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Abstract. Generating secret keys using physical properties of the wire-
less channel has recently become a popular research area. The main secu-
rity assumption of these protocols is that a sufficiently distant adversary
is unable to guess a generated secret due to the unpredictable behavior
of multipath signal propagation. In this paper, we introduce a practi-
cal and efficient man-in-the-middle attack against such protocols. Using
this attack, we demonstrate: (i) intentional sabotaging of key generation
schemes, which leads to a high key disagreement rate, and (ii) a key re-
covery that reveals up to 47% of the generated secret bits. We analyze
statistical countermeasures (often proposed in related work) and show
that attempting to detect such attacks results in a high false positive
rate, questioning the overall benefit of such schemes. We implement and
experimentally validate the attacks using off-the-shelf hardware, without
assuming any technological advantage for the adversary.

1 Introduction

Communications over the wireless channel are affected by physical wave phenom-
ena such as reflection, diffraction, or scattering, which contribute to a complex
multipath behavior of transmitted signals. The measured channel response at
the receiver is therefore considered a frequency- and position-dependent random
variable that carries a certain amount of information entropy and can serve as a
source of randomness. An additional physical property exploited in key gener-
ation protocols is channel reciprocity. If the channel response between the two
transmitters, Alice and Bob, is sampled over a short time interval (depending
on mobility patterns and the transmission frequency), both transmitters gener-
ate highly correlated estimates. Since sampling the wireless channel response
is inherently given during any wireless message exchange, this approach offers
an interesting alternative method to generate symmetric secret keys without
relying on asymmetric cryptography. One of the main assumptions is that an
eavesdropper (Eve) is unable to guess the generated bits because her view of the
channel between Alice and Bob de-correlates rapidly with distance and thus re-
sults in inaccurate estimates. Concretely, it is assumed that if Eve is positioned
at least half a wavelength λ away from Alice and Bob, then her estimates are
de-correlated from those computed by Alice and Bob (for more information, see,
e.g. [14]). Similarly, if an active attacker (Mallory) attempts to inject packets



into the channel during key generation, he is unable to control how his signal is
received at both sides, which results in a key disagreement. In case of the 2.4GHz
ISM frequency band, λ/2 is approximately 6.25 cm, which makes physical key
generation attractive for WLAN and wireless sensor network applications.

The variety of existing protocols signify the importance of understanding the
overall security of signal-based key generation schemes under a realistic adver-
sarial setting. In this work, we assume an active attacker without additional
knowledge or technological advantage. His only “toolbox” is the broadcast na-
ture of the wireless channel that allows him to eavesdrop and inject packets at
will. The main goal of a MITM attacker is to reveal the secret key generated by
Alice and Bob. This is done by injecting his own information during the channel
response estimation, which is subsequently used by Alice and Bob as part of
their secret key. To avoid key disagreements that may lead to attack detection,
he waits for injection opportunities that help him to keep the key generation
protocol intact and still succeed. We also show that the attacker has an effi-
cient way of forcing Alice and Bob to re-run the key generation protocol in case
the number of opportunities for key recovery is too small, or simply to launch
a DoS attack (we refer to this as sabotaging attack). To quantify the impact
of these opportunities, we introduce the attack efficiency and key recovery rate
metrics. As the goal of this work is to offer practical insights, we implement the
key generation protocol by Mathur et al. [14] and evaluate our attack against it.
Finally, we discuss countermeasures and show that an attempt to statistically
detect our attack results in a high false positive rate, i.e., it leads to the rejection
of a large number of legitimate packets required by the key generation protocol.
Since Alice and Bob cannot be sure how many of Mallory’s bits were successfully
injected (in our experiments we were successful in revealing up to 47.4% of the
key) and this may be improved further by using better radio hardware, they are
left without any reliable method on estimating the correct length of the secret,
which questions the general applicability of such protocols.

1.1 Signal-Based Key Generation Protocols

In this subsection, we provide a bird’s-eye view on physical key generation
schemes (see [11,12] for detailed overviews). The three general phases that are
shared by most signal-based key generation protocols are (see Fig. 1a):

Quantization Phase: Alice and Bob create a time series of the wireless
channel response by exchanging packets and measuring channel properties. Ex-
amples for such properties are the received signal strength indicator (RSSI) and
the channel impulse response (CIR). RSSI is often preferred because of its sim-
plicity (it can easily be measured on a per-packet basis with off-the-shelf hard-
ware). To create the initial secret bitstream, the series needs to be quantized
by both nodes, i.e., the measurements need to be mapped to symbols. This re-
quires calculating thresholds using a single threshold/multi-threshold approach
or dynamic threshold schemes (for more details, see Section 6). Fig. 1b shows
how measurements can be converted into bits by using two thresholds.
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Fig. 1: A general overview of the signal-based key generation.

Information Reconciliation Phase: After quantization, the generated
sequences at Alice’s and Bob’s side are likely to disagree because of noise and
radio hardware artifacts. Both then apply information reconciliation methods
to identify and correct such errors. Error correcting codes are one possibility to
achieve this [6]; alternatively, many protocols use an interactive approach and
reveal some information about their errors to reconcile their shared secret. If
both nodes fail to agree on a common key, the samples are discarded and the
protocol needs to be re-run. Some protocols also try to de-correlate their bit-
stream by using hash functions to extract randomness from the given imperfect
input sequence [10], the so-called privacy amplification [4].

Key Verification Phase: Finally, both parties need to cryptographically
verify the mutual secret. Usually this is done using a simple challenge-response
protocol. An unsuccessful response constitutes a key disagreement and the pro-
cess starts from the beginning. If protocols use dynamic thresholds, the quan-
tization phase can be adapted by decreasing the number of possible thresholds,
i.e., adapting a tradeoff between secrecy (the key length) and a successful key
agreement rate.

2 General Idea of the Man-In-The-Middle Attack

The general idea of our attack is to “poison” the quantization phase between Alice
and Bob. An active attacker attempts to impersonate both participants and to
inject spoofed packets during the quantization phase, which are subsequently
used in the key generation. In the best case, Alice and Bob agree on a common
key of that Mallory knows a (preferably large) part.
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Fig. 2: Overview of the attack principle. Three different cases are depicted
from Mallory’s view of ram and rbm: Case 1 in interval [t1 − t2] is discarded
as it lies within the thresholds. Case 2 in interval [t2 − t3] is a sabotaging
opportunity. Case 3 in interval [t4 − t5] provides a key recovery opportunity.

2.1 Assumptions

We make the following assumptions about the attacker and the environment:

– The attacker adheres to all given security constraints and assumptions of
physical key generation schemes. Specifically, he is not violating any con-
straints on the physical distance, such as being near legitimate transmitters.

– The attacker is always in transmission range of both Alice and Bob.
– The attacker is able to freely control his own transmission power up to a

given (common) hardware limitation.
– The attacker is able to destroy legitimate packets sent by Alice and Bob

when required, e.g., by employing reactive jamming as described in [18].

2.2 Injection Opportunities for Sabotage and Key Recovery Attacks

There is a number of challenges when injecting packets during the quantization
phase. A naive attacker may send spoofed packets purely at random; however,
he would not know how they are received. In consequence, this attack is futile
and likely leads to a key disagreement because Alice’s estimate of the injected
packets differs greatly from Bob’s. On the other hand, if the attacker constantly
sends with a strong signal to superimpose Alice’s and Bob’s communication,
he might be able to inject some packets but risks easy detection by statistical
countermeasures. This means that we need a more sensitive approach to enable
efficient control over the outcomes of our injected packets. The key idea of our
attack is to find opportunities where we exploit the reciprocity of the channel in
the same way as Alice and Bob use it to generate the correlated estimates.



We use a notation similar to [14]: ryx denotes the channel response received
by node x from a probe signal sent by node y. The channel responses of two
subsequent probes between Alice and Bob are thus defined as

rba = s · h+ na
rab = s · h+ nb

(1)

with s being the probe signal, nx the independent noise process at node x and
h a stochastic process describing the wireless channel between Alice and Bob.
Furthermore, Mallory’s overheard signals are

rbm = s · hbm + nm
ram = s · ham + nm

(2)

with hxm denoting the channel between node x and Mallory. If Mallory is more
than λ/2 away from Alice and Bob, ham and hbm are assumed to be uncorrelated
with h.

However, while Mallory does not know how exactly his packet is received
by Alice or Bob, he does know that the differential in the channel response is
correlated. Hence, injected packets received by Alice or Bob preserve this dif-
ferential. Assuming that nm is similar and thus negligible at two subsequent
measurements, the scenario in Fig. 2 shows two useful cases for Mallory’s injec-
tions:

1. rbm ≫ ram (or vice versa): Mallory measures a large differential as seen in
interval [t2− t3]. Due to the channel reciprocity, it follows that for a spoofed
answer by Mallory the responses are rmb ≫ rma . Knowing that an injected
packet will cause a highly differential channel response at both Alice and
Bob, this constitutes an opportunity to produce highly differential estimates
for Alice and Bob in the quantization phase (→ sabotage attack).

2. rbm ≈ ram: Mallory measures a small differential as seen in interval [t4 − t5].
Here, it follows that for a spoofed answer by Mallory the responses are
rmb ≈ rma . Knowing that an injected packet causes a similar channel response
at both Alice and Bob, this constitutes an opportunity to generate similar
values for Alice and Bob in the quantization phase (→ key recovery attack).

2.3 Measuring the Success of MITM Attacks

We define several metrics for the two attacks to quantify the success of this
approach in attacking physical key-generation protocols:

Sabotage Attack:

1. Attack interval : Defines how many probes made by Alice and Bob are sam-
pled on average until a single disagreement bit can be injected. The ratio
reflects the time to find opportunities and have a successful spoof showing
up in the quantized bits. Obviously, the faster the attack is done, the better.

2. Required spoof attempts: This ratio measures how many spoof attempts are
necessary to cause a single disagreement bit. Fewer attempts mean a reduced
chance of detection for the attacker, thus it should be as low as possible.



Table 1: A summary of the notation used.
Symbol Meaning
d/dmax (Max.) Perceived RSSI difference by the attacker
q+/q− High/low threshold for excursions
L/L̃ Messages exchanged for information reconciliation
α Parameter needed for threshold calculation
m Number of packets above/below threshold needed for excursion
hu Vector of channel estimates of node u
σ Standard deviation of RSSI

Key Recovery Attack:

1. Key recovery rate: The success of the key recovery attack is measured by
the number of bits of a secret key that are guessed by Mallory. Importantly,
this measure is sensitive to wrong guesses as they rapidly increase the search
space (i.e. the duration of the brute-force attacks)1.

2. Key recovery efficiency : Defined as the percentage of spoofing attempts that
are successfully injected and form a bit in the key. As the detection proba-
bility increases with the attacker’s activity, a high efficiency is preferable.

3 Attacking a Concrete Key Generation Protocol

To illustrate the effectiveness of our attack concept in the real world, we apply
it in a practical scenario. We consider the protocol described by Mathur et
al. [14], the best representative, and implement it on standard off-the-shelf MicaZ
hardware.

The measured wireless channel characteristic r of this protocol is the received
signal strength indicator (RSSI), taken on a per-packet basis. The quantization
phase consists of three separate steps: probing, quantization, and subsequent
bit conversion. First, Alice sends a probe to Bob, who then responds with a
probe of his own. These exchanges use a pre-defined frequency of 20Hz (i.e., a
50ms gap between probes). Both parties save the (highly correlated) received
signal strength of the packets. This process is repeated n times, depending
on the desired key length. When the probing completes, both Alice and Bob
have obtained n estimates of the channel, which are saved as vectors ha and hb,
respectively. They now independently calculate the thresholds qu+ = mean(hu)+
α · σ(hu) and qu− = mean(hu)− α · σ(hu), where α is a protocol parameter (0.5
in this case) and σ(hu) denotes the standard deviation of hu. The results are
quantized as follows:

Q(x) =

{
0 if x < q−

1 if x > q+

1 A bit-string of length ` with i errors results in an additional brute-force factor of∑`
i=1

(
`
i

)
.
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Alice and Bob then parse their measurements to find so-called excursions, i.e.,
m or more consecutive values in hu that lie above q+ or below q− (where m = 4
is again a protocol parameter). An excursion above q+ is converted to a 1-bit,
while an excursion below q− denotes a 0-bit. To reconcile the information, Alice
sends a list of k excursions in the form of array indexes L = `1, `2, . . . , `k to
Bob. Bob checks if his measurements hb contain excursions of length ≥ m−1 at
the locations specified in L. Subsequently, he sends back a list L̃ that contains
the indexes matching with excursions on his side. Excursions in L but not in
L̃ are dropped by both parties. After exchanging the L-messages, the quantizer
function is applied to all elements defined by the indexes in L̃ to form the bit
string. Fig. 3 illustrates the process for our choice of m = 4. Alice and Bob
should now have agreed on an identical key. A disagreement can only occur if
m consecutive values lie above q+ in ha and below q− at the same index in hb
or vice-versa. When this is noticed during key verification, the batch of bits is
discarded and the protocol is restarted.

3.1 Implementation of the MITM Attacks

The experimental setup consists of two mobile motes (Alice and Bob) and one
stationary attacker, Mallory. In our scenario, the two legitimate nodes and the
attacker are in the same room. The distance between Alice/Bob and Mallory is
always greater than 15 cm, as required by the security assumptions. Alice and
Bob are moved independently within the room to create the necessary uncorre-
lated measurements. While this scenario does not make unreasonable assump-
tions, the attacker might not be able to be in the same room. Thus, in a second
scenario with Mallory in a different room, we analyze whether the attack still
yields satisfying results under these more difficult circumstances.

Detecting Attack Opportunities. The key parameter defining opportunities
is the maximum RSSI difference dmax between probes. It is intuitive that the
number of spoofing attempts increases when dmax is increased. After the probing
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Fig. 4: Injection opportunities.

phase, Mallory creates two arrays ha and hb, containing his own view of the two
independent channels between him and Alice/Bob, as illustrated in Fig. 4b. The
difference di at packet counter i is computed as di = |ha[i]− hb[i]|. The optimal
opportunity is at di = 0, but larger values of d are also suitable for the attack
because only differences d ≥ σ(hu) typically lead to a key disagreement. The
results are summarized in Table 2 and Fig. 4a, showing that opportunities occur
reasonably often. The number of excursions for the attack is sufficiently high as
well, even if there are only a few of length m ≥ 4 with d = 0. This does not
constitute a problem, although it might reduce the attack’s effectiveness.

Thresholds and their Estimation. Besides finding the perfect attack timing,
one needs to estimate values for q+ and q−. Exact knowledge of both thresholds
is not necessary; if a packet is part of an excursion, the attacker knows that it
lies either above q+ or below q−. Fig. 5 illustrates this: an estimated threshold
only causes a wrong guess if the assumed value of q+ lies below the actual value
of q− (or vice-versa). With α = 0.5, the difference between q+ and q− equals
the standard deviation σ. Accordingly, any mistake in deriving both thresholds
smaller than this standard deviation might result in fewer recovered bits, but
does not lead to bit errors. To reduce the probability of a bit error and to
increase the attack’s robustness, a security margin is added to the estimated
thresholds.

One method to estimate thresholds is scenario-based guessing, relying on
the fact that average RSSI and standard deviation change only slightly between
independent protocol runs. Such data can be collected for several scenarios and



Table 2: Number of opportunities in 8,000 packets and resulting excursions
in our implementation of [14] (left). Real (qA+) and derived (qM+ ) thresholds
(right).
d Opportunities Excursions
0 542 (6.8%) 15
1 1030 (12.9%) 77
2 1187 (14.8%) 132
3 955 (11.9%) 182

Run Nr. qA+ qM+
∣∣qA+ − qM+

∣∣ σ

1 −52.7 −51 1.7 7.4
2 −49.5 −49 0.5 6.5
3 −51.3 −50 1.3 8.2
4 −53.1 −52 1.1 7.7
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Fig. 5: Effects of inaccurate thresholds. Only the area between the actual q+
threshold and the estimated q− threshold is susceptible to wrong bit guesses.

used as reference for an attack. While this method has proven useful in our
experiments, it may not be possible to find thresholds suitable for any setup,
rendering it unpractical. Another possibility is to manipulate the setup phase of
a protocol run. Algorithm 1 exploits the information about excursions that an
attacker gains from the L-messages. Mallory waits for opportunities and sends
spoofed messages without taking the thresholds into consideration. Afterwards,
he checks the L-messages to find his own probes. If the number of spoof attempts
was statistically significant then the thresholds should be well reflected in the
attacker’s spoof trace.

Table 2 shows that this approach yields very accurate approximations of
q+, the error

∣∣qA+ − qM+ ∣∣ being considerably lower than σ. However, deriving q−
failed, as too few successful spoofs were detected in the lower RSSI-spectrum.
One possibility to deal with this is to ignore the negative threshold and to only
use q+ to detect 1-bits, which slightly reduces the overall key recovery rate.
Another method is to simply define a sufficiently large distance x between q+
and q− and setting q− = q+ − x. As explained above, if this distance is greater
than the standard deviation σ, this does not lead to bit errors. Considering the
values of σ, x = 10 is a conservative assumption.

3.2 Sabotaging Attack

In the protocol of Mathur et al., a key disagreement occurs only if m or more
packets are received with a difference in signal strength greater than the standard



Algorithm 1 Estimation of thresholds in the setup phase
1: Input : dmax
2: Output : Estimates of q+ and q−
3: while i < n do
4: Receive packets iAlice, iBob
5: if (|RSSIAlice − RSSIBob| ≤ dmax then
6: Send m+ 2 spoofed probes to Alice and Bob
7: spoofs.add(i, RSSIAlice)
8: end if
9: end while
10: Receive L̃ from Bob
11: Sort spoofs descending by RSSI
12: l := spoofs.length
13: Check for longest sequence S in spoofs[0, . . . , `/2] with a ∈ L̃ ∀a ∈ S

14: q+ = min(S)

15: Check for longest sequence S in spoofs[`/2 + 1, . . . , `] with a ∈ L̃ ∀a ∈ S and |S| > 3
16: q− = max(S)

17: if q− = null then
18: q− := q+ − x
19: end if
20: Return q+, q−

deviation σ. Thus, to deliberately cause a bit error, an attacker sends packets
when the difference between the RSSI of the last packets exceeds a pre-defined
threshold dmax. As no quantization is needed on the attacker’s side, knowing the
values for q+ and q− is not crucial, although they can help making the attack
more precise by reducing the number of necessary packets. In our first implemen-
tation, the attacker simply waits until he receives two consecutive packets with a
greatly differing RSSI and starts injecting packets. A single bit error is generally
enough to force a complete restart of the protocol because no additional error
correction schemes are implemented and the location of the error is unknown.
In a further refined version, we altered the attacker’s own sending strength to
make the attack more efficient: every packet sent to the node with the higher
RSSI uses the maximum sending strength; packets to the other node are sent
with a significantly lower power while still allowing for the correct reception of
the packet. This power adaptation ensures a greater difference in the reception
of the packets and is more likely to create a disagreement excursion.

3.3 Key Recovery Attack

The attacker monitors the wireless channel and scans the received data for key
recovery opportunities. If one is found, he starts to inject messages. To ensure
an excursion, Mallory sends m + 2 unicast probes to both Alice and Bob. At
the same time, Mallory stores whether the opportunity was triggered by a high
or low RSSI value to determine the bit afterwards. Algorithm 2 describes this
in more detail.

In addition to sending spoofed messages, the attack requires to destroy the
legitimate packets sent by Alice and Bob. To simulate such a jamming effect,



Algorithm 2 Key recovery attack
1: Input : Estimates of q+ and q− from Algorithm 1, dmax
2: Output : Known part of secret key
3: while i < n do
4: Receive packets iAlice, iBob
5: if (|RSSIAlice − RSSIBob| ≤ dmax) & (RSSIAlice > q+ | RSSIAlice < q−) then
6: Send m+ 2 spoofed probes to Alice and Bob
7: spoofs.add(i, RSSIAlice)
8: end if
9: end while
10: Receive L̃ from Bob
11: for all j in L̃ do
12: if L̃[j] ∈ spoofs then
13: key[j] := quantize(spoofs[j].rssi)
14: end if
15: end for
16: Return key

upon receiving a spoofed probe, the motes voluntarily cease their transmission
until the attack is over.2 If the index of a spoofed packet appears in L̃, the
attacker can derive the RSSI of the packet from his own saved measurement and
infer the resulting bit.

4 Results

4.1 Sabotaging Attack

For the sabotaging attack, we conducted 9 identical runs comprising 5,000 probes
overall. The results in Table 3a show the efficiency of using a fixed transmission
strength. While the success depends on the nodes’ movement and the erratic
nature of the wireless channel, we can assume with 95% confidence that 142.37
probes are enough to cause one successful disagreement. Likewise, 7.17 spoofing
attempts result in one disagreement. Assuming 2,000 probe messages are nec-
essary to generate a key with reasonable length, this leaves roughly 93% of the
setup phase to recover the key while still ensuring a key disagreement with very
high probability once the protocol run finishes.

Table 3b reflects the gain in efficiency when employing the adaptive sending
power approach. In the previous version, 100 packets are not enough to achieve
a reliable key disagreement; however, adjusting the sending strength raises the
efficiency significantly. On average, the number of disagreements almost doubles
for the same amount of probes or spoofing attempts. Again assuming a 2,000
packets run, the attacker now requires less than 4% of the protocol’s duration
to sabotage the complete run with 95% confidence. This comparatively small
number of packets ensures that the distortion effect is kept minimal, preventing
detection. In combination with the key recovery attack, the increasing efficiency
2 Recent work [18] shows that reactive jamming is successful at rates > 99.9%.



Table 3: Results of the sabotaging attack with 95% confidence intervals. Both
metrics improve significantly when adjusting the attacker’s sending strength.

(a) Constant sending strength.

Attack
interval

Required spoof
attempts

Mean 113.58 6.01
Variance 1403.25 2.30
Error 12.49 0.50

Upper limit 84.79 4.84
Lower limit 142.37 7.17

(b) Adjusted sending strength.

Attack
interval

Required spoof
attempts

62.41 3.30
333.25 0.61
6.09 0.26
48.38 2.70
76.45 3.90

enables the attacker to start sabotaging at a later point in the setup phase, thus
generating more accurate thresholds.

4.2 Key Recovery Attack

The results of the first scenario with all motes in the same room are documented
in Table 4. Note that the threshold estimates are close to the actual values, which
helps to mitigate bit errors. The most conservative setting d = 0 results in about
40% of the key being revealed (assuming a length of 64 bit, this would speed up
a brute force attack by factor 223) and indeed the highest key recovery efficiency.
More than half of the sequences sent by the attacker cause an excursion with both
Alice and Bob. Increasing the maximum difference to 1 reduced the efficiency
below 50%, but greatly increased the key recovery rate. Further increase of the
tolerance level decreases the efficiency with no benefits to the percentage of the
key known to the attacker. Another insight gained from the results is that the
revealed bits are almost exclusively 1-bits. This can be explained by the fact
that the difference in the reception of spoofed packets at Alice and Bob increases
with the distance between Alice/Bob and the attacker. However, this is not a
real issue if the overall number of bits is sufficient because the attacker is not
interested in specific random keys.

The results of the second scenario with Mallory in a different room show that
the attack performs better if the attacker is physically close to the conversation
partners. Both key recovery rate and efficiency are about halved. The number
of successfully created excursions above q+ has decreased to near zero and most
of the retrieved bits are 0-bits. This is intuitive because the attacker does not
increase his sending strength enough to match the weakening caused by the
wall. On the other hand, due to the weakened signal strength, the condition
of receiving signals below q− is fulfilled most of the time. This results in a
rather poor key recovery efficiency. Yet, the attack is successful independent of
the physical proximity of the attacker. The efficiency can easily be improved if
the attacker is able to use superior antennas as well as to increase the sending
strength without being limited by regulations or power consumption.



Table 4: Key recovery attack results for two scenarios and different dmax.
Same room Different rooms

dmax 0 1 2 0 1 2
q+ (actual/assumed) -57.4/-55 -54.2/-55 -53/-55 -53.8/-52 -53.2/-52 -53/-55
q− (actual/assumed) -65/-65 -62/-65 -62/-65 -61/-62 -61.3/-62 -62/-65

Spoof attempts 76 91 130 55 78 130
Bits recovered (0/1) 10/32 12/33 5/27 11/3 14/2 14/4
Resulting key length 108 95 84 64 69 71

Key rec. efficiency [%] 55.3 49.5 24.6 25.5 20.5 13.8
Key rec. rate [%] 38.9 47.4 38.1 21.9 23.1 25.3

5 Possible Countermeasures

There is one obvious countermeasure to spoofing attacks: Alice could recog-
nize that Mallory is impersonating her when he is sending a packet that carries
her own MAC address. Yet, the standard setting in most commercial wireless
adapters is to discard such packets, not to forward them above the MAC layer.
Furthermore, wireless network interfaces are typically not able to send while in
monitor mode, rendering this approach impractical for most applications. The
authors of [14] propose a scheme that generates radio fingerprints, which are
then used to distinguish legitimate from spoofed packets [19]. Obviously, the
attacker must not be present at this point of time, which is a strong assump-
tion. Additionally, the fingerprint is bound to the receiver/transmitter pair as
well as the environment where it was generated. This makes it impossible to
pre-generate fingerprints in a safe environment. In this section, we look at de-
fensive schemes that would allow Alice and Bob to generate identical keys despite
Mallory’s presence, while ensuring a high level of uncertainty for the attacker.
To achieve this, they have to selectively remove a high percentage of Mallory’s
packets and keep the false positive rate as low as possible. In any case, such
an approach would limit the secret key rate because the original messages can-
not be recovered. Other countermeasures include the introduction of time into
the given protocols. This opens additional statistical detection vectors but is
likely to introduce new difficulties on its own and is not currently present in the
discussed protocols.

Table 5: Effects of packet-based filtering for three selected thresholds.
(a) Attacker involvement.

Threshold [dB] Discarded spoofs Discarded legit
10 216 (61.0%) 522 (31.7%)
15 126 (35.6%) 216 (13.1%)
20 54 (15.25%) 78 (4.74%)

(b) Standard run.

Threshold [dB] Discards
10 564 (28.2%)
15 150 (7.5%)
20 36 (1.8%)
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Fig. 6: Packet trace with spoofed and legitimate packets. While there are
spoofs that seem like outliers at first, overall they are difficult to distinguish
from a large number of legitimate packets with similar or even more extreme
values.

5.1 Packet-Based Detection

One approach is to discard a packet when the RSSI value differs from the pre-
vious packet by more than a threshold t. However, the signal strength of the
following packets in the spoof sequence is relatively consistent. So, when an
attack is detected, Alice and Bob must not only discard the packet that caused
the detection but also the following m − 1 packets (where m is the unknown
number of packets sent per spoof attempt). Fig. 6 shows a pattern generated by
the attacker’s activity, illustrating how some of the spoofed packets might look
suspicious. Yet, legitimate packets often follow similar patterns, making false
positives likely. Table 5 lists the results of the filtering mechanism in a 2,000
packet run. With a strict threshold of 10 dB, the majority of spoofed packets
(61%) is rejected. However, a large part of the legitimate ones is filtered as
well, leaving only 63% of all packets for quantization. Raising the threshold to
15 dB, only one third of the injected packets is removed and the key length is
reduced by 17%. A threshold higher than 15 dB has negligible effects on both
spoofed and legitimate packets. If the same filtering mechanism is used without
the presence of an active attacker, the impact is smaller but a threshold of 10 dB
still removes more than a quarter of legitimate packets in every run. Thus, to
generate the same key length the number of packets must be increased by one
third. That is, packet-based detection requires to prolong the run if suspicious
packets were discarded. And because attacks are rare events it is not desirable
to severely limit the average performance of the system.

5.2 Run-Based Detection

Another approach, conceptually close to [19], is to determine whether an attack
occurred after a complete protocol run to potentially discard the run. There



Table 6: Percentage of packets over given distance from median RSSI.
Min. difference from median Standard [%] Spoofed [%] Standard (LOS Break) [%]

10 22.75 25.2 27.4
15 11.6 16.7 14.3
20 3.5 5.2 5.4
25 1.2 1.1 1.1

are several statistics that could be altered predictably by an attack, such as the
variance of RSSI values. We also tested this method against our implementation.

Table 6 summarizes the results for different scenarios and shows that reliably
accepting the legitimate run also means not to detecting an attacker. Normal
occurrences, such as breaks in the line-of-sight between Alice and Bob, render at
least this simple implementation of the run-based detection unsuccessful. Even
an imperfect reference value, causing few false positives, would require a large
amount of training data because its variance strongly depends on the scenario.

6 Related Work

In 1993, Maurer introduced a concept that describes an abstract broadcast chan-
nel accessible to three parties. This channel provides strongly correlated infor-
mation to two parties and weaker correlated information to the third party [15].
Consequently, even if an adversary is able to sample the same channel, secure
keys can still be generated by the two legitimate participants.

With the widespread deployment of wireless networks, this idea was recently
used to generate secret keys between two parties over a wireless channel by ex-
ploiting channel reciprocity (see Table 7 for an overview). In these protocols,
several different sources of information are used; the most common one is the
received signal strength indicator (RSSI) because it can be easily measured on a
per-packet basis on off-the-shelf hardware. The RSSI method is used in several
works [3,11,13,14]. While RSSI provides a convenient channel property, there
are several others that were proposed as information sources, e.g., the channel
impulse response (CIR) [9,14,20,21] that allows fine-grained measurements but
requires specialized hardware, or the carrier phase [16]. Most of these protocols
generate entropy by random device movements, although frequency-selective fad-
ing experienced through frequency hopping can also be used to generate secret
keys in stationary scenarios [17].

While most protocols assume a passive attacker, the authors of [14,20] pro-
pose countermeasures against active attacks by employing radio fingerprinting
[19]. However, despite the tremendous number of different protocols, there is
little research on the attacker’s side. A side-channel attack on signal-based key
generation schemes by exploiting re-radiation is proposed in [7], which requires
precise knowledge of the participants’ positions. As this information is often
hard to obtain and generally not considered public, the practical applicability



Table 7: Overview of recent physical key generation schemes.
Channel propertya RSSI [1,2,3,5,14,17,20] CIR [9,14,20,21] Phase [16]

Entropy source Movement
[1,3,5,9,13,14,20,21]

Channel-selective
fading [17]

Angle of arrival [2]

Hardware 802.15.4 [1,2,5,13,17] UWB [3,9] 802.11a [14,20]

Quantization 1-threshold [2,3]
2-thresholds
[1,9,14,20]

Dynamic multi-
threshold [5,13,16,17,21]

Error correction Block-based parity [1]
Quantization-
dependent

[2,3,5,9,14,17]

Error correction codes
[20,21]

Attacker model Passive
[1,2,3,5,9,16,17,21]

Active [13,14,20] —

a Some protocols use multiple channel properties.

can be difficult. Edman et al. [8] present a passive attack that puts the practical
applicability of the theoretical foundations of signal-based key generation pro-
tocols in doubt, i.e., the assumption that the RSSI is uncorrelated at distances
greater than λ/2. According to the authors, a relatively high cross-correlation
exists even at larger distances (up to 90 cm), enabling passive attackers to guess
50% of the key or more by pure eavesdropping. Our contribution consists of
a flexible active attack in a realistic scenario, requiring only publicly available
information and off-the-shelf hardware, and is entirely independent of physical
proximity. In order to demonstrate our attack’s practicality, we successfully
apply it to the protocol described in [14] without violating any security assump-
tions. In summary, we believe that the attack described in this work is applicable
to all protocols that use RSSI-based quantization of the wireless channel.

7 Conclusion

In this paper, we introduced a novel idea for a man-in-the-middle attack based
on injection opportunities against signal-based key generation schemes. Using
this idea, without assuming any advantage for the adversary, we implemented an
attack that exploits imperfect error correction and allows to disrupt a protocol
run by deliberately forcing a key disagreement. Following the same idea, we
designed a more severe key recovery attack that is able to reveal large parts of the
secret key generated between two legitimate transmitters. We demonstrated its
performance by attacking a concrete protocol in different scenarios using off-the-
shelf hardware. Typically, between 40% and 50% of the secret key were revealed
to the attacker. This success rate decreases with larger distances between the
attacker and the legitimate nodes. However, this mitigating factor could easily
be improved by using superior hardware or increased sending power. In the
worst case, we still recovered around 25% of the key correctly.

Besides evaluating the attack itself, we analyzed potential countermeasures.
We examined statistical mechanisms to detect an attacker and filter spoofs on a



per-packet basis or to reject compromised runs entirely (as oftentimes mentioned
in related work). However, without a significant amount of training data the
approach was shown to cause a prohibitively large number of false positives.
Given these practical problems, simply generating longer keys to impede brute-
force attacks could be superior. Yet, such a high price to pay might undermine
the advantages of current key generation protocols.
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