3. Then \(\Pr[X_i = 1] \leq d/n \), so \(H(X_i) \leq H(d/n) \)
4. \(\log |S| = H(X) \leq \sum_{i=1}^{n} H(X_i) \)
Unexpected proofs: Information theory

► How much is $\sum_{i=0}^{d} \binom{n}{i}$, for $d \leq n/2$?

► At most $2^n H(d/n)$, where $H(\cdot)$ is binary entropy function

► Information-theoretic proof:

1. Def $S = \{x \in \{0, 1\}^n : |x| \leq d\}$, then $|S| = \sum_{i=0}^{d} \binom{n}{i}$
2. Let $X = X_1 \ldots X_n$ be uniformly random element of S
3. Then $\Pr[X_i = 1] \leq d/n$, so $H(X_i) \leq H(d/n)$
4. $\log |S| = H(X) \leq \sum_{i=1}^{n} H(X_i) \leq nH(d/n)$
Unexpected proofs: Information theory

- How much is \(\sum_{i=0}^{d} \binom{n}{i} \), for \(d \leq n/2 \)?

- At most \(2^{nH(d/n)} \), where \(H(\cdot) \) is binary entropy function

Information-theoretic proof:

1. Define \(S = \{ x \in \{0, 1\}^n : |x| \leq d \} \), then \(|S| = \sum_{i=0}^{d} \binom{n}{i} \)
2. Let \(X = X_1 \ldots X_n \) be uniformly random element of \(S \)
3. Then \(\Pr[X_i = 1] \leq d/n \), so \(H(X_i) \leq H(d/n) \)
4. \(\log |S| = H(X) \leq \sum_{i=1}^{n} H(X_i) \leq nH(d/n) \)
5. Exponentiating both sides finishes the proof
But that’s just counting!
But that’s just counting!

- Probabilistic arguments and information theory are just “counting arguments in disguise”
But that’s just counting!

- Probabilistic arguments and information theory are just “counting arguments in disguise”
- That’s true, but beside the point
But that’s just counting!

- Probabilistic arguments and information theory are just “counting arguments in disguise”
- That’s true, but beside the point
- The language of probability and information theory gives us intuitions and tools that wouldn’t be readily available in the plain language of counting
But that’s just counting!

- Probabilistic arguments and information theory are just “counting arguments in disguise”
- That’s true, but beside the point
- The language of probability and information theory gives us intuitions and tools that wouldn’t be readily available in the plain language of counting
- Large deviation inequalities, Lovász Local Lemma, chain rules, subadditivity of information,...
But that’s just counting!

- Probabilistic arguments and information theory are just “counting arguments in disguise”

- That’s true, but beside the point

- The language of probability and information theory gives us intuitions and tools that wouldn’t be readily available in the plain language of counting

- Large deviation inequalities, Lovász Local Lemma, chain rules, subadditivity of information, . . .

- You *could* do those proofs in the language of counting, but you probably wouldn’t find them
But that’s just counting!

- Probabilistic arguments and information theory are just "counting arguments in disguise".
- That’s true, but beside the point.
- The language of probability and information theory gives us intuitions and tools that wouldn’t be readily available in the plain language of counting.
- Large deviation inequalities, Lovász Local Lemma, chain rules, subadditivity of information, . . .
- You *could* do those proofs in the language of counting, but you probably wouldn’t find them.
- Good to have probabilistic techniques in your tool-box.
We know quantum information & computation for its algorithms, crypto-schemes, communication protocols, non-locality, etc.

This talk: using quantum techniques as a proof tool for things in classical CS, mathematics, etc.

Why? Because quantum information is a rich melting pot of many branches of math: linear algebra, probability theory, group theory, geometry, combinatorics, functional analysis, . . .

Bonus: no need to implement anything in the lab

We'll give two examples:
1. Lower bound on locally decodable codes [KW'03]
2. Lower bounds for linear programs [FMPTW'12]
Unexpected proofs: Quantum

- We know quantum information & computation for its algorithms, crypto-schemes, communication protocols, non-locality, etc.

- Why? Because quantum information is a rich melting pot of many branches of math: linear algebra, probability theory, group theory, geometry, combinatorics, functional analysis, etc.

- Bonus: no need to implement anything in the lab

- We'll give two examples:
 1. Lower bound on locally decodable codes [KW'03]
 2. Lower bounds for linear programs [FMPTW'12]
Unexpected proofs: Quantum

- We know quantum information & computation for its algorithms, crypto-schemes, communication protocols, non-locality, etc.
- This talk: using quantum techniques as a proof tool for things in classical CS, mathematics, etc.

- Lower bound on locally decodable codes [KW'03]
- Lower bounds for linear programs [FMPTW'12]
Unexpected proofs: Quantum

- We know quantum information & computation for its algorithms, crypto-schemes, communication protocols, non-locality, etc.

- This talk: using quantum techniques as a proof tool for things in classical CS, mathematics, etc.

- Why? Because quantum information is a rich melting pot of many branches of math: linear algebra, probability theory, group theory, geometry, combinatorics, functional analysis, . . .

- Bonus: no need to implement anything in the lab

- We'll give two examples:
 1. Lower bound on locally decodable codes [KW'03]
 2. Lower bounds for linear programs [FMPTW'12]
Unexpected proofs: Quantum

- We know quantum information & computation for its algorithms, crypto-schemes, communication protocols, non-locality, etc.

- This talk: using quantum techniques as a proof tool for things in classical CS, mathematics, etc.

- Why? Because quantum information is a rich melting pot of many branches of math: linear algebra, probability theory, group theory, geometry, combinatorics, functional analysis, . . .

- Bonus: no need to implement anything in the lab
Unexpected proofs: Quantum

- We know quantum information & computation for its algorithms, crypto-schemes, communication protocols, non-locality, etc.
- This talk: using quantum techniques as a proof tool for things in classical CS, mathematics, etc.
- Why? Because quantum information is a rich melting pot of many branches of math: linear algebra, probability theory, group theory, geometry, combinatorics, functional analysis, . . .
- Bonus: no need to implement anything in the lab
- We’ll give two examples:
Unexpected proofs: Quantum

- We know quantum information & computation for its algorithms, crypto-schemes, communication protocols, non-locality, etc.

- This talk: using quantum techniques as a proof tool for things in classical CS, mathematics, etc.

- Why? Because quantum information is a rich melting pot of many branches of math: linear algebra, probability theory, group theory, geometry, combinatorics, functional analysis, . . .

- Bonus: no need to implement anything in the lab

- We’ll give two examples:
 1. Lower bound on locally decodable codes [KW’03]
Unexpected proofs: Quantum

- We know quantum information & computation for its algorithms, crypto-schemes, communication protocols, non-locality, etc.

- This talk: using quantum techniques as a proof tool for things in classical CS, mathematics, etc.

- Why? Because quantum information is a rich melting pot of many branches of math: linear algebra, probability theory, group theory, geometry, combinatorics, functional analysis, . . .

- Bonus: no need to implement anything in the lab

- We’ll give two examples:
 1. Lower bound on locally decodable codes [KW’03]
 2. Lower bounds for linear programs [FMPTW’12]
But that’s just linear algebra!
But that’s just linear algebra!

- Quantum arguments are just “linear algebra in disguise”
But that’s just linear algebra!

▶ Quantum arguments are just “linear algebra in disguise”

▶ That’s true, but beside the point
But that’s just linear algebra!

- Quantum arguments are just “linear algebra in disguise”

- That’s true, but beside the point

- The language of quantum information and quantum algorithms gives us intuitions and tools that wouldn’t be readily available in the plain language of linear algebra
But that’s just linear algebra!

- Quantum arguments are just “linear algebra in disguise”

- That’s true, but beside the point

- The language of quantum information and quantum algorithms gives us intuitions and tools that wouldn’t be readily available in the plain language of linear algebra

- You *could* do those proofs in the language of linear algebra, but you probably wouldn’t find them
But that’s just linear algebra!

- Quantum arguments are just “linear algebra in disguise”

- That’s true, but beside the point

- The language of quantum information and quantum algorithms gives us intuitions and tools that wouldn’t be readily available in the plain language of linear algebra

- You *could* do those proofs in the language of linear algebra, but you probably wouldn’t find them

- Good to have quantum techniques in your tool-box
Quantum computing reminder

A state is a unit vector of complex amplitudes

\[|\alpha_0 \rangle + |\alpha_1 \rangle \in \mathbb{C}^2 \]

d-dimensional state: superposition

\[\sum_{i=1}^{d} \alpha_i |i\rangle \in \mathbb{C}^d \]

n-qubit state (\(d = 2^n\)):

\[|\phi\rangle = \sum_{i \in \{0,1\}^n} \alpha_i |i\rangle \in \mathbb{C}^{2^n} \]

Operations: unitary transform of the vector.

Example: Hadamard gate

\[|b\rangle \mapsto \frac{1}{\sqrt{2}} (|0\rangle + (-1)^b |1\rangle) \]

Measurement: specified by orthogonal projectors \(P_1, \ldots, P_k\), s.t. \(\sum_{i=1}^{k} P_i = I\).

\[\text{Pr}[\text{outcome } i] = \text{Tr}(P_i |\phi\rangle\langle\phi|) \]

State \(|\phi\rangle \) then collapses to \(\frac{P_i |\phi\rangle}{\|P_i |\phi\rangle\|} \)

Special case: \(P_i = |i\rangle\langle i|\), then \(\text{Pr}[\text{outcome } i] = |\alpha_i|^2 \)
Quantum computing reminder

- A state is a **unit vector** of complex amplitudes
Quantum computing reminder

- A state is a **unit vector** of complex amplitudes
- **Qubit**: superposition $\alpha_0|0\rangle + \alpha_1|1\rangle$
Quantum computing reminder

- A state is a **unit vector** of complex amplitudes
- **Qubit**: superposition \(\alpha_0|0\rangle + \alpha_1|1\rangle \in \mathbb{C}^2\)
Quantum computing reminder

- A state is a unit vector of complex amplitudes
- Qubit: superposition $\alpha_0 |0\rangle + \alpha_1 |1\rangle \in \mathbb{C}^2$
- d-dimensional state: superposition $\sum_{i=1}^{d} \alpha_i |i\rangle$

Operations: unitary transform of the vector.
Example: Hadamard gate $|b\rangle \mapsto \frac{1}{\sqrt{2}} (|0\rangle + (-1)^b |1\rangle)$

Measurement: specified by orthogonal projectors P_1, \ldots, P_k, s.t. $\sum_{i=1}^{k} P_i = I$.
$\text{Pr}[\text{outcome } i] = \text{Tr}(P_i |\phi\rangle \langle \phi|)$

State $|\phi\rangle$ then collapses to $P_i |\phi\rangle / \| P_i |\phi\rangle \|$.

Special case: $P_i = |i\rangle \langle i|$, then $\text{Pr}[\text{outcome } i] = |\alpha_i|^2$.
Quantum computing reminder

- A state is a **unit vector** of complex amplitudes
- Qubit: superposition $\alpha_0|0\rangle + \alpha_1|1\rangle \in \mathbb{C}^2$
- d-dimensional state: superposition $\sum_{i=1}^{d} \alpha_i|i\rangle \in \mathbb{C}^d$
Quantum computing reminder

- A state is a **unit vector** of complex amplitudes
- **Qubit**: superposition $\alpha_0|0\rangle + \alpha_1|1\rangle \in \mathbb{C}^2$
- **d-dimensional state**: superposition $\sum_{i=1}^{d} \alpha_i |i\rangle \in \mathbb{C}^d$
- **n-qubit state ($d = 2^n$)**: $|\phi\rangle = \sum_{i \in \{0,1\}^n} \alpha_i |i\rangle$
Quantum computing reminder

- A state is a unit vector of complex amplitudes
- **Qubit**: superposition \(\alpha_0 |0\rangle + \alpha_1 |1\rangle \in \mathbb{C}^2 \)
- \(d \)-dimensional state: superposition \(\sum_{i=1}^{d} \alpha_i |i\rangle \in \mathbb{C}^d \)
- \(n \)-qubit state \((d = 2^n)\): \(|\phi\rangle = \sum_{i \in \{0,1\}^n} \alpha_i |i\rangle \in \mathbb{C}^{2^n} \)
Quantum computing reminder

- A state is a **unit vector** of complex amplitudes.
- **Qubit**: superposition $\alpha_0|0\rangle + \alpha_1|1\rangle \in \mathbb{C}^2$
- d-dimensional state: superposition $\sum_{i=1}^{d} \alpha_i |i\rangle \in \mathbb{C}^d$
- n-qubit state ($d = 2^n$): $|\phi\rangle = \sum_{i\in\{0,1\}^n} \alpha_i |i\rangle \in \mathbb{C}^{2^n}$
- Operations: **unitary transform** of the vector.
Quantum computing reminder

- A state is a **unit vector** of complex amplitudes
- **Qubit**: superposition $\alpha_0|0\rangle + \alpha_1|1\rangle \in \mathbb{C}^2$
- d-dimensional state: superposition $\sum_{i=1}^{d} \alpha_i |i\rangle \in \mathbb{C}^d$
- n-qubit state ($d = 2^n$): $|\phi\rangle = \sum_{i \in \{0,1\}^n} \alpha_i |i\rangle \in \mathbb{C}^{2^n}$
- Operations: **unitary transform** of the vector.

 Example: Hadamard gate $|b\rangle \mapsto \frac{1}{\sqrt{2}}(|0\rangle + (-1)^b|1\rangle)$
Quantum computing reminder

- A state is a unit vector of complex amplitudes
- **Qubit**: superposition $\alpha_0|0\rangle + \alpha_1|1\rangle \in \mathbb{C}^2$
- **d-dimensional state**: superposition $\sum_{i=1}^{d} \alpha_i |i\rangle \in \mathbb{C}^d$
- **n-qubit state ($d = 2^n$)**: $|\phi\rangle = \sum_{i\in\{0,1\}^n} \alpha_i |i\rangle \in \mathbb{C}^{2^n}$

- Operations: unitary transform of the vector.
 - Example: Hadamard gate $|b\rangle \mapsto \frac{1}{\sqrt{2}}(|0\rangle + (-1)^b|1\rangle)$
- **Measurement**: specified by orthogonal projectors
Quantum computing reminder

- A state is a **unit vector** of complex amplitudes
- **Qubit**: superposition $\alpha_0|0\rangle + \alpha_1|1\rangle \in \mathbb{C}^2$
- d-dimensional state: superposition $\sum_{i=1}^{d} \alpha_i|i\rangle \in \mathbb{C}^d$
- n-qubit state ($d = 2^n$): $|\phi\rangle = \sum_{i \in \{0,1\}^n} \alpha_i|i\rangle \in \mathbb{C}^{2^n}$
- **Operations**: unitary transform of the vector.
 Example: Hadamard gate $|b\rangle \mapsto \frac{1}{\sqrt{2}}(|0\rangle + (-1)^b|1\rangle)$
- **Measurement**: specified by orthogonal projectors P_1, \ldots, P_k, s.t. $\sum_{i=1}^{k} P_i = I$.
 $\Pr[\text{outcome } i] = \text{Tr}(P_i |\phi\rangle \langle \phi|)$
 Special case: $P_i = |i\rangle \langle i|$, then $\Pr[\text{outcome } i] = |\alpha_i|^2$
Quantum computing reminder

- A state is a **unit vector** of complex amplitudes
- Qubit: superposition $\alpha_0 |0\rangle + \alpha_1 |1\rangle \in \mathbb{C}^2$
- d-dimensional state: superposition $\sum_{i=1}^{d} \alpha_i |i\rangle \in \mathbb{C}^d$
- n-qubit state ($d = 2^n$): $|\phi\rangle = \sum_{i \in \{0,1\}^n} \alpha_i |i\rangle \in \mathbb{C}^{2^n}$
- Operations: **unitary transform** of the vector.

 Example: Hadamard gate $|b\rangle \mapsto \frac{1}{\sqrt{2}}(|0\rangle + (-1)^b |1\rangle)$
- Measurement: specified by orthogonal projectors P_1, \ldots, P_k, s.t. $\sum_{i=1}^{k} P_i = I$.

 $\Pr[\text{outcome } i] = \text{Tr}(P_i |\phi\rangle \langle \phi|)$
Quantum computing reminder

- A state is a unit vector of complex amplitudes.
- Qubit: superposition $\alpha_0 |0\rangle + \alpha_1 |1\rangle \in \mathbb{C}^2$
- d-dimensional state: superposition $\sum_{i=1}^{d} \alpha_i |i\rangle \in \mathbb{C}^d$
- n-qubit state ($d = 2^n$): $|\phi\rangle = \sum_{i \in \{0,1\}^n} \alpha_i |i\rangle \in \mathbb{C}^{2^n}$
- Operations: unitary transform of the vector.
 Example: Hadamard gate $|b\rangle \mapsto \frac{1}{\sqrt{2}} (|0\rangle + (-1)^b |1\rangle)$
- Measurement: specified by orthogonal projectors P_1, \ldots, P_k, s.t. $\sum_{i=1}^{k} P_i = I$.
 Pr[outcome i] = Tr($P_i |\phi\rangle \langle \phi|)$
 State $|\phi\rangle$ then collapses to $P_i |\phi\rangle$
Quantum computing reminder

- A state is a **unit vector** of complex amplitudes
- **Qubit**: superposition $\alpha_0 |0\rangle + \alpha_1 |1\rangle \in \mathbb{C}^2$
- d-dimensional state: superposition $\sum_{i=1}^{d} \alpha_i |i\rangle \in \mathbb{C}^d$
- n-qubit state ($d = 2^n$): $|\phi\rangle = \sum_{i \in \{0,1\}^n} \alpha_i |i\rangle \in \mathbb{C}^{2^n}$

- **Operations**: unitary transform of the vector.
 Example: Hadamard gate $|b\rangle \mapsto \frac{1}{\sqrt{2}} (|0\rangle + (-1)^b |1\rangle)$

- **Measurement**: specified by orthogonal projectors P_1, \ldots, P_k, s.t. $\sum_{i=1}^{k} P_i = I$.

 $\text{Pr}[\text{outcome } i] = \text{Tr}(P_i |\phi\rangle \langle \phi|)$

 State $|\phi\rangle$ then collapses to $P_i |\phi\rangle / \| P_i |\phi\rangle \|$
Quantum computing reminder

- A state is a **unit vector** of complex amplitudes
- **Qubit**: superposition $\alpha_0|0\rangle + \alpha_1|1\rangle \in \mathbb{C}^2$
- **d-dimensional state**: superposition $\sum_{i=1}^{d} \alpha_i |i\rangle \in \mathbb{C}^d$
- **n-qubit state ($d = 2^n$)**: $|\phi\rangle = \sum_{i \in \{0,1\}^n} \alpha_i |i\rangle \in \mathbb{C}^{2^n}$

- **Operations**: unitary transform of the vector.
 Example: Hadamard gate $|b\rangle \mapsto \frac{1}{\sqrt{2}}(|0\rangle + (-1)^b|1\rangle)$

- **Measurement**: specified by orthogonal projectors P_1, \ldots, P_k, s.t. $\sum_{i=1}^{k} P_i = I$.

 $\Pr[\text{outcome } i] = \text{Tr}(P_i |\phi\rangle \langle \phi|)$

 State $|\phi\rangle$ then collapses to $P_i |\phi\rangle / \|P_i |\phi\rangle\|$

 Special case: $P_i = |i\rangle \langle i|$, then $\Pr[\text{outcome } i] = |\alpha_i|^2$
Example 1:

Lower bounds for locally decodable codes
Locally decodable codes

Error-correcting code: $C: \{0, 1\}^n \rightarrow \{0, 1\}^m$, $m \geq n$

Decoder: if $w \in \{0, 1\}^m$ is "close" to $C(x)$, then $D(w) = x$

Inefficient if you only want to decode a small part of x

C is k-query locally decodable if there is a decoder D that can decode individual bits x_i of x, while only looking at k bits of w.

Hard question: optimal tradeoff between k and m?

Using quantum, we can show: $k = 2 \Rightarrow m \geq 2 \Omega(n)$

Still the only superpolynomial bound known for LDCs
Locally decodable codes

- Error-correcting code: $C : \{0, 1\}^n \rightarrow \{0, 1\}^m$, $m \geq n$
Locally decodable codes

- Error-correcting code: $C : \{0, 1\}^n \rightarrow \{0, 1\}^m$, $m \geq n$
 Decoder: if $w \in \{0, 1\}^m$ is “close” to $C(x)$, then $D(w) = x$
Locally decodable codes

- Error-correcting code: \(C : \{0, 1\}^n \rightarrow \{0, 1\}^m, \ m \geq n \)

 Decoder: if \(w \in \{0, 1\}^m \) is “close” to \(C(x) \), then \(D(w) = x \)

- Inefficient if you only want to decode a small part of \(x \)
Locally decodable codes

- Error-correcting code: $C : \{0, 1\}^n \rightarrow \{0, 1\}^m$, $m \geq n$

 Decoder: if $w \in \{0, 1\}^m$ is “close” to $C(x)$, then $D(w) = x$

- Inefficient if you only want to decode a small part of x

- C is k-query locally decodable if there is a decoder D that can decode individual bits x_i of x, while only looking at k bits of w
Locally decodable codes

- Error-correcting code: \(C : \{0, 1\}^n \rightarrow \{0, 1\}^m, m \geq n \)

 Decoder: if \(w \in \{0, 1\}^m \) is “close” to \(C(x) \), then \(D(w) = x \)

- Inefficient if you only want to decode a small part of \(x \)

- \(C \) is \(k \)-query locally decodable if there is a decoder \(D \) that can decode individual bits \(x_i \) of \(x \), while only looking at \(k \) bits of \(w \)

- Hard question: optimal tradeoff between \(k \) and \(m \)?
Locally decodable codes

- Error-correcting code: $C : \{0, 1\}^n \to \{0, 1\}^m$, $m \geq n$
 Decoder: if $w \in \{0, 1\}^m$ is “close” to $C(x)$, then $D(w) = x$

- Inefficient if you only want to decode a small part of x

- C is k-query locally decodable if there is a decoder D that can decode individual bits x_i of x, while only looking at k bits of w

- Hard question: optimal tradeoff between k and m?

- Using quantum, we can show: $k = 2 \Rightarrow m \geq 2^{\Omega(n)}$
Locally decodable codes

- Error-correcting code: \(C : \{0, 1\}^n \rightarrow \{0, 1\}^m, \ m \geq n \)

 Decoder: if \(w \in \{0, 1\}^m \) is “close” to \(C(x) \), then \(D(w) = x \)

- Inefficient if you only want to decode a small part of \(x \)

- \(C \) is \textit{k-query locally decodable} if there is a decoder \(D \) that can decode individual bits \(x_i \) of \(x \), while only looking at \(k \) bits of \(w \)

- Hard question: optimal tradeoff between \(k \) and \(m \)?

- Using quantum, we can show: \(k = 2 \Rightarrow m \geq 2^{\Omega(n)} \)

- Still the only superpolynomial bound known for LDCs
Example of 2-query LDC: Hadamard

Define $C(x)_j = j \cdot x \mod 2$ for all $j \in \{0, 1\}^n$, so $C(x)$ is a codeword of 2^n bits.

Decoding x_i from corrupted codeword $w \approx C(x)$:

1. pick random $j \in \{0, 1\}^n$
2. query w at positions j and $j \oplus e_i$
3. output $w_j \oplus w_j \oplus e_i$

This works perfectly if there is no noise ($w = C(x)$):

$$w_j \oplus w_j \oplus e_i = (j \cdot x) \oplus ((j \oplus e_i) \cdot x) = e_i \cdot x = x_i$$

With δ_m errors, $Pr[j \mid w_j \neq C(x)_j] \leq \delta$ and $Pr[j \mid w_j \oplus e_i \neq C(x)_j \oplus e_i] \leq \delta$, so $Pr[\text{we correctly output } x_i] \geq 1 - 2\delta$.
Example of 2-query LDC: Hadamard

- Define $C(x)_j = j \cdot x \mod 2$ for all $j \in \{0, 1\}^n$, so $C(x)$ is a codeword of 2^n bits.

- Decoding x_i from corrupted codeword $w \approx C(x)$:
 1. Pick random $j \in \{0, 1\}^n$.
 2. Query w at positions j and $j \oplus e_i$.
 3. Output $w_j \oplus w_{j \oplus e_i}$.

 This works perfectly if there is no noise ($w = C(x)$):
 $$w_j \oplus w_{j \oplus e_i} = (j \cdot x) \oplus ((j \oplus e_i) \cdot x) = e_i \cdot x = x_i$$

 With δ_m errors, $\Pr_j[w_j \neq C(x)_j] \leq \delta$ and $\Pr_j[w_j \oplus e_i \neq C(x)_j \oplus e_i] \leq \delta$, so $\Pr[we correctly output x_i] \geq 1 - 2\delta$.

Example of 2-query LDC: Hadamard

- Define $C(x)_j = j \cdot x \mod 2$ for all $j \in \{0, 1\}^n$, so $C(x)$ is a codeword of 2^n bits

Decoding x_i from corrupted codeword $w \approx C(x)$:

1. pick random $j \in \{0, 1\}^n$
2. query w at positions j and $j \oplus e_i$
3. output $w_j \oplus w_j \oplus e_i$

This works perfectly if there is no noise ($w = C(x)$):

$w_j \oplus w_j \oplus e_i = (j \cdot x) \oplus ((j \oplus e_i) \cdot x) = e_i \cdot x = x_i$

With δm errors, $\Pr_{j}[w_j \neq C(x)_j] \leq \delta$ and $\Pr_{j}[w_j \oplus e_i \neq C(x)_j \oplus e_i] \leq \delta$, so \Pr we correctly output $x_i \geq 1 - 2\delta$
Example of 2-query LDC: Hadamard

- Define $C(x)_j = j \cdot x \mod 2$ for all $j \in \{0, 1\}^n$, so $C(x)$ is a codeword of 2^n bits.

- Decoding x_i from corrupted codeword $w \approx C(x)$:
Example of 2-query LDC: Hadamard

- Define $C(x)_j = j \cdot x \mod 2$ for all $j \in \{0, 1\}^n$, so $C(x)$ is a codeword of 2^n bits

- Decoding x_i from corrupted codeword $w \approx C(x)$:
 1. pick random $j \in \{0, 1\}^n$
Example of 2-query LDC: Hadamard

- Define \(C(x)_j = j \cdot x \mod 2 \) for all \(j \in \{0, 1\}^n \), so \(C(x) \) is a codeword of \(2^n \) bits.

- Decoding \(x_i \) from corrupted codeword \(w \approx C(x) \):
 1. pick random \(j \in \{0, 1\}^n \)
 2. query \(w \) at positions \(j \) and \(j \oplus e_i \)

In the case of no noise (\(w = C(x) \)),
\[
w_j \oplus w_j \oplus e_i = (j \cdot x) \oplus ((j \oplus e_i) \cdot x) = e_i \cdot x = x_i.
\]

With \(\delta_m \) errors,
\[
\Pr_j[w_j \neq C(x)_j] \leq \delta \quad \text{and} \quad \Pr_j[w_j \oplus e_i \neq C(x)_j \oplus e_i] \leq \delta,
\]
so
\[
\Pr[\text{we correctly output } x_i] \geq 1 - 2\delta.
\]
Example of 2-query LDC: Hadamard

- Define $C(x)_j = j \cdot x \mod 2$ for all $j \in \{0, 1\}^n$, so $C(x)$ is a codeword of 2^n bits

- Decoding x_i from corrupted codeword $w \approx C(x)$:
 1. pick random $j \in \{0, 1\}^n$
 2. query w at positions j and $j \oplus e_i$
 3. output $w_j \oplus w_{j \oplus e_i}$
Example of 2-query LDC: Hadamard

- Define $C(x)_j = j \cdot x \mod 2$ for all $j \in \{0, 1\}^n$, so $C(x)$ is a codeword of 2^n bits

- Decoding x_i from corrupted codeword $w \approx C(x)$:
 1. pick random $j \in \{0, 1\}^n$
 2. query w at positions j and $j \oplus e_i$
 3. output $w_j \oplus w_{j \oplus e_i}$

- This works perfectly if there is no noise ($w = C(x)$):
Example of 2-query LDC: Hadamard

- Define \(C(x)_j = j \cdot x \mod 2 \) for all \(j \in \{0, 1\}^n \), so \(C(x) \) is a codeword of \(2^n \) bits.

- Decoding \(x_i \) from corrupted codeword \(w \approx C(x) \):
 1. pick random \(j \in \{0, 1\}^n \)
 2. query \(w \) at positions \(j \) and \(j \oplus e_i \)
 3. output \(w_j \oplus w_{j \oplus e_i} \)

- This works perfectly if there is no noise (\(w = C(x) \)):

\[
 w_j \oplus w_{j \oplus e_i}.
\]
Example of 2-query LDC: Hadamard

- Define $C(x)_j = j \cdot x \mod 2$ for all $j \in \{0, 1\}^n$, so $C(x)$ is a codeword of 2^n bits

- Decoding x_i from corrupted codeword $w \approx C(x)$:
 1. pick random $j \in \{0, 1\}^n$
 2. query w at positions j and $j \oplus e_i$
 3. output $w_j \oplus w_{j \oplus e_i}$

- This works perfectly if there is no noise ($w = C(x)$):
 \[w_j \oplus w_{j \oplus e_i} = (j \cdot x) \oplus ((j \oplus e_i) \cdot x) \]
Example of 2-query LDC: Hadamard

- Define \(C(x)_j = j \cdot x \mod 2 \) for all \(j \in \{0, 1\}^n \), so \(C(x) \) is a codeword of \(2^n \) bits

- Decoding \(x_i \) from corrupted codeword \(w \approx C(x) \):
 1. pick random \(j \in \{0, 1\}^n \)
 2. query \(w \) at positions \(j \) and \(j \oplus e_i \)
 3. output \(w_j \oplus w_{j \oplus e_i} \)

- This works perfectly if there is no noise (\(w = C(x) \)): \[w_j \oplus w_{j \oplus e_i} = (j \cdot x) \oplus ((j \oplus e_i) \cdot x) = e_i \cdot x \]
Example of 2-query LDC: Hadamard

- Define $C(x)_j = j \cdot x \mod 2$ for all $j \in \{0, 1\}^n$, so $C(x)$ is a codeword of 2^n bits.
- Decoding x_i from corrupted codeword $w \approx C(x)$:
 1. pick random $j \in \{0, 1\}^n$
 2. query w at positions j and $j \oplus e_i$
 3. output $w_j \oplus w_{j \oplus e_i}$
- This works perfectly if there is no noise ($w = C(x)$):
 $$w_j \oplus w_{j \oplus e_i} = (j \cdot x) \oplus ((j \oplus e_i) \cdot x) = e_i \cdot x = x_i$$
Example of 2-query LDC: Hadamard

- Define $C(x)_j = j \cdot x \mod 2$ for all $j \in \{0, 1\}^n$, so $C(x)$ is a codeword of 2^n bits

- Decoding x_i from corrupted codeword $w \approx C(x)$:
 1. pick random $j \in \{0, 1\}^n$
 2. query w at positions j and $j \oplus e_i$
 3. output $w_j \oplus w_{j \oplus e_i}$

- This works perfectly if there is no noise ($w = C(x)$):
 \[
 w_j \oplus w_{j \oplus e_i} = (j \cdot x) \oplus ((j \oplus e_i) \cdot x) = e_i \cdot x = x_i
 \]

- With δm errors, $\text{Pr}_j[w_j \neq C(x)_j] \leq \delta$
Example of 2-query LDC: Hadamard

- Define \(C(x)_j = j \cdot x \mod 2 \) for all \(j \in \{0, 1\}^n \), so \(C(x) \) is a codeword of \(2^n \) bits.

- Decoding \(x_i \) from corrupted codeword \(w \approx C(x) \):
 1. pick random \(j \in \{0, 1\}^n \)
 2. query \(w \) at positions \(j \) and \(j \oplus e_i \)
 3. output \(w_j \oplus w_{j \oplus e_i} \)

- This works perfectly if there is no noise (\(w = C(x) \)):
 \[
 w_j \oplus w_{j \oplus e_i} = (j \cdot x) \oplus ((j \oplus e_i) \cdot x) = e_i \cdot x = x_i
 \]

- With \(\delta m \) errors, \(\Pr_j[w_j \neq C(x)_j] \leq \delta \)
 and \(\Pr_j[w_{j \oplus e_i} \neq C(x)_{j \oplus e_i}] \leq \delta \),
Example of 2-query LDC: Hadamard

- Define $C(x)_j = j \cdot x \mod 2$ for all $j \in \{0, 1\}^n$, so $C(x)$ is a codeword of 2^n bits

- Decoding x_i from corrupted codeword $w \approx C(x)$:
 1. pick random $j \in \{0, 1\}^n$
 2. query w at positions j and $j \oplus e_i$
 3. output $w_j \oplus w_{j \oplus e_i}$

- This works perfectly if there is no noise ($w = C(x)$):
 $$w_j \oplus w_{j \oplus e_i} = (j \cdot x) \oplus ((j \oplus e_i) \cdot x) = e_i \cdot x = x_i$$

- With δm errors, $\Pr_j[w_j \neq C(x)_j] \leq \delta$
 and $\Pr_j[w_{j \oplus e_i} \neq C(x)_{j \oplus e_i}] \leq \delta$,
 so $\Pr[\text{we correctly output } x_i] \geq 1 - 2\delta$
Exponential lower bound [KW03]

Given 2-query LDC $C: \{0, 1\}^n \rightarrow \{0, 1\}^m$.

Normal form for the classical decoder of x_i [KT00]: query random (j, k) in matching M_i, output $C(x)_j \oplus C(x)_k$.

Def superposition over $C(x)$:

$$|\phi_x⟩ = \frac{1}{\sqrt{m}} \sum_{j=1}^{m} (−1)^{C(x)_j} |j⟩$$

We can predict x_i from $|\phi_x⟩$: view M_i as a measurement with $m/2$ 2-dimensional projectors, $P_{jk} = |j⟩⟨j| + |k⟩⟨k|$.

Applying M_i to $|\phi_x⟩$ gives

$$\frac{1}{\sqrt{2}}((−1)^{C(x)_j} |j⟩ + (−1)^{C(x)_k} |k⟩)$$

for random $(j, k) \in M_i$.

Measurement in basis $\{|j⟩ ± |k⟩\}$ gives $C(x)_j \oplus C(x)_k$.

But that's the output of the classical decoder, so equals x_i!

$|\phi_x⟩$ has log m qubits, but predicts each of x_1, \ldots, x_n.

Random access code bound [Nayak'99]:

$$\log m \geq \Omega(n) \Rightarrow m \geq 2^{\Omega(n)}$$
Exponential lower bound [KW03]

- Given 2-query LDC $C : \{0, 1\}^n \rightarrow \{0, 1\}^m$.

|φ⟩ has $\log m$ qubits, but predicts each of x_1, \ldots, x_n.

Random access code bound [Nayak'99]:

$\log m \geq \Omega(n) \Rightarrow m \geq 2^{\Omega(n)}$.
Exponential lower bound [KW03]

- Given 2-query LDC $C : \{0, 1\}^n \rightarrow \{0, 1\}^m$.
 Normal form for the classical decoder of x_i [KT00]:
 query random (j, k) in matching M_i, output $C(x)_j \oplus C(x)_k$
Exponential lower bound [KW03]

- Given 2-query LDC $C : \{0, 1\}^n \rightarrow \{0, 1\}^m$.
- Normal form for the classical decoder of x_i [KT00]: query random (j, k) in matching M_i, output $C(x)_j \oplus C(x)_k$
- Def superposition over $C(x)$:
Exponential lower bound [KW03]

- Given 2-query LDC $C : \{0, 1\}^n \rightarrow \{0, 1\}^m$.
 Normal form for the classical decoder of x_i [KT00]:
 query random (j, k) in matching M_i, output $C(x)_j \oplus C(x)_k$

- Def superposition over $C(x)$:
 $|\phi_x\rangle = \frac{1}{\sqrt{m}} \sum_{j=1}^{m} (-1)^{C(x)_j} |j\rangle$

Random access code bound [Nayak'99]:

$\log m \geq \Omega(n) \Rightarrow m \geq 2^{\Omega(n)}$
Exponential lower bound [KW03]

- Given 2-query LDC \(C : \{0, 1\}^n \rightarrow \{0, 1\}^m \).
 Normal form for the classical decoder of \(x_i \) [KT00]:
 query random \((j, k)\) in matching \(M_i \), output \(C(x)_j \oplus C(x)_k \)
- Def superposition over \(C(x) \):
 \(|\phi_x\rangle = \frac{1}{\sqrt{m}} \sum_{j=1}^{m} (-1)^{C(x)_j} |j\rangle \)
- We can predict \(x_i \) from \(|\phi_x\rangle \)
Exponential lower bound [KW03]

- Given 2-query LDC $C : \{0, 1\}^n \rightarrow \{0, 1\}^m$. Normal form for the classical decoder of x_i [KT00]: query random (j, k) in matching M_i, output $C(x)_j \oplus C(x)_k$
- Define superposition over $C(x)$: $|\phi_x\rangle = \frac{1}{\sqrt{m}} \sum_{j=1}^{m} (-1)^{C(x)_j} |j\rangle$
- We can predict x_i from $|\phi_x\rangle$: view M_i as a measurement with $m/2$ 2-dimensional projectors, $P_{jk} = |j\rangle\langle j| + |k\rangle\langle k|$
Exponential lower bound [KW03]

- Given 2-query LDC $C : \{0, 1\}^n \rightarrow \{0, 1\}^m$.
 Normal form for the classical decoder of x_i [KT00]:
 query random (j, k) in matching M_i, output $C(x)_j \oplus C(x)_k$
- Def superposition over $C(x)$:
 $|\phi_x\rangle = \frac{1}{\sqrt{m}} \sum_{j=1}^{m} (-1)^{C(x)_j} |j\rangle$
- We can predict x_i from $|\phi_x\rangle$: view M_i as a measurement with
 $m/2$ 2-dimensional projectors, $P_{jk} = |j\rangle\langle j| + |k\rangle\langle k|$
- Applying M_i to $|\phi_x\rangle$ gives
Exponential lower bound [KW03]

- Given 2-query LDC \(C : \{0, 1\}^n \rightarrow \{0, 1\}^m \).
 Normal form for the classical decoder of \(x_i \) [KT00]:
 query random \((j, k)\) in matching \(M_i \), output \(C(x)_j \oplus C(x)_k \)
- Def superposition over \(C(x) \):
 \[
 |\phi_x\rangle = \frac{1}{\sqrt{m}} \sum_{j=1}^{m} (-1)^{C(x)_j} |j\rangle
 \]
- We can predict \(x_i \) from \(|\phi_x\rangle \): view \(M_i \) as a measurement with
 \(m/2 \) 2-dimensional projectors, \(P_{jk} = |j\rangle\langle j| + |k\rangle\langle k| \)
- Applying \(M_i \) to \(|\phi_x\rangle \) gives
 \[
 \frac{1}{\sqrt{2}} \left((-1)^{C(x)_j} |j\rangle + (-1)^{C(x)_k} |k\rangle \right)
 \]
 for random \((j, k) \in M_i \).
Exponential lower bound [KW03]

- Given 2-query LDC $C : \{0, 1\}^n \rightarrow \{0, 1\}^m$.

Normal form for the classical decoder of x_i [KT00]:
query random (j, k) in matching M_i, output $C(x)_j \oplus C(x)_k$

- Def superposition over $C(x)$: $|\phi_x\rangle = \frac{1}{\sqrt{m}} \sum_{j=1}^{m} (-1)^{C(x)_j} |j\rangle$

- We can predict x_i from $|\phi_x\rangle$: view M_i as a measurement with $m/2$ 2-dimensional projectors, $P_{jk} = |j\rangle\langle j| + |k\rangle\langle k|$

- Applying M_i to $|\phi_x\rangle$ gives

$$\frac{1}{\sqrt{2}} ((-1)^{C(x)_j} |j\rangle + (-1)^{C(x)_k} |k\rangle)$$

for random $(j, k) \in M_i$.

Measurement in basis $\{|j\rangle \pm |k\rangle\}$ gives $C(x)_j \oplus C(x)_k$.
Exponential lower bound [KW03]

- Given 2-query LDC $C : \{0, 1\}^n \rightarrow \{0, 1\}^m$.
 Normal form for the classical decoder of x_i [KT00]:
 query random (j, k) in matching M_i, output $C(x)_j \oplus C(x)_k$
- Def superposition over $C(x)$: $|\phi_x\rangle = \frac{1}{\sqrt{m}} \sum_{j=1}^{m} (-1)^{C(x)_j} |j\rangle$
- We can predict x_i from $|\phi_x\rangle$: view M_i as a measurement with $m/2$ 2-dimensional projectors, $P_{jk} = |j\rangle\langle j| + |k\rangle\langle k|$
- Applying M_i to $|\phi_x\rangle$ gives
 $\frac{1}{\sqrt{2}}((-1)^{C(x)_j} |j\rangle + (-1)^{C(x)_k} |k\rangle)$ for random $(j, k) \in M_i$.
 Measurement in basis $\{|j\rangle \pm |k\rangle\}$ gives $C(x)_j \oplus C(x)_k$.
 But that’s the output of the classical decoder, so equals x_i!
Exponential lower bound [KW03]

- Given 2-query LDC $C : \{0, 1\}^n \rightarrow \{0, 1\}^m$. Normal form for the classical decoder of x_i [KT00]: query random (j, k) in matching M_i, output $C(x)_j \oplus C(x)_k$
- Def superposition over $C(x)$: $|\phi_x\rangle = \frac{1}{\sqrt{m}} \sum_{j=1}^{m} (-1)^{C(x)_j} |j\rangle$
- We can predict x_i from $|\phi_x\rangle$: view M_i as a measurement with $m/2$ 2-dimensional projectors, $P_{jk} = |j\rangle\langle j| + |k\rangle\langle k|$
- Applying M_i to $|\phi_x\rangle$ gives
 $$\frac{1}{\sqrt{2}}((-1)^{C(x)_j} |j\rangle + (-1)^{C(x)_k} |k\rangle)$$
 for random $(j, k) \in M_i$.
 Measurement in basis $\{|j\rangle \pm |k\rangle\}$ gives $C(x)_j \oplus C(x)_k$.
 But that’s the output of the classical decoder, so equals x_i!
- $|\phi_x\rangle$ has log m qubits, but predicts each of x_1, \ldots, x_n
Exponential lower bound [KW03]

- Given 2-query LDC $C : \{0, 1\}^n \rightarrow \{0, 1\}^m$. Normal form for the classical decoder of x_i [KT00]: query random (j, k) in matching M_i, output $C(x)_j \oplus C(x)_k$
- Def superposition over $C(x)$: $|\phi_x\rangle = \frac{1}{\sqrt{m}} \sum_{j=1}^{m} (-1)^{C(x)_j} |j\rangle$
- We can predict x_i from $|\phi_x\rangle$: view M_i as a measurement with $m/2$ 2-dimensional projectors, $P_{jk} = |j\rangle\langle j| + |k\rangle\langle k|$
- Applying M_i to $|\phi_x\rangle$ gives
 \[
 \frac{1}{\sqrt{2}}((-1)^{C(x)_j} |j\rangle + (-1)^{C(x)_k} |k\rangle)
 \]
 for random $(j, k) \in M_i$. Measurement in basis $\{|j\rangle \pm |k\rangle\}$ gives $C(x)_j \oplus C(x)_k$.
 But that’s the output of the classical decoder, so equals x_i!
- $|\phi_x\rangle$ has log m qubits, but predicts each of x_1, \ldots, x_n
- Random access code bound [Nayak’99]:
 $\log m \geq \Omega(n)$
Exponential lower bound [KW03]

- Given 2-query LDC $C : \{0, 1\}^n \rightarrow \{0, 1\}^m$. Normal form for the classical decoder of x_i [KT00]: query random (j, k) in matching M_i, output $C(x)_j \oplus C(x)_k$
- Def superposition over $C(x)$: $|\phi_x\rangle = \frac{1}{\sqrt{m}} \sum_{j=1}^{m} (-1)^{C(x)_j} |j\rangle$
- We can predict x_i from $|\phi_x\rangle$: view M_i as a measurement with $m/2$ 2-dimensional projectors, $P_{jk} = |j\rangle\langle j| + |k\rangle\langle k|$
- Applying M_i to $|\phi_x\rangle$ gives $\frac{1}{\sqrt{2}}((-1)^{C(x)_j} |j\rangle + (-1)^{C(x)_k} |k\rangle)$ for random $(j, k) \in M_i$.
- Measurement in basis $\{|j\rangle \pm |k\rangle\}$ gives $C(x)_j \oplus C(x)_k$. But that’s the output of the classical decoder, so equals x_i!
- $|\phi_x\rangle$ has $\log m$ qubits, but predicts each of x_1, \ldots, x_n
- Random access code bound [Nayak’99]: $\log m \geq \Omega(n) \Rightarrow m \geq 2^{\Omega(n)}$
Example 2:

Lower bounds for linear programs
Background: solving NP by linear programs?

Famous P-problem: linear programming [Khachian’79]

Famous NP-hard problem: Traveling Salesman Problem

TSP polytope: convex hull of all Hamiltonian cycles on complete n-vertex graph. This is a polytope in $\mathbb{R}^{(n^2)}$.

TSP: minimize linear function over this polytope

Unfortunately, polytope needs exponentially many inequalities

Extended formulation: linear inequalities on $(n^2) + k$ variables s.t. projection on first (n^2) variables gives TSP polytope

Swart’86 claimed polynomial-size extended formulation, which would give polynomial-time LP-algorithm for TSP

Yannakakis’88: symmetric EFs for TSP are exponentially big

Swart’s LPs were symmetric, so they couldn’t work

FMPTW’12 show the same for all extended formulations
Background: solving NP by linear programs?

- Famous \textbf{P}-problem: linear programming [Khachian’79]
Background: solving NP by linear programs?

- Famous \mathbf{P}-problem: linear programming [Khachian’79]
- Famous \mathbf{NP}-hard problem: Traveling Salesman Problem
Background: solving NP by linear programs?

- Famous **P**-problem: linear programming [Khachian’79]
- Famous **NP**-hard problem: Traveling Salesman Problem
- **TSP polytope**: convex hull of all Hamiltonian cycles on complete n-vertex graph. This is a polytope in $\mathbb{R}^{\binom{n}{2}}$.
Background: solving NP by linear programs?

- Famous \mathbf{P}-problem: linear programming [Khachian’79]
- Famous \mathbf{NP}-hard problem: Traveling Salesman Problem
- **TSP polytope**: convex hull of all Hamiltonian cycles on complete n-vertex graph. This is a polytope in $\mathbb{R}^{\binom{n}{2}}$. TSP: minimize linear function over this polytope
Background: solving NP by linear programs?

- Famous \(\mathbf{P} \)-problem: \textit{linear programming} [Khachian’79]
- Famous \(\mathbf{NP} \)-hard problem: \textit{Traveling Salesman Problem}
- \textbf{TSP polytope}: convex hull of all Hamiltonian cycles on complete \(n \)-vertex graph. This is a polytope in \(\mathbb{R}^{\binom{n}{2}} \).
 - TSP: minimize linear function over this polytope
 - Unfortunately, polytope needs exponentially many inequalities

- Swart’86 claimed polynomial-size extended formulation, which would give polynomial-time LP-algorithm for TSP
- Yannakakis’88: symmetric EFs for TSP are exponentially big
- Swart’s LPs were symmetric, so they couldn’t work
- FMPTW’12 show the same for all extended formulations
Background: solving NP by linear programs?

- Famous P-problem: linear programming [Khachian’79]
- Famous NP-hard problem: Traveling Salesman Problem
- TSP polytope: convex hull of all Hamiltonian cycles on complete \(n \)-vertex graph. This is a polytope in \(\mathbb{R}^{\binom{n}{2}} \).

 TSP: minimize linear function over this polytope
 Unfortunately, polytope needs exponentially many inequalities
- Extended formulation: linear inequalities on \(\binom{n}{2} + k \) variables
 s.t. projection on first \(\binom{n}{2} \) variables gives TSP polytope
Background: solving NP by linear programs?

- Famous \mathbf{P}-problem: linear programming [Khachian’79]
- Famous \mathbf{NP}-hard problem: Traveling Salesman Problem
- TSP polytope: convex hull of all Hamiltonian cycles on complete n-vertex graph. This is a polytope in $\mathbb{R}^{\binom{n}{2}}$.
 TSP: minimize linear function over this polytope
 Unfortunately, polytope needs exponentially many inequalities
- Extended formulation: linear inequalities on $\binom{n}{2} + k$ variables
 s.t. projection on first $\binom{n}{2}$ variables gives TSP polytope
- Swart’86 claimed polynomial-size extended formulation, which would give polynomial-time LP-algorithm for TSP
Background: solving NP by linear programs?

- Famous **P**-problem: **linear programming** [Khachian’79]
- Famous **NP**-hard problem: **Traveling Salesman Problem**
- **TSP polytope**: convex hull of all Hamiltonian cycles on complete \(n \)-vertex graph. This is a polytope in \(\mathbb{R}^{\binom{n}{2}} \).
 TSP: minimize linear function over this polytope
 Unfortunately, polytope needs exponentially many inequalities
- **Extended formulation**: linear inequalities on \(\binom{n}{2} + k \) variables s.t. projection on first \(\binom{n}{2} \) variables gives TSP polytope
- Swart’86 claimed polynomial-size extended formulation, which would give polynomial-time LP-algorithm for TSP
- Yannakakis’88: **symmetric** EFs for TSP are exponentially big
Background: solving NP by linear programs?

- Famous **P**-problem: linear programming [Khachian’79]
- Famous **NP**-hard problem: Traveling Salesman Problem
- **TSP polytope**: convex hull of all Hamiltonian cycles on complete n-vertex graph. This is a polytope in $\mathbb{R}^{\binom{n}{2}}$. TSP: minimize linear function over this polytope.
 Unfortunately, polytope needs exponentially many inequalities.
- **Extended formulation**: linear inequalities on $\binom{n}{2} + k$ variables s.t. projection on first $\binom{n}{2}$ variables gives TSP polytope.
- Swart’86 claimed polynomial-size extended formulation, which would give polynomial-time LP-algorithm for TSP.
- Yannakakis’88: symmetric EFs for TSP are exponentially big.
- Swart’s LPs were symmetric, so they couldn’t work.
Background: solving NP by linear programs?

- Famous \textbf{P}-problem: \textit{linear programming} [Khachian’79]
- Famous \textbf{NP}-hard problem: \textit{Traveling Salesman Problem}
- \textbf{TSP polytope}: convex hull of all Hamiltonian cycles on complete \(n\)-vertex graph. This is a polytope in \(\mathbb{R}^{\binom{n}{2}}\).

 TSP: minimize linear function over this polytope

 Unfortunately, polytope needs exponentially many inequalities

- \textbf{Extended formulation}: linear inequalities on \(\binom{n}{2} + k\) variables
 s.t. projection on first \(\binom{n}{2}\) variables gives TSP polytope

 Swart’86 claimed polynomial-size extended formulation, which would give polynomial-time LP-algorithm for TSP

 Yannakakis’88: \textit{symmetric} EFs for TSP are exponentially big

 Swart’s LPs were symmetric, so they couldn’t work

 FMPTW’12 show the same for all extended formulations
Quantum vs classical communication complexity

Alice gets input $a \in \{0, 1\}^k$, Bob gets input $b \in \{0, 1\}^k$, they need to compute $f : \{0, 1\}^k \times \{0, 1\}^k \rightarrow \{0, 1\}$ with minimal communication.

Nondeterministic communication complexity: protocol outputs 1 with positive probability on input a, b iff $f(a, b) = 1$.

W'00: exponential separation between quantum and classical nondeterministic protocols for support of the following $2^k \times 2^k$ matrix:

$$M_{ab} = (1 - a^T b)^2$$

Classical protocols need $\Omega(k)$ bits of communication for this.

\exists protocol for this using $O(\log k)$ qubits of communication.
Quantum vs classical communication complexity

- **Communication complexity**: Alice gets input $a \in \{0, 1\}^k$, Bob gets input $b \in \{0, 1\}^k$, they need to compute $f : \{0, 1\}^k \times \{0, 1\}^k \to \{0, 1\}$ with minimal communication.
Quantum vs classical communication complexity

- **Communication complexity:** Alice gets input $a \in \{0, 1\}^k$, Bob gets input $b \in \{0, 1\}^k$, they need to compute $f : \{0, 1\}^k \times \{0, 1\}^k \to \{0, 1\}$ with minimal communication

- **Nondeterministic communication complexity:** protocol outputs 1 with positive probability on input a, b iff $f(a, b) = 1$
Quantum vs classical communication complexity

- **Communication complexity:** Alice gets input $a \in \{0, 1\}^k$, Bob gets input $b \in \{0, 1\}^k$, they need to compute $f : \{0, 1\}^k \times \{0, 1\}^k \rightarrow \{0, 1\}$ with minimal communication.

- **Nondeterministic communication complexity:** protocol outputs 1 with positive probability on input a, b iff $f(a, b) = 1$.

- **W’00:** exponential separation between quantum and classical nondeterministic protocols for support of the following $2^k \times 2^k$ matrix: $M_{ab} = (1 - a^T b)^2$.
Quantum vs classical communication complexity

Communication complexity: Alice gets input $a \in \{0, 1\}^k$, Bob gets input $b \in \{0, 1\}^k$, they need to compute $f : \{0, 1\}^k \times \{0, 1\}^k \rightarrow \{0, 1\}$ with minimal communication

Nondeterministic communication complexity: protocol outputs 1 with positive probability on input a, b iff $f(a, b) = 1$

W’00: exponential separation between quantum and classical nondeterministic protocols for support of the following $2^k \times 2^k$ matrix: $M_{ab} = (1 - a^T b)^2$

Classical protocols need $\Omega(k)$ bits of communication for this
Quantum vs classical communication complexity

- **Communication complexity**: Alice gets input $a \in \{0, 1\}^k$, Bob gets input $b \in \{0, 1\}^k$, they need to compute $f : \{0, 1\}^k \times \{0, 1\}^k \to \{0, 1\}$ with minimal communication.

- **Nondeterministic communication complexity**: protocol outputs 1 with positive probability on input a, b iff $f(a, b) = 1$.

- **W’00**: exponential separation between quantum and classical nondeterministic protocols for support of the following $2^k \times 2^k$ matrix: $M_{ab} = (1 - a^T b)^2$.

- Classical protocols need $\Omega(k)$ bits of communication for this.

- \exists protocol for this using $O(\log k)$ qubits of communication.
Lower bound for correlation polytope
Lower bound for correlation polytope

- Correlation polytope: \(\text{COR}(k) = \text{conv}\{ bb^T \mid b \in \{0, 1\}^k \} \)

- For each \(a \in \{0, 1\}^k \), the following constraint holds:
 \[\forall x \in \text{COR}(k): \text{Tr}[(2\text{diag}(a) - aa^T)x] \leq 1 \]

- Slack of this constraint w.r.t. vertex \(bb^T \in \text{COR}(k) \):
 \[S_{ab} = 1 - \text{Tr}[(2\text{diag}(a) - aa^T)bb^T] = (1 - a^Tb)^2 = M_{ab} \]

- Take slack matrix \(S \) for \(\text{COR} \), with \(2^k \) vertices \(bb^T \) for columns, \(2^k a \)-constraints for first \(2^k \) rows, remaining inequalities for other rows

- \(xc(\text{COR}(k)) \geq \exp(\text{nondetermin c.c. of } S) \geq 2^{\Omega(k)} \)
Lower bound for correlation polytope

- Correlation polytope: \(\text{COR}(k) = \text{conv}\{bb^T \mid b \in \{0, 1\}^k\} \)
- For each \(a \in \{0, 1\}^k \), the following constraint hold:

\[
\forall x \in \text{COR}(k) : \text{Tr}\left[(2\text{diag}(a) - aa^T)x \right] \leq 1
\]
Lower bound for correlation polytope

- Correlation polytope: $\text{COR}(k) = \text{conv}\{ bb^T \mid b \in \{0, 1\}^k \}$
- For each $a \in \{0, 1\}^k$, the following constraint hold:

\[
\forall x \in \text{COR}(k) : \text{Tr} \left[(2\text{diag}(a) - aa^T)x \right] \leq 1
\]

Slack of this constraint w.r.t. vertex $bb^T \in \text{COR}(k)$:
Lower bound for correlation polytope

- Correlation polytope: $\text{COR}(k) = \text{conv}\{bb^T \mid b \in \{0, 1\}^k\}$
- For each $a \in \{0, 1\}^k$, the following constraint holds:

 \[\forall x \in \text{COR}(k) : \text{Tr} \left[(2\text{diag}(a) - aa^T)x \right] \leq 1 \]

 Slack of this constraint w.r.t. vertex $bb^T \in \text{COR}(k)$:

 \[S_{ab} = 1 - \text{Tr} \left[(2\text{diag}(a) - aa^T)bb^T \right] \]
Lower bound for correlation polytope

- Correlation polytope: \(\text{COR}(k) = \text{conv}\{bb^T \mid b \in \{0, 1\}^k\} \)
- For each \(a \in \{0, 1\}^k \), the following constraint hold:

\[
\forall x \in \text{COR}(k) : \text{Tr} \left[(2\text{diag}(a) - aa^T)x \right] \leq 1
\]

Slack of this constraint w.r.t. vertex \(bb^T \in \text{COR}(k) \):
\[
S_{ab} = 1 - \text{Tr} \left[(2\text{diag}(a) - aa^T)bb^T \right] = (1 - a^T b)^2
\]
Lower bound for correlation polytope

- Correlation polytope: COR(k) = conv\{ bb^T | $b \in \{0, 1\}^k$ \}
- For each $a \in \{0, 1\}^k$, the following constraint hold:

$$\forall x \in \text{COR}(k) : \text{Tr} \left[(2\text{diag}(a) - aa^T)x \right] \leq 1$$

Slack of this constraint w.r.t. vertex $bb^T \in \text{COR}(k)$:

$$S_{ab} = 1 - \text{Tr} \left[(2\text{diag}(a) - aa^T)bb^T \right] = (1 - a^Tb)^2 = M_{ab}$$
Lower bound for correlation polytope

- Correlation polytope: \(\text{COR}(k) = \text{conv}\{bb^T \mid b \in \{0, 1\}^k\} \)

- For each \(a \in \{0, 1\}^k \), the following constraint hold:
 \[
 \forall x \in \text{COR}(k) : \text{Tr} \left[(2\text{diag}(a) - aa^T)x \right] \leq 1
 \]

 Slack of this constraint w.r.t. vertex \(bb^T \in \text{COR}(k) \):
 \[
 S_{ab} = 1 - \text{Tr} \left[(2\text{diag}(a) - aa^T)bb^T \right] = (1 - a^T b)^2 = M_{ab}
 \]

- Take slack matrix \(S \) for COR, with \(2^k \) vertices \(bb^T \) for columns, \(2^k \) \(a \)-constraints for first \(2^k \) rows, remaining inequalities for other rows
 \[
 S = \begin{bmatrix}
 \vdots & \cdots & M_{ab} & \cdots \\
 \vdots & \ddots & \vdots & \ddots \\
 \vdots & & \ddots & \ddots \\
 \vdots & & & \ddots & \ddots \\
 \end{bmatrix}
 \]
Lower bound for correlation polytope

- Correlation polytope: \(\text{COR}(k) = \text{conv}\{bb^T \mid b \in \{0, 1\}^k\} \)
- For each \(a \in \{0, 1\}^k \), the following constraint hold:
 \[
 \forall x \in \text{COR}(k): \quad \text{Tr} \left[(2\text{diag}(a) - aa^T)x \right] \leq 1
 \]

Slack of this constraint w.r.t. vertex \(bb^T \in \text{COR}(k) \):
\[
S_{ab} = 1 - \text{Tr} \left[(2\text{diag}(a) - aa^T)bb^T \right] = (1 - a^T b)^2 = M_{ab}
\]

- Take slack matrix \(S \) for \(\text{COR} \),
 with \(2^k \) vertices \(bb^T \) for columns,
 \(2^k \) \(a \)-constraints for first \(2^k \) rows,
 remaining inequalities for other rows

\[
S = \begin{bmatrix} \vdots & M_{ab} & \vdots \\ \vdots \\ \vdots \\ \vdots \end{bmatrix}
\]

- \(xc(\text{COR}(k)) \)
Lower bound for correlation polytope

- Correlation polytope: \(\text{COR}(k) = \text{conv}\{bb^T \mid b \in \{0, 1\}^k\} \)

- For each \(a \in \{0, 1\}^k \), the following constraint hold:
 \[
 \forall x \in \text{COR}(k) : \text{Tr}\left[(2\text{diag}(a) - aa^T)x\right] \leq 1
 \]

 Slack of this constraint w.r.t. vertex \(bb^T \in \text{COR}(k)\):
 \(S_{ab} = 1 - \text{Tr}\left[(2\text{diag}(a) - aa^T)bb^T\right] = (1 - a^T b)^2 = M_{ab} \)

- Take slack matrix \(S \) for \(\text{COR} \),
 with \(2^k \) vertices \(bb^T \) for columns,
 \(2^k \) \(a \)-constraints for first \(2^k \) rows,
 remaining inequalities for other rows

- \(xc(\text{COR}(k)) \geq \exp(\text{nondetermin c.c. of } S) \)
Lower bound for correlation polytope

- Correlation polytope: \(\text{COR}(k) = \text{conv}\{bb^T \mid b \in \{0, 1\}^k\} \)
- For each \(a \in \{0, 1\}^k \), the following constraint hold:

\[
\forall x \in \text{COR}(k) : \text{Tr} \left[(2\text{diag}(a) - aa^T)x\right] \leq 1
\]

Slack of this constraint w.r.t. vertex \(bb^T \in \text{COR}(k) \):
\[
S_{ab} = 1 - \text{Tr} \left[(2\text{diag}(a) - aa^T)bb^T\right] = (1 - a^T b)^2 = M_{ab}
\]
- Take slack matrix \(S \) for \(\text{COR} \), with \(2^k \) vertices \(bb^T \) for columns, \(2^k \) \(a \)-constraints for first \(2^k \) rows, remaining inequalities for other rows

\[
S = \begin{bmatrix}
\vdots & & \\
\cdots & M_{ab} & \\
\vdots & & \\
\end{bmatrix}
\]

- \(xc(\text{COR}(k)) \geq \exp(\text{nondeterminer c.c. of } S) \geq 2^{\Omega(k)} \)
Consequences

We just showed that linear programs for optimizing over the correlation polytope need to be exponentially large. This implies exponential lower bounds for TSP and other polytopes for NP-hard problems. This refutes all P = NP "proofs" à la Swart.

Did we really need quantum for this proof? No, we just needed to find the right matrix M and a classical nondeterministic communication lower bound. But the reason we found the right M is the earlier result about quantum communication complexity.

Wittgenstein: throw away the ladder after you climbed it.
Consequences

- We just showed that linear programs for optimizing over the correlation polytope need to be exponentially large.
Consequences

▶ We just showed that linear programs for optimizing over the correlation polytope need to be exponentially large
▶ This implies exponential lower bounds for TSP and other polytopes for NP-hard problems
Consequences

- We just showed that linear programs for optimizing over the correlation polytope need to be exponentially large.
- This implies exponential lower bounds for TSP and other polytopes for NP-hard problems.
- This refutes all P = NP “proofs” à la Swart.
Consequences

- We just showed that linear programs for optimizing over the correlation polytope need to be exponentially large.
- This implies exponential lower bounds for TSP and other polytopes for NP-hard problems.
- This refutes all P = NP “proofs” à la Swart.
- Did we really need quantum for this proof?
Consequences

- We just showed that linear programs for optimizing over the correlation polytope need to be exponentially large.
- This implies exponential lower bounds for TSP and other polytopes for NP-hard problems.
- This refutes all P = NP “proofs” à la Swart.
- Did we really need quantum for this proof?
- No, we just needed to find the right matrix M and a classical nondeterministic communication lower bound.
Consequences

- We just showed that linear programs for optimizing over the correlation polytope need to be exponentially large.
- This implies exponential lower bounds for TSP and other polytopes for NP-hard problems.
- This refutes all P = NP “proofs” à la Swart.
- Did we really need quantum for this proof?
- No, we just needed to find the right matrix M and a classical nondeterministic communication lower bound.
- But the reason we found the right M is the earlier result about quantum communication complexity.
Consequences

- We just showed that linear programs for optimizing over the correlation polytope need to be exponentially large.
- This implies exponential lower bounds for TSP and other polytopes for NP-hard problems.
- This refutes all P = NP “proofs” à la Swart.
- Did we really need quantum for this proof?
- No, we just needed to find the right matrix M and a classical nondeterministic communication lower bound.
- But the reason we found the right M is the earlier result about quantum communication complexity.
- Wittgenstein: throw away the ladder after you climbed it.
From quantum algorithms to polynomials

"Polynomial method": efficient quantum algorithms \Rightarrow low-degree polynomials

Usual application: lower bounds on degree \Rightarrow lower bounds on quantum complexity

But you can also use this method as a tool to construct low-degree polynomials with nice properties.

Examples:

- minimal-degree polynomial approximations to functions $f: \{0, \ldots, n\} \rightarrow \mathbb{R}$ [W08]
- quantum proof of Jackson's theorem [DW11]
From quantum algorithms to polynomials

- “Polynomial method”: efficient quantum algorithms \Rightarrow low-degree polynomials

Examples:
- Minimal-degree polynomial approximations to functions $f : \{0, \ldots, n\} \rightarrow \mathbb{R}$ [W08]
- Quantum proof of Jackson's theorem [DW11]
From quantum algorithms to polynomials

- “Polynomial method”:
 efficient quantum algorithms \Rightarrow low-degree polynomials

- Usual application: lower bounds on degree
 \Rightarrow lower bounds on quantum complexity
From quantum algorithms to polynomials

- "Polynomial method":
 efficient quantum algorithms \Rightarrow low-degree polynomials

- Usual application: lower bounds on degree
 \Rightarrow lower bounds on quantum complexity

- But you can also use this method as a tool to construct low-degree polynomials with nice properties
From quantum algorithms to polynomials

- “Polynomial method”: efficient quantum algorithms \Rightarrow low-degree polynomials

- Usual application: lower bounds on degree \Rightarrow lower bounds on quantum complexity

- But you can also use this method as a tool to construct low-degree polynomials with nice properties.

Examples:

- minimal-degree polynomial approximations to functions $f : \{0, \ldots, n\} \to \mathbb{R}$ [W08]

quantum proof of Jackson's theorem [DW11]
From quantum algorithms to polynomials

- “Polynomial method”: efficient quantum algorithms \Rightarrow low-degree polynomials

- Usual application: lower bounds on degree \Rightarrow lower bounds on quantum complexity

- But you can also use this method as a tool to construct low-degree polynomials with nice properties.

Examples:

- minimal-degree polynomial approximations to functions $f : \{0, \ldots, n\} \rightarrow \mathbb{R}$ [W08]

- quantum proof of Jackson’s theorem [DW11]
Other examples of quantum proofs

▶ Other uses of quantum information, often based on quantum encodings of classical data
▶ Classical lower bound methods inspired by quantum methods
▶ Aaronson: quantum reproofs of classical complexity results
▶ PP is closed under intersection [uses postselection]
▶ Permanent is #P-hard [uses linear optics]
▶ Results in functional analysis, other areas of math
Other examples of quantum proofs

- Other uses of quantum information, often based on quantum encodings of classical data
Other examples of quantum proofs

- Other uses of quantum information, often based on quantum encodings of classical data
- Classical lower bound methods inspired by quantum methods
Other examples of quantum proofs

- Other uses of quantum information, often based on quantum encodings of classical data
- Classical lower bound methods inspired by quantum methods
- Aaronson: quantum reproofs of classical complexity results
Other examples of quantum proofs

- Other uses of quantum information, often based on quantum encodings of classical data
- Classical lower bound methods inspired by quantum methods
- Aaronson: quantum reproofs of classical complexity results
 - PP is closed under intersection [uses postselection]
Other examples of quantum proofs

- Other uses of quantum information, often based on quantum encodings of classical data
- Classical lower bound methods inspired by quantum methods
- Aaronson: quantum reproofs of classical complexity results
 - PP is closed under intersection [uses postselection]
 - Permanent is $\#P$-hard [uses linear optics]
Other examples of quantum proofs

- Other uses of quantum information, often based on quantum encodings of classical data
- Classical lower bound methods inspired by quantum methods
- Aaronson: quantum reproofs of classical complexity results
 - PP is closed under intersection [uses postselection]
 - Permanent is \#P-hard [uses linear optics]
- Results in functional analysis, other areas of math
Summary & Outlook

Quantum proofs for classical theorems
- Lower bounds for LDCs, linear programs, ...
- Currently this is more like a "bag of tricks" than a fully-developed "quantum method" (but you could say the same about probabilistic method)
- Where can we find more applications?

- Low-degree polynomials
- Encoding-based lower bounds
- Places where linear algebra and combinatorics meet

Good to have quantum techniques in your tool-box!
Quantum proofs for classical theorems
Summary & Outlook

- Quantum proofs for classical theorems
 Lower bounds for LDCs, linear programs, ...
Summary & Outlook

- Quantum proofs for classical theorems
 Lower bounds for LDCs, linear programs, ...

- Currently this is more like a “bag of tricks”
 than a fully-developed “quantum method”
Summary & Outlook

- Quantum proofs for classical theorems
 Lower bounds for LDCs, linear programs, …

- Currently this is more like a “bag of tricks” than a fully-developed “quantum method” (but you could say the same about probabilistic method)
Quantum proofs for classical theorems
Lower bounds for LDCs, linear programs, . . .

Currently this is more like a “bag of tricks” than a fully-developed “quantum method” (but you could say the same about probabilistic method)

Where can we find more applications?
Summary & Outlook

- Quantum proofs for classical theorems
 Lower bounds for LDCs, linear programs, . . .

- Currently this is more like a “bag of tricks” than a fully-developed “quantum method” (but you could say the same about probabilistic method)

- Where can we find more applications?
 - Low-degree polynomials
Summary & Outlook

- Quantum proofs for classical theorems
 Lower bounds for LDCs, linear programs, ...

- Currently this is more like a “bag of tricks” than a fully-developed “quantum method” (but you could say the same about probabilistic method)

- Where can we find more applications?
 - Low-degree polynomials
 - Encoding-based lower bounds
Summary & Outlook

- Quantum proofs for classical theorems
 Lower bounds for LDCs, linear programs, ...

- Currently this is more like a “bag of tricks” than a fully-developed “quantum method” (but you could say the same about probabilistic method)

- Where can we find more applications?
 - Low-degree polynomials
 - Encoding-based lower bounds
 - Places where linear algebra and combinatorics meet
Summary & Outlook

- Quantum proofs for classical theorems
 Lower bounds for LDCs, linear programs, ...

- Currently this is more like a “bag of tricks” than a fully-developed “quantum method” (but you could say the same about probabilistic method)

- Where can we find more applications?
 - Low-degree polynomials
 - Encoding-based lower bounds
 - Places where linear algebra and combinatorics meet
 - ...
Summary & Outlook

- Quantum proofs for classical theorems
 Lower bounds for LDCs, linear programs, ...

- Currently this is more like a “bag of tricks” than a fully-developed “quantum method” (but you could say the same about probabilistic method)

- Where can we find more applications?
 - Low-degree polynomials
 - Encoding-based lower bounds
 - Places where linear algebra and combinatorics meet
 - ...

- Good to have quantum techniques in your tool-box!