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AbstratMany omputational problems arising in arti�ial intelligene, omputer sieneand elsewhere an be represented as onstraint satisfation and optimization prob-lems. In this survey paper we disuss an algebrai approah that has proved to bevery suessful in studying the omplexity of onstraint problems.1 Constraint Satisfation ProblemsThe onstraint satisfation problem (CSP) is a powerful general framework in whih avariety of ombinatorial problems an be expressed [21, 60, 62, 80℄. The aim in a on-straint satisfation problem is to �nd an assignment of values to the variables, subjet tospei�ed onstraints. In arti�ial intelligene, this framework is widely aknowledged asa onvenient and eÆient way of modelling and solving a number of real-world problemssuh as planning [48℄ and sheduling [76℄, frequeny assignment problems [28℄, imageproessing [64℄, programming language analysis [66℄ and natural language understand-ing [2℄. In database theory, it has been shown that the key problem of onjuntive-queryevaluation an be viewed as a onstraint satisfation problem [36, 54℄. Furthermore,some entral problems in ombinatorial optimization an be represented as onstraintproblems [21, 31, 43, 50℄. Finally, CSPs have attrated muh attention in omplexitytheory beause various versions of CSPs lie at the heart of many standard omplexitylasses, and beause, despite their great expressiveness, they tend to avoid \intermediate"omplexity; that is, they tend to be either tratable or omplete for standard omplex-ity lasses [7, 8, 11, 13, 14, 21, 31, 51, 56, 74℄. On a more pratial side, onstraintprogramming is a rapidly developing area with its own international journal and an an-nual international onferene, and with new programming languages being spei�allydesigned (see, e.g., [62℄).The standard toy example of a problem modelled as a onstraint satisfation problemis the \8-queens" problem: plae eight queens on a hess board so that no queen anapture any other one [80℄. One an think of the horizontals of the board as variables,and the vertials as the possible values, so that assigning a value to a variable meansplaing a queen on the orresponding square of the board. The fat that no queen mustbe able to apture any other queen an be represented as a olletion of binary onstraintsCij, one for eah pair of variables i; j, where the onstraint Cij allows only those pairs(k; l) suh that a queen at position (i; k) annot apture a queen at position (j; l). It iseasy to see that every solution of this onstraint satisfation problem orresponds to a\legal" plaing of the 8 queens.We now give a formal de�nition of the general CSP.1.1 De�nition An instane of a onstraint satisfation problem is a triple (V;D; C)where� V is a �nite set of variables,� D is a set of values (sometimes alled a domain), and1



� C is a set of onstraints fC1; : : : ; Cqg,in whih eah onstraint Ci is a pair hsi; %ii with si a list of variables of length mi,alled the onstraint sope, and %i an mi-ary relation over the set D alled theonstraint relation.The question is whether there exists a solution to (V;D; C), that is, a funtion from V toD suh that, for eah onstraint in C, the image of the onstraint sope is a member ofthe onstraint relation.Now we give some examples of natural problems and their representations as CSPs.1.2 Example The most obvious algebrai example of a CSP is the problem of solvinga system of equations: given a system of linear equations over a �nite �eld F , does ithave a solution? Clearly, in this example eah individual equation is a onstraint, wherethe variables in the equation form the sope, and the set of all tuples orresponding tosolutions of this equation is the onstraint relation.1.3 Example An instane of the standard propositional 3-Satisfiability problem [33,67℄ is spei�ed by giving a formula in propositional logi onsisting of a onjuntion oflauses, eah ontaining three literals (that is, variables or negated variables), and askingwhether there are values for the variables whih make the formula true.Suppose that � = �1 ^ � � � ^ �n is suh a formula, where the �i are lauses. Thesatis�ability question for � an be expressed as the instane (V; f0; 1g; C) of CSP, whereV is the set of all variables appearing in the formula, and C is the set of onstraintsfhs1; %1i; : : : ; hsn; %nig, where eah onstraint hsk; %ki is onstruted as follows: sk is alist of the variables appearing in �k and %k onsists of all tuples that make �k true. Thesolutions of this CSP instane are exatly the assignments whih make the formula �true. Hene, any instane of 3-Satisfiability an be expressed as an instane of CSP.Example 1.3 suggests that any instane of CSP an be represented in a logial form.Indeed, using the standard orrespondene between relations and prediates, one anre-write an instane of CSP as a �rst-order formula %1(s1) ^ : : : ^ %q(sq) where the %i(1 � i � q) are prediates on D and %i(si) means %i applied to the tuple si of variables.The question then would be whether this formula is satis�able [75℄. In this paper we willsometimes use this alternative logial form for the CSP. This form is ommonly used indatabase theory beause it orresponds so losely to onjuntive query evaluation [54℄, asthe next example indiates.1.4 Example A relational database is a �nite olletion of tables. A table onsists of asheme and an instane, whereA sheme is a �nite set of attributes, where eah attribute has an assoiated set ofpossible values, referred to as a domain.An instane is a �nite set of rows, where eah row is a mapping that assoiates witheah attribute of the sheme a value in its domain.2



A standard problem in the ontext of relational databases is the Conjuntive QueryEvaluation problem [36, 54℄. In this problem we are asked if a onjuntive query to arelational database, that is, a query of the form %1 ^ : : : ^ %n where the %1; : : : ; %n areatomi formulas, has a solution.A onjuntive query over a relational database orresponds to an instane of CSP by asimple translation of terms: `attributes' have to be replaed with `variables', `tables' with`onstraints', `sheme' with `sope', `instane' with `onstraint relation', and `rows' with`tuples'. Hene a onjuntive query is equivalent to a CSP instane whose variables arethe variables of the query. For eah atomi formula %i in the query, there is a onstraintC suh that the sope of C is the list of variables of %i and the onstraint relation of Cis the set of models of %i.Another important reformulation of the CSP is the Homomorphism problem: the ques-tion of deiding whether there exists a homomorphism between two relational strutures(see [31, 36, 54℄). Let � = (R1; : : : ; Rk) be a signature, that is, a list of relation names witha �xed arity assigned to eah name. Let A = (A;RA1 ; : : : ; RAk ) and B = (B;RB1 ; : : : ; RBk )be relational strutures of signature � . A mapping h : A! B is alled a homomorphismfrom A to B if, for all 1 � i � k, (h(a1); : : : ; h(am)) 2 RBi whenever (a1; : : : ; am) 2 RAi .In this ase we write h : A ! B. To see that the Homomorphism problem is the sameas the CSP, think of the elements in A as variables, the elements in B as values, tuplesin the relations of A as onstraint sopes, and the relations of B as onstraint relations.Then, learly, the solutions to this CSP instane are preisely the homomorphisms fromA to B.We now give some more examples of well-known ombinatorial problems and theirrepresentations as a CSP. For the sake of brevity, we use the homomorphism form of theCSP.1.5 Example For any positive integer k, an instane of the Graph k-Colorabilityproblem onsists of a graph G. The question is whether the verties of G an be olouredwith k olours in suh a way that adjaent verties reeive di�erent olours.It follows that every instane of Graph olorability an be expressed as a CSPinstane where A = G and B is the omplete graph on k verties, Kk.1.6 Example An instane of the Clique problem onsists of an undireted graph Gand an integer k. The question is whether G has a lique of size k (that is, a subgraphisomorphi to the omplete graph Kk).It follows that every instane of the Clique problem an be expressed as a CSPinstane where A is Kk and B is the graph G.1.7 Example An instane of the Hamiltonian Ciruit problem onsists of a graphG = (V ;E). The question is whether there is a yli ordering of V suh that every pairof suessive nodes in V is adjaent in G.It follows that every instane of the Hamiltonian Ciruit problem an be expressedas a CSP instane with A = (V ;CV ; 6=V ) and B = (V ;E; 6=V ), where 6=V denotes thedisequality relation on V and CV is the graph of an arbitrary yli permutation on V .3



1.8 Example An instane of the Graph Isomorphism problem onsists of two graphs,G = (V ;E) and G0 = (V 0;E0), with jV j = jV 0j. The question is whether there is abijetion between V and V 0 suh that adjaent verties in G are mapped to adjaentverties in G0, and non-adjaent verties are mapped to non-adjaent verties.It follows that every instane of the Graph Isomorphism problem an be expressedas a CSP instane with A = (V ;E;E) and B = (V 0;E0; E0), where E denotes the set ofall pairs in 6=V that are not in E.Many other examples of well-known problems expressed as CSPs an be found furtheron in this paper, and also in [43℄.2 Related Constraint ProblemsAs with many other omputational problems, it is not only the standard version of theCSP (that is, deiding whether a CSP instane has a solution or not) whih is of interest.There are many related problems that have been studied, and in this setion we give abrief overview of some of these.� Counting ProblemHow many solutions does a given CSP instane have?A standard natural problem assoiated with many omputational deision prob-lems [21℄.� Quanti�ed ProblemGiven a fully quanti�ed instane of CSP, is it true?Problems of this form have provided several fundamental examples of PSPACE-omplete problems [21, 23, 75℄. Any instane of the ordinary CSP an be viewed asan instane of this problem in whih all the quanti�ers are existential. We note thatertain games involving the onstrution of graph olorings an easily be expressedin this form [5℄.� Minimal SolutionGiven a CSP instane and some solution to it, is there a solution that is stritlyless (point-wise) than the given one?This problem is onneted with irumsription, a framework used in arti�ial intel-ligene to formalize ommon-sense reasoning [53℄. It was also studied as \minimalmodel heking" in [52℄.� Cirumsriptive InfereneGiven two CSP instanes with the same set of variables, is every minimal solutionto the �rst one also a solution to the seond one?This is a popular problem in nonmonotoni reasoning, an area of arti�ial intelli-gene, related to the previous version of the CSP. It was studied in [51, 52℄.4



� EquivaleneGiven two CSP instanes, do they have the same sets of solutions?In database theory, this orresponds to the question of whether or not two queriesare equivalent [6℄.� IsomorphismGiven two CSP instanes, an one permute the variables in them so that they beomeequivalent in the above sense?This is a more general form of the Equivalene problem whih is of interest in someontexts. The omplexity of the Boolean ase of this problem is lassi�ed in [7℄.� Inverse Satis�abilityGiven a set of n-tuples, is it the set of all solutions to a CSP instane of someertain type?This problem is related to eÆient knowledge representation issues in arti�ial in-telligene [49℄.� Listing ProblemGenerate all solutions of a given CSP instane.A standard natural problem assoiated with many omputational deision prob-lems [21℄.� Max CSPMaximize the number of satis�ed onstraints in a CSP instane.For over-onstrained problems, where it is impossible to satisfy all of the onstraints,it may be appropriate to try to �nd a solution satisfying as many onstraints aspossible [32℄. A number of standard optimization problems, e.g., maximum ut,an also be expressed as Max CSP problems [21, 50℄.� Maximum SolutionMaximize the sum of values in a solution of a CSP instane.Many optimization problems inluding maximum lique are of this form; in theBoolean ase this problem is known as MAX ONES [21, 50℄.� Maximum Hamming DistaneFind two solutions to a CSP instane that are distint in a maximal number ofvariables.The \world di�erene" in the bloks world problem from knowledge representationan be modelled in this way [22℄.� Lex Max CSPGiven a CSP instane where the variables are linearly ordered, �nd a solution thatis lexiographially maximal.This form of CSP is used when variables in instanes have priorities aording tosome preferene list [74℄. 5



� Unique SolutionDoes a given instane of CSP have a unique solution?This problem is studied in [47℄. A related problem onerning partially uniquesolutions (that is, solutions that are unique on some subsets of variables) was studiedin [56℄.3 Parameterization of the CSPThe main objet of our interest is the omputational omplexity of onstraint problemsof various kinds. We refer the reader to [33, 67℄ for a general bakground in omplex-ity theory and the de�nitions of standard omplexity lasses. In general, the standarddeision-problem form of the CSP is NP-omplete, as one an see from Example 1.3,so it is unlikely to be omputationally tratable. However, ertain restritions on theform of the problems an ensure tratability, that is, solvability in polynomial time (see,e.g., [68℄).With any CSP instane one an assoiate two natural parameters, whih represent,informally, the following two features of the instane: whih variables onstrain whihothers, and the way in whih the values are onstrained.(1) The �rst feature (that is, whih variables onstrain whih others) an be apturedin two ways: one of these is by giving a hypergraph de�ned on the set of variablesused in the instane, where eah hyperedge onsists of the set of variables appearingtogether in some onstraint sope. The other, �ner, way is by speifying the left-hand-side struture, A, in the homomorphism form of the CSP.(2) The seond feature (that is, the way in whih the values are onstrained), anbe aptured by speifying the set of onstraint relations used in the instane, oralternatively by speifying the right-hand-side struture, B, in the homomorphismform of the CSP.It follows from these observations that the general CSP an be restrited by �xingeither the set of allowed hypergraphs (or left-hand-side strutures) or else the set ofallowed onstraint relations (or right-hand-side strutures).The ase when the set of hypergraphs is �xed has been studied in onnetion withdatabases [36, 54℄. Moreover, in [37℄, there is a omplete lassi�ation of the omplexityof the CSP in the ase when the set of possible left-hand-side strutures is �xed, andthere are no restritions on the right-hand-side strutures.In this paper we onentrate on the ase when the set of onstraint relations allowedin instanes is �xed, but there is no restrition on the form of the assoiated hypergraphs(or left-hand-side strutures). Let R(n)D denote the set of all n-ary relations (or prediates)on a set D, and let RD = S1n=1R(n)D .3.1 De�nition A onstraint language over D is a subset � of RD. The onstraint sat-isfation problem over �, denoted CSP(�), is the sublass of the CSP de�ned by thefollowing property: any onstraint relation in any instane must belong to �.6



Of ourse, suh a parameterization an also be onsidered for all of the related on-straint problems disussed in Setion 2 above.3.2 De�nition A onstraint language � is alled globally tratable if CSP(�) is tratable,and it is alled tratable if, for every �nite �0 � �, CSP(�0) is tratable. It is alled NP-omplete if, for some �nite �0 � �, CSP(�0) is NP-omplete.Of ourse, every �nite tratable onstraint language is also globally tratable, butfor in�nite onstraint languages this impliation is not immediate (see [15, 17℄), so itis tehnially neessary to distinguish the notions of tratability and global tratability.In fat, all known tratable onstraint languages are globally tratable, and it seemsplausible that the two notions oinide, though at present this is an open problem. Inthis paper, we will onsider only the question of determining whih onstraint languagesare tratable, and we will not make any further use of the notion of global tratability.When the set � � RD is �nite, let B� denote the relational struture over the universeD whose relations are preisely the relations of � (listed in some order). Then the problemCSP(�) orresponds exatly with the problem Hom(B�), de�ned as follows: given astruture A similar to B� (i.e., of the same signature), is it true that A ! B�? Note thatthe order in whih the relations from � are listed in B� does not a�et the omplexity ofthis problem.We now give some examples of well-known problems expressible as CSP(�) for suitablesets �.3.3 Example An instane of Linear Equations onsists of a system of linear equationsover a �eld.Following Example 1.2, it is easy to see that this problem an be expressed as CSP(�)where � onsists of all relations expressible by a linear equation. This problem is learlytratable beause it an be solved by a straightforward polynomial-time algorithm, suhas Gaussian elimination.Moreover, systems of equations an be onsidered not only over �elds, but also overother algebrai strutures. For example, systems of polynomial equations over a (�xed)�nite group (that is, equations of the form a1x1a2 � � � xnan+1 = b1y1b2 � � � ymbm+1 wherethe ai's and the bi's are onstants and the xi's and yi's are variables) are studied in [34℄where it is proved that solving suh systems is tratable if the underlying group is Abelian,and is NP-omplete otherwise. This result is generalised in [65℄ to solving systems ofequations over �nite monoids: this problem is tratable if the underlying monoid is aunion of groups and ommutative; otherwise it is NP-omplete. A more general setting,when systems of polynomial equations are onsidered over an arbitrary �nite (universal)algebra, is studied in [58℄, whih gives a generalization of the results on groups andmonoids mentioned above.3.4 Example The Not-All-Equal Satisfiability problem [33, 75℄ is a restritedversion of the standard 3-Satisfiability problem (Example 1.3) whih remains NP-omplete. In this problem the lauses are ternary, and eah lause is satis�ed by anyassignment in whih the variables of the lause do not all reeive the same truth value.7



This problem orresponds to the problem CSP(fNg) where N is the following ternaryrelation on f0; 1g: N = f0; 1g3 n f(0; 0; 0); (1; 1; 1)g:3.5 Example Let H = (V;E) be a �nite graph. An instane of the Graph H-oloringproblem onsists of a �nite graph G. The question is whether G an be homomorphiallymapped to H.This problem preisely orresponds to the problem CSP(fEg). If we onsider onlyundireted graphs H, then the omplexity of Graph H-oloring has been ompletelyharaterised [40℄: it is tratable if H is bipartite or ontains a loop; otherwise it isNP-omplete. However, if we allow H and G to be direted graphs, then the omplexityof Graph H-oloring has not yet been fully haraterised. Moreover, it was shownin [31℄ that every problem CSP(�) with �nite � is polynomial-time equivalent to GraphH-oloring for some suitable direted graph H.Following a seminal work by Shaefer in 1978 [75℄, many researhers have studied thefollowing problem:3.6 Problem Determine the omplexity of a given onstraint problem for all possiblevalues of the parameter �.Most progress has been made in the Boolean ase (that is, when the set of values Dis f0; 1g), suh problems are sometimes alled \generalized satis�ability problems" [33℄.Shaefer obtained a omplete lassi�ation for the standard deision-problem form ofthe CSP over f0; 1g [75℄, whih is desribed in Setion 4.3, below. Over the last deade,lassi�ations for many related Boolean onstraint problems, inluding all of the problemsmentioned in Setion 2, have been ompleted (see referenes in Setion 2). Some of theselassi�ations are also desribed in Setion 4.3.Classifying the omplexity in the non-Boolean ase has proved to be a very diÆulttask. Three main approahes to this problem have been onsidered; two of them arebased on the homomorphism form of the CSP.(1) The homomorphism problem for graphs has been extensively studied (see, e.g., [39℄),and thus one an try to develop some methods of graph theory to apply in the moregeneral ontext of onstraint satisfation.(2) The problem Hom(B) an be seen as the membership problem for the lass of allrelational strutures A suh that A ! B, and hene methods of �nite model theoryan applied to study the de�nability of this lass in various logis (from whih onean then derive information about the omplexity of the problem [30℄).Elements of these two approahes are present in [24, 26, 31, 54℄.In the remainder of this paper, we will disuss the third, algebrai, approah to theomplexity lassi�ation problem. This approah has proved to be the most fruitful sofar; it has made it possible to obtain very strong omplexity lassi�ation results for awide variety of ases. 8



4 The Finite-Valued CSPIn this setion we onsider the ase when the set of possible values for the variables in aonstraint satisfation problem is �nite.4.1 Expressive Power of Constraint LanguagesIn any CSP instane some of the required relationships between variables are given expli-itly in the onstraints, whilst others generally arise impliitly from interations betweendi�erent onstraints. For any instane in CSP(�), the expliit onstraint relations mustbe elements of �, but there may be impliit restritions on some subsets of the variablesfor whih the orresponding relations are not elements of �, as the next example indiates.4.1 Example Let � be the set ontaining a single binary relation, �, over the set f0; 1; 2g,where � is de�ned as follows:� = f(0; 0); (0; 1); (1; 0); (1; 2); (2; 1); (2; 2)g:One element of CSP(�) is the instaneP = (fv1; v2; v3; v4g; f0; 1; 2g; fC1 ; C2; C3; C4; C5g);where C1 = ((v1; v2); �), C2 = ((v1; v3); �), C3 = ((v2; v3); �), C4 = ((v2; v4); �), C5 =((v3; v4); �).
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Figure 1: The CSP instane P de�ned in Example 4.1Note that there is no expliit onstraint on the pair (v1; v4). However, by onsideringall solutions to P , it an be shown that the possible pairs of values whih an be takenby this pair of variables are preisely the elements of the relation �0 = � [ f(1; 1)g.We now de�ne exatly what it means to say that a onstraint relation an be expressedin a onstraint language. 9



4.2 De�nition A relation % an be expressed in a onstraint language � over D if thereexists a problem instane (V;D;C) in CSP(�), and a list, s, of variables, suh that thesolutions to (V;D;C) restrited to s give preisely the tuples of %.For any onstraint language �, the set of all relations whih an be expressed in � willbe alled the expressive power of �.The expressive power of a onstraint language � an be haraterised in a number ofdi�erent ways [46℄. For example, it is equal to the set of all relations that may be obtainedfrom the relations in � using the relational join and projet operations from relationaldatabase theory [38℄. Alternatively, it an be shown to be equal to the set of relationsde�nable by primitive positive formulas involving the relations of � and equality, whihis de�ned as follows.4.3 De�nition For any set of relations � over D, the set h�i onsists of all relationsthat an be expressed using(1) relations from �, together with the binary equality relation on D (denoted =D),(2) onjuntion, and(3) existential quanti�ation.4.4 Example Example 4.1 demonstrates that the relation �0 belongs to the expressivepower of the onstraint language � = f�g. It is easy to dedue from the onstrutiongiven in Example 4.1 that�0(x; y) � 9u9v(�(x; u) ^ �(x; v) ^ �(u; v) ^ �(u; y) ^ �(v; y)):Hene, �0 2 hf�gi.4.2 Polymorphisms and ComplexityIn this setion we shall explore how the notion of expressive power may be used to simplifythe analysis of the omplexity of the onstraint satisfation problem.We �rst note that any relation that an be expressed in a language � an be addedto � without hanging the omplexity of CSP(�).4.5 Proposition For any onstraint language � and any relation % belonging to theexpressive power of �, CSP(� [ f%g) is reduible in polynomial time to CSP(�).This result an be established simply by noting that, given an arbitrary problem instanein CSP(� [ f%g), we an obtain an equivalent instane in CSP(�) by replaing eahonstraint C that has onstraint relation % with a olletion of onstraints that haveonstraint relations hosen from � and that together express the onstraint C.By iterating this proedure we an obtain the following orollary.10



4.6 Corollary For any onstraint language �, and any �nite onstraint language �0, if�0 is ontained in the expressive power of �, then CSP(�0) is reduible to CSP(�) inpolynomial time.Corollary 4.6 implies that for any �nite onstraint language �, the omplexity of CSP(�)is determined, up to polynomial-time redution, by the expressive power of �, and heneby h�i. This raises an obvious question: how an we obtain suÆient information aboutthe set h�i to determine the omplexity of CSP(�)?A very suessful approah to this question has been developed in [18, 43, 45℄, usingtehniques from universal algebra [63, 71℄. To desribe this approah, we need to onsider�nitary operations on D. We will use O(n)D to denote the set of all n-ary operations on theset D (that is, the set of mappings f : Dn ! D), and OD to denote the set S1n=1O(n)D .An operation f 2 O(n)D will be alled essentially unary if there exists some i in therange 1 � i � n, and some operation g 2 O(1)D suh that the following identity is satis�edf(x1; x2; : : : ; xn) = g(xi):An essentially unary operation for whih g is the identity operation is alled a projetion.Any operation (of whatever arity) whih is not essentially unary will be alled essentiallynon-unary.Any operation on D an be extended in a standard way to an operation on tuples overD, as follows. For any operation f 2 O(n)D , and any olletion of tuples ~a1;~a2; : : : ;~an 2Dm, where ~ai = (ai1; : : : ; aim) (i = 1 : : : n), de�ne f(~a1; : : : ;~an) by settingf(~a1; : : : ;~an) = ( f(a11; : : : ; an1); : : : ; f(a1m; : : : ; anm) ):4.7 De�nition For any relation % 2 R(m)D , and any operation f 2 O(n)D , if f(~a1; : : : ;~an) 2% for all hoies of ~a1; : : : ;~an 2 %, then % is said to be invariant under f , and f is alleda polymorphism of %.The set of all relations that are invariant under eah operation from some set C � ODwill be denoted Inv(C). The set of all operations that are polymorphisms of every relationfrom some set � � RD will be denoted Pol(�). The operators Inv and Pol form a Galoisorrespondene between RD and OD (see Proposition 1.1.14 of [71℄). A basi introdutionto this orrespondene an be found in [69℄, and a omprehensive study in [71℄.Sets of operations of the form Pol(�) are known as lones and sets of relations of theform Inv(C) are known as relational lones [71℄. Moreover, the following useful hara-terisation of sets of the form Inv(Pol(�)) an be found in [71℄.4.8 Theorem For every set � � RD, Inv(Pol(�)) = h�i.This result was ombined with Corollary 4.6 to obtain the following result in [43℄.4.9 Theorem For any onstraint languages �;�0 � RD, with �0 �nite, if Pol(�) �Pol(�0), then CSP(�0) is reduible to CSP(�) in polynomial time.11



∅∅∅∅

Sets of 

relations

Sets of 

operations

Rk

G

Pol(G)Inv(Pol(G))

Pol

Inv
= ·GÒ

Ok
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The �rst result of this kind was a omplete lassi�ation of the omplexity of theordinary Boolean onstraint satisfation problem obtained by Shaefer in 1978 [75℄. Reallthat a omputational problem is alled tratable if there is a polynomial-time algorithmdeiding every instane of the problem. The lass of all tratable problems is denotedPTIME.4.11 Theorem For any onstraint language � � Rf0;1g, CSP(�) is tratable when (atleast) one of the following onditions holds:(1) Every % in � ontains the tuple (0; 0; : : : ; 0).(2) Every % in � ontains the tuple (1; 1; : : : ; 1).(3) Every % in � is de�nable by a CNF formula in whih eah onjunt has at most onenegated variable.(4) Every % in � is de�nable by a CNF formula in whih eah onjunt has at most oneunnegated variable.(5) Every % in � is de�nable by a CNF formula in whih eah onjunt has at most twoliterals.(6) Every % in � is de�nable by a system of linear equations over the two-element �eld.In all other ases CSP(�) is NP-omplete.This result establishes a dihotomy for versions of this problem parameterized by thehoie of onstraint language: they are all either tratable or NP-omplete. Dihotomytheorems of this kind are of partiular interest beause, on the one hand, they determinethe preise omplexity of partiular onstraint problems, and, on the other hand, theydemonstrate that no problems of intermediate omplexity an our in this ontext. Notethat the existene of onstraint problems of intermediate omplexity annot be ruled out apriori due to the result [57℄ that if PTIME 6= NP then the lass NP ontains (in�nitelymany pairwise inequivalent) problems whih are neither tratable nor NP-omplete.Using the algebrai approah desribed in the previous setions, together with theknowledge of possible lones on a two-element set obtained in [72℄, Shaefer's result anbe reformulated in the following muh more onise form.4.12 Theorem For any set of relations � � Rf0;1g, CSP(�) is tratable when Pol(�)ontains any essentially non-unary operation or a onstant operation. Otherwise it isNP-omplete.4.13 Example Reall the relation N over f0; 1g de�ned in Example 3.4. Using generalresults from [72℄, it an be shown that Pol(fNg) ontains essentially unary operationsonly, and hene, by Theorem 4.12, CSP(fNg) is NP-omplete.13



Shaefer's result has inspired a series of analogous investigations for many relatedonstraint problems, inluding those listed in Setion 2. We will now list some om-plexity lassi�ation results that have reently been obtained for these problems in theBoolean ase. Surprisingly, for a wide variety of suh related problems it turns out thatthe polymorphisms of the onstraint language are highly relevant to the study of theomputational omplexity.4.14 Theorem Let � � Rf0;1g be a Boolean onstraint language. The following fatsare known to hold for onstraint problems parameterized by �:� The Counting Problem is tratable if Pol(�) ontains the unique aÆne operationon f0; 1g, x� y + z. Otherwise it is #P-omplete [21℄.� The Quanti�ed Problem is tratable if Pol(�) ontains an essentially non-unaryoperation. Otherwise it is PSPACE-omplete [21, 23℄.� The Equivalene problem is tratable if Pol(�) ontains an essentially non-unaryoperation or a onstant operation. Otherwise it is oNP-omplete [6℄.� The Inverse Satis�ability problem is tratable if Pol(�) ontains an essentiallynon-unary operation. Otherwise it is oNP-omplete [49℄.� The Maximum Hamming Distane problem is tratable if Pol(�) ontains ei-ther a onstant operation, or the aÆne operation and the negation operation onf0; 1g [22℄.A full desription of these results requires the areful de�nition of the relevant omplexitylasses and redutions, whih is beyond the sope of this paper, so we refer the reader tothe ited papers for details.4.15 Example Reall the relation N over f0; 1g de�ned in Example 3.4. Using generalresults from [72℄, it an be shown that Pol(fNg) ontains essentially unary operationsonly. Hene, by Theorem 4.14, we an immediately onlude that:� Counting the number of solutions to an instane of CSP(fNg) is #P-omplete;� Deiding whether a quanti�ed Boolean formula whose quanti�er-free part involvesonly onjuntions of the prediate N is true is PSPACE-omplete.� Deiding whether two instanes of CSP(fNg) have the same solutions is oNP-omplete;� Deiding whether a given set of n-tuples is the set of solutions to some instane ofCSP(fNg) is oNP-omplete.
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4.4 From the CSP to Algebras and VarietiesMost of the results presented in this setion were �rst obtained in [15, 17, 18℄.With any onstraint language � � RD one an assoiate an algebra A � = (D;Pol(�)).In this setion we show that the omplexity of the problem CSP(�) is ompletely deter-mined by ertain properties of A � . (We refer the reader to [63℄ for a general bakgroundin universal algebra.)Reall that algebras are said to be term equivalent if they have the same set of termoperations. Sine, the term operations of A � are preisely the operations in Pol(�),Theorem 4.9 implies that term equivalent algebras give rise to problem lasses of thesame omplexity.4.16 Proposition Let �1;�2 � RD, where D is �nite. If A �1 and A �2 are term equiva-lent then �1 and �2 are tratable or NP-omplete simultaneously.This allows us to introdue the notion of a tratable algebra.4.17 De�nition An algebra A = (D;F ) is said to be tratable if the onstraint languageInv(F ) is tratable. It is said to be NP-omplete if Inv(F ) is NP-omplete.Thus, the omplexity lassi�ation problem for onstraint languages redues to theomplexity lassi�ation problem for �nite algebras. Furthermore, the next results showthat it is possible to signi�antly restrit the lass of algebras whih need to be lassi�ed.Let A = (D;F ) be an algebra, and U � D. Let A U denote the algebra A U = (U;F 0),where F 0 onsists of all operations of the form f jU (the restrition of f to U), for eahterm operation f of A suh that f 2 Pol(U).4.18 Proposition Let A be a �nite algebra, f a unary term operation suh that f(f(x)) =f(x) and U = f(D). Then A is tratable if and only if A U is tratable.Hene, by hoosing a unary term operation with a minimal range, we may restritourselves to onsidering only surjetive algebras, that is, algebras all of whose term op-erations are surjetive.Reall that an operation f is alled idempotent if it satis�es the identity f(x; : : : ; x) =x, and the full idempotent redut of an algebra A = (D;F ) is the algebra Id(A ) = (D;F 0)where F 0 onsists of all idempotent term operations of A .4.19 Proposition A surjetive �nite algebra A is tratable if and only if its full idem-potent redut is tratable.It follows that to lassify the omplexity of arbitrary �nite algebras it is suÆient toonsider only idempotent algebras, that is, algebras whose operations are all idempotent.Next, we show that the standard algebrai onstrutions preserve the tratability ofan algebra.
15



4.20 Theorem Let A be a �nite algebra. If A is tratable, then all of its subalgebras,homomorphi images and �nite diret powers are also tratable. Conversely, if A hasan NP-omplete subalgebra, homomorphi image, or �nite diret power, then it is NP-omplete itself.For an algebra A , we denote the pseudo-variety and the variety generated by A by pvar(A )and var(A ), respetively.4.21 Corollary A �nite algebra A is tratable if and only if every algebra from pvar(A )is tratable.As is well known, if A is a �nite lass of �nite algebras, then the pseudo-varietygenerated by A equals the lass of �nite algebras from the variety generated by A.4.22 Corollary A �nite algebra A is tratable if and only if every �nite algebra fromvar(A ) is tratable.4.23 Corollary If A is a �nite algebra, and var(A ) ontains a �nite NP-omplete alge-bra, then A is NP-omplete.Thus, the tratability of an algebra is a property whih an be determined by identities.We all an algebra a set if it ontains more than one element and all of its operationsare projetions. By ombining Proposition 4.10 with Corollary 4.23, we get the followingresult.4.24 Corollary If the pseudovariety generated by a �nite idempotent algebra A ontainsa set then A is NP-omplete.A homomorphi image of a subalgebra of an algebra A is alled a fator of A .4.25 Proposition If A is an idempotent algebra and pvar(A ) ontains a set then somefator of A is a set.Remarkably, the presene of a set as a fator is the only known reason for an idem-potent algebra to be NP-omplete. This prompts us to suggest the following onjeture.4.26 Conjeture A �nite idempotent algebra A is tratable if and only ifnone of the fators of A is a set; (No-Set)otherwise it is NP-omplete.It was shown in [17℄ that if one weakens Conjeture 4.26 by removing the ondition ofidempoteny, or replaing \fator" by either \subalgebra" or \homomorphi image", thenthe resulting onjeture is false.
16



It was proved in [79℄ that a variety V generated by a �nite idempotent algebra ontainsno set if and only if there is an n-ary term f (alled a Taylor term) in V suh that Vsatis�es n identities of the formf(xi1; : : : ; xin) = f(yi1; : : : ; yin); i = 1; : : : ; n;where xij ; yij 2 fx; yg and xii 6= yii for all i; j. Therefore, Corollary 4.24 an be restatedas follows.4.27 Corollary If a �nite idempotent algebra has no Taylor term, then it isNP-omplete.This orollary was used in [58℄ to study systems of polynomial equations over �nitealgebras, where it was proved, in partiular, that solving systems of equations over anon-trivial algebra from a ongruene-distributive variety is NP-omplete, and, further-more, solving systems of equations over a Mal'tsev algebra is tratable if this algebra ispolynomially equivalent to a module, otherwise it is NP-omplete.Using the result from [79℄ mentioned above, Conjeture 4.26 an be restated in termsof identities.4.28 Conjeture A �nite idempotent algebra A is tratable if it has a Taylor term;otherwise it is NP-omplete.Finally, the ondition (No-Set) from Conjeture 4.26 an be expressed in terms of tameongruene theory [41℄: a �nite idempotent algebra satis�es this ondition if and only ifthe variety it generates \omits type 1" [15℄.4.5 Tratable Algebras, Classi�ation Results and Tratability Tests4.5.1 Tratable AlgebrasDuring the last deade several partiular identities (partiular forms of Taylor term) havebeen identi�ed that guarantee the tratability of algebras satisfying one of these identities(that is, having a Taylor term of one of these speial forms) [9, 12, 27, 43, 44, 45℄.Reall that a binary operation � is alled a 2-semilattie operation if it satis�es theidentities x�x = x, x�y = y�x and (x�x)�y = x�(x�y). Note that a semilattie operation is apartiular ase of a 2-semilattie operation. A ternary operation f satisfying the identitiesf(x; y; y) = f(y; y; x) = x is alled a Mal'tsev operation, and an n-ary operation g is alleda near-unanimity operation if it satis�es the identitiesf(y; x; : : : ; x) = f(x; y; x; : : : ; x) = : : : = f(x; : : : ; x; y) = x:An n-ary operation is alled totally symmetri if, for all x1; : : : ; xn and y1; : : : ; yn suhthat fx1; : : : ; xng = fy1; : : : ; yng, it satis�es the identitiesf(x1; : : : ; xn) = f(y1; : : : ; yn):(Note that, in [27℄, a family (fn)n�2 of totally symmetri operations, where fn is n-ary,was alled a set funtion). 17



4.29 Theorem If a �nite algebra is tratable if it has (at least) one the following:{ a 2-semilattie term operation;{ a Mal'tsev term operation;{ a near-unanimity term operation;{ n-ary totally symmetri term operations for all n � 2.Another lass of algebras whih has been shown to be tratable [25℄ is the lass ofpara-primal algebras, whih are de�ned as follows. Let % an n-ary relation on D, andI = fi1; : : : ; ikg � f1; : : : ; ng with i1 < : : : < ik. By the projetion of % onto I we meanthe relation %I = f(ai1 ; : : : ; aik) j (a1; : : : ; an) 2 %g. The set I is said to be %-redued ifit is minimal with the property that the natural mapping % 7! %I is one-to-one. A �nitealgebra A is alled para-primal if for every n 2 N, every subuniverse % of A n , and every%-redued set I, we have %I = Qi2I %fig. However, it is known that every para-primalalgebra has a Mal'tsev term operation (see Theorem 4.7 of [77℄), and, hene, tratabilityof para-primal algebras follows from Theorem 4.29.4.5.2 Classi�ation resultsAlgebras of several speial types have been ompletely lassi�ed with respet to theomplexity of the orresponding onstraint satisfation problems.Stritly simple algebras. A �nite algebra is said to be stritly simple if it issimple and has no subalgebras with more than one element. Stritly simple algebras areompletely desribed in [78℄.4.30 Proposition ([17, 18℄) A �nite idempotent stritly simple algebra is tratable ifit is not a set; otherwise it is NP-omplete.Homogeneous algebras An algebra is alled homogeneous if every permutationon its base set is an automorphism of the algebra. Finite homogeneous algebras areompletely desribed in [61℄.4.31 Proposition ([25℄) A �nite homogeneous algebra is tratable if it satis�es the on-dition (No-Set); otherwise it is NP-omplete.Finite semigroups. A semigroup is alled a left- [right-℄zero semigroup if x � y = x[x � y = y℄ for all x; y. It is alled a blok-group if none of its subsemigroups is a left- orright-zero semigroup. As is easily seen, blok-groups are exatly those semigroups thathave no fator whih is a set.4.32 Proposition ([16℄) A �nite semigroup is tratable if it is a blok-group; otherwiseit is NP-omplete.Small algebras. Conjeture 4.26 has been proved for 2- and 3-element algebras.4.33 Theorem ([75, 11℄) 18



(1) An idempotent two-element algebra is tratable if it is not a set; otherwise it isNP-omplete.(2) An idempotent three-element algebra is tratable if it satis�es the ondition (No-Set);otherwise it is NP-omplete.Conservative algebras. An algebra is said to be onservative if every subset of itsuniverse is a subalgebra, or, equivalently, if f(x1; : : : ; xn) 2 fx1; : : : ; xng for every termoperation f and all x1; : : : ; xn.4.34 Theorem ([13℄) A onservative algebra A is tratable if every 2-element subalge-bra B has a term operation of one of the following types: a semilattie operation, a ternarynear-unanimity operation (that is, a majority operation), or a Mal'tsev operation; other-wise A is NP-omplete.It is not hard to hek that the onditions stated in Theorem 4.34 are equivalent to(No-Set) for onservative algebras.4.5.3 Testing TratabilityWe now onsider the problem of deiding whether a given onstraint language or idem-potent algebra is tratable. Following [21℄, we all suh a problem a meta-problem. Apriori, there is no upper omplexity bound for this problem, it may even be undeidable.However, if Conjeture 4.26 is true, then, given the basi operations of an idempotentalgebra, one an straightforwardly hek whether any fator of the algebra is a set. If weare given a �nite onstraint language � on a �nite set A, then the presene of a fatorwhih is a set an be deteted by examining all polymorphisms of � of arity at most jAj.Thus, the meta-problem is deidable, assuming Conjeture 4.26 holds. In this setion westudy its omplexity.For a onstraint language �, let f 2 Pol(�) be a unary operation with minimal rangeU , and let f(�) = ff(%) j % 2 �g where f(%) = ff(~a) j ~a 2 %g. Denote by � the onstraintlanguage f(�)[ffag j a 2 Ug. It follows from Propositions 4.18 and 4.19 that � tratableif and only if � is tratable. Moreover, the algebra A � = (U;Pol(�)) is idempotent.We onsider three ombinatorial deision problems related to the ondition (No-Set).CSP-Tratability-of-algebraInstane. A �nite set A and operation tables of idempotent operations f1; : : : ; fn on A.Question. Does the algebra A = (A; ff1; : : : ; fng) satisfy (No-set)?CSP-TratabilityInstane. A �nite set A and a �nite onstraint language � on A.Question. Does the algebra A = (U;Pol(�)) satisfy (No-set)?CSP-Tratability(k)Instane. A �nite set A, jAj � k, and a �nite onstraint language � on A.Question. Does the algebra A = (U;Pol(�)) satisfy (No-set)?4.35 Theorem ([15℄) 19



(1) The problem CSP-Tratability-of-algebra is tratable.(2) The problem CSP-Tratability(k) is tratable.(3) The problem CSP-Tratability is NP-omplete.The algorithm solving CSP-Tratability-of-algebra is, in fat, an adapted versionof the algorithm presented in [3℄ for �nding the type set of a �nite algebra. Sine thisalgorithm uses operations of arity bounded by the size of the algebra, it an be furthertransformed to an algorithm for solving CSP-Tratability(k). Finally, it is possible toshow that CSP-Tratability is in NP and to redue the NP-omplete problem Not-All-Equal-Satisfiability (see Example 3.4) to CSP-Tratability in polynomialtime.4.6 The Counting CSPIn this setion we disuss Problem 3.6 for the ounting onstraint satisfation problem(#CSP), whih is the problem of ounting solutions to an instane of CSP. Using thelogial and the homomorphism forms of the CSP (see Setion 1) this problem an also beformulated as the problem of ounting satisfying assignments to a onjuntive formula,that is, a formula of the form %1 ^ : : :^%n, where eah %i is an atomi formula, in a giveninterpretation, or alternatively as the problem of �nding the number of homomorphismsbetween two �nite relational strutures. For any onstraint language �, giving rise to thedeision onstraint satisfation problem CSP(�), we also de�ne the orresponding lass#CSP(�) of ounting problems.The results of this setion were �rst obtained in [14℄.4.36 Example An instane of the #3-SAT problem [20, 21, 81, 82℄ is spei�ed by givingan instane of the 3-satisfiability problem (see Example 1.3) and asking how manyassignments satisfy it. Therefore, #3-SAT is equivalent to #CSP(�) where � is the setof ternary Boolean relations whih are expressible by lauses.4.37 Example In the problem Antihain [73℄, we are given a �nite poset (P ;�), andwe aim to ompute the number of antihains in P . This problem an be expressed in the#CSP-form as follows. Let %� be the prediate of the natural order on f0; 1g. We assign avariable xa to eah element a 2 P . Then the #CSP(f%�g) instane � = Va�b %�(xa; xb)an be shown to be equivalent to the original Antihain instane.To show this, notie that every model ' to � satis�es the following ondition: if'(xa) = 1 and a � b then '(xb) = 1. This means that the set F' = fa 2 P j '(xa) = 1gis a �lter of P . Hene the models of � orrespond one-to-one to the �lters of P , andonsequently, to the antihains of P .On the other hand, any #CSP(f%�g) instane is reduible to an Antihain in-stane, though not so straightforwardly (see [14℄). Thus Antihain is equivalent to#CSP(f%�g). 20



The general #CSP is known to be #P-omplete, as follows from Theorem 4.14, or theresults of [82℄ and the examples above. We all a onstraint language � #-tratable if, forevery �nite �0 � �, the problem #CSP(�0) is polynomial time solvable. The language �is said to be #P-omplete if #CSP(�0) is #P-omplete for a ertain �nite �0 � �.The expressive power and the polymorphisms of a onstraint language again playruial roles in determining the omplexity of #CSP(�).4.38 Proposition For any onstraint languages, �;�0, on a �nite set D, with �0 �nite,if �0 � h�i, then #CSP(�0) is reduible to #CSP(�) in polynomial time.4.39 Proposition For any onstraint languages �;�0, on a �nite set D, with �0 �nite,if Pol(�) � Pol(�0), then #CSP(�0) is reduible to #CSP(�) in polynomial time.Proposition 4.39 implies that, as with the deision CSP, the algebra A � fully determinesthe ounting omplexity of a onstraint language �. We will say that a �nite algebraA = (D;F ) is #-tratable [#P-omplete℄ if so is the onstraint language Inv(F ).The next result shows that, one again, standard onstrutions preserve tratability.4.40 Theorem Let A be a �nite algebra. If A is #-tratable, then all of its subalgebras,homomorphi images and �nite diret powers are also #-tratable. Conversely, if A hasa #P-omplete subalgebra, homomorphi image, or �nite diret power, then A is #P-omplete itself.4.41 Theorem A �nite algebra is #-tratable (#P-omplete) if and only if its full idem-potent redut is #-tratable (#P-omplete).The benhmark hard ounting problems arise from binary reexive non-symmetri rela-tions.4.42 Proposition If % is a binary reexive non-symmetri relation on a �nite set, then#CSP(f%g) is #P-omplete.Theorem 4.40, Proposition 4.42, and the results from [41℄, provide a link between theomplexity of #CSP and Mal'tsev operations, whih we will now investigate. The nextstatement follows from Theorem 9.13 of [41℄.4.43 Theorem For a �nite algebra A the following onditions are equivalent:(1) A does not have a Mal'tsev term operation.(2) There is a �nite algebra B = (B;F ) 2 var(A ), suh that Inv(F ) ontains a binaryreexive non-symmetri relation.By Proposition 4.42, the algebra B from Theorem 4.43(2) is #P-omplete. Furthermore,Theorem 4.40 implies that A is also #P-omplete.4.44 Corollary Every �nite algebra having no Mal'tsev term operation is #P-omplete.21



By making use of Corollary 4.44 we an obtain a very easy proof of the dihotomytheorem for the Boolean #CSP ([20℄, see Theorem 4.14). First, it follows from the resultsof [72℄, that any Boolean relation whih is invariant under some Mal'tsev operation onf0; 1g is also invariant under the unique aÆne operation on f0; 1g, x� y + z. Hene, byCorollary 4.44, any Boolean onstraint language is either #P-omplete, or else a subsetof Inv(fx� y + zg). Any relation belonging to Inv(fx� y + zg) is the solution spae ofa system of linear equations over the 2-element �eld, so it is possible to �nd a basis forthis set in polynomial time. Furthermore, the number of solutions in this set equals 2n,where n is the number of vetors in the basis.4.45 Example The #H-oloring problem is the ounting version of the Graph H-oloring problem (see Example 3.5). In this problem, the goal is to �nd the number ofhomomorphisms from a given graph G to the �xed graph H.If the #H-oloring problem is restrited to undireted graphs then, as provedin [29℄, the problem is tratable if every onneted omponent of H is either an isolatedvertex, or a omplete graph with all loops, or a omplete unlooped bipartite graph;otherwise the problem is #P-omplete. The tratability part of this result is easy, andthe hardness part an be easily derived from Corollary 4.44, sine symmetri relations(or graphs) invariant under a Mal'tsev operation must be of the form spei�ed above.Mal'tsev operations on a three-element set, and the struture of relations invariantwith respet to them, are exhaustively studied in [10℄. Making use of these results, three-element algebras have been ompletely lassi�ed with respet to ounting omplexity [14℄.4.46 Theorem A three-element algebra is #-tratable if it is Mal'tsev; otherwise it is#P-omplete.An algebra is said to be uniform if, for any subalgebra B , the bloks of every ongrueneof B are of the same size. Clearly, all two-element algebras, groups and quasi-groups areuniform.4.47 Theorem Every uniform Mal'tsev algebra is #-tratable.Theorems 4.46 and 4.47 prompt a natural onjeture: a �nite algebra is #-tratable ifand only if it is Mal'tsev; otherwise it is #P-omplete. However, this onjeture does nothold, sine there is a 5-element Mal'tsev algebra that an be proved to be #P-omplete.4.7 The Quanti�ed CSPThe standard onstraint satisfation problem over an arbitrary �nite domain an beexpressed as follows: given a �rst-order sentene of the form 9x1 : : : 9xl(%1 ^ : : : %q),where eah %i is an atomi formula, and x1; : : : ; xl are the variables appearing in the %i,determine whether the sentene is true (see Setion 1). In this subsetion we onsidera more general framework whih allows arbitrary quanti�ers over onstrained variables,rather than just existential quanti�ers. This form of the CSP is alled the quanti�ed CSP,or QCSP for short. The Boolean QCSP (also known as QSAT or QBF), and some of its22



restritions (suh as Q3SAT), have always been standard examples of PSPACE-ompleteproblems [33, 67, 75℄.All the results presented in this setion were �rst obtained in [8, 19℄.4.48 De�nition For a onstraint language � � RD, an instane of QCSP(�) is a �rst-order sentene Q1x1 : : :Qlxl (%1 ^ : : :^ %q), where eah %i is an atomi formula involvinga prediate from �, x1; : : : ; xl are the variables appearing in the %i, and Q1; : : : ;Ql arearbitrary quanti�ers. The question is whether the sentene is true.Clearly, an instane of CSP(�) orresponds to an instane of QCSP(�) in whih all thequanti�ers happen to be existential.We note that in the Boolean ase, the omplexity of QCSP(�) has been ompletelylassi�ed (see Theorem 4.11). For problems over larger domains no omplete lassi�ationhas yet been obtained, but there are a number of known results onerning the omplexityof speial ases.4.49 Example Consider the following Coloring Constrution Game played by twoplayers, Player 1 and Player 2: given an undireted graph G = (V;E), a linear orderingon V (i.e., a bijetion f : V ! f1; : : : ; jV jg), an ownership funtion w : V ! f1; 2g, and a�nite set of olours D with jDj � 3. In the i'th move, the player who owns vertex f�1(i)(that is, Player w(f�1(i))) olours it in suh a way that its olour is di�erent from theolours of all its neighbours that are already oloured. Player 1 wins if all verties areoloured at the end of the game.Deiding whether Player 1 has a winning strategy in an instane of this game an betranslated into an instane of the quanti�ed version of the Graph jDj-olorabilityproblem, QCSP(f6=Dg). To make this translation we view elements from V as variables,elements of E as onstraint sopes, the relation 6=D as the only available onstraintrelation, the variables from w�1(1) as existentially quanti�ed, the variables from w�1(2)as universally quanti�ed, and the order of quanti�ation as spei�ed by the funtion f .Sine the problem of determining whether Player 1 has a winning strategy in thisgame was shown to be PSPACE-omplete in [5℄, it follows that QCSP(f6=Dg) is alsoPSPACE-omplete.It an be shown that, for quanti�ed onstraint satisfation problems, surjetive poly-morphisms play a similar role to that played by arbitrary polymorphisms for ordinaryCSPs (f. Theorem 4.9). Let s-Pol(�) denote the set of all surjetive operations fromPol(�).4.50 Theorem For any onstraint languages �;�0 � RD, with �0 �nite, if s-Pol(�) �s-Pol(�0), then QCSP(�0) is reduible to QCSP(�) in polynomial time.This theorem follows immediately from the next two propositions.4.51 De�nition For any set � � RD, the set [�℄ onsists of all prediates that an beexpressed using 23



(1) prediates from �, together with the binary equality prediate =D on D,(2) onjuntion,(3) existential quanti�ation,(4) universal quanti�ation.4.52 Proposition For any onstraint languages �;�0 � RD, with �0 �nite, if [�0℄ � [�℄,then QCSP(�0) is reduible to QCSP(�) in polynomial time.4.53 Proposition For any onstraint language � over a �nite set, [�℄ = Inv(s-Pol(�)).Note that Proposition 4.53 intuitively means that the expressive power of onstraintsin the QCSP is determined by their surjetive polymorphisms. Hene, in order to showthat some relation % belongs to [�℄, one does not have give an expliit onstrution, butinstead one an show that % is invariant under all surjetive polymorphisms of �, whihoften turns out to be signi�antly easier.We remark that the operators Inv() and s-Pol() used in Proposition 4.53 form a Ga-lois onnetion between RD and the set of all surjetive members of OD whih has notpreviously been investigated (see, e.g., survey [70℄).Using Theorem 4.50, together with Example 4.49, we an obtain a suÆient onditionfor PSPACE-ompleteness of QCSP(�), in terms of the surjetive polymorphisms of �.4.54 Theorem For any �nite set D with jDj � 3, and any � � RD, if every f 2 s-Pol(�)is of the form f(x1; : : : ; xn) = g(xi) for some 1 � i � n and some permutation g on D,then QCSP(�) is PSPACE-omplete.The next example uses this result to show that even prediates that give rise to trivialonstraint satisfation problems an give rise to intratable quanti�ed onstraint satis-fation problems. This an happen beause non-surjetive polymorphisms, whih mayguarantee the tratability of the CSP, do not a�et the omplexity of the QCSP.4.55 Example Let �s be the s-ary \not-all-distint" prediate holding on a tuple (a1; : : : ; as)if and only if jfa1; : : : ; asgj < s. Note that �s � f(a; : : : ; a) j a 2 Dg, so every instaneof CSP(f�sg) is trivially satis�able by assigning the same value to all variables.However, by Lemma 2.2.4 of [71℄, the set Pol(f�jDjg) onsists of all non-surjetiveoperations on D, together with all operations of the form given in Theorem 4.54. Hene,f�jDjg satis�es the onditions of Theorem 4.54, and QCSP(f�jDjg) is PSPACE-omplete.Similar arguments an be used to show that QCSP(f�sg) is PSPACE-omplete, for anys in the range 3 � s � jDj.On the tratability side, we have the following result. We all a semilattie operationbounded if the orresponding partial order is bounded (that is, it is a lattie order). Reallthat the dual disriminator operation is de�ned by the ruled(x; y; z) = � y if y = z,x otherwise.Note that the dual disriminator is a speial type of near-unanimity operation.24



4.56 Theorem For any onstraint language � over a �nite set:(1) if Pol(�) ontains a Mal'tsev operation, or a near-unanimity operation, or a boundedsemilattie operation, then QCSP(�) is tratable;(2) if Pol(�) ontains the dual disriminator operation, then QCSP(�) is in NL.Reall that the graph of a permutation � is the binary relation f(x; y) j y = �(x)g (orthe binary prediate �(x) = y), For the speial ase when � ontains the set � of all graphsof permutations, there is a trihotomy result whih says that suh problems are eithertratable, or NP-omplete, or PSPACE-omplete. (We remark that the omplexity ofthe standard CSP(�) for suh sets � was ompletely lassi�ed in [25℄.)To state this trihotomy result we need to de�ne two additional surjetive operations:� The k-ary near projetion operation,lk(x1; : : : ; xk) = � x1 if x1; : : : ; xk are all di�erent,xk otherwise.� The ternary swithing operation,s(x; y; z) =8<: x if y = z,y if x = z,z otherwise.4.57 Theorem Let � � � � RD, and jDj � 3.- If s-Pol(�) ontains the dual disriminator d, or the swithing operation s, or (whenjDj 2 f3; 4g) an aÆne operation, then QCSP(�) is in PTIME;- else, if s-Pol(�) ontains ljDj, then QCSP(�) is NP-omplete;- else QCSP(�) is PSPACE-omplete.5 The In�nite-Valued CSPThere are many omputational problems whih an be represented as onstraint satis-fation problems, but require an in�nite set of values. In order to avoid representationproblems for in�nite objets, we will onsider CSPs with in�nite sets of values in thefollowing form: �x an in�nite relational struture B of �nite signature; the input thenis a �nite struture A of the same signature, and the question is whether there is ahomomorphism from A to B.Here are two well-known examples of problems with an in�nite set of possible values.5.1 Example An instane of the Ayli Digraph problem is a direted graph G, andthe question is whether G is ayli, that is, ontains no direted yles. It is easy to seethat this problem is equivalent to Hom(B) where B = (N;<), sine a direted graph isayli if and only if its verties an be numbered in suh a way that every ar leads froma vertex with smaller number to a vertex with a greater one. This problem is tratable.25



5.2 Example An instane of the Betweenness problem is a pair (A; T ) where A is a�nite set and T � A3; the question is whether there is a funtion f : A ! f1; : : : ; jAjgsuh that, for every triple (a; b; ) 2 T , we have either f(a) < f(b) < f() or f(a) >f(b) > f(). This problem is equivalent to Hom(B) with B = (N; R) whereR = f(x; y; z) 2 N3 j x < y < z or x > y > zg:This problem is NP-omplete [33℄.It an be shown that neither of the above two problems an be represented as CSP(�)for any onstraint language � over a �nite set D.5.1 Appliability of PolymorphismsIn order to investigate the appliability of the algebrai approah, desribed in previoussetions, to the in�nite-valued CSP, the �rst question to be asked is whether the om-plexity is determined by the polymorphisms of the onstraint relations; that is, whetherh�i = Inv(Pol(�)) when � is a �nite onstraint language over an in�nite domain. It is nothard to see that the inlusion h�i � Inv(Pol(�)) always holds. However, this inlusionan be strit, as the next example shows.5.3 Example Consider � = fR1; R2; R3g on N, where R1 = f(a; b; ; d) j a = b or  = dg,R2 = f(1)g, and R3 = f(a; a + 1) j a 2 Ng. It is not diÆult to show that everypolymorphism of � is a projetion, and hene Inv(Pol(�)) is the set of all relations onN. However, one an hek that, for example, the unary relation onsisting of all evennumbers does not belong to h�i.However, for some ountable strutures B, the required equality does hold, as thenext result indiates.A ountable struture B (of �nite signature) is alled homogeneous if every isomor-phism between any pair of substrutures is indued by an automorphism of B. A ountablestruture is alled !-ategorial if it is determined (up to isomorphism) by its �rst-ordertheory. It is known that every ountable homogeneous struture is !-ategorial, andthat a ountable struture is !-ategorial if and only if its automorphism group, whenating on the set of all n-tuples (for any n) of elements from the struture, has only�nitely many orbits (see, e.g., [42℄).5.4 Theorem ([4℄) If B� is a ountable !-ategorial struture then h�i = Inv(Pol(�)).Many examples of ountable homogeneous strutures, as well as remarks on the omplex-ity of the orresponding onstraint satisfation problems, an be found in [4℄.5.2 The Interval-Valued CSPOne form of in�nite-valued CSP whih has been widely studied in arti�ial intelliegeneis the ase where the values taken by the variables are intervals on the real line. This26



Basi relation Example EndpointsI preedes J p III I+ < J�J preeded by I p�1 JJJI meets J m IIII I+ = J�J met by I m�1 JJJJI overlaps J o IIII I� < J� < I+,J overl. by I o�1 JJJJ I+ < J+I during J d III I� > J�,J inludes I d�1 JJJJJJJ I+ < J+I starts J s III I� = J�,J started by I s�1 JJJJJJJ I+ < J+I �nishes J f III I+ = J+,J �nished by I f�1 JJJJJJJ I� > J�I equals J � IIII I� = J�,JJJJ I+ = J+Table 1: The 13 basi relations in Allen's interval algebra.setting is used to model temporal behaviour of systems, where the intervals represent timeintervals during whih events our. The most popular suh formalism is Allen's intervalalgebra (AIA for short), introdued in [1℄, whih onerns binary qualitative relationsbetween intervals. This algebra ontains 13 basi relations (see Table 1), orrespondingto the 13 distint ways in whih two given intervals an be related. The omplete set ofrelations in AIA onsists of the 213 = 8192 possible unions of the basi relations.Let � be a onstraint language over the set of intervals on the real line, whose ele-ments are members of Allen's interval algebra, and let B� be the orresponding relationalstruture. It is not hard to see that every instane of CSP(�) an also be (more graph-ially) viewed as a direted graph whose verties represent the variables and whose arsare eah labelled with a relation from �. The question would then be whether one anassign intervals to the verties so that all onstraints on the ars are satis�ed.Some well-known ombinatorial problems an be represented as CSP(�) for a suitablesubset � of AIA, as the next example indiates.5.5 Example An undireted graph is alled an interval graph if it possible to assign(open) intervals to its nodes so that two intervals interset if and and only if the or-responding nodes are adjaent. An instane of the Interval Graph Sandwih prob-lem [35℄ onsists of two (undireted) graphs G1 = (V;E1) and G2 = (V;E2) suh thatE1 � E2. The question is whether there is E suh that E1 � E � E2 and G = (V;E) isan interval graph. This problem is known to be NP-omplete [35℄.This problem an be represented as CSP(�) where � onsists of two relations: \dis-joint" (given by p [ p�1 [ m [ m�1) and its omplement, \interset" (the union of the27



other nine basi relations). Indeed, let V be the set of variables, then, to any edge e 2 E1assign the onstraint \interset", to any edge e 62 E2 assign the onstraint \disjoint", andleave all other pairs of variables unrelated. Solutions of this CSP preisely orrespond tointerval graph sandwihes.Note that the ase when G1 = G2 is known as the Interval Graph Reognitionproblem, whih is tratable, but this problem is not of the form CSP(�) beause in theInterval Graph Reognition problem we annot leave any pair of variables unrelated.Choosing other pairs of omplementary relations, one an obtain other graph sandwihproblems, suh as the Overlap (or Cirle) Graph Sandwih problem [35, 55℄The general CSP problem for AIA is NP-omplete, as follows from the above example.The problem of lassifying subsets of AIA with respet to the omplexity of the orre-sponding CSP has attrated muh attention in arti�ial intelligene (see, for example,[76℄).Allen's interval algebra has three operations on relations: omposition, intersetion,and inversion. Note that these three operations an eah be represented by using on-juntion and existential quanti�ation, so, for any subset � of AIA, the subalgebra �0 ofAIA generated by � has the property that �0 � h�i. It follows from Corollary 4.6 thatCSP(�) and CSP(�0) are polynomial-time equivalent. Hene it is suÆient to lassify allsubalgebras of AIA.Using omputations in subalgebras of AIA, manipulations with primitive positiveformulas (alled derivations in [55℄) and a number of new NP-ompleteness results, aomplete lassi�ation of the omplexity of all subsets of AIA was aomplished in [55℄,where the following result was obtained.5.6 Theorem Let � be a subset of Allen's interval algebra. If � is ontained in oneof the eighteen subalgebras listed in Table 2, then CSP(�) is tratable; otherwise it isNP-omplete.In Table 2, for the sake of brevity, relations between intervals are written as olletionsof basi relations. So, for instane, we write (pmod) instead of p [m [ o [ d. We also usethe symbol �, whih should be interpreted as follows: a ondition involving � means theonjuntion of two onditions, one orresponding to + and one orresponding to �. Forexample, the ondition (o)�1 � r , (d)�1 � r means that both (o) � r , (d) � r and(o�1) � r , (d�1) � r hold.It follows from Theorem 5.6 that CSP(frg), where r is a single relation in AIA, is NP-omplete if and only if r either satis�es r\ r�1 = (mm�1) or is a relation with r\ r�1 = ;and suh that neither r nor r�1 is ontained in one of (pmod�1sf�1), (pmod�1s�1f�1),(pmodsf) and (pmodsf�1).It was noted in [4℄ that AIA (without its operations) is in fat a homogeneous relationalstruture. Sine we may assume, without loss of generality, that all intervals underonsideration have rational endpoints, we obtain a ountable homogeneous struture of�nite signature. Therefore, by Theorem 5.4, the omplexity lassi�ation problem forsubsets of AIA an be takled using polymorphisms. Suh an approah may provide aroute to simplifying the involved lassi�ation proof given in [55℄.28



Sp = fr j r \ (pmod�1f�1)�1 6= ; ) (p)�1 � rgSd = fr j r \ (pmod�1f�1)�1 6= ; ) (d�1)�1 � rgSo = fr j r \ (pmod�1f�1)�1 6= ; ) (o)�1 � rgA1 = fr j r \ (pmod�1f�1)�1 6= ; ) (s�1)�1 � rgA2 = fr j r \ (pmod�1f�1)�1 6= ; ) (s)�1 � rgA3 = fr j r \ (pmodf)�1 6= ; ) (s)�1 � rgA4 = fr j r \ (pmodf�1)�1 6= ; ) (s)�1 � rgEp = fr j r \ (pmods)�1 6= ; ) (p)�1 � rgEd = fr j r \ (pmods)�1 6= ; ) (d)�1 � rgEo = fr j r \ (pmods)�1 6= ; ) (o)�1 � rgB1 = fr j r \ (pmods)�1 6= ; ) (f�1)�1 � rgB2 = fr j r \ (pmods)�1 6= ; ) (f)�1 � rgB3 = fr j r \ (pmod�1s�1)�1 6= ; ) (f�1)�1 � rgB4 = fr j r \ (pmod�1s)�1 6= ; ) (f�1)�1 � rgE� = (r ����� 1) r \ (pmod)�1 6= ; ) (s)�1 � r, and2) r \ (ff�1) 6= ; ) (�) � r )
S� = (r ����� 1) r \ (pmod�1)�1 6= ; ) (f�1)�1 � r, and2) r \ (ss�1) 6= ; ) (�) � r )
H =8><>:r ������� 1) r \ (os)�1 6= ; & r \ (o�1f)�1 6= ; ) (d)�1 � r, and2) r \ (ds)�1 6= ; & r \ (d�1f�1)�1 6= ; ) (o)�1 � r, and3) r \ (pm)�1 6= ; & r 6� (pm)�1 ) (o)�1 � r 9>=>;A� = fr j r 6= ; ) (�) � rgTable 2: The 18 maximal tratable subalgebras of Allen's algebra.
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