Quantum Proofs
for Classical Theorems

X

X}

W Ronald de Wolf k3
'UNIVERSITEIT VAN AMSTERDAM

Oxford, October 24, 2014

Unexpected proofs: Complex numbers

Unexpected proofs: Complex numbers

How to prove the following identity about real numbers

cos(x + y) = cos(x) cos(y) — sin(x) sin(y) ?

Unexpected proofs: Complex numbers

How to prove the following identity about real numbers
cos(x + y) = cos(x) cos(y) — sin(x)sin(y) ?
Go to complex numbers!

e = cos(x) + isin(x)

Unexpected proofs: Complex numbers

How to prove the following identity about real numbers
cos(x + y) = cos(x) cos(y) — sin(x)sin(y) ?
Go to complex numbers!

e = cos(x) + isin(x)

cos(x + y)

Unexpected proofs: Complex numbers

How to prove the following identity about real numbers
cos(x + y) = cos(x) cos(y) — sin(x)sin(y) ?
Go to complex numbers!

e = cos(x) + isin(x)

cos(x +y) = R(eH))

Unexpected proofs: Complex numbers

How to prove the following identity about real numbers
cos(x + y) = cos(x) cos(y) — sin(x)sin(y) ?
Go to complex numbers!

e = cos(x) + isin(x)

cos(x + y) = R(e'xH¥)) = R(eXe?)

Unexpected proofs: Complex numbers

How to prove the following identity about real numbers
cos(x + y) = cos(x) cos(y) — sin(x)sin(y) ?
Go to complex numbers!

e = cos(x) + isin(x)

cos(x + y) = R(e'xH¥)) = R(eXe?)

= R(cos(x) cos(y) — sin(x) sin(y)+
i cos(x)sin(y) + isin(x) cos(y))

Unexpected proofs: Complex numbers

How to prove the following identity about real numbers
cos(x + y) = cos(x) cos(y) — sin(x)sin(y) ?
Go to complex numbers!

e = cos(x) + isin(x)

cos(x + y) = R(e'xH¥)) = R(eXe?)

= R(cos(x) cos(y) — sin(x) sin(y)+
i cos(x)sin(y) + isin(x) cos(y))

= cos(x) cos(y) — sin(x)sin(y)

Unexpected proofs: Probabilities

Unexpected proofs: Probabilities

Probabilistic method (Erdés, Alon & Spencer)

Unexpected proofs: Probabilities

Probabilistic method (Erdés, Alon & Spencer)

Theorem: Every graph (V, E) with m edges contains a bipartite
subgraph with m/2 edges

Unexpected proofs: Probabilities

Probabilistic method (Erdés, Alon & Spencer)
Theorem: Every graph (V, E) with m edges contains a bipartite
subgraph with m/2 edges

Proof:
1. Pick vertex-set T C V at random

Unexpected proofs: Probabilities

Probabilistic method (Erdés, Alon & Spencer)

Theorem: Every graph (V, E) with m edges contains a bipartite
subgraph with m/2 edges

Proof:
1. Pick vertex-set T C V at random
1 if edge (i,j) “crosses” (between T and T)

2. Set Xjj = { 0 otherwise

Unexpected proofs: Probabilities

Probabilistic method (Erdés, Alon & Spencer)

Theorem: Every graph (V, E) with m edges contains a bipartite
subgraph with m/2 edges

Proof:
1. Pick vertex-set T C V at random
1 if edge (i,j) “crosses” (between T and T)

2. Set Xjj = { 0 otherwise

3. E[X;]

Unexpected proofs: Probabilities

Probabilistic method (Erdés, Alon & Spencer)

Theorem: Every graph (V, E) with m edges contains a bipartite
subgraph with m/2 edges

Proof:
1. Pick vertex-set T C V at random
1 if edge (i,j) “crosses” (between T and T)

2. Set Xjj = { 0 otherwise

3. E[Xj] = Pr[edge (i,) crosses|

Unexpected proofs: Probabilities

Probabilistic method (Erdés, Alon & Spencer)

Theorem: Every graph (V, E) with m edges contains a bipartite
subgraph with m/2 edges

Proof:
1. Pick vertex-set T C V at random
1 if edge (i,j) “crosses” (between T and T)

2. Set Xjj = { 0 otherwise

3. E[Xj] = Pr[edge (i,) crosses] = 1/2

Unexpected proofs: Probabilities

Probabilistic method (Erdés, Alon & Spencer)
Theorem: Every graph (V, E) with m edges contains a bipartite
subgraph with m/2 edges

Proof:
1. Pick vertex-set T C V at random

2. Set X; = 1 if edge _(/,J) crosses” (between T and T)
0 otherwise
3. E[Xjj] = Prledge (i,/) crosses] = 1/2

o

. Expected number of crossing edges:

E|) X

(ij)eE

Unexpected proofs: Probabilities

Probabilistic method (Erdés, Alon & Spencer)
Theorem: Every graph (V, E) with m edges contains a bipartite
subgraph with m/2 edges

Proof:
1. Pick vertex-set T C V at random

2. Set X; = 1 if edge _(/,j) crosses” (between T and T)
0 otherwise
3. E[Xj] = Prledge (i,) crosses] = 1/2

o

. Expected number of crossing edges:

E| DY Xi| = > EXj]

(ij)eE (ij)eEE

Unexpected proofs: Probabilities

Probabilistic method (Erdés, Alon & Spencer)

Theorem: Every graph (V, E) with m edges contains a bipartite
subgraph with m/2 edges

Proof:
1. Pick vertex-set T C V at random

2. Set X; = 1 if edge _(/,j) crosses” (between T and T)
0 otherwise
3. E[Xj] = Prledge (i,) crosses] = 1/2

>

Expected number of crossing edges:

E Zx,-j :ZE[XU]_Zf

(ij)eE (ij)eEE (ij)eEE

Unexpected proofs: Probabilities

Probabilistic method (Erdés, Alon & Spencer)
Theorem: Every graph (V, E) with m edges contains a bipartite
subgraph with m/2 edges

Proof:
1. Pick vertex-set T C V at random

2. Set X; = 1 if edge _(/,j) crosses” (between T and T)
0 otherwise
3. E[Xj] = Prledge (i,) crosses] = 1/2

o

. Expected number of crossing edges:
1

E| D Xj| =D, EXjl=) 5=m/2

(iJ)eE (iJ)eE (iJ)eE

Unexpected proofs: Probabilities

Probabilistic method (Erdés, Alon & Spencer)

Theorem: Every graph (V, E) with m edges contains a bipartite
subgraph with m/2 edges
Proof:

1. Pick vertex-set T C V at random

1 if edge (i,j) “crosses” (between T and T)
0 otherwise

3. E[Xj] = Pr[edge (i,) crosses] = 1/2

4. Expected number of crossing edges:

E| DY Xl = > EXl= > %:m/Q

(iJ)eE (ij)eEE (ij)eEE
5. But then there is a T with at least m/2 crossing edges!

2. Set X,'J':{

Unexpected proofs: Information theory

Unexpected proofs: Information theory

d
» How much is Z (n)
i

i=0

Unexpected proofs: Information theory

d
» How much is Z (n) for d < n/27?
i

i=0

Unexpected proofs: Information theory

d
n
H hi for d < n/27?
» How muc IS;(/)' ord<n/
» At most 2"(9/7) where H(-) is binary entropy function

Unexpected proofs: Information theory

d
n
H hi for d < n/27?
» How muc IS;(/)' ord<n/
» At most 2"(9/7) where H(-) is binary entropy function

» Information-theoretic proof:

Unexpected proofs: Information theory

d
n
H hi for d < n/27?
» How muc IS;(/)' ord<n/
» At most 2"(9/7) where H(-) is binary entropy function

» Information-theoretic proof:

1. Def S ={x € {0,1}": |x| < d}

Unexpected proofs: Information theory

d
n
H hi for d < n/27?
» How muc IS;(/)' ord<n/
» At most 2"(9/7) where H(-) is binary entropy function

» Information-theoretic proof:

1. Def S = {x € {0,1}" : |x| < d}, then |S| = 0 ()

i

Unexpected proofs: Information theory

d
n
H hi for d < n/27?
» How muc IS;(/)' ord<n/
» At most 2"(9/7) where H(-) is binary entropy function

» Information-theoretic proof:

1. Def S = {x € {0,1}" : |x| < d}, then |S| = 0 ()

i

2. Let X = X;...X, be uniformly random element of S

Unexpected proofs: Information theory

d
n
H hi for d < n/27?
» How muc IS;(/)' ord<n/
» At most 2"(9/7) where H(-) is binary entropy function

» Information-theoretic proof:

1. Def S = {x € {0,1}" : |x| < d}, then |S| = 0 ()

2. Let X = X;...X, be uniformly random element of S
3. Then Pr[X; =1] <d/n

Unexpected proofs: Information theory

d
n
H hi for d < n/27?
» How muc IS;(/)' ord<n/
» At most 2"(9/7) where H(-) is binary entropy function

» Information-theoretic proof:

1. Def S = {x € {0,1}" : |x| < d}, then |S| = 0 ()

2. Let X = X;...X, be uniformly random element of S
3. Then Pr[X; =1] < d/n, so H(X;) < H(d/n)

Unexpected proofs: Information theory

d
n
H hi for d < n/27?
» How muc IS;(/)' ord<n/
» At most 2"(9/7) where H(-) is binary entropy function

» Information-theoretic proof:

1. Def S = {x € {0,1}" : |x| < d}, then |S| = 0 ()
2. Let X = X;...X, be uniformly random element of S
3. Then Pr[X; =1] < d/n, so H(X;) < H(d/n)
4

. log|S|

Unexpected proofs: Information theory

d
n
H hi for d < n/27?
» How muc IS;(/)' ord<n/
» At most 2"(9/7) where H(-) is binary entropy function

» Information-theoretic proof:

Def S = {x € {0,1}" : |x| < d}, then [S| = 37/ (7)

Let X = X; ... X, be uniformly random element of S
. Then Pr[X; =1] < d/n, so H(X;) < H(d/n)

> e h o=

log S| = H(X)

Unexpected proofs: Information theory

d
n
H hi for d < n/27?
» How muc IS;(/)' ord<n/
» At most 2"(9/7) where H(-) is binary entropy function

» Information-theoretic proof:

Def S = {x € {0,1}" : |x| < d}, then [S| = 37/ (7)

Let X = X; ... X, be uniformly random element of S
. Then Pr[X; =1] < d/n, so H(X;) < H(d/n)

log |S| = H(X) < Z H(X;)

> e h o=

Unexpected proofs: Information theory

d
n
H hi for d < n/27?
» How muc IS;(/)' ord<n/
» At most 2"(9/7) where H(-) is binary entropy function

» Information-theoretic proof:

Def S = {x € {0,1}" : |x| < d}, then [S| = 37/ (7)
Let X = X; ... X, be uniformly random element of S
. Then Pr[X; =1] < d/n, so H(X;) < H(d/n)

log|S| = H(X) < Z H(X;) < nH(d/n)

> e h o=

Unexpected proofs: Information theory

d
n
H hi for d < n/27?
» How muc IS;(/)' ord<n/
» At most 2"(9/7) where H(-) is binary entropy function

» Information-theoretic proof:

1. Def S = {x € {0,1}" : |x| < d}, then |S| = 3" o ()
2. Let X = X;...X, be uniformly random element of S
3. Then Pr[X; =1] < d/n, so H(X;) < H(d/n)

4. log|S|=H <ZH) < nH(d/n)

5. Exponentiating both S|des finishes the proof

But that's just counting!

But that's just counting!

» Probabilistic arguments and information theory
are just “counting arguments in disguise”

But that's just counting!

» Probabilistic arguments and information theory
are just “counting arguments in disguise”

» That's true, but beside the point

But that's just counting!

» Probabilistic arguments and information theory
are just “counting arguments in disguise”

» That's true, but beside the point

» The language of probability and information theory gives us
intuitions and tools that wouldn't be readily available in the
plain language of counting

But that's just counting!

» Probabilistic arguments and information theory
are just “counting arguments in disguise”

» That's true, but beside the point

» The language of probability and information theory gives us
intuitions and tools that wouldn't be readily available in the
plain language of counting

» Large deviation inequalities, Lovdsz Local Lemma,
chain rules, subadditivity of information,. ..

But that's just counting!

» Probabilistic arguments and information theory
are just “counting arguments in disguise”

» That's true, but beside the point

» The language of probability and information theory gives us
intuitions and tools that wouldn't be readily available in the
plain language of counting

» Large deviation inequalities, Lovdsz Local Lemma,
chain rules, subadditivity of information,. ..

» You could do those proofs in the language of counting,
but you probably wouldn’t find them

But that's just counting!

» Probabilistic arguments and information theory
are just “counting arguments in disguise”

» That's true, but beside the point

» The language of probability and information theory gives us
intuitions and tools that wouldn't be readily available in the
plain language of counting

» Large deviation inequalities, Lovdsz Local Lemma,
chain rules, subadditivity of information,. ..

» You could do those proofs in the language of counting,
but you probably wouldn’t find them

» Good to have probabilistic techniques in your tool-box

Unexpected proofs: Quantum

Unexpected proofs: Quantum

» We know quantum information & computation for its
algorithms, crypto-schemes, communication protocols,
non-locality, etc.

Unexpected proofs: Quantum

» We know quantum information & computation for its
algorithms, crypto-schemes, communication protocols,
non-locality, etc.

» This talk: using quantum techniques as a proof tool
for things in classical CS, mathematics, etc.

Unexpected proofs: Quantum

» We know quantum information & computation for its
algorithms, crypto-schemes, communication protocols,
non-locality, etc.

» This talk: using quantum techniques as a proof tool
for things in classical CS, mathematics, etc.

> Why? Because quantum information is a rich melting pot of
many branches of math: linear algebra, probability theory,
group theory, geometry, combinatorics, functional analysis, ...

Unexpected proofs: Quantum

» We know quantum information & computation for its
algorithms, crypto-schemes, communication protocols,
non-locality, etc.

» This talk: using quantum techniques as a proof tool
for things in classical CS, mathematics, etc.

> Why? Because quantum information is a rich melting pot of
many branches of math: linear algebra, probability theory,
group theory, geometry, combinatorics, functional analysis, ...

» Bonus: no need to implement anything in the lab

Unexpected proofs: Quantum

» We know quantum information & computation for its
algorithms, crypto-schemes, communication protocols,
non-locality, etc.

» This talk: using quantum techniques as a proof tool
for things in classical CS, mathematics, etc.

> Why? Because quantum information is a rich melting pot of
many branches of math: linear algebra, probability theory,
group theory, geometry, combinatorics, functional analysis, ...

» Bonus: no need to implement anything in the lab

> We'll give two examples:

Unexpected proofs: Quantum

» We know quantum information & computation for its
algorithms, crypto-schemes, communication protocols,
non-locality, etc.

» This talk: using quantum techniques as a proof tool
for things in classical CS, mathematics, etc.

> Why? Because quantum information is a rich melting pot of
many branches of math: linear algebra, probability theory,
group theory, geometry, combinatorics, functional analysis, ...

» Bonus: no need to implement anything in the lab
> We'll give two examples:

1. Lower bound on locally decodable codes [KW'03]

Unexpected proofs: Quantum

» We know quantum information & computation for its
algorithms, crypto-schemes, communication protocols,
non-locality, etc.

» This talk: using quantum techniques as a proof tool
for things in classical CS, mathematics, etc.

> Why? Because quantum information is a rich melting pot of
many branches of math: linear algebra, probability theory,
group theory, geometry, combinatorics, functional analysis, ...

» Bonus: no need to implement anything in the lab

> We'll give two examples:

1. Lower bound on locally decodable codes [KW'03]
2. Lower bounds for linear programs [FMPTW'12]

But that's just linear algebra!

But that's just linear algebra!

» Quantum arguments are just “linear algebra in disguise”

But that's just linear algebra!

» Quantum arguments are just “linear algebra in disguise”

» That's true, but beside the point

But that's just linear algebra!

» Quantum arguments are just “linear algebra in disguise”
» That's true, but beside the point

» The language of quantum information and quantum
algorithms gives us intuitions and tools that wouldn't be
readily available in the plain language of linear algebra

But that's just linear algebra!

» Quantum arguments are just “linear algebra in disguise”
» That's true, but beside the point

» The language of quantum information and quantum
algorithms gives us intuitions and tools that wouldn't be
readily available in the plain language of linear algebra

» You could do those proofs in the language of linear algebra,
but you probably wouldn't find them

But that's just linear algebra!

» Quantum arguments are just “linear algebra in disguise”
» That's true, but beside the point

» The language of quantum information and quantum
algorithms gives us intuitions and tools that wouldn't be
readily available in the plain language of linear algebra

» You could do those proofs in the language of linear algebra,
but you probably wouldn't find them

» Good to have quantum techniques in your tool-box

Quantum computing reminder

Quantum computing reminder

» A state is a unit vector of complex amplitudes

Quantum computing reminder

» A state is a unit vector of complex amplitudes

» Qubit: superposition ag|0) + a1]1)

Quantum computing reminder

» A state is a unit vector of complex amplitudes
» Qubit: superposition ap|0) + a1|1) € C?

Quantum computing reminder

» A state is a unit vector of complex amplitudes
» Qubit: superposition ap|0) + a1|1) € C?

» d-dimensional state: superposition 27:1 a;li)

Quantum computing reminder

» A state is a unit vector of complex amplitudes
» Qubit: superposition ap|0) + a1|1) € C?

» d-dimensional state: superposition .9, a;|i) € C9

Quantum computing reminder

v

A state is a unit vector of complex amplitudes
Qubit: superposition ap|0) + a1|1) € C?

v

d-dimensional state: superposition ., a;|i) € C9
n-qubit state (d = 2"): |¢) = > ;e 130 ili)

v

v

Quantum computing reminder

v

A state is a unit vector of complex amplitudes
Qubit: superposition ap|0) + a1|1) € C?

v

d-dimensional state: superposition ., a;|i) € C9
n-qubit state (d = 2"): |§) = > ;cq0 130 €ili) € c*

v

v

Quantum computing reminder

v

A state is a unit vector of complex amplitudes
Qubit: superposition ap|0) + a1|1) € C?
d-dimensional state: superposition ., a;|i) € C9
n-qubit state (d = 2"): |§) = > ;cq0 130 €ili) € c*

v

v

v

» Operations: unitary transform of the vector.

Quantum computing reminder

» A state is a unit vector of complex amplitudes
Qubit: superposition ap|0) + a1|1) € C?
d-dimensional state: superposition ., a;|i) € C9
n-qubit state (d = 2"): |§) = > ;cq0 130 €ili) € c*

v

v

v

» Operations: unitary transform of the vector.
Example: Hadamard gate |b) — %(!0) + (=1)P|1))

Quantum computing reminder

v

A state is a unit vector of complex amplitudes
Qubit: superposition ap|0) + a1|1) € C?
d-dimensional state: superposition ., a;|i) € C9
n-qubit state (d = 2"): |§) = > ;cq0 130 €ili) € c*

v

v

v

» Operations: unitary transform of the vector.
Example: Hadamard gate |b) — %(!0) + (=1)P|1))

» Measurement: specified by orthogonal projectors

Quantum computing reminder

v

v

A state is a unit vector of complex amplitudes
Qubit: superposition ap|0) + a1|1) € C?
d-dimensional state: superposition ., a;|i) € C9
n-qubit state (d = 2"): |§) = > ;cq0 130 €ili) € c*

Operations: unitary transform of the vector.
Example: Hadamard gate |b) — %(!0) + (=1)P|1))

Measurement: specified by orthogonal projectors
Pi,... P st Sk Pi=1.

Quantum computing reminder

» A state is a unit vector of complex amplitudes

» Qubit: superposition ap|0) + a1|1) € C?

» d-dimensional state: superposition .9, a;|i) € C9
> n-qubit state (d = 2"): [¢) = > icq0,13n ili) € c*

» Operations: unitary transform of the vector.
Example: Hadamard gate |b) — %(!0) + (=1)P|1))

» Measurement: specified by orthogonal projectors
k
P1,..., Py, st E i=1 Pi=1.

Prloutcome i] = Tr(P;i|¢)(¢|)

Quantum computing reminder

» A state is a unit vector of complex amplitudes

» Qubit: superposition ap|0) + a1|1) € C?

» d-dimensional state: superposition .9, a;|i) € C9
> n-qubit state (d = 2"): [¢) = > icq0,13n ili) € c*

» Operations: unitary transform of the vector.
Example: Hadamard gate |b) — %(!0) + (=1)P|1))

» Measurement: specified by orthogonal projectors
Pi,... P st Sk Pi=1.
Prloutcome i] = Tr(P;i|¢)(¢|)
State |¢) then collapses to Pi|¢)

Quantum computing reminder

» A state is a unit vector of complex amplitudes

» Qubit: superposition ap|0) + a1|1) € C?

» d-dimensional state: superposition .9, a;|i) € C9
> n-qubit state (d = 2"): [¢) = > icq0,13n ili) € c*

» Operations: unitary transform of the vector.
Example: Hadamard gate |b) — %(!0) + (=1)?1))
» Measurement: specified by orthogonal projectors
Pi,... P st Sk Pi=1.
Prloutcome i] = Tr(P;i|¢)(¢|)
State |¢) then collapses to Pi|¢)/ | Pilo) ||

Quantum computing reminder

» A state is a unit vector of complex amplitudes

» Qubit: superposition ap|0) + a1|1) € C?

» d-dimensional state: superposition .9, a;|i) € C9
> n-qubit state (d = 2"): [¢) = > icq0,13n ili) € c*

» Operations: unitary transform of the vector.
Example: Hadamard gate |b) — %(!0) + (=1)P|1))

» Measurement: specified by orthogonal projectors
k
P1,..., Py, st E i=1 Pi=1.

Prloutcome i] = Tr(P;|®){(¢|)
State |¢) then collapses to Pi|¢)/ || Pi|¢) ||

Special case: P; = |i){i|, then Prloutcome i] = |a;|?

Example 1:

Lower bounds for
locally decodable codes

Locally decodable codes

Locally decodable codes

» Error-correcting code: C:{0,1}" — {0,1}"", m>n

Locally decodable codes

» Error-correcting code: C:{0,1}" — {0,1}"", m>n

Decoder: if w € {0,1}™ is “close” to C(x), then D(w) = x

Locally decodable codes

» Error-correcting code: C:{0,1}" — {0,1}"", m>n

Decoder: if w € {0,1}™ is “close” to C(x), then D(w) = x

> Inefficient if you only want to decode a small part of x

Locally decodable codes

» Error-correcting code: C:{0,1}" — {0,1}"", m>n

Decoder: if w € {0,1}™ is “close” to C(x), then D(w) = x
> Inefficient if you only want to decode a small part of x

» C is k-query locally decodable if there is a decoder D that can
decode individual bits x; of x, while only looking at k bits of w

Locally decodable codes

v

Error-correcting code: C: {0,1}" — {0,1}", m > n
Decoder: if w € {0,1}™ is “close” to C(x), then D(w) = x

v

Inefficient if you only want to decode a small part of x

v

C is k-query locally decodable if there is a decoder D that can
decode individual bits x; of x, while only looking at k bits of w

v

Hard question: optimal tradeoff between k and m?

Locally decodable codes

v

Error-correcting code: C: {0,1}" — {0,1}", m > n
Decoder: if w € {0,1}™ is “close” to C(x), then D(w) = x

v

Inefficient if you only want to decode a small part of x

v

C is k-query locally decodable if there is a decoder D that can
decode individual bits x; of x, while only looking at k bits of w

v

Hard question: optimal tradeoff between k and m?

Using quantum, we can show: k = 2 = m > 2"

v

Locally decodable codes
» Error-correcting code: C:{0,1}" — {0,1}"", m>n
Decoder: if w € {0,1}™ is “close” to C(x), then D(w) = x

> Inefficient if you only want to decode a small part of x

» C is k-query locally decodable if there is a decoder D that can
decode individual bits x; of x, while only looking at k bits of w

» Hard question: optimal tradeoff between k and m?

» Using quantum, we can show: k =2 = m > 2"

» Still the only superpolynomial bound known for LDCs

Example of 2-query LDC: Hadamard

Example of 2-query LDC: Hadamard

» Define C(x); =/ - x mod 2 for all j € {0,1}"

Example of 2-query LDC: Hadamard

» Define C(x); =/ - x mod 2 for all j € {0,1}",
so C(x) is a codeword of 2" bits

Example of 2-query LDC: Hadamard

» Define C(x); =/ - x mod 2 for all j € {0,1}",
so C(x) is a codeword of 2" bits

» Decoding x; from corrupted codeword w ~ C(x):

Example of 2-query LDC: Hadamard
» Define C(x); =/ - x mod 2 for all j € {0,1}",
so C(x) is a codeword of 2" bits

» Decoding x; from corrupted codeword w ~ C(x):

1. pick random j € {0,1}"

Example of 2-query LDC: Hadamard
» Define C(x); = ;- x mod 2 for all j € {0,1}",
so C(x) is a codeword of 2" bits

» Decoding x; from corrupted codeword w ~ C(x):

1. pick random j € {0,1}"
2. query w at positions j and j P ¢;

Example of 2-query LDC: Hadamard

» Define C(x); =/ - x mod 2 for all j € {0,1}",
so C(x) is a codeword of 2" bits

» Decoding x; from corrupted codeword w ~ C(x):

1. pick random j € {0,1}"
2. query w at positions j and j P ¢;
3. output w; © Wjge;

Example of 2-query LDC: Hadamard
» Define C(x); = ;- x mod 2 for all j € {0,1}",
so C(x) is a codeword of 2" bits

» Decoding x; from corrupted codeword w ~ C(x):

1. pick random j € {0,1}"
2. query w at positions j and j P ¢;
3. output w; © Wjge;

» This works perfectly if there is no noise (w = C(x)):

Example of 2-query LDC: Hadamard
» Define C(x); = ;- x mod 2 for all j € {0,1}",
so C(x) is a codeword of 2" bits

» Decoding x; from corrupted codeword w ~ C(x):

1. pick random j € {0,1}"
2. query w at positions j and j P ¢;
3. output w; © Wjge;

» This works perfectly if there is no noise (w = C(x)):

wj @ Wide;

Example of 2-query LDC: Hadamard
» Define C(x); = ;- x mod 2 for all j € {0,1}",
so C(x) is a codeword of 2" bits

» Decoding x; from corrupted codeword w ~ C(x):

1. pick random j € {0,1}"
2. query w at positions j and j P ¢;
3. output w; © Wjge;

» This works perfectly if there is no noise (w = C(x)):

W © Wige = (- x) © ([© &) - x)

Example of 2-query LDC: Hadamard
» Define C(x); = ;- x mod 2 for all j € {0,1}",
so C(x) is a codeword of 2" bits

» Decoding x; from corrupted codeword w ~ C(x):

1. pick random j € {0,1}"
2. query w at positions j and j @ e;
3. output w; © Wjge;

» This works perfectly if there is no noise (w = C(x)):

Wi © Wige, = (- x) (D e) x) =6 x

Example of 2-query LDC: Hadamard
» Define C(x); = ;- x mod 2 for all j € {0,1}",
so C(x) is a codeword of 2" bits

» Decoding x; from corrupted codeword w ~ C(x):

1. pick random j € {0,1}"
2. query w at positions j and j @ e;
3. output w; © Wjge;

» This works perfectly if there is no noise (w = C(x)):

W © Wige, = (- x)@(([De) x)=¢ -x=x

Example of 2-query LDC: Hadamard
» Define C(x); = ;- x mod 2 for all j € {0,1}",
so C(x) is a codeword of 2" bits

» Decoding x; from corrupted codeword w ~ C(x):
1. pick random j € {0,1}"
2. query w at positions j and j P ¢;
3. output w; © Wjge;

» This works perfectly if there is no noise (w = C(x)):

W © Wige, = (- x)@(([De) x)=¢ -x=x

» With dm errors, Prj[w; # C(x);] <9

Example of 2-query LDC: Hadamard
» Define C(x); = ;- x mod 2 for all j € {0,1}",
so C(x) is a codeword of 2" bits

» Decoding x; from corrupted codeword w ~ C(x):

1. pick random j € {0,1}"
2. query w at positions j and j @ e;
3. output w; © Wjge;

» This works perfectly if there is no noise (w = C(x)):

W © Wige, = (- x)@(([De) x)=¢ -x=x

» With dm errors, Prj[w; # C(x);] <9
and Prj[wjge # C(X)jae] < 9,

Example of 2-query LDC: Hadamard
» Define C(x); = ;- x mod 2 for all j € {0,1}",
so C(x) is a codeword of 2" bits

» Decoding x; from corrupted codeword w ~ C(x):

1. pick random j € {0,1}"
2. query w at positions j and j @ e;
3. output w; © Wjge;

» This works perfectly if there is no noise (w = C(x)):

W © Wige, = (- x)@(([De) x)=¢ -x=x

» With ém errors, Prj[w; # C(x);] <6
and Prj[wjae # C(X)joe] <0,
so Pr[we correctly output x;] > 1 — 20

Exponential lower bound [KWO03]

Exponential lower bound [KWO03]

» Given 2-query LDC C: {0,1}" — {0,1}™.

Exponential lower bound [KWO03]

» Given 2-query LDC C: {0,1}" — {0,1}™.
Normal form for the classical decoder of x; [KT00]:
query random (j, k) in matching M;, output C(x); ® C(x)«

Exponential lower bound [KWO03]

» Given 2-query LDC C: {0,1}" — {0,1}™.
Normal form for the classical decoder of x; [KT00]:
query random (j, k) in matching M;, output C(x); ® C(x)«

» Def superposition over C(x):

Exponential lower bound [KWO03]

» Given 2-query LDC C: {0,1}" — {0,1}™.
Normal form for the classical decoder of x; [KT00]:
query random (j, k) in matching M;, output C(x); ® C(x)«

» Def superposition over C(x): |¢x) = % ij:l(_l)C(x)jU)

Exponential lower bound [KWO03]

» Given 2-query LDC C: {0,1}" — {0,1}™.

Normal form for the classical decoder of x; [KT00]:

query random (j, k) in matching M;, output C(x); ® C(x)«
» Def superposition over C(x): |px) = % ij:l(—l)c(x)f 1)

» We can predict x; from |¢y)

Exponential lower bound [KWO03]

» Given 2-query LDC C: {0,1}" — {0,1}™.
Normal form for the classical decoder of x; [KT00]:
query random (j, k) in matching M;, output C(x); ® C(x)«
» Def superposition over C(x): |¢x) = % ij:l(—l)c(x)f 1)
» We can predict x; from |¢x): view M; as a measurement with
m/2 2-dimensional projectors, Pj = |j){j| + | k) (k|

Exponential lower bound [KWO03]

» Given 2-query LDC C: {0,1}" — {0,1}™.
Normal form for the classical decoder of x; [KT00]:
query random (j, k) in matching M;, output C(x); ® C(x)«
» Def superposition over C(x): |px) = % Zj’":l(—l)C(X)J'U)
» We can predict x; from |¢x): view M; as a measurement with
m/2 2-dimensional projectors, Pj = |j){j| + | k) (k|
» Applying M; to |¢x) gives

Exponential lower bound [KWO03]

» Given 2-query LDC C: {0,1}" — {0,1}™.
Normal form for the classical decoder of x; [KT00]:
query random (j, k) in matching M;, output C(x); ® C(x)«
» Def superposition over C(x): |¢x) = % ij:l(—l)c(x)f 1)
» We can predict x; from |¢x): view M; as a measurement with
m/2 2-dimensional projectors, Pj = |j){j| + | k) (k|
» Applying M; to |¢x) gives
%((—1)C(X)f|j> + (—1)¢™x|k)) for random (j, k) € M;.

Exponential lower bound [KWO03]

» Given 2-query LDC C: {0,1}" — {0,1}™.
Normal form for the classical decoder of x; [KT00]:
query random (j, k) in matching M;, output C(x); ® C(x)«
» Def superposition over C(x): |¢x) = % ij:l(—l)c(x)f 1)
» We can predict x; from |¢x): view M; as a measurement with
m/2 2-dimensional projectors, Py = |j)(j| + |k) (k]|
» Applying M; to |¢x) gives
%((—1)C(X)f|j> + (=1)€®| k) for random (j, k) € M;.
Measurement in basis {|j) + |k)} gives C(x); & C(x)«-

Exponential lower bound [KWO03]

» Given 2-query LDC C: {0,1}" — {0,1}™.
Normal form for the classical decoder of x; [KT00]:
query random (j, k) in matching M;, output C(x); ® C(x)«
» Def superposition over C(x): |¢x) = % Zj’":l(—l)C(X)J'U)
» We can predict x; from |¢x): view M; as a measurement with
m/2 2-dimensional projectors, Pj = |j){j| + | k) (k|
» Applying M; to |¢x) gives
%((—1)C(X)f|j> + (—1)¢™x|k)) for random (j, k) € M;.
Measurement in basis {|j) + |k)} gives C(x); & C(x)«-
But that's the output of the classical decoder, so equals x;!

Exponential lower bound [KWO03]

v

Given 2-query LDC C: {0,1}" — {0,1}™.

Normal form for the classical decoder of x; [KT00]:

query random (j, k) in matching M;, output C(x); ® C(x)«
Def superposition over C(x): |¢x) = % Zj’":l(—l)c(x)jw
We can predict x; from |¢y): view M; as a measurement with
m/2 2-dimensional projectors, Pj = |j){j| + | k) (k|

Applying M; to |¢x) gives

%((—1)C(X)f|j> + (—1)¢™x|k)) for random (j, k) € M;.
Measurement in basis {|j) & |k)} gives C(x); & C(x)x.

But that's the output of the classical decoder, so equals x;!

ox) has log m qubits, but predicts each of x,...,x,
g

Exponential lower bound [KWO03]

» Given 2-query LDC C: {0,1}" — {0,1}™.
Normal form for the classical decoder of x; [KT00]:
query random (j, k) in matching M;, output C(x); ® C(x)«
» Def superposition over C(x): |¢x) = % Zj’":l(—l)c(x)jw
» We can predict x; from |¢x): view M; as a measurement with
m/2 2-dimensional projectors, Py = |j)(j| + |k) (k]|
» Applying M; to |¢x) gives
%((—1)C(X)f|j> + (=1)€®| k) for random (j, k) € M;.
Measurement in basis {|j) & |k)} gives C(x); & C(x)x.
But that's the output of the classical decoder, so equals x;!
> |¢px) has log m qubits, but predicts each of xi,...,x,

» Random access code bound [Nayak'99]:
log m > Q(n)

Exponential lower bound [KWO03]

» Given 2-query LDC C: {0,1}" — {0,1}™.
Normal form for the classical decoder of x; [KT00]:
query random (j, k) in matching M;, output C(x); ® C(x)«
» Def superposition over C(x): |¢x) = % Zj’":l(—l)C(X)J'U)
» We can predict x; from |¢x): view M; as a measurement with
m/2 2-dimensional projectors, Py = |j)(j| + |k) (k]|
» Applying M; to |¢x) gives
%((—1)C(X)f|j> + (=1)€®| k) for random (j, k) € M;.
Measurement in basis {|j) + |k)} gives C(x); & C(x)«-
But that's the output of the classical decoder, so equals x;!
> |¢px) has log m qubits, but predicts each of xi,...,x,

» Random access code bound [Nayak'99]:
log m > Q(n) = m > 2"

Example 2:

Lower bounds for
linear programs

Background: solving NP by linear programs?

Background: solving NP by linear programs?

» Famous P-problem: linear programming [Khachian'79]

Background: solving NP by linear programs?

» Famous P-problem: linear programming [Khachian'79]

» Famous NP-hard problem: Traveling Salesman Problem

Background: solving NP by linear programs?

» Famous P-problem: linear programming [Khachian'79]

» Famous NP-hard problem: Traveling Salesman Problem

» TSP polytope: convex hull of all Hamiltonian cycles on
complete n-vertex graph. This is a polytope in RE).

Background: solving NP by linear programs?

» Famous P-problem: linear programming [Khachian'79]
» Famous NP-hard problem: Traveling Salesman Problem
» TSP polytope: convex hull of all Hamiltonian cycles on

complete n-vertex graph. This is a polytope in RE).
TSP: minimize linear function over this polytope

Background: solving NP by linear programs?

» Famous P-problem: linear programming [Khachian'79]

» Famous NP-hard problem: Traveling Salesman Problem

» TSP polytope: convex hull of all Hamiltonian cycles on
complete n-vertex graph. This is a polytope in RE).
TSP: minimize linear function over this polytope
Unfortunately, polytope needs exponentially many inequalities

Background: solving NP by linear programs?

» Famous P-problem: linear programming [Khachian'79]

» Famous NP-hard problem: Traveling Salesman Problem

» TSP polytope: convex hull of all Hamiltonian cycles on
complete n-vertex graph. This is a polytope in RE).
TSP: minimize linear function over this polytope
Unfortunately, polytope needs exponentially many inequalities

» Extended formulation: linear inequalities on (g) + k variables
s.t. projection on first (g) variables gives TSP polytope

Background: solving NP by linear programs?

» Famous P-problem: linear programming [Khachian'79]

» Famous NP-hard problem: Traveling Salesman Problem

» TSP polytope: convex hull of all Hamiltonian cycles on
complete n-vertex graph. This is a polytope in RE).
TSP: minimize linear function over this polytope
Unfortunately, polytope needs exponentially many inequalities

» Extended formulation: linear inequalities on (g) + k variables
s.t. projection on first (g) variables gives TSP polytope

» Swart'86 claimed polynomial-size extended formulation,
which would give poynomial-time LP-algorithm for TSP

Background: solving NP by linear programs?

» Famous P-problem: linear programming [Khachian'79]

» Famous NP-hard problem: Traveling Salesman Problem

» TSP polytope: convex hull of all Hamiltonian cycles on
complete n-vertex graph. This is a polytope in RE).
TSP: minimize linear function over this polytope
Unfortunately, polytope needs exponentially many inequalities

» Extended formulation: linear inequalities on (g) + k variables
s.t. projection on first (g) variables gives TSP polytope

» Swart'86 claimed polynomial-size extended formulation,
which would give poynomial-time LP-algorithm for TSP

> Yannakakis'88: symmetric EFs for TSP are exponentially big

Background: solving NP by linear programs?

» Famous P-problem: linear programming [Khachian'79]

» Famous NP-hard problem: Traveling Salesman Problem

» TSP polytope: convex hull of all Hamiltonian cycles on
complete n-vertex graph. This is a polytope in RE).
TSP: minimize linear function over this polytope
Unfortunately, polytope needs exponentially many inequalities

» Extended formulation: linear inequalities on (g) + k variables
s.t. projection on first (g) variables gives TSP polytope

» Swart'86 claimed polynomial-size extended formulation,
which would give poynomial-time LP-algorithm for TSP

> Yannakakis'88: symmetric EFs for TSP are exponentially big

» Swart's LPs were symmetric, so they couldn’t work

Background: solving NP by linear programs?

» Famous P-problem: linear programming [Khachian'79]

» Famous NP-hard problem: Traveling Salesman Problem

» TSP polytope: convex hull of all Hamiltonian cycles on
complete n-vertex graph. This is a polytope in RE).
TSP: minimize linear function over this polytope
Unfortunately, polytope needs exponentially many inequalities

» Extended formulation: linear inequalities on (g) + k variables
s.t. projection on first (g) variables gives TSP polytope

» Swart'86 claimed polynomial-size extended formulation,
which would give poynomial-time LP-algorithm for TSP

> Yannakakis'88: symmetric EFs for TSP are exponentially big
» Swart's LPs were symmetric, so they couldn’t work
> FMPTW'12 show the same for all extended formulations

Quantum vs classical communication complexity

Quantum vs classical communication complexity

» Communication complexity: Alice gets input a € {0, 1}",
Bob gets input b € {0, 1}, they need to compute
f:{0,1}* x {0,1}* — {0,1} with minimal communication

Quantum vs classical communication complexity

» Communication complexity: Alice gets input a € {0, 1}",
Bob gets input b € {0, 1}, they need to compute
f:{0,1}* x {0,1}* — {0,1} with minimal communication

» Nondeterministic communication complexity: protocol
outputs 1 with positive probability on input a, b iff f(a,b) =1

Quantum vs classical communication complexity

» Communication complexity: Alice gets input a € {0, 1}",
Bob gets input b € {0, 1}, they need to compute
f:{0,1}* x {0,1}* — {0,1} with minimal communication
» Nondeterministic communication complexity: protocol
outputs 1 with positive probability on input a, b iff f(a,b) =1
» W'00: exponential separation between quantum and classical

nondeterministic protocols for support of the following 2% x 2k
matrix: M,p, = (1 — a’ b)?

Quantum vs classical communication complexity

» Communication complexity: Alice gets input a € {0, 1}",
Bob gets input b € {0, 1}, they need to compute
f:{0,1}* x {0,1}* — {0,1} with minimal communication
» Nondeterministic communication complexity: protocol
outputs 1 with positive probability on input a, b iff f(a,b) =1
» W'00: exponential separation between quantum and classical
nondeterministic protocols for support of the following 2% x 2k
matrix: M,p, = (1 — a’ b)?

» Classical protocols need Q(k) bits of communication for this

Quantum vs classical communication complexity

v

Communication complexity: Alice gets input a € {0, 1}",

Bob gets input b € {0, 1}, they need to compute

f:{0,1}* x {0,1}* — {0,1} with minimal communication
Nondeterministic communication complexity: protocol
outputs 1 with positive probability on input a, b iff f(a,b) =1
W'00: exponential separation between quantum and classical
nondeterministic protocols for support of the following 2% x 2k
matrix: M,p, = (1 — a’ b)?

Classical protocols need Q(k) bits of communication for this

3 protocol for this using O(log k) qubits of communication

Lower bound for correlation polytope

Lower bound for correlation polytope

» Correlation polytope: COR(k) = conv{bb’ | b € {0,1}¥}

Lower bound for correlation polytope

» Correlation polytope: COR(k) = conv{bb’ | b € {0,1}¥}
» For each a € {0,1}%, the following constraint hold:

Vx € COR(k) : Tr |(2diag(a) —aa’)x| <1

Lower bound for correlation polytope

» Correlation polytope: COR(k) = conv{bb’ | b € {0,1}¥}
» For each a € {0,1}%, the following constraint hold:

Vx € COR(k) : Tr |(2diag(a) —aa’)x| <1

Slack of this constraint w.r.t. vertex bb” € COR(k):

Lower bound for correlation polytope

» Correlation polytope: COR(k) = conv{bb’ | b € {0,1}¥}
» For each a € {0,1}%, the following constraint hold:

Vx € COR(k): Tr [(2diag(a) — aaT)x} <1

Slack of this constraint w.r.t. vertex bb” € COR(k):
Sap=1—Tr[(2diag(a) — aa”)bb]|

Lower bound for correlation polytope

» Correlation polytope: COR(k) = conv{bb’ | b € {0,1}¥}
» For each a € {0,1}%, the following constraint hold:

Vx € COR(k): Tr [(2diag(a) — aaT)x} <1

Slack of this constraint w.r.t. vertex bb” € COR(k):
Sab=1—Tr[(2diag(a) —aa”)bb"] = (1—a'b)?

Lower bound for correlation polytope

» Correlation polytope: COR(k) = conv{bb’ | b € {0,1}¥}
» For each a € {0,1}%, the following constraint hold:

Vx € COR(k): Tr [(2diag(a) — aaT)x} <1

Slack of this constraint w.r.t. vertex bb” € COR(k):
Sop=1-—"Tr [(2diag(a) — aaT)bbT] =(1- aTb)2 = M,p

Lower bound for correlation polytope

» Correlation polytope: COR(k) = conv{bb’ | b € {0,1}¥}
» For each a € {0,1}%, the following constraint hold:

Vx € COR(k): Tr [(2diag(a) — aaT)x} <1

Slack of this constraint w.r.t. vertex bb” € COR(k):

Sap=1—Tr[(2diag(a) —aa”)bb"] = (1—a"b)® = M,
» Take slack matrix S for COR,

with 2k vertices bbT for columns,

2k a-constraints for first 2¥ rows, 5 —

Mab
remaining inequalities for other rows :

Lower bound for correlation polytope

» Correlation polytope: COR(k) = conv{bb’ | b € {0,1}¥}
» For each a € {0,1}%, the following constraint hold:

Vx € COR(k): Tr [(2diag(a) — aaT)x} <1

Slack of this constraint w.r.t. vertex bb” € COR(k):

Sap=1—Tr[(2diag(a) —aa”)bb"] = (1—a"b)® = M,
» Take slack matrix S for COR,

with 2k vertices bbT for columns,

2k a-constraints for first 2¥ rows, 5 —

Mab
remaining inequalities for other rows :

» xc(COR(k))

Lower bound for correlation polytope

» Correlation polytope: COR(k) = conv{bb’ | b € {0,1}¥}
» For each a € {0,1}%, the following constraint hold:

Vx € COR(k): Tr [(2diag(a) — aaT)x} <1

Slack of this constraint w.r.t. vertex bb” € COR(k):

Sap=1—Tr[(2diag(a) —aa”)bb"] = (1—a"b)® = M,
» Take slack matrix S for COR,

with 2k vertices bbT for columns,

2k a-constraints for first 2¥ rows, 5 —

Mab
remaining inequalities for other rows :

Yannakakis

» xc(COR(k)) > exp(nondetermin c.c. of S)

Lower bound for correlation polytope

» Correlation polytope: COR(k) = conv{bb’ | b € {0,1}¥}
» For each a € {0,1}%, the following constraint hold:

Vx € COR(k): Tr [(2diag(a) — aaT)x} <1

Slack of this constraint w.r.t. vertex bb” € COR(k):

Sap=1—Tr[(2diag(a) —aa”)bb"] = (1—a"b)® = M,
» Take slack matrix S for COR,

with 2k vertices bbT for columns,

2k a-constraints for first 2¥ rows, 5 —

Mab
remaining inequalities for other rows :

Yannakakis

» xc(COR(k)) > exp(nondetermin c.c. of §) > 2%(k)

Consequences

Consequences

» We just showed that linear programs for optimizing over the
correlation polytope need to be exponentially large

Consequences

» We just showed that linear programs for optimizing over the
correlation polytope need to be exponentially large

» This implies exponential lower bounds for TSP and other
polytopes for NP-hard problems

Consequences

» We just showed that linear programs for optimizing over the
correlation polytope need to be exponentially large

» This implies exponential lower bounds for TSP and other
polytopes for NP-hard problems

» This refutes all P = NP “proofs” a la Swart

Consequences

» We just showed that linear programs for optimizing over the
correlation polytope need to be exponentially large

» This implies exponential lower bounds for TSP and other
polytopes for NP-hard problems

» This refutes all P = NP “proofs” a la Swart

» Did we really need quantum for this proof?

Consequences

» We just showed that linear programs for optimizing over the
correlation polytope need to be exponentially large

» This implies exponential lower bounds for TSP and other
polytopes for NP-hard problems

» This refutes all P = NP “proofs” a la Swart

» Did we really need quantum for this proof?

» No, we just needed to find the right matrix M and
a classical nondeterministic communication lower bound

Consequences

» We just showed that linear programs for optimizing over the
correlation polytope need to be exponentially large

» This implies exponential lower bounds for TSP and other
polytopes for NP-hard problems

» This refutes all P = NP “proofs” a la Swart

» Did we really need quantum for this proof?

» No, we just needed to find the right matrix M and
a classical nondeterministic communication lower bound

» But the reason we found the right M is the earlier result
about quantum communication complexity

Consequences

» We just showed that linear programs for optimizing over the
correlation polytope need to be exponentially large

» This implies exponential lower bounds for TSP and other
polytopes for NP-hard problems

» This refutes all P = NP “proofs” a la Swart

» Did we really need quantum for this proof?

» No, we just needed to find the right matrix M and
a classical nondeterministic communication lower bound

» But the reason we found the right M is the earlier result
about quantum communication complexity

> Wittgenstein: throw away the ladder after you climbed it

From quantum algorithms to polynomials

From quantum algorithms to polynomials

> “Polynomial method”:
efficient quantum algorithms = low-degree polynomials

From quantum algorithms to polynomials
> “Polynomial method”:
efficient quantum algorithms = low-degree polynomials

» Usual application: lower bounds on degree
= lower bounds on quantum complexity

From quantum algorithms to polynomials
> “Polynomial method”:
efficient quantum algorithms = low-degree polynomials

» Usual application: lower bounds on degree
= lower bounds on quantum complexity

» But you can also use this method as a tool to construct
low-degree polynomials with nice properties

From quantum algorithms to polynomials

> “Polynomial method”:
efficient quantum algorithms = low-degree polynomials

» Usual application: lower bounds on degree
= lower bounds on quantum complexity

» But you can also use this method as a tool to construct
low-degree polynomials with nice properties.

Examples:

» minimal-degree polynomial approximations to functions
f:{0,...,n} — R [WO08]

From quantum algorithms to polynomials

> “Polynomial method”:
efficient quantum algorithms = low-degree polynomials

» Usual application: lower bounds on degree
= lower bounds on quantum complexity

» But you can also use this method as a tool to construct
low-degree polynomials with nice properties.

Examples:

» minimal-degree polynomial approximations to functions
f:{0,...,n} — R [WO08]

» quantum proof of Jackson's theorem [DW11]

Other examples of quantum proofs

Other examples of quantum proofs

» Other uses of quantum information, often based on quantum
encodings of classical data

Other examples of quantum proofs

» Other uses of quantum information, often based on quantum
encodings of classical data

» Classical lower bound methods inspired by quantum methods

Other examples of quantum proofs

» Other uses of quantum information, often based on quantum
encodings of classical data

» Classical lower bound methods inspired by quantum methods

» Aaronson: quantum reproofs of classical complexity results

Other examples of quantum proofs

» Other uses of quantum information, often based on quantum
encodings of classical data

» Classical lower bound methods inspired by quantum methods

» Aaronson: quantum reproofs of classical complexity results

» PP is closed under intersection [uses postselection]

Other examples of quantum proofs

» Other uses of quantum information, often based on quantum
encodings of classical data

» Classical lower bound methods inspired by quantum methods

» Aaronson: quantum reproofs of classical complexity results

» PP is closed under intersection [uses postselection]

» Permanent is #P-hard [uses linear optics]

Other examples of quantum proofs

v

Other uses of quantum information, often based on quantum
encodings of classical data

v

Classical lower bound methods inspired by quantum methods

v

Aaronson: quantum reproofs of classical complexity results

» PP is closed under intersection [uses postselection]

» Permanent is #P-hard [uses linear optics]

v

Results in functional analysis, other areas of math

Summary & Outlook

Summary & Outlook

» Quantum proofs for classical theorems

Summary & Outlook

» Quantum proofs for classical theorems

Lower bounds for LDCs, linear programs, ...

Summary & Outlook

» Quantum proofs for classical theorems

Lower bounds for LDCs, linear programs, ...

» Currently this is more like a “bag of tricks”
than a fully-developed “quantum method”

Summary & Outlook

» Quantum proofs for classical theorems
Lower bounds for LDCs, linear programs, ...
» Currently this is more like a “bag of tricks”

than a fully-developed “quantum method”
(but you could say the same about probabilistic method)

Summary & Outlook

» Quantum proofs for classical theorems

Lower bounds for LDCs, linear programs, ...

» Currently this is more like a “bag of tricks”
than a fully-developed “quantum method”
(but you could say the same about probabilistic method)

» Where can we find more applications?

Summary & Outlook

» Quantum proofs for classical theorems

Lower bounds for LDCs, linear programs, ...

» Currently this is more like a “bag of tricks”
than a fully-developed “quantum method”
(but you could say the same about probabilistic method)

» Where can we find more applications?

» Low-degree polynomials

Summary & Outlook

» Quantum proofs for classical theorems

Lower bounds for LDCs, linear programs, ...

» Currently this is more like a “bag of tricks”
than a fully-developed “quantum method”
(but you could say the same about probabilistic method)

» Where can we find more applications?

» Low-degree polynomials
» Encoding-based lower bounds

Summary & Outlook

» Quantum proofs for classical theorems

Lower bounds for LDCs, linear programs, ...

» Currently this is more like a “bag of tricks”
than a fully-developed “quantum method”
(but you could say the same about probabilistic method)

» Where can we find more applications?

» Low-degree polynomials
» Encoding-based lower bounds
» Places where linear algebra and combinatorics meet

Summary & Outlook

» Quantum proofs for classical theorems

Lower bounds for LDCs, linear programs, ...

» Currently this is more like a “bag of tricks”
than a fully-developed “quantum method”
(but you could say the same about probabilistic method)

» Where can we find more applications?

Low-degree polynomials
Encoding-based lower bounds
Places where linear algebra and combinatorics meet

vV vy vVvyy

Summary & Outlook

v

Quantum proofs for classical theorems

Lower bounds for LDCs, linear programs, ...

v

Currently this is more like a “bag of tricks”
than a fully-developed “quantum method”
(but you could say the same about probabilistic method)

v

Where can we find more applications?

Low-degree polynomials
Encoding-based lower bounds
Places where linear algebra and combinatorics meet

vV vy vVvyy

v

Good to have quantum techniques in your tool-box!

