
Quantum Proofs
for Classical Theorems

Ronald de Wolf

Oxford, October 24, 2014

Unexpected proofs: Complex numbers

How to prove the following identity about real numbers

cos(x + y) = cos(x) cos(y)− sin(x) sin(y) ?

Go to complex numbers!

e ix = cos(x) + i sin(x)

cos(x + y) = <(e i(x+y)) = <(e ixe iy)

= <(cos(x) cos(y)− sin(x) sin(y)+
i cos(x) sin(y) + i sin(x) cos(y))

= cos(x) cos(y)− sin(x) sin(y)

Unexpected proofs: Complex numbers

How to prove the following identity about real numbers

cos(x + y) = cos(x) cos(y)− sin(x) sin(y) ?

Go to complex numbers!

e ix = cos(x) + i sin(x)

cos(x + y) = <(e i(x+y)) = <(e ixe iy)

= <(cos(x) cos(y)− sin(x) sin(y)+
i cos(x) sin(y) + i sin(x) cos(y))

= cos(x) cos(y)− sin(x) sin(y)

Unexpected proofs: Complex numbers

How to prove the following identity about real numbers

cos(x + y) = cos(x) cos(y)− sin(x) sin(y) ?

Go to complex numbers!

e ix = cos(x) + i sin(x)

cos(x + y) = <(e i(x+y)) = <(e ixe iy)

= <(cos(x) cos(y)− sin(x) sin(y)+
i cos(x) sin(y) + i sin(x) cos(y))

= cos(x) cos(y)− sin(x) sin(y)

Unexpected proofs: Complex numbers

How to prove the following identity about real numbers

cos(x + y) = cos(x) cos(y)− sin(x) sin(y) ?

Go to complex numbers!

e ix = cos(x) + i sin(x)

cos(x + y)

= <(e i(x+y)) = <(e ixe iy)

= <(cos(x) cos(y)− sin(x) sin(y)+
i cos(x) sin(y) + i sin(x) cos(y))

= cos(x) cos(y)− sin(x) sin(y)

Unexpected proofs: Complex numbers

How to prove the following identity about real numbers

cos(x + y) = cos(x) cos(y)− sin(x) sin(y) ?

Go to complex numbers!

e ix = cos(x) + i sin(x)

cos(x + y) = <(e i(x+y))

= <(e ixe iy)

= <(cos(x) cos(y)− sin(x) sin(y)+
i cos(x) sin(y) + i sin(x) cos(y))

= cos(x) cos(y)− sin(x) sin(y)

Unexpected proofs: Complex numbers

How to prove the following identity about real numbers

cos(x + y) = cos(x) cos(y)− sin(x) sin(y) ?

Go to complex numbers!

e ix = cos(x) + i sin(x)

cos(x + y) = <(e i(x+y)) = <(e ixe iy)

= <(cos(x) cos(y)− sin(x) sin(y)+
i cos(x) sin(y) + i sin(x) cos(y))

= cos(x) cos(y)− sin(x) sin(y)

Unexpected proofs: Complex numbers

How to prove the following identity about real numbers

cos(x + y) = cos(x) cos(y)− sin(x) sin(y) ?

Go to complex numbers!

e ix = cos(x) + i sin(x)

cos(x + y) = <(e i(x+y)) = <(e ixe iy)

= <(cos(x) cos(y)− sin(x) sin(y)+
i cos(x) sin(y) + i sin(x) cos(y))

= cos(x) cos(y)− sin(x) sin(y)

Unexpected proofs: Complex numbers

How to prove the following identity about real numbers

cos(x + y) = cos(x) cos(y)− sin(x) sin(y) ?

Go to complex numbers!

e ix = cos(x) + i sin(x)

cos(x + y) = <(e i(x+y)) = <(e ixe iy)

= <(cos(x) cos(y)− sin(x) sin(y)+
i cos(x) sin(y) + i sin(x) cos(y))

= cos(x) cos(y)− sin(x) sin(y)

Unexpected proofs: Probabilities

Probabilistic method (Erdős, Alon & Spencer)

Theorem: Every graph (V ,E) with m edges contains a bipartite
subgraph with m/2 edges

Proof:

1. Pick vertex-set T ⊆ V at random

2. Set Xij =

{
1 if edge (i , j) “crosses” (between T and T)
0 otherwise

3. E[Xij] = Pr[edge (i , j) crosses] = 1/2

4. Expected number of crossing edges:

E

 ∑
(i ,j)∈E

Xij

 =
∑

(i ,j)∈E

E[Xij] =
∑

(i ,j)∈E

1

2
= m/2

5. But then there is a T with at least m/2 crossing edges!

Unexpected proofs: Probabilities

Probabilistic method (Erdős, Alon & Spencer)

Theorem: Every graph (V ,E) with m edges contains a bipartite
subgraph with m/2 edges

Proof:

1. Pick vertex-set T ⊆ V at random

2. Set Xij =

{
1 if edge (i , j) “crosses” (between T and T)
0 otherwise

3. E[Xij] = Pr[edge (i , j) crosses] = 1/2

4. Expected number of crossing edges:

E

 ∑
(i ,j)∈E

Xij

 =
∑

(i ,j)∈E

E[Xij] =
∑

(i ,j)∈E

1

2
= m/2

5. But then there is a T with at least m/2 crossing edges!

Unexpected proofs: Probabilities

Probabilistic method (Erdős, Alon & Spencer)

Theorem: Every graph (V ,E) with m edges contains a bipartite
subgraph with m/2 edges

Proof:

1. Pick vertex-set T ⊆ V at random

2. Set Xij =

{
1 if edge (i , j) “crosses” (between T and T)
0 otherwise

3. E[Xij] = Pr[edge (i , j) crosses] = 1/2

4. Expected number of crossing edges:

E

 ∑
(i ,j)∈E

Xij

 =
∑

(i ,j)∈E

E[Xij] =
∑

(i ,j)∈E

1

2
= m/2

5. But then there is a T with at least m/2 crossing edges!

Unexpected proofs: Probabilities

Probabilistic method (Erdős, Alon & Spencer)

Theorem: Every graph (V ,E) with m edges contains a bipartite
subgraph with m/2 edges

Proof:

1. Pick vertex-set T ⊆ V at random

2. Set Xij =

{
1 if edge (i , j) “crosses” (between T and T)
0 otherwise

3. E[Xij] = Pr[edge (i , j) crosses] = 1/2

4. Expected number of crossing edges:

E

 ∑
(i ,j)∈E

Xij

 =
∑

(i ,j)∈E

E[Xij] =
∑

(i ,j)∈E

1

2
= m/2

5. But then there is a T with at least m/2 crossing edges!

Unexpected proofs: Probabilities

Probabilistic method (Erdős, Alon & Spencer)

Theorem: Every graph (V ,E) with m edges contains a bipartite
subgraph with m/2 edges

Proof:

1. Pick vertex-set T ⊆ V at random

2. Set Xij =

{
1 if edge (i , j) “crosses” (between T and T)
0 otherwise

3. E[Xij] = Pr[edge (i , j) crosses] = 1/2

4. Expected number of crossing edges:

E

 ∑
(i ,j)∈E

Xij

 =
∑

(i ,j)∈E

E[Xij] =
∑

(i ,j)∈E

1

2
= m/2

5. But then there is a T with at least m/2 crossing edges!

Unexpected proofs: Probabilities

Probabilistic method (Erdős, Alon & Spencer)

Theorem: Every graph (V ,E) with m edges contains a bipartite
subgraph with m/2 edges

Proof:

1. Pick vertex-set T ⊆ V at random

2. Set Xij =

{
1 if edge (i , j) “crosses” (between T and T)
0 otherwise

3. E[Xij]

= Pr[edge (i , j) crosses] = 1/2

4. Expected number of crossing edges:

E

 ∑
(i ,j)∈E

Xij

 =
∑

(i ,j)∈E

E[Xij] =
∑

(i ,j)∈E

1

2
= m/2

5. But then there is a T with at least m/2 crossing edges!

Unexpected proofs: Probabilities

Probabilistic method (Erdős, Alon & Spencer)

Theorem: Every graph (V ,E) with m edges contains a bipartite
subgraph with m/2 edges

Proof:

1. Pick vertex-set T ⊆ V at random

2. Set Xij =

{
1 if edge (i , j) “crosses” (between T and T)
0 otherwise

3. E[Xij] = Pr[edge (i , j) crosses]

= 1/2

4. Expected number of crossing edges:

E

 ∑
(i ,j)∈E

Xij

 =
∑

(i ,j)∈E

E[Xij] =
∑

(i ,j)∈E

1

2
= m/2

5. But then there is a T with at least m/2 crossing edges!

Unexpected proofs: Probabilities

Probabilistic method (Erdős, Alon & Spencer)

Theorem: Every graph (V ,E) with m edges contains a bipartite
subgraph with m/2 edges

Proof:

1. Pick vertex-set T ⊆ V at random

2. Set Xij =

{
1 if edge (i , j) “crosses” (between T and T)
0 otherwise

3. E[Xij] = Pr[edge (i , j) crosses] = 1/2

4. Expected number of crossing edges:

E

 ∑
(i ,j)∈E

Xij

 =
∑

(i ,j)∈E

E[Xij] =
∑

(i ,j)∈E

1

2
= m/2

5. But then there is a T with at least m/2 crossing edges!

Unexpected proofs: Probabilities

Probabilistic method (Erdős, Alon & Spencer)

Theorem: Every graph (V ,E) with m edges contains a bipartite
subgraph with m/2 edges

Proof:

1. Pick vertex-set T ⊆ V at random

2. Set Xij =

{
1 if edge (i , j) “crosses” (between T and T)
0 otherwise

3. E[Xij] = Pr[edge (i , j) crosses] = 1/2

4. Expected number of crossing edges:

E

 ∑
(i ,j)∈E

Xij



=
∑

(i ,j)∈E

E[Xij] =
∑

(i ,j)∈E

1

2
= m/2

5. But then there is a T with at least m/2 crossing edges!

Unexpected proofs: Probabilities

Probabilistic method (Erdős, Alon & Spencer)

Theorem: Every graph (V ,E) with m edges contains a bipartite
subgraph with m/2 edges

Proof:

1. Pick vertex-set T ⊆ V at random

2. Set Xij =

{
1 if edge (i , j) “crosses” (between T and T)
0 otherwise

3. E[Xij] = Pr[edge (i , j) crosses] = 1/2

4. Expected number of crossing edges:

E

 ∑
(i ,j)∈E

Xij

 =
∑

(i ,j)∈E

E[Xij]

=
∑

(i ,j)∈E

1

2
= m/2

5. But then there is a T with at least m/2 crossing edges!

Unexpected proofs: Probabilities

Probabilistic method (Erdős, Alon & Spencer)

Theorem: Every graph (V ,E) with m edges contains a bipartite
subgraph with m/2 edges

Proof:

1. Pick vertex-set T ⊆ V at random

2. Set Xij =

{
1 if edge (i , j) “crosses” (between T and T)
0 otherwise

3. E[Xij] = Pr[edge (i , j) crosses] = 1/2

4. Expected number of crossing edges:

E

 ∑
(i ,j)∈E

Xij

 =
∑

(i ,j)∈E

E[Xij] =
∑

(i ,j)∈E

1

2

= m/2

5. But then there is a T with at least m/2 crossing edges!

Unexpected proofs: Probabilities

Probabilistic method (Erdős, Alon & Spencer)

Theorem: Every graph (V ,E) with m edges contains a bipartite
subgraph with m/2 edges

Proof:

1. Pick vertex-set T ⊆ V at random

2. Set Xij =

{
1 if edge (i , j) “crosses” (between T and T)
0 otherwise

3. E[Xij] = Pr[edge (i , j) crosses] = 1/2

4. Expected number of crossing edges:

E

 ∑
(i ,j)∈E

Xij

 =
∑

(i ,j)∈E

E[Xij] =
∑

(i ,j)∈E

1

2
= m/2

5. But then there is a T with at least m/2 crossing edges!

Unexpected proofs: Probabilities

Probabilistic method (Erdős, Alon & Spencer)

Theorem: Every graph (V ,E) with m edges contains a bipartite
subgraph with m/2 edges

Proof:

1. Pick vertex-set T ⊆ V at random

2. Set Xij =

{
1 if edge (i , j) “crosses” (between T and T)
0 otherwise

3. E[Xij] = Pr[edge (i , j) crosses] = 1/2

4. Expected number of crossing edges:

E

 ∑
(i ,j)∈E

Xij

 =
∑

(i ,j)∈E

E[Xij] =
∑

(i ,j)∈E

1

2
= m/2

5. But then there is a T with at least m/2 crossing edges!

Unexpected proofs: Information theory

I How much is
d∑

i=0

(
n

i

)
, for d ≤ n/2?

I At most 2nH(d/n), where H(·) is binary entropy function

I Information-theoretic proof:

1. Def S = {x ∈ {0, 1}n : |x | ≤ d}, then |S | =
∑d

i=0

(
n
i

)
2. Let X = X1 . . .Xn be uniformly random element of S

3. Then Pr[Xi = 1] ≤ d/n, so H(Xi) ≤ H(d/n)

4. log |S | = H(X) ≤
n∑

i=1

H(Xi) ≤ nH(d/n)

5. Exponentiating both sides finishes the proof

Unexpected proofs: Information theory

I How much is
d∑

i=0

(
n

i

)

, for d ≤ n/2?

I At most 2nH(d/n), where H(·) is binary entropy function

I Information-theoretic proof:

1. Def S = {x ∈ {0, 1}n : |x | ≤ d}, then |S | =
∑d

i=0

(
n
i

)
2. Let X = X1 . . .Xn be uniformly random element of S

3. Then Pr[Xi = 1] ≤ d/n, so H(Xi) ≤ H(d/n)

4. log |S | = H(X) ≤
n∑

i=1

H(Xi) ≤ nH(d/n)

5. Exponentiating both sides finishes the proof

Unexpected proofs: Information theory

I How much is
d∑

i=0

(
n

i

)
, for d ≤ n/2?

I At most 2nH(d/n), where H(·) is binary entropy function

I Information-theoretic proof:

1. Def S = {x ∈ {0, 1}n : |x | ≤ d}, then |S | =
∑d

i=0

(
n
i

)
2. Let X = X1 . . .Xn be uniformly random element of S

3. Then Pr[Xi = 1] ≤ d/n, so H(Xi) ≤ H(d/n)

4. log |S | = H(X) ≤
n∑

i=1

H(Xi) ≤ nH(d/n)

5. Exponentiating both sides finishes the proof

Unexpected proofs: Information theory

I How much is
d∑

i=0

(
n

i

)
, for d ≤ n/2?

I At most 2nH(d/n), where H(·) is binary entropy function

I Information-theoretic proof:

1. Def S = {x ∈ {0, 1}n : |x | ≤ d}, then |S | =
∑d

i=0

(
n
i

)
2. Let X = X1 . . .Xn be uniformly random element of S

3. Then Pr[Xi = 1] ≤ d/n, so H(Xi) ≤ H(d/n)

4. log |S | = H(X) ≤
n∑

i=1

H(Xi) ≤ nH(d/n)

5. Exponentiating both sides finishes the proof

Unexpected proofs: Information theory

I How much is
d∑

i=0

(
n

i

)
, for d ≤ n/2?

I At most 2nH(d/n), where H(·) is binary entropy function

I Information-theoretic proof:

1. Def S = {x ∈ {0, 1}n : |x | ≤ d}, then |S | =
∑d

i=0

(
n
i

)
2. Let X = X1 . . .Xn be uniformly random element of S

3. Then Pr[Xi = 1] ≤ d/n, so H(Xi) ≤ H(d/n)

4. log |S | = H(X) ≤
n∑

i=1

H(Xi) ≤ nH(d/n)

5. Exponentiating both sides finishes the proof

Unexpected proofs: Information theory

I How much is
d∑

i=0

(
n

i

)
, for d ≤ n/2?

I At most 2nH(d/n), where H(·) is binary entropy function

I Information-theoretic proof:

1. Def S = {x ∈ {0, 1}n : |x | ≤ d}

, then |S | =
∑d

i=0

(
n
i

)
2. Let X = X1 . . .Xn be uniformly random element of S

3. Then Pr[Xi = 1] ≤ d/n, so H(Xi) ≤ H(d/n)

4. log |S | = H(X) ≤
n∑

i=1

H(Xi) ≤ nH(d/n)

5. Exponentiating both sides finishes the proof

Unexpected proofs: Information theory

I How much is
d∑

i=0

(
n

i

)
, for d ≤ n/2?

I At most 2nH(d/n), where H(·) is binary entropy function

I Information-theoretic proof:

1. Def S = {x ∈ {0, 1}n : |x | ≤ d}, then |S | =
∑d

i=0

(
n
i

)

2. Let X = X1 . . .Xn be uniformly random element of S

3. Then Pr[Xi = 1] ≤ d/n, so H(Xi) ≤ H(d/n)

4. log |S | = H(X) ≤
n∑

i=1

H(Xi) ≤ nH(d/n)

5. Exponentiating both sides finishes the proof

Unexpected proofs: Information theory

I How much is
d∑

i=0

(
n

i

)
, for d ≤ n/2?

I At most 2nH(d/n), where H(·) is binary entropy function

I Information-theoretic proof:

1. Def S = {x ∈ {0, 1}n : |x | ≤ d}, then |S | =
∑d

i=0

(
n
i

)
2. Let X = X1 . . .Xn be uniformly random element of S

3. Then Pr[Xi = 1] ≤ d/n, so H(Xi) ≤ H(d/n)

4. log |S | = H(X) ≤
n∑

i=1

H(Xi) ≤ nH(d/n)

5. Exponentiating both sides finishes the proof

Unexpected proofs: Information theory

I How much is
d∑

i=0

(
n

i

)
, for d ≤ n/2?

I At most 2nH(d/n), where H(·) is binary entropy function

I Information-theoretic proof:

1. Def S = {x ∈ {0, 1}n : |x | ≤ d}, then |S | =
∑d

i=0

(
n
i

)
2. Let X = X1 . . .Xn be uniformly random element of S

3. Then Pr[Xi = 1] ≤ d/n

, so H(Xi) ≤ H(d/n)

4. log |S | = H(X) ≤
n∑

i=1

H(Xi) ≤ nH(d/n)

5. Exponentiating both sides finishes the proof

Unexpected proofs: Information theory

I How much is
d∑

i=0

(
n

i

)
, for d ≤ n/2?

I At most 2nH(d/n), where H(·) is binary entropy function

I Information-theoretic proof:

1. Def S = {x ∈ {0, 1}n : |x | ≤ d}, then |S | =
∑d

i=0

(
n
i

)
2. Let X = X1 . . .Xn be uniformly random element of S

3. Then Pr[Xi = 1] ≤ d/n, so H(Xi) ≤ H(d/n)

4. log |S | = H(X) ≤
n∑

i=1

H(Xi) ≤ nH(d/n)

5. Exponentiating both sides finishes the proof

Unexpected proofs: Information theory

I How much is
d∑

i=0

(
n

i

)
, for d ≤ n/2?

I At most 2nH(d/n), where H(·) is binary entropy function

I Information-theoretic proof:

1. Def S = {x ∈ {0, 1}n : |x | ≤ d}, then |S | =
∑d

i=0

(
n
i

)
2. Let X = X1 . . .Xn be uniformly random element of S

3. Then Pr[Xi = 1] ≤ d/n, so H(Xi) ≤ H(d/n)

4. log |S |

= H(X) ≤
n∑

i=1

H(Xi) ≤ nH(d/n)

5. Exponentiating both sides finishes the proof

Unexpected proofs: Information theory

I How much is
d∑

i=0

(
n

i

)
, for d ≤ n/2?

I At most 2nH(d/n), where H(·) is binary entropy function

I Information-theoretic proof:

1. Def S = {x ∈ {0, 1}n : |x | ≤ d}, then |S | =
∑d

i=0

(
n
i

)
2. Let X = X1 . . .Xn be uniformly random element of S

3. Then Pr[Xi = 1] ≤ d/n, so H(Xi) ≤ H(d/n)

4. log |S | = H(X)

≤
n∑

i=1

H(Xi) ≤ nH(d/n)

5. Exponentiating both sides finishes the proof

Unexpected proofs: Information theory

I How much is
d∑

i=0

(
n

i

)
, for d ≤ n/2?

I At most 2nH(d/n), where H(·) is binary entropy function

I Information-theoretic proof:

1. Def S = {x ∈ {0, 1}n : |x | ≤ d}, then |S | =
∑d

i=0

(
n
i

)
2. Let X = X1 . . .Xn be uniformly random element of S

3. Then Pr[Xi = 1] ≤ d/n, so H(Xi) ≤ H(d/n)

4. log |S | = H(X) ≤
n∑

i=1

H(Xi)

≤ nH(d/n)

5. Exponentiating both sides finishes the proof

Unexpected proofs: Information theory

I How much is
d∑

i=0

(
n

i

)
, for d ≤ n/2?

I At most 2nH(d/n), where H(·) is binary entropy function

I Information-theoretic proof:

1. Def S = {x ∈ {0, 1}n : |x | ≤ d}, then |S | =
∑d

i=0

(
n
i

)
2. Let X = X1 . . .Xn be uniformly random element of S

3. Then Pr[Xi = 1] ≤ d/n, so H(Xi) ≤ H(d/n)

4. log |S | = H(X) ≤
n∑

i=1

H(Xi) ≤ nH(d/n)

5. Exponentiating both sides finishes the proof

Unexpected proofs: Information theory

I How much is
d∑

i=0

(
n

i

)
, for d ≤ n/2?

I At most 2nH(d/n), where H(·) is binary entropy function

I Information-theoretic proof:

1. Def S = {x ∈ {0, 1}n : |x | ≤ d}, then |S | =
∑d

i=0

(
n
i

)
2. Let X = X1 . . .Xn be uniformly random element of S

3. Then Pr[Xi = 1] ≤ d/n, so H(Xi) ≤ H(d/n)

4. log |S | = H(X) ≤
n∑

i=1

H(Xi) ≤ nH(d/n)

5. Exponentiating both sides finishes the proof

But that’s just counting!

I Probabilistic arguments and information theory
are just “counting arguments in disguise”

I That’s true, but beside the point

I The language of probability and information theory gives us
intuitions and tools that wouldn’t be readily available in the
plain language of counting

I Large deviation inequalities, Lovász Local Lemma,
chain rules, subadditivity of information,. . .

I You could do those proofs in the language of counting,
but you probably wouldn’t find them

I Good to have probabilistic techniques in your tool-box

But that’s just counting!

I Probabilistic arguments and information theory
are just “counting arguments in disguise”

I That’s true, but beside the point

I The language of probability and information theory gives us
intuitions and tools that wouldn’t be readily available in the
plain language of counting

I Large deviation inequalities, Lovász Local Lemma,
chain rules, subadditivity of information,. . .

I You could do those proofs in the language of counting,
but you probably wouldn’t find them

I Good to have probabilistic techniques in your tool-box

But that’s just counting!

I Probabilistic arguments and information theory
are just “counting arguments in disguise”

I That’s true, but beside the point

I The language of probability and information theory gives us
intuitions and tools that wouldn’t be readily available in the
plain language of counting

I Large deviation inequalities, Lovász Local Lemma,
chain rules, subadditivity of information,. . .

I You could do those proofs in the language of counting,
but you probably wouldn’t find them

I Good to have probabilistic techniques in your tool-box

But that’s just counting!

I Probabilistic arguments and information theory
are just “counting arguments in disguise”

I That’s true, but beside the point

I The language of probability and information theory gives us
intuitions and tools that wouldn’t be readily available in the
plain language of counting

I Large deviation inequalities, Lovász Local Lemma,
chain rules, subadditivity of information,. . .

I You could do those proofs in the language of counting,
but you probably wouldn’t find them

I Good to have probabilistic techniques in your tool-box

But that’s just counting!

I Probabilistic arguments and information theory
are just “counting arguments in disguise”

I That’s true, but beside the point

I The language of probability and information theory gives us
intuitions and tools that wouldn’t be readily available in the
plain language of counting

I Large deviation inequalities, Lovász Local Lemma,
chain rules, subadditivity of information,. . .

I You could do those proofs in the language of counting,
but you probably wouldn’t find them

I Good to have probabilistic techniques in your tool-box

But that’s just counting!

I Probabilistic arguments and information theory
are just “counting arguments in disguise”

I That’s true, but beside the point

I The language of probability and information theory gives us
intuitions and tools that wouldn’t be readily available in the
plain language of counting

I Large deviation inequalities, Lovász Local Lemma,
chain rules, subadditivity of information,. . .

I You could do those proofs in the language of counting,
but you probably wouldn’t find them

I Good to have probabilistic techniques in your tool-box

But that’s just counting!

I Probabilistic arguments and information theory
are just “counting arguments in disguise”

I That’s true, but beside the point

I The language of probability and information theory gives us
intuitions and tools that wouldn’t be readily available in the
plain language of counting

I Large deviation inequalities, Lovász Local Lemma,
chain rules, subadditivity of information,. . .

I You could do those proofs in the language of counting,
but you probably wouldn’t find them

I Good to have probabilistic techniques in your tool-box

Unexpected proofs: Quantum

I We know quantum information & computation for its
algorithms, crypto-schemes, communication protocols,
non-locality, etc.

I This talk: using quantum techniques as a proof tool
for things in classical CS, mathematics, etc.

I Why? Because quantum information is a rich melting pot of
many branches of math: linear algebra, probability theory,
group theory, geometry, combinatorics, functional analysis, . . .

I Bonus: no need to implement anything in the lab

I We’ll give two examples:

1. Lower bound on locally decodable codes [KW’03]

2. Lower bounds for linear programs [FMPTW’12]

Unexpected proofs: Quantum

I We know quantum information & computation for its
algorithms, crypto-schemes, communication protocols,
non-locality, etc.

I This talk: using quantum techniques as a proof tool
for things in classical CS, mathematics, etc.

I Why? Because quantum information is a rich melting pot of
many branches of math: linear algebra, probability theory,
group theory, geometry, combinatorics, functional analysis, . . .

I Bonus: no need to implement anything in the lab

I We’ll give two examples:

1. Lower bound on locally decodable codes [KW’03]

2. Lower bounds for linear programs [FMPTW’12]

Unexpected proofs: Quantum

I We know quantum information & computation for its
algorithms, crypto-schemes, communication protocols,
non-locality, etc.

I This talk: using quantum techniques as a proof tool
for things in classical CS, mathematics, etc.

I Why? Because quantum information is a rich melting pot of
many branches of math: linear algebra, probability theory,
group theory, geometry, combinatorics, functional analysis, . . .

I Bonus: no need to implement anything in the lab

I We’ll give two examples:

1. Lower bound on locally decodable codes [KW’03]

2. Lower bounds for linear programs [FMPTW’12]

Unexpected proofs: Quantum

I We know quantum information & computation for its
algorithms, crypto-schemes, communication protocols,
non-locality, etc.

I This talk: using quantum techniques as a proof tool
for things in classical CS, mathematics, etc.

I Why? Because quantum information is a rich melting pot of
many branches of math: linear algebra, probability theory,
group theory, geometry, combinatorics, functional analysis, . . .

I Bonus: no need to implement anything in the lab

I We’ll give two examples:

1. Lower bound on locally decodable codes [KW’03]

2. Lower bounds for linear programs [FMPTW’12]

Unexpected proofs: Quantum

I We know quantum information & computation for its
algorithms, crypto-schemes, communication protocols,
non-locality, etc.

I This talk: using quantum techniques as a proof tool
for things in classical CS, mathematics, etc.

I Why? Because quantum information is a rich melting pot of
many branches of math: linear algebra, probability theory,
group theory, geometry, combinatorics, functional analysis, . . .

I Bonus: no need to implement anything in the lab

I We’ll give two examples:

1. Lower bound on locally decodable codes [KW’03]

2. Lower bounds for linear programs [FMPTW’12]

Unexpected proofs: Quantum

I We know quantum information & computation for its
algorithms, crypto-schemes, communication protocols,
non-locality, etc.

I This talk: using quantum techniques as a proof tool
for things in classical CS, mathematics, etc.

I Why? Because quantum information is a rich melting pot of
many branches of math: linear algebra, probability theory,
group theory, geometry, combinatorics, functional analysis, . . .

I Bonus: no need to implement anything in the lab

I We’ll give two examples:

1. Lower bound on locally decodable codes [KW’03]

2. Lower bounds for linear programs [FMPTW’12]

Unexpected proofs: Quantum

I We know quantum information & computation for its
algorithms, crypto-schemes, communication protocols,
non-locality, etc.

I This talk: using quantum techniques as a proof tool
for things in classical CS, mathematics, etc.

I Why? Because quantum information is a rich melting pot of
many branches of math: linear algebra, probability theory,
group theory, geometry, combinatorics, functional analysis, . . .

I Bonus: no need to implement anything in the lab

I We’ll give two examples:

1. Lower bound on locally decodable codes [KW’03]

2. Lower bounds for linear programs [FMPTW’12]

Unexpected proofs: Quantum

I We know quantum information & computation for its
algorithms, crypto-schemes, communication protocols,
non-locality, etc.

I This talk: using quantum techniques as a proof tool
for things in classical CS, mathematics, etc.

I Why? Because quantum information is a rich melting pot of
many branches of math: linear algebra, probability theory,
group theory, geometry, combinatorics, functional analysis, . . .

I Bonus: no need to implement anything in the lab

I We’ll give two examples:

1. Lower bound on locally decodable codes [KW’03]

2. Lower bounds for linear programs [FMPTW’12]

But that’s just linear algebra!

I Quantum arguments are just “linear algebra in disguise”

I That’s true, but beside the point

I The language of quantum information and quantum
algorithms gives us intuitions and tools that wouldn’t be
readily available in the plain language of linear algebra

I You could do those proofs in the language of linear algebra,
but you probably wouldn’t find them

I Good to have quantum techniques in your tool-box

But that’s just linear algebra!

I Quantum arguments are just “linear algebra in disguise”

I That’s true, but beside the point

I The language of quantum information and quantum
algorithms gives us intuitions and tools that wouldn’t be
readily available in the plain language of linear algebra

I You could do those proofs in the language of linear algebra,
but you probably wouldn’t find them

I Good to have quantum techniques in your tool-box

But that’s just linear algebra!

I Quantum arguments are just “linear algebra in disguise”

I That’s true, but beside the point

I The language of quantum information and quantum
algorithms gives us intuitions and tools that wouldn’t be
readily available in the plain language of linear algebra

I You could do those proofs in the language of linear algebra,
but you probably wouldn’t find them

I Good to have quantum techniques in your tool-box

But that’s just linear algebra!

I Quantum arguments are just “linear algebra in disguise”

I That’s true, but beside the point

I The language of quantum information and quantum
algorithms gives us intuitions and tools that wouldn’t be
readily available in the plain language of linear algebra

I You could do those proofs in the language of linear algebra,
but you probably wouldn’t find them

I Good to have quantum techniques in your tool-box

But that’s just linear algebra!

I Quantum arguments are just “linear algebra in disguise”

I That’s true, but beside the point

I The language of quantum information and quantum
algorithms gives us intuitions and tools that wouldn’t be
readily available in the plain language of linear algebra

I You could do those proofs in the language of linear algebra,
but you probably wouldn’t find them

I Good to have quantum techniques in your tool-box

But that’s just linear algebra!

I Quantum arguments are just “linear algebra in disguise”

I That’s true, but beside the point

I The language of quantum information and quantum
algorithms gives us intuitions and tools that wouldn’t be
readily available in the plain language of linear algebra

I You could do those proofs in the language of linear algebra,
but you probably wouldn’t find them

I Good to have quantum techniques in your tool-box

Quantum computing reminder

I A state is a unit vector of complex amplitudes

I Qubit: superposition α0|0〉+ α1|1〉 ∈ C2

I d-dimensional state: superposition
∑d

i=1 αi |i〉 ∈ Cd

I n-qubit state (d = 2n): |φ〉 =
∑

i∈{0,1}n αi |i〉 ∈ C2n

I Operations: unitary transform of the vector.

Example: Hadamard gate |b〉 7→ 1√
2

(|0〉+ (−1)b|1〉)

I Measurement: specified by orthogonal projectors
P1, . . . ,Pk , s.t.

∑k
i=1 Pi = I .

Pr[outcome i] = Tr(Pi |φ〉〈φ|)
State |φ〉 then collapses to Pi |φ〉/ ‖Pi |φ〉‖

Special case: Pi = |i〉〈i |, then Pr[outcome i] = |αi |2

Quantum computing reminder

I A state is a unit vector of complex amplitudes

I Qubit: superposition α0|0〉+ α1|1〉 ∈ C2

I d-dimensional state: superposition
∑d

i=1 αi |i〉 ∈ Cd

I n-qubit state (d = 2n): |φ〉 =
∑

i∈{0,1}n αi |i〉 ∈ C2n

I Operations: unitary transform of the vector.

Example: Hadamard gate |b〉 7→ 1√
2

(|0〉+ (−1)b|1〉)

I Measurement: specified by orthogonal projectors
P1, . . . ,Pk , s.t.

∑k
i=1 Pi = I .

Pr[outcome i] = Tr(Pi |φ〉〈φ|)
State |φ〉 then collapses to Pi |φ〉/ ‖Pi |φ〉‖

Special case: Pi = |i〉〈i |, then Pr[outcome i] = |αi |2

Quantum computing reminder

I A state is a unit vector of complex amplitudes

I Qubit: superposition α0|0〉+ α1|1〉

∈ C2

I d-dimensional state: superposition
∑d

i=1 αi |i〉 ∈ Cd

I n-qubit state (d = 2n): |φ〉 =
∑

i∈{0,1}n αi |i〉 ∈ C2n

I Operations: unitary transform of the vector.

Example: Hadamard gate |b〉 7→ 1√
2

(|0〉+ (−1)b|1〉)

I Measurement: specified by orthogonal projectors
P1, . . . ,Pk , s.t.

∑k
i=1 Pi = I .

Pr[outcome i] = Tr(Pi |φ〉〈φ|)
State |φ〉 then collapses to Pi |φ〉/ ‖Pi |φ〉‖

Special case: Pi = |i〉〈i |, then Pr[outcome i] = |αi |2

Quantum computing reminder

I A state is a unit vector of complex amplitudes

I Qubit: superposition α0|0〉+ α1|1〉 ∈ C2

I d-dimensional state: superposition
∑d

i=1 αi |i〉 ∈ Cd

I n-qubit state (d = 2n): |φ〉 =
∑

i∈{0,1}n αi |i〉 ∈ C2n

I Operations: unitary transform of the vector.

Example: Hadamard gate |b〉 7→ 1√
2

(|0〉+ (−1)b|1〉)

I Measurement: specified by orthogonal projectors
P1, . . . ,Pk , s.t.

∑k
i=1 Pi = I .

Pr[outcome i] = Tr(Pi |φ〉〈φ|)
State |φ〉 then collapses to Pi |φ〉/ ‖Pi |φ〉‖

Special case: Pi = |i〉〈i |, then Pr[outcome i] = |αi |2

Quantum computing reminder

I A state is a unit vector of complex amplitudes

I Qubit: superposition α0|0〉+ α1|1〉 ∈ C2

I d-dimensional state: superposition
∑d

i=1 αi |i〉

∈ Cd

I n-qubit state (d = 2n): |φ〉 =
∑

i∈{0,1}n αi |i〉 ∈ C2n

I Operations: unitary transform of the vector.

Example: Hadamard gate |b〉 7→ 1√
2

(|0〉+ (−1)b|1〉)

I Measurement: specified by orthogonal projectors
P1, . . . ,Pk , s.t.

∑k
i=1 Pi = I .

Pr[outcome i] = Tr(Pi |φ〉〈φ|)
State |φ〉 then collapses to Pi |φ〉/ ‖Pi |φ〉‖

Special case: Pi = |i〉〈i |, then Pr[outcome i] = |αi |2

Quantum computing reminder

I A state is a unit vector of complex amplitudes

I Qubit: superposition α0|0〉+ α1|1〉 ∈ C2

I d-dimensional state: superposition
∑d

i=1 αi |i〉 ∈ Cd

I n-qubit state (d = 2n): |φ〉 =
∑

i∈{0,1}n αi |i〉 ∈ C2n

I Operations: unitary transform of the vector.

Example: Hadamard gate |b〉 7→ 1√
2

(|0〉+ (−1)b|1〉)

I Measurement: specified by orthogonal projectors
P1, . . . ,Pk , s.t.

∑k
i=1 Pi = I .

Pr[outcome i] = Tr(Pi |φ〉〈φ|)
State |φ〉 then collapses to Pi |φ〉/ ‖Pi |φ〉‖

Special case: Pi = |i〉〈i |, then Pr[outcome i] = |αi |2

Quantum computing reminder

I A state is a unit vector of complex amplitudes

I Qubit: superposition α0|0〉+ α1|1〉 ∈ C2

I d-dimensional state: superposition
∑d

i=1 αi |i〉 ∈ Cd

I n-qubit state (d = 2n): |φ〉 =
∑

i∈{0,1}n αi |i〉

∈ C2n

I Operations: unitary transform of the vector.

Example: Hadamard gate |b〉 7→ 1√
2

(|0〉+ (−1)b|1〉)

I Measurement: specified by orthogonal projectors
P1, . . . ,Pk , s.t.

∑k
i=1 Pi = I .

Pr[outcome i] = Tr(Pi |φ〉〈φ|)
State |φ〉 then collapses to Pi |φ〉/ ‖Pi |φ〉‖

Special case: Pi = |i〉〈i |, then Pr[outcome i] = |αi |2

Quantum computing reminder

I A state is a unit vector of complex amplitudes

I Qubit: superposition α0|0〉+ α1|1〉 ∈ C2

I d-dimensional state: superposition
∑d

i=1 αi |i〉 ∈ Cd

I n-qubit state (d = 2n): |φ〉 =
∑

i∈{0,1}n αi |i〉 ∈ C2n

I Operations: unitary transform of the vector.

Example: Hadamard gate |b〉 7→ 1√
2

(|0〉+ (−1)b|1〉)

I Measurement: specified by orthogonal projectors
P1, . . . ,Pk , s.t.

∑k
i=1 Pi = I .

Pr[outcome i] = Tr(Pi |φ〉〈φ|)
State |φ〉 then collapses to Pi |φ〉/ ‖Pi |φ〉‖

Special case: Pi = |i〉〈i |, then Pr[outcome i] = |αi |2

Quantum computing reminder

I A state is a unit vector of complex amplitudes

I Qubit: superposition α0|0〉+ α1|1〉 ∈ C2

I d-dimensional state: superposition
∑d

i=1 αi |i〉 ∈ Cd

I n-qubit state (d = 2n): |φ〉 =
∑

i∈{0,1}n αi |i〉 ∈ C2n

I Operations: unitary transform of the vector.

Example: Hadamard gate |b〉 7→ 1√
2

(|0〉+ (−1)b|1〉)

I Measurement: specified by orthogonal projectors
P1, . . . ,Pk , s.t.

∑k
i=1 Pi = I .

Pr[outcome i] = Tr(Pi |φ〉〈φ|)
State |φ〉 then collapses to Pi |φ〉/ ‖Pi |φ〉‖

Special case: Pi = |i〉〈i |, then Pr[outcome i] = |αi |2

Quantum computing reminder

I A state is a unit vector of complex amplitudes

I Qubit: superposition α0|0〉+ α1|1〉 ∈ C2

I d-dimensional state: superposition
∑d

i=1 αi |i〉 ∈ Cd

I n-qubit state (d = 2n): |φ〉 =
∑

i∈{0,1}n αi |i〉 ∈ C2n

I Operations: unitary transform of the vector.

Example: Hadamard gate |b〉 7→ 1√
2

(|0〉+ (−1)b|1〉)

I Measurement: specified by orthogonal projectors
P1, . . . ,Pk , s.t.

∑k
i=1 Pi = I .

Pr[outcome i] = Tr(Pi |φ〉〈φ|)
State |φ〉 then collapses to Pi |φ〉/ ‖Pi |φ〉‖

Special case: Pi = |i〉〈i |, then Pr[outcome i] = |αi |2

Quantum computing reminder

I A state is a unit vector of complex amplitudes

I Qubit: superposition α0|0〉+ α1|1〉 ∈ C2

I d-dimensional state: superposition
∑d

i=1 αi |i〉 ∈ Cd

I n-qubit state (d = 2n): |φ〉 =
∑

i∈{0,1}n αi |i〉 ∈ C2n

I Operations: unitary transform of the vector.

Example: Hadamard gate |b〉 7→ 1√
2

(|0〉+ (−1)b|1〉)

I Measurement: specified by orthogonal projectors

P1, . . . ,Pk , s.t.
∑k

i=1 Pi = I .

Pr[outcome i] = Tr(Pi |φ〉〈φ|)
State |φ〉 then collapses to Pi |φ〉/ ‖Pi |φ〉‖

Special case: Pi = |i〉〈i |, then Pr[outcome i] = |αi |2

Quantum computing reminder

I A state is a unit vector of complex amplitudes

I Qubit: superposition α0|0〉+ α1|1〉 ∈ C2

I d-dimensional state: superposition
∑d

i=1 αi |i〉 ∈ Cd

I n-qubit state (d = 2n): |φ〉 =
∑

i∈{0,1}n αi |i〉 ∈ C2n

I Operations: unitary transform of the vector.

Example: Hadamard gate |b〉 7→ 1√
2

(|0〉+ (−1)b|1〉)

I Measurement: specified by orthogonal projectors
P1, . . . ,Pk , s.t.

∑k
i=1 Pi = I .

Pr[outcome i] = Tr(Pi |φ〉〈φ|)
State |φ〉 then collapses to Pi |φ〉/ ‖Pi |φ〉‖

Special case: Pi = |i〉〈i |, then Pr[outcome i] = |αi |2

Quantum computing reminder

I A state is a unit vector of complex amplitudes

I Qubit: superposition α0|0〉+ α1|1〉 ∈ C2

I d-dimensional state: superposition
∑d

i=1 αi |i〉 ∈ Cd

I n-qubit state (d = 2n): |φ〉 =
∑

i∈{0,1}n αi |i〉 ∈ C2n

I Operations: unitary transform of the vector.

Example: Hadamard gate |b〉 7→ 1√
2

(|0〉+ (−1)b|1〉)

I Measurement: specified by orthogonal projectors
P1, . . . ,Pk , s.t.

∑k
i=1 Pi = I .

Pr[outcome i] = Tr(Pi |φ〉〈φ|)

State |φ〉 then collapses to Pi |φ〉/ ‖Pi |φ〉‖

Special case: Pi = |i〉〈i |, then Pr[outcome i] = |αi |2

Quantum computing reminder

I A state is a unit vector of complex amplitudes

I Qubit: superposition α0|0〉+ α1|1〉 ∈ C2

I d-dimensional state: superposition
∑d

i=1 αi |i〉 ∈ Cd

I n-qubit state (d = 2n): |φ〉 =
∑

i∈{0,1}n αi |i〉 ∈ C2n

I Operations: unitary transform of the vector.

Example: Hadamard gate |b〉 7→ 1√
2

(|0〉+ (−1)b|1〉)

I Measurement: specified by orthogonal projectors
P1, . . . ,Pk , s.t.

∑k
i=1 Pi = I .

Pr[outcome i] = Tr(Pi |φ〉〈φ|)
State |φ〉 then collapses to Pi |φ〉

/ ‖Pi |φ〉‖

Special case: Pi = |i〉〈i |, then Pr[outcome i] = |αi |2

Quantum computing reminder

I A state is a unit vector of complex amplitudes

I Qubit: superposition α0|0〉+ α1|1〉 ∈ C2

I d-dimensional state: superposition
∑d

i=1 αi |i〉 ∈ Cd

I n-qubit state (d = 2n): |φ〉 =
∑

i∈{0,1}n αi |i〉 ∈ C2n

I Operations: unitary transform of the vector.

Example: Hadamard gate |b〉 7→ 1√
2

(|0〉+ (−1)b|1〉)

I Measurement: specified by orthogonal projectors
P1, . . . ,Pk , s.t.

∑k
i=1 Pi = I .

Pr[outcome i] = Tr(Pi |φ〉〈φ|)
State |φ〉 then collapses to Pi |φ〉/ ‖Pi |φ〉‖

Special case: Pi = |i〉〈i |, then Pr[outcome i] = |αi |2

Quantum computing reminder

I A state is a unit vector of complex amplitudes

I Qubit: superposition α0|0〉+ α1|1〉 ∈ C2

I d-dimensional state: superposition
∑d

i=1 αi |i〉 ∈ Cd

I n-qubit state (d = 2n): |φ〉 =
∑

i∈{0,1}n αi |i〉 ∈ C2n

I Operations: unitary transform of the vector.

Example: Hadamard gate |b〉 7→ 1√
2

(|0〉+ (−1)b|1〉)

I Measurement: specified by orthogonal projectors
P1, . . . ,Pk , s.t.

∑k
i=1 Pi = I .

Pr[outcome i] = Tr(Pi |φ〉〈φ|)
State |φ〉 then collapses to Pi |φ〉/ ‖Pi |φ〉‖

Special case: Pi = |i〉〈i |, then Pr[outcome i] = |αi |2

Example 1:

Lower bounds for
locally decodable codes

Locally decodable codes

I Error-correcting code: C : {0, 1}n → {0, 1}m, m ≥ n

Decoder: if w ∈ {0, 1}m is “close” to C (x), then D(w) = x

I Inefficient if you only want to decode a small part of x

I C is k-query locally decodable if there is a decoder D that can
decode individual bits xi of x , while only looking at k bits of w

I Hard question: optimal tradeoff between k and m?

I Using quantum, we can show: k = 2⇒ m ≥ 2Ω(n)

I Still the only superpolynomial bound known for LDCs

Locally decodable codes

I Error-correcting code: C : {0, 1}n → {0, 1}m, m ≥ n

Decoder: if w ∈ {0, 1}m is “close” to C (x), then D(w) = x

I Inefficient if you only want to decode a small part of x

I C is k-query locally decodable if there is a decoder D that can
decode individual bits xi of x , while only looking at k bits of w

I Hard question: optimal tradeoff between k and m?

I Using quantum, we can show: k = 2⇒ m ≥ 2Ω(n)

I Still the only superpolynomial bound known for LDCs

Locally decodable codes

I Error-correcting code: C : {0, 1}n → {0, 1}m, m ≥ n

Decoder: if w ∈ {0, 1}m is “close” to C (x), then D(w) = x

I Inefficient if you only want to decode a small part of x

I C is k-query locally decodable if there is a decoder D that can
decode individual bits xi of x , while only looking at k bits of w

I Hard question: optimal tradeoff between k and m?

I Using quantum, we can show: k = 2⇒ m ≥ 2Ω(n)

I Still the only superpolynomial bound known for LDCs

Locally decodable codes

I Error-correcting code: C : {0, 1}n → {0, 1}m, m ≥ n

Decoder: if w ∈ {0, 1}m is “close” to C (x), then D(w) = x

I Inefficient if you only want to decode a small part of x

I C is k-query locally decodable if there is a decoder D that can
decode individual bits xi of x , while only looking at k bits of w

I Hard question: optimal tradeoff between k and m?

I Using quantum, we can show: k = 2⇒ m ≥ 2Ω(n)

I Still the only superpolynomial bound known for LDCs

Locally decodable codes

I Error-correcting code: C : {0, 1}n → {0, 1}m, m ≥ n

Decoder: if w ∈ {0, 1}m is “close” to C (x), then D(w) = x

I Inefficient if you only want to decode a small part of x

I C is k-query locally decodable if there is a decoder D that can
decode individual bits xi of x , while only looking at k bits of w

I Hard question: optimal tradeoff between k and m?

I Using quantum, we can show: k = 2⇒ m ≥ 2Ω(n)

I Still the only superpolynomial bound known for LDCs

Locally decodable codes

I Error-correcting code: C : {0, 1}n → {0, 1}m, m ≥ n

Decoder: if w ∈ {0, 1}m is “close” to C (x), then D(w) = x

I Inefficient if you only want to decode a small part of x

I C is k-query locally decodable if there is a decoder D that can
decode individual bits xi of x , while only looking at k bits of w

I Hard question: optimal tradeoff between k and m?

I Using quantum, we can show: k = 2⇒ m ≥ 2Ω(n)

I Still the only superpolynomial bound known for LDCs

Locally decodable codes

I Error-correcting code: C : {0, 1}n → {0, 1}m, m ≥ n

Decoder: if w ∈ {0, 1}m is “close” to C (x), then D(w) = x

I Inefficient if you only want to decode a small part of x

I C is k-query locally decodable if there is a decoder D that can
decode individual bits xi of x , while only looking at k bits of w

I Hard question: optimal tradeoff between k and m?

I Using quantum, we can show: k = 2⇒ m ≥ 2Ω(n)

I Still the only superpolynomial bound known for LDCs

Locally decodable codes

I Error-correcting code: C : {0, 1}n → {0, 1}m, m ≥ n

Decoder: if w ∈ {0, 1}m is “close” to C (x), then D(w) = x

I Inefficient if you only want to decode a small part of x

I C is k-query locally decodable if there is a decoder D that can
decode individual bits xi of x , while only looking at k bits of w

I Hard question: optimal tradeoff between k and m?

I Using quantum, we can show: k = 2⇒ m ≥ 2Ω(n)

I Still the only superpolynomial bound known for LDCs

Example of 2-query LDC: Hadamard

I Define C (x)j = j · x mod 2 for all j ∈ {0, 1}n,

so C (x) is a codeword of 2n bits

I Decoding xi from corrupted codeword w ≈ C (x):

1. pick random j ∈ {0, 1}n
2. query w at positions j and j ⊕ ei
3. output wj ⊕ wj⊕ei

I This works perfectly if there is no noise (w = C (x)):

wj ⊕ wj⊕ei = (j · x)⊕ ((j ⊕ ei) · x) = ei · x = xi

I With δm errors, Prj [wj 6= C (x)j] ≤ δ
and Prj [wj⊕ei 6= C (x)j⊕ei] ≤ δ,

so Pr[we correctly output xi] ≥ 1− 2δ

Example of 2-query LDC: Hadamard

I Define C (x)j = j · x mod 2 for all j ∈ {0, 1}n

,

so C (x) is a codeword of 2n bits

I Decoding xi from corrupted codeword w ≈ C (x):

1. pick random j ∈ {0, 1}n
2. query w at positions j and j ⊕ ei
3. output wj ⊕ wj⊕ei

I This works perfectly if there is no noise (w = C (x)):

wj ⊕ wj⊕ei = (j · x)⊕ ((j ⊕ ei) · x) = ei · x = xi

I With δm errors, Prj [wj 6= C (x)j] ≤ δ
and Prj [wj⊕ei 6= C (x)j⊕ei] ≤ δ,

so Pr[we correctly output xi] ≥ 1− 2δ

Example of 2-query LDC: Hadamard

I Define C (x)j = j · x mod 2 for all j ∈ {0, 1}n,

so C (x) is a codeword of 2n bits

I Decoding xi from corrupted codeword w ≈ C (x):

1. pick random j ∈ {0, 1}n
2. query w at positions j and j ⊕ ei
3. output wj ⊕ wj⊕ei

I This works perfectly if there is no noise (w = C (x)):

wj ⊕ wj⊕ei = (j · x)⊕ ((j ⊕ ei) · x) = ei · x = xi

I With δm errors, Prj [wj 6= C (x)j] ≤ δ
and Prj [wj⊕ei 6= C (x)j⊕ei] ≤ δ,

so Pr[we correctly output xi] ≥ 1− 2δ

Example of 2-query LDC: Hadamard

I Define C (x)j = j · x mod 2 for all j ∈ {0, 1}n,

so C (x) is a codeword of 2n bits

I Decoding xi from corrupted codeword w ≈ C (x):

1. pick random j ∈ {0, 1}n
2. query w at positions j and j ⊕ ei
3. output wj ⊕ wj⊕ei

I This works perfectly if there is no noise (w = C (x)):

wj ⊕ wj⊕ei = (j · x)⊕ ((j ⊕ ei) · x) = ei · x = xi

I With δm errors, Prj [wj 6= C (x)j] ≤ δ
and Prj [wj⊕ei 6= C (x)j⊕ei] ≤ δ,

so Pr[we correctly output xi] ≥ 1− 2δ

Example of 2-query LDC: Hadamard

I Define C (x)j = j · x mod 2 for all j ∈ {0, 1}n,

so C (x) is a codeword of 2n bits

I Decoding xi from corrupted codeword w ≈ C (x):

1. pick random j ∈ {0, 1}n

2. query w at positions j and j ⊕ ei
3. output wj ⊕ wj⊕ei

I This works perfectly if there is no noise (w = C (x)):

wj ⊕ wj⊕ei = (j · x)⊕ ((j ⊕ ei) · x) = ei · x = xi

I With δm errors, Prj [wj 6= C (x)j] ≤ δ
and Prj [wj⊕ei 6= C (x)j⊕ei] ≤ δ,

so Pr[we correctly output xi] ≥ 1− 2δ

Example of 2-query LDC: Hadamard

I Define C (x)j = j · x mod 2 for all j ∈ {0, 1}n,

so C (x) is a codeword of 2n bits

I Decoding xi from corrupted codeword w ≈ C (x):

1. pick random j ∈ {0, 1}n
2. query w at positions j and j ⊕ ei

3. output wj ⊕ wj⊕ei

I This works perfectly if there is no noise (w = C (x)):

wj ⊕ wj⊕ei = (j · x)⊕ ((j ⊕ ei) · x) = ei · x = xi

I With δm errors, Prj [wj 6= C (x)j] ≤ δ
and Prj [wj⊕ei 6= C (x)j⊕ei] ≤ δ,

so Pr[we correctly output xi] ≥ 1− 2δ

Example of 2-query LDC: Hadamard

I Define C (x)j = j · x mod 2 for all j ∈ {0, 1}n,

so C (x) is a codeword of 2n bits

I Decoding xi from corrupted codeword w ≈ C (x):

1. pick random j ∈ {0, 1}n
2. query w at positions j and j ⊕ ei
3. output wj ⊕ wj⊕ei

I This works perfectly if there is no noise (w = C (x)):

wj ⊕ wj⊕ei = (j · x)⊕ ((j ⊕ ei) · x) = ei · x = xi

I With δm errors, Prj [wj 6= C (x)j] ≤ δ
and Prj [wj⊕ei 6= C (x)j⊕ei] ≤ δ,

so Pr[we correctly output xi] ≥ 1− 2δ

Example of 2-query LDC: Hadamard

I Define C (x)j = j · x mod 2 for all j ∈ {0, 1}n,

so C (x) is a codeword of 2n bits

I Decoding xi from corrupted codeword w ≈ C (x):

1. pick random j ∈ {0, 1}n
2. query w at positions j and j ⊕ ei
3. output wj ⊕ wj⊕ei

I This works perfectly if there is no noise (w = C (x)):

wj ⊕ wj⊕ei = (j · x)⊕ ((j ⊕ ei) · x) = ei · x = xi

I With δm errors, Prj [wj 6= C (x)j] ≤ δ
and Prj [wj⊕ei 6= C (x)j⊕ei] ≤ δ,

so Pr[we correctly output xi] ≥ 1− 2δ

Example of 2-query LDC: Hadamard

I Define C (x)j = j · x mod 2 for all j ∈ {0, 1}n,

so C (x) is a codeword of 2n bits

I Decoding xi from corrupted codeword w ≈ C (x):

1. pick random j ∈ {0, 1}n
2. query w at positions j and j ⊕ ei
3. output wj ⊕ wj⊕ei

I This works perfectly if there is no noise (w = C (x)):

wj ⊕ wj⊕ei

= (j · x)⊕ ((j ⊕ ei) · x) = ei · x = xi

I With δm errors, Prj [wj 6= C (x)j] ≤ δ
and Prj [wj⊕ei 6= C (x)j⊕ei] ≤ δ,

so Pr[we correctly output xi] ≥ 1− 2δ

Example of 2-query LDC: Hadamard

I Define C (x)j = j · x mod 2 for all j ∈ {0, 1}n,

so C (x) is a codeword of 2n bits

I Decoding xi from corrupted codeword w ≈ C (x):

1. pick random j ∈ {0, 1}n
2. query w at positions j and j ⊕ ei
3. output wj ⊕ wj⊕ei

I This works perfectly if there is no noise (w = C (x)):

wj ⊕ wj⊕ei = (j · x)⊕ ((j ⊕ ei) · x)

= ei · x = xi

I With δm errors, Prj [wj 6= C (x)j] ≤ δ
and Prj [wj⊕ei 6= C (x)j⊕ei] ≤ δ,

so Pr[we correctly output xi] ≥ 1− 2δ

Example of 2-query LDC: Hadamard

I Define C (x)j = j · x mod 2 for all j ∈ {0, 1}n,

so C (x) is a codeword of 2n bits

I Decoding xi from corrupted codeword w ≈ C (x):

1. pick random j ∈ {0, 1}n
2. query w at positions j and j ⊕ ei
3. output wj ⊕ wj⊕ei

I This works perfectly if there is no noise (w = C (x)):

wj ⊕ wj⊕ei = (j · x)⊕ ((j ⊕ ei) · x) = ei · x

= xi

I With δm errors, Prj [wj 6= C (x)j] ≤ δ
and Prj [wj⊕ei 6= C (x)j⊕ei] ≤ δ,

so Pr[we correctly output xi] ≥ 1− 2δ

Example of 2-query LDC: Hadamard

I Define C (x)j = j · x mod 2 for all j ∈ {0, 1}n,

so C (x) is a codeword of 2n bits

I Decoding xi from corrupted codeword w ≈ C (x):

1. pick random j ∈ {0, 1}n
2. query w at positions j and j ⊕ ei
3. output wj ⊕ wj⊕ei

I This works perfectly if there is no noise (w = C (x)):

wj ⊕ wj⊕ei = (j · x)⊕ ((j ⊕ ei) · x) = ei · x = xi

I With δm errors, Prj [wj 6= C (x)j] ≤ δ
and Prj [wj⊕ei 6= C (x)j⊕ei] ≤ δ,

so Pr[we correctly output xi] ≥ 1− 2δ

Example of 2-query LDC: Hadamard

I Define C (x)j = j · x mod 2 for all j ∈ {0, 1}n,

so C (x) is a codeword of 2n bits

I Decoding xi from corrupted codeword w ≈ C (x):

1. pick random j ∈ {0, 1}n
2. query w at positions j and j ⊕ ei
3. output wj ⊕ wj⊕ei

I This works perfectly if there is no noise (w = C (x)):

wj ⊕ wj⊕ei = (j · x)⊕ ((j ⊕ ei) · x) = ei · x = xi

I With δm errors, Prj [wj 6= C (x)j] ≤ δ

and Prj [wj⊕ei 6= C (x)j⊕ei] ≤ δ,

so Pr[we correctly output xi] ≥ 1− 2δ

Example of 2-query LDC: Hadamard

I Define C (x)j = j · x mod 2 for all j ∈ {0, 1}n,

so C (x) is a codeword of 2n bits

I Decoding xi from corrupted codeword w ≈ C (x):

1. pick random j ∈ {0, 1}n
2. query w at positions j and j ⊕ ei
3. output wj ⊕ wj⊕ei

I This works perfectly if there is no noise (w = C (x)):

wj ⊕ wj⊕ei = (j · x)⊕ ((j ⊕ ei) · x) = ei · x = xi

I With δm errors, Prj [wj 6= C (x)j] ≤ δ
and Prj [wj⊕ei 6= C (x)j⊕ei] ≤ δ,

so Pr[we correctly output xi] ≥ 1− 2δ

Example of 2-query LDC: Hadamard

I Define C (x)j = j · x mod 2 for all j ∈ {0, 1}n,

so C (x) is a codeword of 2n bits

I Decoding xi from corrupted codeword w ≈ C (x):

1. pick random j ∈ {0, 1}n
2. query w at positions j and j ⊕ ei
3. output wj ⊕ wj⊕ei

I This works perfectly if there is no noise (w = C (x)):

wj ⊕ wj⊕ei = (j · x)⊕ ((j ⊕ ei) · x) = ei · x = xi

I With δm errors, Prj [wj 6= C (x)j] ≤ δ
and Prj [wj⊕ei 6= C (x)j⊕ei] ≤ δ,

so Pr[we correctly output xi] ≥ 1− 2δ

Exponential lower bound [KW03]

I Given 2-query LDC C : {0, 1}n → {0, 1}m.
Normal form for the classical decoder of xi [KT00]:
query random (j , k) in matching Mi , output C (x)j ⊕ C (x)k

I Def superposition over C (x): |φx〉 = 1√
m

∑m
j=1(−1)C(x)j |j〉

I We can predict xi from |φx〉: view Mi as a measurement with
m/2 2-dimensional projectors, Pjk = |j〉〈j |+ |k〉〈k |

I Applying Mi to |φx〉 gives
1√
2

((−1)C(x)j |j〉+ (−1)C(x)k |k〉) for random (j , k) ∈ Mi .

Measurement in basis {|j〉 ± |k〉} gives C (x)j ⊕ C (x)k .

But that’s the output of the classical decoder, so equals xi !

I |φx〉 has logm qubits, but predicts each of x1, . . . , xn
I Random access code bound [Nayak’99]:

logm ≥ Ω(n) ⇒ m ≥ 2Ω(n)

Exponential lower bound [KW03]

I Given 2-query LDC C : {0, 1}n → {0, 1}m.

Normal form for the classical decoder of xi [KT00]:
query random (j , k) in matching Mi , output C (x)j ⊕ C (x)k

I Def superposition over C (x): |φx〉 = 1√
m

∑m
j=1(−1)C(x)j |j〉

I We can predict xi from |φx〉: view Mi as a measurement with
m/2 2-dimensional projectors, Pjk = |j〉〈j |+ |k〉〈k |

I Applying Mi to |φx〉 gives
1√
2

((−1)C(x)j |j〉+ (−1)C(x)k |k〉) for random (j , k) ∈ Mi .

Measurement in basis {|j〉 ± |k〉} gives C (x)j ⊕ C (x)k .

But that’s the output of the classical decoder, so equals xi !

I |φx〉 has logm qubits, but predicts each of x1, . . . , xn
I Random access code bound [Nayak’99]:

logm ≥ Ω(n) ⇒ m ≥ 2Ω(n)

Exponential lower bound [KW03]

I Given 2-query LDC C : {0, 1}n → {0, 1}m.
Normal form for the classical decoder of xi [KT00]:
query random (j , k) in matching Mi , output C (x)j ⊕ C (x)k

I Def superposition over C (x): |φx〉 = 1√
m

∑m
j=1(−1)C(x)j |j〉

I We can predict xi from |φx〉: view Mi as a measurement with
m/2 2-dimensional projectors, Pjk = |j〉〈j |+ |k〉〈k |

I Applying Mi to |φx〉 gives
1√
2

((−1)C(x)j |j〉+ (−1)C(x)k |k〉) for random (j , k) ∈ Mi .

Measurement in basis {|j〉 ± |k〉} gives C (x)j ⊕ C (x)k .

But that’s the output of the classical decoder, so equals xi !

I |φx〉 has logm qubits, but predicts each of x1, . . . , xn
I Random access code bound [Nayak’99]:

logm ≥ Ω(n) ⇒ m ≥ 2Ω(n)

Exponential lower bound [KW03]

I Given 2-query LDC C : {0, 1}n → {0, 1}m.
Normal form for the classical decoder of xi [KT00]:
query random (j , k) in matching Mi , output C (x)j ⊕ C (x)k

I Def superposition over C (x):

|φx〉 = 1√
m

∑m
j=1(−1)C(x)j |j〉

I We can predict xi from |φx〉: view Mi as a measurement with
m/2 2-dimensional projectors, Pjk = |j〉〈j |+ |k〉〈k |

I Applying Mi to |φx〉 gives
1√
2

((−1)C(x)j |j〉+ (−1)C(x)k |k〉) for random (j , k) ∈ Mi .

Measurement in basis {|j〉 ± |k〉} gives C (x)j ⊕ C (x)k .

But that’s the output of the classical decoder, so equals xi !

I |φx〉 has logm qubits, but predicts each of x1, . . . , xn
I Random access code bound [Nayak’99]:

logm ≥ Ω(n) ⇒ m ≥ 2Ω(n)

Exponential lower bound [KW03]

I Given 2-query LDC C : {0, 1}n → {0, 1}m.
Normal form for the classical decoder of xi [KT00]:
query random (j , k) in matching Mi , output C (x)j ⊕ C (x)k

I Def superposition over C (x): |φx〉 = 1√
m

∑m
j=1(−1)C(x)j |j〉

I We can predict xi from |φx〉: view Mi as a measurement with
m/2 2-dimensional projectors, Pjk = |j〉〈j |+ |k〉〈k |

I Applying Mi to |φx〉 gives
1√
2

((−1)C(x)j |j〉+ (−1)C(x)k |k〉) for random (j , k) ∈ Mi .

Measurement in basis {|j〉 ± |k〉} gives C (x)j ⊕ C (x)k .

But that’s the output of the classical decoder, so equals xi !

I |φx〉 has logm qubits, but predicts each of x1, . . . , xn
I Random access code bound [Nayak’99]:

logm ≥ Ω(n) ⇒ m ≥ 2Ω(n)

Exponential lower bound [KW03]

I Given 2-query LDC C : {0, 1}n → {0, 1}m.
Normal form for the classical decoder of xi [KT00]:
query random (j , k) in matching Mi , output C (x)j ⊕ C (x)k

I Def superposition over C (x): |φx〉 = 1√
m

∑m
j=1(−1)C(x)j |j〉

I We can predict xi from |φx〉

: view Mi as a measurement with
m/2 2-dimensional projectors, Pjk = |j〉〈j |+ |k〉〈k |

I Applying Mi to |φx〉 gives
1√
2

((−1)C(x)j |j〉+ (−1)C(x)k |k〉) for random (j , k) ∈ Mi .

Measurement in basis {|j〉 ± |k〉} gives C (x)j ⊕ C (x)k .

But that’s the output of the classical decoder, so equals xi !

I |φx〉 has logm qubits, but predicts each of x1, . . . , xn
I Random access code bound [Nayak’99]:

logm ≥ Ω(n) ⇒ m ≥ 2Ω(n)

Exponential lower bound [KW03]

I Given 2-query LDC C : {0, 1}n → {0, 1}m.
Normal form for the classical decoder of xi [KT00]:
query random (j , k) in matching Mi , output C (x)j ⊕ C (x)k

I Def superposition over C (x): |φx〉 = 1√
m

∑m
j=1(−1)C(x)j |j〉

I We can predict xi from |φx〉: view Mi as a measurement with
m/2 2-dimensional projectors, Pjk = |j〉〈j |+ |k〉〈k |

I Applying Mi to |φx〉 gives
1√
2

((−1)C(x)j |j〉+ (−1)C(x)k |k〉) for random (j , k) ∈ Mi .

Measurement in basis {|j〉 ± |k〉} gives C (x)j ⊕ C (x)k .

But that’s the output of the classical decoder, so equals xi !

I |φx〉 has logm qubits, but predicts each of x1, . . . , xn
I Random access code bound [Nayak’99]:

logm ≥ Ω(n) ⇒ m ≥ 2Ω(n)

Exponential lower bound [KW03]

I Given 2-query LDC C : {0, 1}n → {0, 1}m.
Normal form for the classical decoder of xi [KT00]:
query random (j , k) in matching Mi , output C (x)j ⊕ C (x)k

I Def superposition over C (x): |φx〉 = 1√
m

∑m
j=1(−1)C(x)j |j〉

I We can predict xi from |φx〉: view Mi as a measurement with
m/2 2-dimensional projectors, Pjk = |j〉〈j |+ |k〉〈k |

I Applying Mi to |φx〉 gives

1√
2

((−1)C(x)j |j〉+ (−1)C(x)k |k〉) for random (j , k) ∈ Mi .

Measurement in basis {|j〉 ± |k〉} gives C (x)j ⊕ C (x)k .

But that’s the output of the classical decoder, so equals xi !

I |φx〉 has logm qubits, but predicts each of x1, . . . , xn
I Random access code bound [Nayak’99]:

logm ≥ Ω(n) ⇒ m ≥ 2Ω(n)

Exponential lower bound [KW03]

I Given 2-query LDC C : {0, 1}n → {0, 1}m.
Normal form for the classical decoder of xi [KT00]:
query random (j , k) in matching Mi , output C (x)j ⊕ C (x)k

I Def superposition over C (x): |φx〉 = 1√
m

∑m
j=1(−1)C(x)j |j〉

I We can predict xi from |φx〉: view Mi as a measurement with
m/2 2-dimensional projectors, Pjk = |j〉〈j |+ |k〉〈k |

I Applying Mi to |φx〉 gives
1√
2

((−1)C(x)j |j〉+ (−1)C(x)k |k〉) for random (j , k) ∈ Mi .

Measurement in basis {|j〉 ± |k〉} gives C (x)j ⊕ C (x)k .

But that’s the output of the classical decoder, so equals xi !

I |φx〉 has logm qubits, but predicts each of x1, . . . , xn
I Random access code bound [Nayak’99]:

logm ≥ Ω(n) ⇒ m ≥ 2Ω(n)

Exponential lower bound [KW03]

I Given 2-query LDC C : {0, 1}n → {0, 1}m.
Normal form for the classical decoder of xi [KT00]:
query random (j , k) in matching Mi , output C (x)j ⊕ C (x)k

I Def superposition over C (x): |φx〉 = 1√
m

∑m
j=1(−1)C(x)j |j〉

I We can predict xi from |φx〉: view Mi as a measurement with
m/2 2-dimensional projectors, Pjk = |j〉〈j |+ |k〉〈k |

I Applying Mi to |φx〉 gives
1√
2

((−1)C(x)j |j〉+ (−1)C(x)k |k〉) for random (j , k) ∈ Mi .

Measurement in basis {|j〉 ± |k〉} gives C (x)j ⊕ C (x)k .

But that’s the output of the classical decoder, so equals xi !

I |φx〉 has logm qubits, but predicts each of x1, . . . , xn
I Random access code bound [Nayak’99]:

logm ≥ Ω(n) ⇒ m ≥ 2Ω(n)

Exponential lower bound [KW03]

I Given 2-query LDC C : {0, 1}n → {0, 1}m.
Normal form for the classical decoder of xi [KT00]:
query random (j , k) in matching Mi , output C (x)j ⊕ C (x)k

I Def superposition over C (x): |φx〉 = 1√
m

∑m
j=1(−1)C(x)j |j〉

I We can predict xi from |φx〉: view Mi as a measurement with
m/2 2-dimensional projectors, Pjk = |j〉〈j |+ |k〉〈k |

I Applying Mi to |φx〉 gives
1√
2

((−1)C(x)j |j〉+ (−1)C(x)k |k〉) for random (j , k) ∈ Mi .

Measurement in basis {|j〉 ± |k〉} gives C (x)j ⊕ C (x)k .

But that’s the output of the classical decoder, so equals xi !

I |φx〉 has logm qubits, but predicts each of x1, . . . , xn
I Random access code bound [Nayak’99]:

logm ≥ Ω(n) ⇒ m ≥ 2Ω(n)

Exponential lower bound [KW03]

I Given 2-query LDC C : {0, 1}n → {0, 1}m.
Normal form for the classical decoder of xi [KT00]:
query random (j , k) in matching Mi , output C (x)j ⊕ C (x)k

I Def superposition over C (x): |φx〉 = 1√
m

∑m
j=1(−1)C(x)j |j〉

I We can predict xi from |φx〉: view Mi as a measurement with
m/2 2-dimensional projectors, Pjk = |j〉〈j |+ |k〉〈k |

I Applying Mi to |φx〉 gives
1√
2

((−1)C(x)j |j〉+ (−1)C(x)k |k〉) for random (j , k) ∈ Mi .

Measurement in basis {|j〉 ± |k〉} gives C (x)j ⊕ C (x)k .

But that’s the output of the classical decoder, so equals xi !

I |φx〉 has logm qubits, but predicts each of x1, . . . , xn

I Random access code bound [Nayak’99]:
logm ≥ Ω(n) ⇒ m ≥ 2Ω(n)

Exponential lower bound [KW03]

I Given 2-query LDC C : {0, 1}n → {0, 1}m.
Normal form for the classical decoder of xi [KT00]:
query random (j , k) in matching Mi , output C (x)j ⊕ C (x)k

I Def superposition over C (x): |φx〉 = 1√
m

∑m
j=1(−1)C(x)j |j〉

I We can predict xi from |φx〉: view Mi as a measurement with
m/2 2-dimensional projectors, Pjk = |j〉〈j |+ |k〉〈k |

I Applying Mi to |φx〉 gives
1√
2

((−1)C(x)j |j〉+ (−1)C(x)k |k〉) for random (j , k) ∈ Mi .

Measurement in basis {|j〉 ± |k〉} gives C (x)j ⊕ C (x)k .

But that’s the output of the classical decoder, so equals xi !

I |φx〉 has logm qubits, but predicts each of x1, . . . , xn
I Random access code bound [Nayak’99]:

logm ≥ Ω(n)

⇒ m ≥ 2Ω(n)

Exponential lower bound [KW03]

I Given 2-query LDC C : {0, 1}n → {0, 1}m.
Normal form for the classical decoder of xi [KT00]:
query random (j , k) in matching Mi , output C (x)j ⊕ C (x)k

I Def superposition over C (x): |φx〉 = 1√
m

∑m
j=1(−1)C(x)j |j〉

I We can predict xi from |φx〉: view Mi as a measurement with
m/2 2-dimensional projectors, Pjk = |j〉〈j |+ |k〉〈k |

I Applying Mi to |φx〉 gives
1√
2

((−1)C(x)j |j〉+ (−1)C(x)k |k〉) for random (j , k) ∈ Mi .

Measurement in basis {|j〉 ± |k〉} gives C (x)j ⊕ C (x)k .

But that’s the output of the classical decoder, so equals xi !

I |φx〉 has logm qubits, but predicts each of x1, . . . , xn
I Random access code bound [Nayak’99]:

logm ≥ Ω(n) ⇒ m ≥ 2Ω(n)

Example 2:

Lower bounds for
linear programs

Background: solving NP by linear programs?

I Famous P-problem: linear programming [Khachian’79]

I Famous NP-hard problem: Traveling Salesman Problem

I TSP polytope: convex hull of all Hamiltonian cycles on

complete n-vertex graph. This is a polytope in R(n2).
TSP: minimize linear function over this polytope
Unfortunately, polytope needs exponentially many inequalities

I Extended formulation: linear inequalities on
(n

2

)
+ k variables

s.t. projection on first
(n

2

)
variables gives TSP polytope

I Swart’86 claimed polynomial-size extended formulation,
which would give poynomial-time LP-algorithm for TSP

I Yannakakis’88: symmetric EFs for TSP are exponentially big

I Swart’s LPs were symmetric, so they couldn’t work

I FMPTW’12 show the same for all extended formulations

Background: solving NP by linear programs?

I Famous P-problem: linear programming [Khachian’79]

I Famous NP-hard problem: Traveling Salesman Problem

I TSP polytope: convex hull of all Hamiltonian cycles on

complete n-vertex graph. This is a polytope in R(n2).
TSP: minimize linear function over this polytope
Unfortunately, polytope needs exponentially many inequalities

I Extended formulation: linear inequalities on
(n

2

)
+ k variables

s.t. projection on first
(n

2

)
variables gives TSP polytope

I Swart’86 claimed polynomial-size extended formulation,
which would give poynomial-time LP-algorithm for TSP

I Yannakakis’88: symmetric EFs for TSP are exponentially big

I Swart’s LPs were symmetric, so they couldn’t work

I FMPTW’12 show the same for all extended formulations

Background: solving NP by linear programs?

I Famous P-problem: linear programming [Khachian’79]

I Famous NP-hard problem: Traveling Salesman Problem

I TSP polytope: convex hull of all Hamiltonian cycles on

complete n-vertex graph. This is a polytope in R(n2).
TSP: minimize linear function over this polytope
Unfortunately, polytope needs exponentially many inequalities

I Extended formulation: linear inequalities on
(n

2

)
+ k variables

s.t. projection on first
(n

2

)
variables gives TSP polytope

I Swart’86 claimed polynomial-size extended formulation,
which would give poynomial-time LP-algorithm for TSP

I Yannakakis’88: symmetric EFs for TSP are exponentially big

I Swart’s LPs were symmetric, so they couldn’t work

I FMPTW’12 show the same for all extended formulations

Background: solving NP by linear programs?

I Famous P-problem: linear programming [Khachian’79]

I Famous NP-hard problem: Traveling Salesman Problem

I TSP polytope: convex hull of all Hamiltonian cycles on

complete n-vertex graph. This is a polytope in R(n2).

TSP: minimize linear function over this polytope
Unfortunately, polytope needs exponentially many inequalities

I Extended formulation: linear inequalities on
(n

2

)
+ k variables

s.t. projection on first
(n

2

)
variables gives TSP polytope

I Swart’86 claimed polynomial-size extended formulation,
which would give poynomial-time LP-algorithm for TSP

I Yannakakis’88: symmetric EFs for TSP are exponentially big

I Swart’s LPs were symmetric, so they couldn’t work

I FMPTW’12 show the same for all extended formulations

Background: solving NP by linear programs?

I Famous P-problem: linear programming [Khachian’79]

I Famous NP-hard problem: Traveling Salesman Problem

I TSP polytope: convex hull of all Hamiltonian cycles on

complete n-vertex graph. This is a polytope in R(n2).
TSP: minimize linear function over this polytope

Unfortunately, polytope needs exponentially many inequalities

I Extended formulation: linear inequalities on
(n

2

)
+ k variables

s.t. projection on first
(n

2

)
variables gives TSP polytope

I Swart’86 claimed polynomial-size extended formulation,
which would give poynomial-time LP-algorithm for TSP

I Yannakakis’88: symmetric EFs for TSP are exponentially big

I Swart’s LPs were symmetric, so they couldn’t work

I FMPTW’12 show the same for all extended formulations

Background: solving NP by linear programs?

I Famous P-problem: linear programming [Khachian’79]

I Famous NP-hard problem: Traveling Salesman Problem

I TSP polytope: convex hull of all Hamiltonian cycles on

complete n-vertex graph. This is a polytope in R(n2).
TSP: minimize linear function over this polytope
Unfortunately, polytope needs exponentially many inequalities

I Extended formulation: linear inequalities on
(n

2

)
+ k variables

s.t. projection on first
(n

2

)
variables gives TSP polytope

I Swart’86 claimed polynomial-size extended formulation,
which would give poynomial-time LP-algorithm for TSP

I Yannakakis’88: symmetric EFs for TSP are exponentially big

I Swart’s LPs were symmetric, so they couldn’t work

I FMPTW’12 show the same for all extended formulations

Background: solving NP by linear programs?

I Famous P-problem: linear programming [Khachian’79]

I Famous NP-hard problem: Traveling Salesman Problem

I TSP polytope: convex hull of all Hamiltonian cycles on

complete n-vertex graph. This is a polytope in R(n2).
TSP: minimize linear function over this polytope
Unfortunately, polytope needs exponentially many inequalities

I Extended formulation: linear inequalities on
(n

2

)
+ k variables

s.t. projection on first
(n

2

)
variables gives TSP polytope

I Swart’86 claimed polynomial-size extended formulation,
which would give poynomial-time LP-algorithm for TSP

I Yannakakis’88: symmetric EFs for TSP are exponentially big

I Swart’s LPs were symmetric, so they couldn’t work

I FMPTW’12 show the same for all extended formulations

Background: solving NP by linear programs?

I Famous P-problem: linear programming [Khachian’79]

I Famous NP-hard problem: Traveling Salesman Problem

I TSP polytope: convex hull of all Hamiltonian cycles on

complete n-vertex graph. This is a polytope in R(n2).
TSP: minimize linear function over this polytope
Unfortunately, polytope needs exponentially many inequalities

I Extended formulation: linear inequalities on
(n

2

)
+ k variables

s.t. projection on first
(n

2

)
variables gives TSP polytope

I Swart’86 claimed polynomial-size extended formulation,
which would give poynomial-time LP-algorithm for TSP

I Yannakakis’88: symmetric EFs for TSP are exponentially big

I Swart’s LPs were symmetric, so they couldn’t work

I FMPTW’12 show the same for all extended formulations

Background: solving NP by linear programs?

I Famous P-problem: linear programming [Khachian’79]

I Famous NP-hard problem: Traveling Salesman Problem

I TSP polytope: convex hull of all Hamiltonian cycles on

complete n-vertex graph. This is a polytope in R(n2).
TSP: minimize linear function over this polytope
Unfortunately, polytope needs exponentially many inequalities

I Extended formulation: linear inequalities on
(n

2

)
+ k variables

s.t. projection on first
(n

2

)
variables gives TSP polytope

I Swart’86 claimed polynomial-size extended formulation,
which would give poynomial-time LP-algorithm for TSP

I Yannakakis’88: symmetric EFs for TSP are exponentially big

I Swart’s LPs were symmetric, so they couldn’t work

I FMPTW’12 show the same for all extended formulations

Background: solving NP by linear programs?

I Famous P-problem: linear programming [Khachian’79]

I Famous NP-hard problem: Traveling Salesman Problem

I TSP polytope: convex hull of all Hamiltonian cycles on

complete n-vertex graph. This is a polytope in R(n2).
TSP: minimize linear function over this polytope
Unfortunately, polytope needs exponentially many inequalities

I Extended formulation: linear inequalities on
(n

2

)
+ k variables

s.t. projection on first
(n

2

)
variables gives TSP polytope

I Swart’86 claimed polynomial-size extended formulation,
which would give poynomial-time LP-algorithm for TSP

I Yannakakis’88: symmetric EFs for TSP are exponentially big

I Swart’s LPs were symmetric, so they couldn’t work

I FMPTW’12 show the same for all extended formulations

Background: solving NP by linear programs?

I Famous P-problem: linear programming [Khachian’79]

I Famous NP-hard problem: Traveling Salesman Problem

I TSP polytope: convex hull of all Hamiltonian cycles on

complete n-vertex graph. This is a polytope in R(n2).
TSP: minimize linear function over this polytope
Unfortunately, polytope needs exponentially many inequalities

I Extended formulation: linear inequalities on
(n

2

)
+ k variables

s.t. projection on first
(n

2

)
variables gives TSP polytope

I Swart’86 claimed polynomial-size extended formulation,
which would give poynomial-time LP-algorithm for TSP

I Yannakakis’88: symmetric EFs for TSP are exponentially big

I Swart’s LPs were symmetric, so they couldn’t work

I FMPTW’12 show the same for all extended formulations

Quantum vs classical communication complexity

I Communication complexity: Alice gets input a ∈ {0, 1}k ,
Bob gets input b ∈ {0, 1}k , they need to compute
f : {0, 1}k × {0, 1}k → {0, 1} with minimal communication

I Nondeterministic communication complexity: protocol
outputs 1 with positive probability on input a, b iff f (a, b) = 1

I W’00: exponential separation between quantum and classical
nondeterministic protocols for support of the following 2k × 2k

matrix: Mab = (1− aTb)2

I Classical protocols need Ω(k) bits of communication for this

I ∃ protocol for this using O(log k) qubits of communication

Quantum vs classical communication complexity

I Communication complexity: Alice gets input a ∈ {0, 1}k ,
Bob gets input b ∈ {0, 1}k , they need to compute
f : {0, 1}k × {0, 1}k → {0, 1} with minimal communication

I Nondeterministic communication complexity: protocol
outputs 1 with positive probability on input a, b iff f (a, b) = 1

I W’00: exponential separation between quantum and classical
nondeterministic protocols for support of the following 2k × 2k

matrix: Mab = (1− aTb)2

I Classical protocols need Ω(k) bits of communication for this

I ∃ protocol for this using O(log k) qubits of communication

Quantum vs classical communication complexity

I Communication complexity: Alice gets input a ∈ {0, 1}k ,
Bob gets input b ∈ {0, 1}k , they need to compute
f : {0, 1}k × {0, 1}k → {0, 1} with minimal communication

I Nondeterministic communication complexity: protocol
outputs 1 with positive probability on input a, b iff f (a, b) = 1

I W’00: exponential separation between quantum and classical
nondeterministic protocols for support of the following 2k × 2k

matrix: Mab = (1− aTb)2

I Classical protocols need Ω(k) bits of communication for this

I ∃ protocol for this using O(log k) qubits of communication

Quantum vs classical communication complexity

I Communication complexity: Alice gets input a ∈ {0, 1}k ,
Bob gets input b ∈ {0, 1}k , they need to compute
f : {0, 1}k × {0, 1}k → {0, 1} with minimal communication

I Nondeterministic communication complexity: protocol
outputs 1 with positive probability on input a, b iff f (a, b) = 1

I W’00: exponential separation between quantum and classical
nondeterministic protocols for support of the following 2k × 2k

matrix: Mab = (1− aTb)2

I Classical protocols need Ω(k) bits of communication for this

I ∃ protocol for this using O(log k) qubits of communication

Quantum vs classical communication complexity

I Communication complexity: Alice gets input a ∈ {0, 1}k ,
Bob gets input b ∈ {0, 1}k , they need to compute
f : {0, 1}k × {0, 1}k → {0, 1} with minimal communication

I Nondeterministic communication complexity: protocol
outputs 1 with positive probability on input a, b iff f (a, b) = 1

I W’00: exponential separation between quantum and classical
nondeterministic protocols for support of the following 2k × 2k

matrix: Mab = (1− aTb)2

I Classical protocols need Ω(k) bits of communication for this

I ∃ protocol for this using O(log k) qubits of communication

Quantum vs classical communication complexity

I Communication complexity: Alice gets input a ∈ {0, 1}k ,
Bob gets input b ∈ {0, 1}k , they need to compute
f : {0, 1}k × {0, 1}k → {0, 1} with minimal communication

I Nondeterministic communication complexity: protocol
outputs 1 with positive probability on input a, b iff f (a, b) = 1

I W’00: exponential separation between quantum and classical
nondeterministic protocols for support of the following 2k × 2k

matrix: Mab = (1− aTb)2

I Classical protocols need Ω(k) bits of communication for this

I ∃ protocol for this using O(log k) qubits of communication

Lower bound for correlation polytope

I Correlation polytope: COR(k) = conv{bbT | b ∈ {0, 1}k}
I For each a ∈ {0, 1}k , the following constraint hold:

∀x ∈ COR(k) : Tr
[
(2diag(a)− aaT)x

]
≤ 1

Slack of this constraint w.r.t. vertex bbT ∈ COR(k):

Sab = 1− Tr
[
(2diag(a)− aaT)bbT

]
= (1− aTb)2 = Mab

I Take slack matrix S for COR,
with 2k vertices bbT for columns,
2k a-constraints for first 2k rows,
remaining inequalities for other rows

S =


...

· · · Mab · · ·
...
...


I xc(COR(k))

Yannakakis
≥ exp(nondetermin c.c. of S) ≥ 2Ω(k)

Lower bound for correlation polytope

I Correlation polytope: COR(k) = conv{bbT | b ∈ {0, 1}k}

I For each a ∈ {0, 1}k , the following constraint hold:

∀x ∈ COR(k) : Tr
[
(2diag(a)− aaT)x

]
≤ 1

Slack of this constraint w.r.t. vertex bbT ∈ COR(k):

Sab = 1− Tr
[
(2diag(a)− aaT)bbT

]
= (1− aTb)2 = Mab

I Take slack matrix S for COR,
with 2k vertices bbT for columns,
2k a-constraints for first 2k rows,
remaining inequalities for other rows

S =


...

· · · Mab · · ·
...
...


I xc(COR(k))

Yannakakis
≥ exp(nondetermin c.c. of S) ≥ 2Ω(k)

Lower bound for correlation polytope

I Correlation polytope: COR(k) = conv{bbT | b ∈ {0, 1}k}
I For each a ∈ {0, 1}k , the following constraint hold:

∀x ∈ COR(k) : Tr
[
(2diag(a)− aaT)x

]
≤ 1

Slack of this constraint w.r.t. vertex bbT ∈ COR(k):

Sab = 1− Tr
[
(2diag(a)− aaT)bbT

]
= (1− aTb)2 = Mab

I Take slack matrix S for COR,
with 2k vertices bbT for columns,
2k a-constraints for first 2k rows,
remaining inequalities for other rows

S =


...

· · · Mab · · ·
...
...


I xc(COR(k))

Yannakakis
≥ exp(nondetermin c.c. of S) ≥ 2Ω(k)

Lower bound for correlation polytope

I Correlation polytope: COR(k) = conv{bbT | b ∈ {0, 1}k}
I For each a ∈ {0, 1}k , the following constraint hold:

∀x ∈ COR(k) : Tr
[
(2diag(a)− aaT)x

]
≤ 1

Slack of this constraint w.r.t. vertex bbT ∈ COR(k):

Sab = 1− Tr
[
(2diag(a)− aaT)bbT

]
= (1− aTb)2 = Mab

I Take slack matrix S for COR,
with 2k vertices bbT for columns,
2k a-constraints for first 2k rows,
remaining inequalities for other rows

S =


...

· · · Mab · · ·
...
...


I xc(COR(k))

Yannakakis
≥ exp(nondetermin c.c. of S) ≥ 2Ω(k)

Lower bound for correlation polytope

I Correlation polytope: COR(k) = conv{bbT | b ∈ {0, 1}k}
I For each a ∈ {0, 1}k , the following constraint hold:

∀x ∈ COR(k) : Tr
[
(2diag(a)− aaT)x

]
≤ 1

Slack of this constraint w.r.t. vertex bbT ∈ COR(k):

Sab = 1− Tr
[
(2diag(a)− aaT)bbT

]

= (1− aTb)2 = Mab

I Take slack matrix S for COR,
with 2k vertices bbT for columns,
2k a-constraints for first 2k rows,
remaining inequalities for other rows

S =


...

· · · Mab · · ·
...
...


I xc(COR(k))

Yannakakis
≥ exp(nondetermin c.c. of S) ≥ 2Ω(k)

Lower bound for correlation polytope

I Correlation polytope: COR(k) = conv{bbT | b ∈ {0, 1}k}
I For each a ∈ {0, 1}k , the following constraint hold:

∀x ∈ COR(k) : Tr
[
(2diag(a)− aaT)x

]
≤ 1

Slack of this constraint w.r.t. vertex bbT ∈ COR(k):

Sab = 1− Tr
[
(2diag(a)− aaT)bbT

]
= (1− aTb)2

= Mab

I Take slack matrix S for COR,
with 2k vertices bbT for columns,
2k a-constraints for first 2k rows,
remaining inequalities for other rows

S =


...

· · · Mab · · ·
...
...


I xc(COR(k))

Yannakakis
≥ exp(nondetermin c.c. of S) ≥ 2Ω(k)

Lower bound for correlation polytope

I Correlation polytope: COR(k) = conv{bbT | b ∈ {0, 1}k}
I For each a ∈ {0, 1}k , the following constraint hold:

∀x ∈ COR(k) : Tr
[
(2diag(a)− aaT)x

]
≤ 1

Slack of this constraint w.r.t. vertex bbT ∈ COR(k):

Sab = 1− Tr
[
(2diag(a)− aaT)bbT

]
= (1− aTb)2 = Mab

I Take slack matrix S for COR,
with 2k vertices bbT for columns,
2k a-constraints for first 2k rows,
remaining inequalities for other rows

S =


...

· · · Mab · · ·
...
...


I xc(COR(k))

Yannakakis
≥ exp(nondetermin c.c. of S) ≥ 2Ω(k)

Lower bound for correlation polytope

I Correlation polytope: COR(k) = conv{bbT | b ∈ {0, 1}k}
I For each a ∈ {0, 1}k , the following constraint hold:

∀x ∈ COR(k) : Tr
[
(2diag(a)− aaT)x

]
≤ 1

Slack of this constraint w.r.t. vertex bbT ∈ COR(k):

Sab = 1− Tr
[
(2diag(a)− aaT)bbT

]
= (1− aTb)2 = Mab

I Take slack matrix S for COR,
with 2k vertices bbT for columns,
2k a-constraints for first 2k rows,
remaining inequalities for other rows

S =


...

· · · Mab · · ·
...
...



I xc(COR(k))
Yannakakis
≥ exp(nondetermin c.c. of S) ≥ 2Ω(k)

Lower bound for correlation polytope

I Correlation polytope: COR(k) = conv{bbT | b ∈ {0, 1}k}
I For each a ∈ {0, 1}k , the following constraint hold:

∀x ∈ COR(k) : Tr
[
(2diag(a)− aaT)x

]
≤ 1

Slack of this constraint w.r.t. vertex bbT ∈ COR(k):

Sab = 1− Tr
[
(2diag(a)− aaT)bbT

]
= (1− aTb)2 = Mab

I Take slack matrix S for COR,
with 2k vertices bbT for columns,
2k a-constraints for first 2k rows,
remaining inequalities for other rows

S =


...

· · · Mab · · ·
...
...


I xc(COR(k))

Yannakakis
≥ exp(nondetermin c.c. of S) ≥ 2Ω(k)

Lower bound for correlation polytope

I Correlation polytope: COR(k) = conv{bbT | b ∈ {0, 1}k}
I For each a ∈ {0, 1}k , the following constraint hold:

∀x ∈ COR(k) : Tr
[
(2diag(a)− aaT)x

]
≤ 1

Slack of this constraint w.r.t. vertex bbT ∈ COR(k):

Sab = 1− Tr
[
(2diag(a)− aaT)bbT

]
= (1− aTb)2 = Mab

I Take slack matrix S for COR,
with 2k vertices bbT for columns,
2k a-constraints for first 2k rows,
remaining inequalities for other rows

S =


...

· · · Mab · · ·
...
...


I xc(COR(k))

Yannakakis
≥ exp(nondetermin c.c. of S)

≥ 2Ω(k)

Lower bound for correlation polytope

I Correlation polytope: COR(k) = conv{bbT | b ∈ {0, 1}k}
I For each a ∈ {0, 1}k , the following constraint hold:

∀x ∈ COR(k) : Tr
[
(2diag(a)− aaT)x

]
≤ 1

Slack of this constraint w.r.t. vertex bbT ∈ COR(k):

Sab = 1− Tr
[
(2diag(a)− aaT)bbT

]
= (1− aTb)2 = Mab

I Take slack matrix S for COR,
with 2k vertices bbT for columns,
2k a-constraints for first 2k rows,
remaining inequalities for other rows

S =


...

· · · Mab · · ·
...
...


I xc(COR(k))

Yannakakis
≥ exp(nondetermin c.c. of S) ≥ 2Ω(k)

Consequences

I We just showed that linear programs for optimizing over the
correlation polytope need to be exponentially large

I This implies exponential lower bounds for TSP and other
polytopes for NP-hard problems

I This refutes all P = NP “proofs” à la Swart

I Did we really need quantum for this proof?

I No, we just needed to find the right matrix M and
a classical nondeterministic communication lower bound

I But the reason we found the right M is the earlier result
about quantum communication complexity

I Wittgenstein: throw away the ladder after you climbed it

Consequences

I We just showed that linear programs for optimizing over the
correlation polytope need to be exponentially large

I This implies exponential lower bounds for TSP and other
polytopes for NP-hard problems

I This refutes all P = NP “proofs” à la Swart

I Did we really need quantum for this proof?

I No, we just needed to find the right matrix M and
a classical nondeterministic communication lower bound

I But the reason we found the right M is the earlier result
about quantum communication complexity

I Wittgenstein: throw away the ladder after you climbed it

Consequences

I We just showed that linear programs for optimizing over the
correlation polytope need to be exponentially large

I This implies exponential lower bounds for TSP and other
polytopes for NP-hard problems

I This refutes all P = NP “proofs” à la Swart

I Did we really need quantum for this proof?

I No, we just needed to find the right matrix M and
a classical nondeterministic communication lower bound

I But the reason we found the right M is the earlier result
about quantum communication complexity

I Wittgenstein: throw away the ladder after you climbed it

Consequences

I We just showed that linear programs for optimizing over the
correlation polytope need to be exponentially large

I This implies exponential lower bounds for TSP and other
polytopes for NP-hard problems

I This refutes all P = NP “proofs” à la Swart

I Did we really need quantum for this proof?

I No, we just needed to find the right matrix M and
a classical nondeterministic communication lower bound

I But the reason we found the right M is the earlier result
about quantum communication complexity

I Wittgenstein: throw away the ladder after you climbed it

Consequences

I We just showed that linear programs for optimizing over the
correlation polytope need to be exponentially large

I This implies exponential lower bounds for TSP and other
polytopes for NP-hard problems

I This refutes all P = NP “proofs” à la Swart

I Did we really need quantum for this proof?

I No, we just needed to find the right matrix M and
a classical nondeterministic communication lower bound

I But the reason we found the right M is the earlier result
about quantum communication complexity

I Wittgenstein: throw away the ladder after you climbed it

Consequences

I We just showed that linear programs for optimizing over the
correlation polytope need to be exponentially large

I This implies exponential lower bounds for TSP and other
polytopes for NP-hard problems

I This refutes all P = NP “proofs” à la Swart

I Did we really need quantum for this proof?

I No, we just needed to find the right matrix M and
a classical nondeterministic communication lower bound

I But the reason we found the right M is the earlier result
about quantum communication complexity

I Wittgenstein: throw away the ladder after you climbed it

Consequences

I We just showed that linear programs for optimizing over the
correlation polytope need to be exponentially large

I This implies exponential lower bounds for TSP and other
polytopes for NP-hard problems

I This refutes all P = NP “proofs” à la Swart

I Did we really need quantum for this proof?

I No, we just needed to find the right matrix M and
a classical nondeterministic communication lower bound

I But the reason we found the right M is the earlier result
about quantum communication complexity

I Wittgenstein: throw away the ladder after you climbed it

Consequences

I We just showed that linear programs for optimizing over the
correlation polytope need to be exponentially large

I This implies exponential lower bounds for TSP and other
polytopes for NP-hard problems

I This refutes all P = NP “proofs” à la Swart

I Did we really need quantum for this proof?

I No, we just needed to find the right matrix M and
a classical nondeterministic communication lower bound

I But the reason we found the right M is the earlier result
about quantum communication complexity

I Wittgenstein: throw away the ladder after you climbed it

From quantum algorithms to polynomials

I “Polynomial method”:
efficient quantum algorithms ⇒ low-degree polynomials

I Usual application: lower bounds on degree
⇒ lower bounds on quantum complexity

I But you can also use this method as a tool to construct
low-degree polynomials with nice properties.

Examples:

I minimal-degree polynomial approximations to functions
f : {0, . . . , n} → R [W08]

I quantum proof of Jackson’s theorem [DW11]

From quantum algorithms to polynomials

I “Polynomial method”:
efficient quantum algorithms ⇒ low-degree polynomials

I Usual application: lower bounds on degree
⇒ lower bounds on quantum complexity

I But you can also use this method as a tool to construct
low-degree polynomials with nice properties.

Examples:

I minimal-degree polynomial approximations to functions
f : {0, . . . , n} → R [W08]

I quantum proof of Jackson’s theorem [DW11]

From quantum algorithms to polynomials

I “Polynomial method”:
efficient quantum algorithms ⇒ low-degree polynomials

I Usual application: lower bounds on degree
⇒ lower bounds on quantum complexity

I But you can also use this method as a tool to construct
low-degree polynomials with nice properties.

Examples:

I minimal-degree polynomial approximations to functions
f : {0, . . . , n} → R [W08]

I quantum proof of Jackson’s theorem [DW11]

From quantum algorithms to polynomials

I “Polynomial method”:
efficient quantum algorithms ⇒ low-degree polynomials

I Usual application: lower bounds on degree
⇒ lower bounds on quantum complexity

I But you can also use this method as a tool to construct
low-degree polynomials with nice properties

.

Examples:

I minimal-degree polynomial approximations to functions
f : {0, . . . , n} → R [W08]

I quantum proof of Jackson’s theorem [DW11]

From quantum algorithms to polynomials

I “Polynomial method”:
efficient quantum algorithms ⇒ low-degree polynomials

I Usual application: lower bounds on degree
⇒ lower bounds on quantum complexity

I But you can also use this method as a tool to construct
low-degree polynomials with nice properties.

Examples:

I minimal-degree polynomial approximations to functions
f : {0, . . . , n} → R [W08]

I quantum proof of Jackson’s theorem [DW11]

From quantum algorithms to polynomials

I “Polynomial method”:
efficient quantum algorithms ⇒ low-degree polynomials

I Usual application: lower bounds on degree
⇒ lower bounds on quantum complexity

I But you can also use this method as a tool to construct
low-degree polynomials with nice properties.

Examples:

I minimal-degree polynomial approximations to functions
f : {0, . . . , n} → R [W08]

I quantum proof of Jackson’s theorem [DW11]

Other examples of quantum proofs

I Other uses of quantum information, often based on quantum
encodings of classical data

I Classical lower bound methods inspired by quantum methods

I Aaronson: quantum reproofs of classical complexity results

I PP is closed under intersection [uses postselection]

I Permanent is #P-hard [uses linear optics]

I Results in functional analysis, other areas of math

Other examples of quantum proofs

I Other uses of quantum information, often based on quantum
encodings of classical data

I Classical lower bound methods inspired by quantum methods

I Aaronson: quantum reproofs of classical complexity results

I PP is closed under intersection [uses postselection]

I Permanent is #P-hard [uses linear optics]

I Results in functional analysis, other areas of math

Other examples of quantum proofs

I Other uses of quantum information, often based on quantum
encodings of classical data

I Classical lower bound methods inspired by quantum methods

I Aaronson: quantum reproofs of classical complexity results

I PP is closed under intersection [uses postselection]

I Permanent is #P-hard [uses linear optics]

I Results in functional analysis, other areas of math

Other examples of quantum proofs

I Other uses of quantum information, often based on quantum
encodings of classical data

I Classical lower bound methods inspired by quantum methods

I Aaronson: quantum reproofs of classical complexity results

I PP is closed under intersection [uses postselection]

I Permanent is #P-hard [uses linear optics]

I Results in functional analysis, other areas of math

Other examples of quantum proofs

I Other uses of quantum information, often based on quantum
encodings of classical data

I Classical lower bound methods inspired by quantum methods

I Aaronson: quantum reproofs of classical complexity results

I PP is closed under intersection [uses postselection]

I Permanent is #P-hard [uses linear optics]

I Results in functional analysis, other areas of math

Other examples of quantum proofs

I Other uses of quantum information, often based on quantum
encodings of classical data

I Classical lower bound methods inspired by quantum methods

I Aaronson: quantum reproofs of classical complexity results

I PP is closed under intersection [uses postselection]

I Permanent is #P-hard [uses linear optics]

I Results in functional analysis, other areas of math

Other examples of quantum proofs

I Other uses of quantum information, often based on quantum
encodings of classical data

I Classical lower bound methods inspired by quantum methods

I Aaronson: quantum reproofs of classical complexity results

I PP is closed under intersection [uses postselection]

I Permanent is #P-hard [uses linear optics]

I Results in functional analysis, other areas of math

Summary & Outlook

I Quantum proofs for classical theorems

Lower bounds for LDCs, linear programs, . . .

I Currently this is more like a “bag of tricks”
than a fully-developed “quantum method”
(but you could say the same about probabilistic method)

I Where can we find more applications?

I Low-degree polynomials
I Encoding-based lower bounds
I Places where linear algebra and combinatorics meet
I . . .

I Good to have quantum techniques in your tool-box!

Summary & Outlook

I Quantum proofs for classical theorems

Lower bounds for LDCs, linear programs, . . .

I Currently this is more like a “bag of tricks”
than a fully-developed “quantum method”
(but you could say the same about probabilistic method)

I Where can we find more applications?

I Low-degree polynomials
I Encoding-based lower bounds
I Places where linear algebra and combinatorics meet
I . . .

I Good to have quantum techniques in your tool-box!

Summary & Outlook

I Quantum proofs for classical theorems

Lower bounds for LDCs, linear programs, . . .

I Currently this is more like a “bag of tricks”
than a fully-developed “quantum method”
(but you could say the same about probabilistic method)

I Where can we find more applications?

I Low-degree polynomials
I Encoding-based lower bounds
I Places where linear algebra and combinatorics meet
I . . .

I Good to have quantum techniques in your tool-box!

Summary & Outlook

I Quantum proofs for classical theorems

Lower bounds for LDCs, linear programs, . . .

I Currently this is more like a “bag of tricks”
than a fully-developed “quantum method”

(but you could say the same about probabilistic method)

I Where can we find more applications?

I Low-degree polynomials
I Encoding-based lower bounds
I Places where linear algebra and combinatorics meet
I . . .

I Good to have quantum techniques in your tool-box!

Summary & Outlook

I Quantum proofs for classical theorems

Lower bounds for LDCs, linear programs, . . .

I Currently this is more like a “bag of tricks”
than a fully-developed “quantum method”
(but you could say the same about probabilistic method)

I Where can we find more applications?

I Low-degree polynomials
I Encoding-based lower bounds
I Places where linear algebra and combinatorics meet
I . . .

I Good to have quantum techniques in your tool-box!

Summary & Outlook

I Quantum proofs for classical theorems

Lower bounds for LDCs, linear programs, . . .

I Currently this is more like a “bag of tricks”
than a fully-developed “quantum method”
(but you could say the same about probabilistic method)

I Where can we find more applications?

I Low-degree polynomials
I Encoding-based lower bounds
I Places where linear algebra and combinatorics meet
I . . .

I Good to have quantum techniques in your tool-box!

Summary & Outlook

I Quantum proofs for classical theorems

Lower bounds for LDCs, linear programs, . . .

I Currently this is more like a “bag of tricks”
than a fully-developed “quantum method”
(but you could say the same about probabilistic method)

I Where can we find more applications?

I Low-degree polynomials

I Encoding-based lower bounds
I Places where linear algebra and combinatorics meet
I . . .

I Good to have quantum techniques in your tool-box!

Summary & Outlook

I Quantum proofs for classical theorems

Lower bounds for LDCs, linear programs, . . .

I Currently this is more like a “bag of tricks”
than a fully-developed “quantum method”
(but you could say the same about probabilistic method)

I Where can we find more applications?

I Low-degree polynomials
I Encoding-based lower bounds

I Places where linear algebra and combinatorics meet
I . . .

I Good to have quantum techniques in your tool-box!

Summary & Outlook

I Quantum proofs for classical theorems

Lower bounds for LDCs, linear programs, . . .

I Currently this is more like a “bag of tricks”
than a fully-developed “quantum method”
(but you could say the same about probabilistic method)

I Where can we find more applications?

I Low-degree polynomials
I Encoding-based lower bounds
I Places where linear algebra and combinatorics meet

I . . .

I Good to have quantum techniques in your tool-box!

Summary & Outlook

I Quantum proofs for classical theorems

Lower bounds for LDCs, linear programs, . . .

I Currently this is more like a “bag of tricks”
than a fully-developed “quantum method”
(but you could say the same about probabilistic method)

I Where can we find more applications?

I Low-degree polynomials
I Encoding-based lower bounds
I Places where linear algebra and combinatorics meet
I . . .

I Good to have quantum techniques in your tool-box!

Summary & Outlook

I Quantum proofs for classical theorems

Lower bounds for LDCs, linear programs, . . .

I Currently this is more like a “bag of tricks”
than a fully-developed “quantum method”
(but you could say the same about probabilistic method)

I Where can we find more applications?

I Low-degree polynomials
I Encoding-based lower bounds
I Places where linear algebra and combinatorics meet
I . . .

I Good to have quantum techniques in your tool-box!

