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Labelled Markov Chains (LMCs)
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An LMC generates
infinite words randomly.

Pr({abacccc . . .}) = 1
2 ·

1
4 ·

1
2 ·

1
4 = 1

64
Pr({a}Σω) = 1

2

Pr({b}Σω) = 1
4

Pr(“eventually only c”) = 1

Pr assigns a measurable event E ⊆ Σω a probability ∈ [0,1].
E ⊆ Σω could be defined by an LTL formula.
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Pr1({accc . . .}) = 1
2 ·

1
4 = 1

8 Pr2({accc . . .}) = 1
4 ·

1
4 = 1
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The two LMCs are not equivalent
and have positive distance.

TV-distance d(Pr1,Pr2) := maxE⊆Σω |Pr1(E)− Pr2(E)|

How large can Pr1(E)− Pr2(E) get?

No larger than 15
16 < 1.
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Motivation: Efficient Model Checking

“similar” LMCs M1, . . . ,Mn

(ω-regular) events E1, . . . ,Em

want: bounds on Pri(Ej) for all i , j

Assume d(Pr1,Pri) ≤ ε for all i ≤ n. Then by definition

∀i ∀j : Pri(Ej) ∈ [Pr1(Ej)− ε,Pr1(Ej) + ε]
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Digression: Total Variation Distance

PrTaolue 0.3 0.6 0.1
PrStefan 0.2 0.5 0.3

PrTaolue

({ })
− PrStefan

({ })
= 0.1

PrTaolue



− PrStefan



 = 0.1

PrTaolue

 ,


− PrStefan

 ,


 = 0.2

PrTaolue

({ })
− PrStefan

({ })
= −0.2
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Digression: Total Variation Distance

PrTaolue 0.3 0.6 0.1
PrStefan 0.2 0.5 0.3

The TV-distance is half the L1-norm of the difference:

d(PrTaolue,PrStefan) =
1
2
‖PrTaolue − PrStefan‖1

:=
1
2

∑
x∈{ , , }

|PrTaolue(x)− PrStefan(x)|

=
1
2
· (0.1 + 0.1 + 0.2) = 0.2
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What is the Maximising Event?
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d(Pr1,Pr2) := maxE⊆Σω |Pr1(E)− Pr2(E)|

d(Pr1,Pr2) = Pr1(E)− Pr2(E) holds for

E = {wccc . . . | w ∈ {a,b}∗, #a(w) ≥ #b(w)}

“E is a maximising event”
It’s not clear that there is always a maximising event.
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More Careful Definition

d(Pr1,Pr2) := max E⊆Σω |Pr1(E)− Pr2(E)|

d(Pr1,Pr2) := sup E⊆Σω |Pr1(E)− Pr2(E)|

Technically, E ranges only over the measurable subsets of Σω

(still uncountably many such events E).

Proposition (Existence of a Maximising Event)

There is an event E ⊆ Σω with d(Pr1,Pr2) = Pr1(E)− Pr2(E).

d(Pr1,Pr2) := max E⊆Σω |Pr1(E)− Pr2(E)|
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The Maximising Event is not Always ω-Regular.
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d(Pr1,Pr2) := maxE⊆Σω |Pr1(E)− Pr2(E)|

d(Pr1,Pr2) = Pr1(E)− Pr2(E) =
√

2/4 holds for

E = {wccc . . . | w ∈ {a,b}∗, #a(w) ≥ #b(w)}

There is no ω-regular maximising event.
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Example for Distance 1
2
3b

1
3b

1
3a 2

3a

The LMC is very symmetric.
Both states enable all runs.

But d(Pr1,Pr2) = 1. What is the maximising event?

b a a b b a a b b a b a b a b b · · ·

1 2 3 4 5 6 7 8 9
b b a b
0
1

0
2

1
3

1
4 → 1

3

Let E = “this sequence converges to 1
3 ”. Then:

Pr1(E) = 1 and Pr2(E) = 0

There is no ω-regular maximising event.
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A Maximising Event: Intuition

PrTaolue 0.3 0.6 0.1
PrStefan 0.2 0.5 0.3

PrTaolue

({
,

})
− PrStefan

({
,

})
= 0.2

For LMCs, define

L(w) :=
Pr2(w)

Pr1(w)

Maybe E = {w ∈ Σω | L(w) ≤ 1} is a maximising event?

Redefine L(w) . . .
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A Maximising Event

2
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Fix a run w = a1a2a3 · · · ∈ Σω.
For every k ∈ N define a nonnegative value:

Lk (w) :=
Pr2(a1 · · · ak Σω)

Pr1(a1 · · · ak Σω)

w b a a b · · ·
Pr2(a1 · · · ak Σω) 1

3
1
3 ·

1
3

1
3 ·

1
3 ·

1
3

1
3 ·

1
3 ·

1
3 ·

2
3 · · ·

Pr1(a1 · · · ak Σω) 2
3

2
3 ·

2
3

2
3 ·

2
3 ·

2
3

2
3 ·

2
3 ·

2
3 ·

1
3 · · ·

Lk (w) 1
2

1
4

1
8

1
4 · · ·

If the run w is produced randomly (say, from the left state),
L1,L2, . . . is a sequence of random variables.
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A Maximising Event

If w is produced randomly,
L1,L2, . . . is a sequence of random variables.

For any prefix a1 · · · ak :

E1 (Lk+1(w) | w ∈ a1 · · · ak Σω) = Lk (w)

“L1,L2, . . . is a martingale”

The martingale is nonnegative.
=⇒ Martingale Convergence Theorem applies.
=⇒ L := limk→∞ Lk exists almost surely.

(L is a random variable.)

Theorem (A Generic Maximising Event)

Define E := {w ∈ Σω | L(w) ≤ 1}.
Then d(Pr1,Pr2) = Pr1(E)− Pr2(E).
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Approximation: Lower Bound
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d(Pr1,Pr2) := maxE⊆Σω |Pr1(E)− Pr2(E)|

Fix k ∈ N.
Idea: consider only events definable by the length-k prefix.
I.e., define dk (Pr1,Pr2) := maxW⊆Σk |Pr1(W Σω)− Pr2(W Σω)|.

Proposition
For all k ∈ N:

dk (Pr1,Pr2) ≤ dk+1(Pr1,Pr2) ≤ d∞(Pr1,Pr2) = d(Pr1,Pr2)
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Approximation: Upper Bound

1
2b 3
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4a1b

(1,0,0)
(0,0,1)

(1
2 ,0,0)

(0,0, 1
4)

a

(0, 1
2 ,0)

(0, 3
4 ,0)

b

(1
4 ,0,0)

(0,0, 1
16)

a

(0, 1
4 ,0)

(0, 3
16 ,0)

b

(0,0,0)

(0,0,0)

a

(0, 1
2 ,0)

(0, 3
4 ,0)

b

0 =: con(0)

1
2 =: con(1)

3
16 + 1

2 =: con(2)
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Approximation: Upper Bound

This defines an increasing sequence:

0 ≤ con(0) ≤ con(1) ≤ . . . ≤ con(∞) = 1− d(Pr1,Pr2)

In general, define con(k) using equivalent distributions
rather than equal states.

Theorem
Given ε > 0, one can compute x ∈ Q with

d(Pr1,Pr2) ∈ [x , x + ε].

Open: convergence speed
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The Distance-1 Problem: Deniability

Taolue: Stefan:
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1
2

1
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3

1
3

Task for NSA: distinguish those guys!
Is there E ⊆

{
, ,

}ω
with

PrTaolue(E) = 1 and PrStefan(E) = 0 ?

If not, Taolue can plausibly deny that he is Taolue.
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The Distance-1 Problem
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(1,0,0)
(0,0,1)

(1
2 ,0,0)
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4)

a

(0, 1
2 ,0)

(0, 3
4 ,0)

b

(1
4 ,0,0)
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16)
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(0, 1
4 ,0)

(0, 3
16 ,0)
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(0,0,0)
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a

(0, 1
2 ,0)
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4 ,0)
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0 =: con(0)

1
2 =: con(1)

3
16 + 1

2 =: con(2)

The distance is < 1 ⇐⇒ ∃k ∈ N : con(k) > 0
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The Distance-1 Problem: in PSPACE

(1,0,0)
(0,0,1)

(1
2 ,0,0)

(0,0, 1
4)

a

(0, 1
2 ,0)

(0, 3
4 ,0)

b

(1
4 ,0,0)

(0,0, 1
16)

a

(0, 1
4 ,0)

(0, 3
16 ,0)

b

(0,0,0)

(0,0,0)

a

(0, 1
2 ,0)

(0, 3
4 ,0)

b

= µbb
1

= µbb
2

The distance is < 1 ⇐⇒ ∃u ∈ Σ∗ : µu
1 and µu

2 overlap.
Whether µu

1, µu
2 overlap

depends only on the supports of µu
1 and µu

2.
Whether µu

1, µu
2 overlap can be computed in poly time

using previous work and linear programming.
There are at most 22|Q| possible supports of µu

1 and µu
2.

PSPACE algorithm: guess a word u ∈ Σ≤22|Q|

and check if µu
1, µu

2 overlap.
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The Distance-1 Problem: in P

To get a polynomial-time algorithm:
1 Generalise distance between states

to distance between state distributions.
2 Exploit structural properties of the generalised notion:

Lemma
d(π1, π2) = 0 =⇒ ∀q ∈ supp(π1) : d(q, π2) < 1
d(π1, π2) < 1 =⇒ ∃q ∈ supp(π1) : d(q, π2) < 1

3 Exploit previous work on LMC equivalence
and use linear programming.

Theorem (Distance-1 Problem)
One can decide in polynomial time

whether the distance between two LMCs is 1.
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Threshold Problem

Threshold Problem
Input: 2 LMCs and threshold τ ∈ [0,1]
Output: Is d(Pr1,Pr2) ≥ τ ?

Square-Root-Sum Problem
Input: s1, . . . , sn ∈ N and t ∈ N
Output: Is

∑n
i=1
√

si ≥ t ?

The Square-Root-Sum problem is not known to be in NP.

Theorem
The Threshold Problem is NP-hard.
The Threshold Problem is

hard for the Square-Root-Sum Problem.
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LMC with 2 Parameters

(1
2 −

1
2θ )a

(1
2 −

1
2θ )b

1
2a

1
2θb

1
2θa

1
2b

(1
2 − x)a (1

2 + x)a

(1
2 + x)b (1

2 − x)b

1a 1b
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Distance as Function in x

–2

–1

1

2

–0.4 –0.2 0.2 0.4

θ = 3
2

x

dθ(x)

d ′θ(x)
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Bernoulli-Convolutions

d ′θ(x) (rescaled) is the cumulative distribution function of

∞∑
i=0

Xi

θi with Pr(Xi = −1) = Pr(Xi = +1) =
1
2

“Bernoulli convolutions”: studied since the 1930s
∀θ > 1: d ′θ is either absolutely continuous or singular.
d ′3 is the (ternary) Cantor function.
For almost all θ ∈ (1,2]: d ′θ is absolutely continuous.
If θ is a Pisot number, then d ′θ is singular. [Erdős, 1939]
It is open, e.g., whether d ′3/2 is absolutely continuous.
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Related Work: Bisimilarity Pseudometric

1a

1
2b

1
2c

1
2a

1b

1
2a

1c

LMCs are (trace) equivalent, but not bisimilar.
More precisely: TV-distance is 0, but bisimilarity distance is 1.

[D. Chen, F. van Breugel, J. Worrell, FoSSaCS’12]:
TV-distance ≤ bisimilarity distance
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Results and Open Problems

Positive Results:
There is a maximising event.
The distance can be approximated
within arbitrary precision.
The distance-1 problem is in P.

Negative Results:
The maximising event may not be ω-regular.
The threshold problem is NP-hard
and hard for square-root-sum.
The distance is related to Bernoulli convolutions.

Open Questions:
Efficient approximation?
Is the threshold problem decidable?
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Pisot Number: Definition

A Pisot number is a real algebraic integer greater than 1 such
that all its Galois conjugates are less than 1 in absolute value.

Smallest Pisot number (≈ 1.3247): the real root of x3 − x − 1

Another one is the golden ratio
√

5 + 1
2

≈ 1.6180.
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