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Probabilistic method (Erdés, Alon & Spencer)

Theorem: Every graph (V, E) with m edges contains a bipartite
subgraph with m/2 edges
Proof:

1. Pick vertex-set T C V at random

1 if edge (i,j) “crosses” (between T and T)
0 otherwise

3. E[Xj] = Pr[edge (i, ) crosses] = 1/2

4. Expected number of crossing edges:

E| DY Xl = > EXl= > %:m/Q

(iJ)eE (ij)eEE (ij)eEE
5. But then there is a T with at least m/2 crossing edges!

2. Set X,'J':{
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d
n
H hi for d < n/27?
» How muc IS;(/)' ord<n/
» At most 2"(9/7) where H(-) is binary entropy function

» Information-theoretic proof:

1. Def S = {x € {0,1}" : |x| < d}, then |S| = 3" o ()
2. Let X = X;...X, be uniformly random element of S
3. Then Pr[X; =1] < d/n, so H(X;) < H(d/n)

4. log|S|=H <ZH ) < nH(d/n)

5. Exponentiating both S|des finishes the proof
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» Probabilistic arguments and information theory
are just “counting arguments in disguise”

» That's true, but beside the point

» The language of probability and information theory gives us
intuitions and tools that wouldn't be readily available in the
plain language of counting

» Large deviation inequalities, Lovdsz Local Lemma,
chain rules, subadditivity of information,. ..

» You could do those proofs in the language of counting,
but you probably wouldn’t find them

» Good to have probabilistic techniques in your tool-box
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» We know quantum information & computation for its
algorithms, crypto-schemes, communication protocols,
non-locality, etc.

» This talk: using quantum techniques as a proof tool
for things in classical CS, mathematics, etc.

> Why? Because quantum information is a rich melting pot of
many branches of math: linear algebra, probability theory,
group theory, geometry, combinatorics, functional analysis, ...

» Bonus: no need to implement anything in the lab

> We'll give two examples:

1. Lower bound on locally decodable codes [KW'03]
2. Lower bounds for linear programs [FMPTW'12]
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» A state is a unit vector of complex amplitudes

» Qubit: superposition ap|0) + a1|1) € C?

» d-dimensional state: superposition .9, a;|i) € C9
> n-qubit state (d = 2"): [¢) = > icq0,13n ili) € c*

» Operations: unitary transform of the vector.
Example: Hadamard gate |b) — %(!0) + (=1)P|1))

» Measurement: specified by orthogonal projectors
k
P1,..., Py, st E i=1 Pi=1.

Prloutcome i] = Tr(P;|®){(¢|)
State |¢) then collapses to Pi|¢)/ || Pi|¢) ||

Special case: P; = |i){i|, then Prloutcome i] = |a;|?
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Locally decodable codes
» Error-correcting code: C:{0,1}" — {0,1}"", m>n
Decoder: if w € {0,1}™ is “close” to C(x), then D(w) = x

> Inefficient if you only want to decode a small part of x

» C is k-query locally decodable if there is a decoder D that can
decode individual bits x; of x, while only looking at k bits of w

» Hard question: optimal tradeoff between k and m?

» Using quantum, we can show: k =2 = m > 2"

» Still the only superpolynomial bound known for LDCs
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Example of 2-query LDC: Hadamard
» Define C(x); = ;- x mod 2 for all j € {0,1}",
so C(x) is a codeword of 2" bits

» Decoding x; from corrupted codeword w ~ C(x):

1. pick random j € {0,1}"
2. query w at positions j and j @ e;
3. output w; © Wjge;

» This works perfectly if there is no noise (w = C(x)):

W © Wige, = (- x)@(([De) x)=¢ -x=x

» With ém errors, Prj[w; # C(x);] <6
and Prj[wjae # C(X)joe] <0,
so Pr[we correctly output x;] > 1 — 20
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» Given 2-query LDC C: {0,1}" — {0,1}™.
Normal form for the classical decoder of x; [KT00]:
query random (j, k) in matching M;, output C(x); ® C(x)«
» Def superposition over C(x): |¢x) = % Zj’":l(—l)C(X)J'U)
» We can predict x; from |¢x): view M; as a measurement with
m/2 2-dimensional projectors, Py = |j)(j| + |k) (k]|
» Applying M; to |¢x) gives
%((—1)C(X)f|j> + (=1)€®| k) for random (j, k) € M;.
Measurement in basis {|j) + |k)} gives C(x); & C(x)«-
But that's the output of the classical decoder, so equals x;!
> |¢px) has log m qubits, but predicts each of xi,...,x,

» Random access code bound [Nayak'99]:
log m > Q(n) = m > 2"



Example 2:

Lower bounds for
linear programs
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Background: solving NP by linear programs?

» Famous P-problem: linear programming [Khachian'79]

» Famous NP-hard problem: Traveling Salesman Problem

» TSP polytope: convex hull of all Hamiltonian cycles on
complete n-vertex graph. This is a polytope in RE).
TSP: minimize linear function over this polytope
Unfortunately, polytope needs exponentially many inequalities

» Extended formulation: linear inequalities on (g) + k variables
s.t. projection on first (g) variables gives TSP polytope

» Swart'86 claimed polynomial-size extended formulation,
which would give poynomial-time LP-algorithm for TSP

> Yannakakis'88: symmetric EFs for TSP are exponentially big
» Swart's LPs were symmetric, so they couldn’t work
> FMPTW'12 show the same for all extended formulations
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Quantum vs classical communication complexity

v

Communication complexity: Alice gets input a € {0, 1}",

Bob gets input b € {0, 1}, they need to compute

f:{0,1}* x {0,1}* — {0,1} with minimal communication
Nondeterministic communication complexity: protocol
outputs 1 with positive probability on input a, b iff f(a,b) =1
W'00: exponential separation between quantum and classical
nondeterministic protocols for support of the following 2% x 2k
matrix: M,p, = (1 — a’ b)?

Classical protocols need Q(k) bits of communication for this

3 protocol for this using O(log k) qubits of communication
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» Correlation polytope: COR(k) = conv{bb’ | b € {0,1}¥}
» For each a € {0,1}%, the following constraint hold:

Vx € COR(k): Tr [(2diag(a) — aaT)x} <1

Slack of this constraint w.r.t. vertex bb” € COR(k):

Sap=1—Tr[(2diag(a) —aa”)bb"] = (1—a"b)® = M,
» Take slack matrix S for COR,

with 2k vertices bbT for columns,

2k a-constraints for first 2¥ rows, 5 —

Mab
remaining inequalities for other rows :

Yannakakis

» xc(COR(k)) >  exp(nondetermin c.c. of §) > 2%(k)
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» We just showed that linear programs for optimizing over the
correlation polytope need to be exponentially large

» This implies exponential lower bounds for TSP and other
polytopes for NP-hard problems

» This refutes all P = NP “proofs” a la Swart

» Did we really need quantum for this proof?

» No, we just needed to find the right matrix M and
a classical nondeterministic communication lower bound

» But the reason we found the right M is the earlier result
about quantum communication complexity

> Wittgenstein: throw away the ladder after you climbed it
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From quantum algorithms to polynomials

> “Polynomial method”:
efficient quantum algorithms = low-degree polynomials

» Usual application: lower bounds on degree
= lower bounds on quantum complexity

» But you can also use this method as a tool to construct
low-degree polynomials with nice properties.

Examples:

» minimal-degree polynomial approximations to functions
f:{0,...,n} — R [WO08]

» quantum proof of Jackson's theorem [DW11]
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Other uses of quantum information, often based on quantum
encodings of classical data

v

Classical lower bound methods inspired by quantum methods

v

Aaronson: quantum reproofs of classical complexity results

» PP is closed under intersection [uses postselection]

» Permanent is #P-hard [uses linear optics]

v

Results in functional analysis, other areas of math
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Good to have quantum techniques in your tool-box!




