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Abstract—Network coding (NC) has frequently been promoted
as an approach for improving throughput in wireless networks.
Existing work has mostly focused on the fundamental aspects of
NC, while constraints arising in real-world network deployments
have not received much attention. In particular, NC requires
network nodes to overhear each other’s packets, which oftentimes
contradicts many security standards that attempt to provide link-
layer confidentiality, e.g., by utilizing pairwise encryption keys
as is the case IEEE 802.11i and ZigBee. There is an inherent
trade-off between gains from NC and link-layer security: if
many nodes share the secret link-layer key, NC will improve
throughput, yet a leakage of the key will affect many nodes.
On the other hand, having distinct secret keys will increase
resilience against key compromise, but will also minimize the
coding gain. We formulate this security vs. performance trade-
off as an optimization problem and evaluate the effectiveness of
NC under different sizes of key-sharing groups and network
topologies. Our results show that increasing the key-sharing
group by a single node can result in a maximum coding gain
between 1.3% and 13.7%.

Index Terms—Network Coding, Neighborhood Size, Wireless
Networks, Key Sharing

I. INTRODUCTION

Network coding (NC) has emerged in the past decade as a
popular topic in networking research. It has attracted attention
because it facilitates increasing the network throughput under
certain conditions while keeping bandwidth usage in the
network constant. Nodes using NC overhear multiple messages
and create linear combinations thereof before re-broadcasting
them in a combined form. Receivers can subsequently use
such linear combinations to restore the original individual
messages. This effectively increases the information flow with
the same number of transmissions, resulting in the so-called
coding gain. Since its introduction in 2000 [2], NC has been
successfully used to improve applications such as peer-to-peer
content distribution systems [11] and plain wireless networks
[14]. NC’s use in wireless networks seems particularly intrigu-
ing since overhearing transmissions is an inherent feature of
the broadcast medium. While this work focuses on NC in
wireless networks, the presented results may apply to other
types of networks, too.

From a security point of view one should not equip all nodes
in a network with a single encryption key. A lost key could
lead to a complete loss of protection within the entire network.

Consequently, single key solutions are typically considered
to provide only minimal, lightweight security. To increase
protection, it is a common procedure to form smaller groups
of nodes that share a key. One traditional example is the
broken Wireless Equivalent Privacy (WEP) standard which
uses only a single key in contrast to the new IEEE 802.11i
security standard which implements separate keys for each
link. Similarly, in wireless sensor networks (WSNs), the
IEEE 802.15.4/ZigBee specification offers a lightweight secu-
rity relying on a single network key shared by all nodes [19].
Yet, within the ZigBee-PRO standard this approach should be
avoided in favor of different unique link-layer and group keys
to protect WSNs with stronger security requirements. Finally,
the weakness of single network keys is also demonstrated by
the recently available KillerBee security framework! which
offers easy network key recovery once physical access to a
sensor is available (low-cost sensor devices usually do not
include any tamper-resistant hardware).

Only nodes that share a common key can overhear each
others’ transmissions and use them to compute linear combi-
nations. In the extreme case where every two nodes share a
separate, unique link key, it is obvious that any gain from cod-
ing is lost since nothing can be overheard. As a consequence,
we argue that in many practical settings, it is unreasonable to
assume that all neighbors in a node’s range can overhear its
transmissions. Furthermore, there is a lot of leeway between
the two extremes of either having one single key or pairwise
separate link keys; choosing an appropriate group size is an
objective directly conflicting with the assumptions of NC.

We believe that many practical deployments will consider
the size of groups sharing the same key in a network limited.
In particular, we define two different types of such limitations:

o Local Key-Sharing Limitation: Each node has a limited
number of adjacent nodes which it shares a key with.

o Global Key-Sharing Limitation: A fixed number of keys
is available for the entire network. Each node has to be
member of at least one key group.

It is possible for a network to be subject to both local and
global limitations; we will consider both types of grouping
restrictions throughout.

Thttp:/code.google.com/p/killerbee/



While we have argued that in practical deployments key
sharing is often a limiting factor, it is also frequently possible
to influence the size and composition of groups sharing a key.
From an NC perspective, it is desirable to cluster nodes such to
maximize network throughput (i.e., to achieve the maximum
coding gain) and to evaluate different group sizes according to
the trade-off between security needs and throughput require-
ments. In this paper, we analyze and quantify the impact of
key-sharing neighborhoods on NC throughput. Specifically, we
make the following contributions:

o We formulate an integer linear program that is able to
provide an exact solution of the key distribution problem
with respect to maximizing NC throughput.

o« We systematically validate the impact of key-sharing
neighborhood size and composition on network coding
gain using randomly generated as well as real-world
wireless network topologies.

o We identify the impact of different types of key-sharing
limitations on the coding gain and quantify the trade-
off. We additionally analyze the influence of several real-
world QoS constraints.

The remainder of the paper is organized as follows. Section
IT describes related work. Section III briefly explains NC
in practice and the experimental setup while Section IV
formalizes our system model. Section V illustrates our results.
Section VI summarizes and concludes this work.

II. RELATED WORK

The theoretical foundations on which NC is based have been
laid by Ahlswede et al. [2] They showed that it is possible -
and necessary - to employ coding to reach multicast capacity
in a network. This seminal result which is analogous to the
max-flow min-cut theorem for routing resulted in multiple
research efforts examining NC and investigating different
types of networks and scenarios where it could be applied. Li
et al. [16] showed that it is even sufficient to use linear codes
in multicast networks to reach full capacity. Many subsequent
works concerned themselves with the construction of such
codes in practice (e.g.[13], [12]) and examined the theoretical
bounds of NC in more general networks [15], [6], [17].

One specific result that has been used to conduct further
research and is also the basic assumption for this paper is
the fact that a throughput gain can generally be achieved
with NC in static environments. An overview over this and
other important results in NC research can be found in [8], a
thorough and comprehensive background in [9].

Despite the popularity of the idea, few works have looked
at the effect of security and neighborhood compositions on the
effectiveness of NC. Cai and Yeung [4] present an information-
theoretic approach, explaining how to modify a code so that
a wiretapper with access to only one wire will have no or at
least fewer chances of successfully obtaining any information.
Various extensions to that work followed trying to make it a
viable alternative to end-to-end encryption [3], [7].

Some concrete analysis of the effect of group sizes and
NC in previous research is contained in work measuring the

performance of algorithms while modifying the number of
children/receivers in constructed and usually balanced trees.
An example of this can be found in [10] where the authors
compare the reliability properties of NC with traditional error
control techniques in such trees. Sagduyu and Ephremides [18]
integrate NC by design into a TDMA medium access control
protocol in wireless ad hoc networks. They use informa-
tion flow decomposition to develop various decentralized and
conflict-free scheduling approaches. In their work, they briefly
consider a simulation with multicast groups randomly chosen
from a small network but do not look at effects of group
size or composition. Finally, Castellucia et al. [5] analyze
the information-theoretic foundations of link-layer encryption
with NC, showing that it decreases the achievable capacity.

III. NETWORK CODING IN PRACTICE

In this section, we briefly explain the operations of NC,
identify relevant application scenarios that benefit from a
coding approach, and introduce our experimental setup.

A. Network Coding

NC is effective in scenarios where data from multiple
sources has to be delivered to multiple sinks. The basic idea
can be explained best using Ahlswede’s [2] canonical butterfly
network as shown in Fig. 1 on the left. Two sources (nodes n,
n9) with messages A and B send both messages to two sinks
(nodes n5, ng). Without NC, node nq can transmit A to ns3 and
ns and ng can transmit B to ng and ng. At this point, node ns
has to decide which message to transmit. Let n3 forward A to
node ng4, now ny can forward A to ng, and ng has received A
and B. However, node nj has only received A and must wait
for an additional transmission of B by ng3 and ny.

Figure 1.  Example of NC and the effects of groups. The plain butterfly
network (left) sends two messages A and B from n; and ng, respectively, to
both sinks ns and ng (exhausting all link capacities). The wrong distribution
of size-restricted key groups (right) impacts the information flow: n4 can send
only to one of the sinks at a time, effectively taking away the advantage over
traditional routing. The better choice (middle) preserves the coding gain.

With NC, node n3 can forward a combination of message
A and B (e.g. A® B). Now, ny4 can transmit this combination
to ns and ng. As ns also has A, it can recover B from the
combined message. Similarly, ng can recover A. Thus, NC
increased the available network bandwidth, resulting in the so-
called coding gain. If we now take security considerations into
account and decrease the number of nodes that are allowed to



have the same encryption key, this can have severe negative
impacts on the achieved gain. In the worst case, depending
on group size and composition, NC can even be rendered
completely ineffective as illustrated in Fig. 1

B. Application Scenarios

Many application scenarios benefit from NC. In most net-
works, multiple sources generate data that must be delivered to
multiple sinks. NC is particularly useful in wireless networks
where the required overhearing of neighbor’s transmissions is
an inherent feature of the wireless channel.

One example are sensor networks which consist of many
wireless nodes able to sense physical properties and to forward
the measurements over multiple hops towards a sink where the
arriving data is analyzed. Often several sensor nodes detect an
event simultaneously and a lot of data has to be forwarded at
the same time to the sink for analysis. Furthermore, to add
redundancy and to optimize data extraction, many scenarios
use multiple sinks to collect data. It is important to deliver
sensor data to the sinks quickly to ensure fast event detection.
Depending on the application and associated data analysis
algorithms, different transport requirements may exist. For
example, it might be sufficient to ensure that all messages are
received by at least one sink. Alternatively, it may be necessary
that all sinks receive all messages or a certain percentage of
messages. NC can help deliver data from multiple sources
to multiple sinks faster, resulting in an improvement of the
quality of service/information.

C. Experimental Setup

To conduct large-scale experiments, we tested on random-
ized feed-forward graphs with unidirectional links. In this
type of network topologies, relay nodes are on various layers
between the source and the sink layer, with outgoing links
always connecting to a layer closer to the sinks.

A graph’s parameters are given as follows:

o The number of layers (at least 3).

o The maximum number of nodesperlayer.

o The target layer for each node, taken from a geometric
distribution created with a success probability of p, , over
the amount of remaining layers.

o The outgoing connections, generated for each node from
a geometric distribution with a success probability p, .
over the amount of viable nodes on the target layer.

o The precise target node to connect to on the target layer
is chosen as a uniform random variable.

In addition, our analysis also includes a practical real-world
setting of a sensor network application in which a number of
wireless sensors are used to deliver the sensed data to a number
of sinks. For this part of the experimental setup, we consider
the publicly available MoteLab WSN [1] and create a feed-
forward topology based on its connectivity map (cf.Fig.2).
This network, deployed in the university building, comprises
30 nodes and offers a concrete instance of an indoor multi-hop
sensor network.

Figure 2. Real-world feed-forward instance. The network has 4 sensors used
as sources (blue) in the middle which forward the collected data over different
layers containing the 18 relay nodes (yellow) to the 8 sinks (red), 4 on the
left-hand side of the map and 4 on the right.

IV. SYSTEM MODEL

In this section, we formulate an integer linear programming
(ILP) model to study the coding gain in networks with
different types of key-sharing limitations.

A. Network Model

We assume a multi-hop wireless network modeled as a
directed graph G = (V, E). The set of vertices V' represents
the stations and the set of edges E denotes the connectivity.

The problem we examine can be modeled as a single source
multicast problem in a wireless ad hoc network. The set of
vertices V' consists of n + k + 1 nodes (AN). Node 1 is
the source node SRC. Nodes 2,3,...,n + 1 are the n relay
nodes (RN). Nodes n + 2,n + 3,....,n + k + 1 are the k
sink nodes (SNN). We then consider that each link is a unit
capacity link, and that the source is sending M independent
single streams Py, P, ..., Py; through the relay nodes in the
core of the network to the sinks. In our scenario, this equals
multiple sources S; 59, ..., Sy each multicasting one of the
respective streams only, as it can be directly transformed [2].

The objective is to maximize the flow in the network (see
Table I for the notation)

n+k+1 P(J)

Mazx : Z ZFZowi,j (D)

j=n+2 i=1

under the following constraints:

Vi, k€ SN,Vie P(j),j#k: Flow; j, =0 2)
S(i) P(i)
Vk € SN, Vi€ RN : Y Flow;jx =Y Flownir (3)
j=1 h=1
SN
Vi,j € AN : Y Flow; ; > Flow ; 4)
k=1
Vk € SN, V’L,j € AN : Flowi,jJC < Floww- 5)

The goal of the ILP is to compute the maximum flow
possible in a given graph/network, as stated by the Multicast



Table I
USED VARIABLES/NOTATION FOR THE ILP.

[ Variable ] Description

A binary decision variable indicating if node j receives
from node 4 (or ¢ sends to 7).

Flow; ;

Flow; ; 1 A binary decision variable that indexes all edges ¢, j for
each sink k, creating a unique subgraph of the whole
network for this sink.

9i,j A binary decision variable indicating if ¢ is logically
allowed to send to j (i.e., knows j’s key).

S(7) Successors of node 4, i.e., all nodes that ¢z can transmit to.

P(1) Predecessors of node i, i.e., all nodes that can transmit to %.

Threshold for the allowed number of members in a group.

T
R Required number of streams arriving at each source.

Theorem?. More precisely, for all sinks the full graph is di-
vided into a distinct subgraph for each sink and the maximum
flow of every subgraph is calculated separately. As the links
are modeled as binary flows, this corresponds to the number
of unique ways between the source and the subgraph’s sink?.

The optimization function maximizes the number of active
incoming links over all sinks. Constraint (2) ensures that only
the sink of the according subgraph is considered for flow
maximization. Constraint (3) guarantees the flow balance, so
that the number of incoming and outgoing flows must be equal
for all relay nodes. Constraint (4) translates the links used to
achieve the maximum flow for each sink into the full network.
Constraint (5) ensures that only an edge used for sending in
any sink’s subgraph is also used in the full network.

We used SCIP* to resolve this to the maximum flow network
for any given sink. The subgraphs are combined into the
original network under the general Constraints (2) and (3) and
all possible combinations are tested and solved to optimality.
This provides the upper bound for linear NC in a network,
where all relay nodes are in the same group, i.e., all successors
of a node can overhear all transmissions.

B. Local Key-Sharing Limitations

Local key-sharing limitations are modeled as follows:

Vi € RN,Vj € AN : g;; > Flow, (©6)
S(3)

Vie RN:» gi;<T (M
j=1

Constraints (6) and (7) specify the number of nodes a relay
node is allowed to send to. In this model, if there are n physical
links to the next layers of the feed forward network, only 7'
of these are actually being used in the multicast, constituting
a group with a single common key. The special case where all
successors are in the same group with the sender models the
traditional assumption considered in the NC literature.

We are also interested in looking at the effects of quality of
service constraints in this context:

2“Linear NC achieves the min-cut/max-flow bound for any multicast
network with a single source and multiple destinations.” [16]

3Can be changed to non-binary variables to model arbitrary bandwidths.

4“Solving Constraint Integer Programs”, http://scip.zib.de

P(j)

Vj€SN: Y Flow;; >R (8)
i=1

Vi e SRC,V¥j€S(i) : Flow;; > 1 9)

Constraint (8) makes sure that every sink receives a given
number of streams while (9) guarantees that every stream sent
by the source will be received by at least one sink.

C. Global Key-Sharing Limitations

In the original problem, every node sending in the network
had a unique key which potential receivers had to know. To
increase security, we now reduce and specify the number of
keys in the network. This requires new constraints which
model the centralized planning of the key distribution to
achieve the optimal throughput. The computational complexity
of this added set covering problem, however, makes finding an
optimal solution only feasible for smaller networks.

The changes we make to the ILP are as follows: There is a
fixed set of keys C available which can freely be distributed
among nodes, as long as there are not more nodes using the
same key than allowed by the group size limit. Compared to
above, with a sufficiently large group size, two or more nodes
can use the same key for sending which was not possible
before. Clearly, this is a more general problem as it comprises
the previous model as a special case.

The following constraints in addition to (1)-(5) are required
(see also Table II for the notation):

RN
Ve e C: Z Key; . < groupsize (10)
i=1
Vi€ RN, Vee C: SendKey; . < Key; . (11)
Vi€ RN, Vee C: RevKey; . < Key; e (12)
c
Vi€ RN : Y SendKey; . <1 (13)
c=1
c
Vi,j € AN : Flow; ; < ZShaTeKeym,C (14)
c=1

Vi,j € AN, Ve e C: ShareKey; j . < SendKey; . (15)

Vi,j € AN, Ve e C: ShareKey; j . < RevKey; .  (16)

Equation (10) provides the limit on the group size for each
available key. (11), (12) make sure a key is only counted once
if used for both sending and receiving. (13) limits each sender
to one key at a time. Constraint (14) allows flows between
nodes only if they share the same key, while (15) and (16)
ensure for each transmission where the key is utilized that the
sender uses the key for sending and the receivers for receiving.

V. EVALUATION

In this section, we show that NC is effective in the examined
scenarios and evaluate local and global key-sharing limitations.
In a best-case scenario in the MoteLab network, all 4 sensor
messages are received by all 8 sinks with each node in the



Table 11
ADDITIONAL VARIABLES TO PERFORM KEY DISTRIBUTION.

[ Variable [ Description |
Key; ¢ A binary decision variable indicating if a node ¢
knows key c.
SendKey; . A binary decision variable indicating if a node ¢
knows and uses key c for sending.
RevKey; . A binary decision variable indicating if a node j
knows key ¢ and uses it for receiving.
ShareKey; j . | A binary decision variable indicating if nodes ¢ and
7 both know key c.

network requiring at most one transmission, achieving the
maximum throughput at 32 messages. Our analysis reveals that
with NC this best-case throughput can actually be achieved
while with normal routing under the same circumstances only
26 messages are delivered. Thus, network throughput with NC
is 21.4% higher than without.

The experiments on randomly generated graphs were run
with 4 layers, a maximum of 20 nodes per layer and settings
for py . of 0.9 and py s of 0.6. The results have been averaged
over 100 different networks of the same type; we identified
an average coding gain of 7.1%.

A. Impact of Local Key-Sharing Limitations
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Figure 3. Optimal multicast throughput of NC and routing in 100 random
feed-forward networks with 95% confidence intervals (left) and the MoteLab
WSN (right), restricted to certain group sizes. With increased group size there
is a widening throughput gap between both methods, identified as the coding
gain, until the effect is saturated.

We introduce the local key-sharing limitations into the ILP
to measure their effects on NC and how these compare with
the same constraints applied to ordinary routing. Fig.3 (left)
depicts the average achievable upper bound for the examined
random networks. Unsurprisingly, there is barely any NC gain
with lower group sizes, e.g. around 1.7% for n = 7. The
coding gain raises steadily (at most 1.3% when group size
is increased from 10 to 11), until for n = 20 it peaks at an
average edge of 7.1 and further relaxation shows no effect.

In the results for the adapted MoteLab network, NC and
routing do not differ for n = 2 and n = 3 and it takes a group
size of at least n = 4 until NC gains an advantage of 7.7%.
At this size, routing already reached its upper bound, while
NC throughput improves an additional 13.7% (accounting for
almost two thirds of the overall 21.4% coding gain possible

in this setting) with groups of 5. This analysis shows that
“one-key-for-all” is not required to leverage the advantages of
NC and compromises between such lightweight security and
pairwise separate link keys can indeed be found.

B. Additional Practical Considerations

Source Constraints: In some network topologies, it can be
impossible with multicast routing to transmit every stream to
at least one sink in a single round of transmissions due to
bottlenecks. While in such a case it also cannot be guaranteed
with (linear) NC that a particular sink can be served with
one specific stream [6], one can make sure that every stream
arrives at least at one arbitrary sink. With routing, this can
only be fulfilled if there exists a path for every source to a
sink where the edge sets of all these paths are each mutually
exclusive. In contrast, it is sufficient when using NC that a
path from each source to a sink merely exists as links can be
used simultaneously.
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Figure 4. Random networks with source constraints (left) and with 35% sink
constraints (right). With source constraints, the average throughput drops for
routing compared to Fig. 3. With sink constraints, throughput falls sharply for
both routing and NC.

With local key-sharing limitations, the difficulty of finding
such distinct paths significantly increases. While there could
exist a solution in the unrestricted network, it might be
impossible to use it with smaller groups. To achieve the
results shown in Fig.4 (left), Constraint (8) was added. The
significantly larger coding gain (peaking at 12.5%) stems
from networks which cannot fulfill the source constraint with
routing under a given group size. These additional 5% of
networks, which fail the constraints and are consequently
treated as having zero throughput, influence the outcome
considerably. Taking these out of the equation, the NC edge
roughly shrinks back to the gap of just above 7% which we
could observe before. Thus, an advantage of NC also lies in
the ability to fulfill constraints that are otherwise impossible
to achieve with routing.

Sink Constraints: In some applications (e.g. signal process-
ing), every sink is desired to receive a certain percentage of all
available streams to enable sufficient processing, redundancy
and reliability. It can also be advantageous if the required
percentage is met as quickly as possible. NC can help with
these requirements which might be infeasible or slower with
routing or require a larger group size for the same results.



Introducing Constraint (9) with a minimum of 7 streams
per sink, yields a hard QoS requirement of 35% in our 20
source/sink setting. Fig.4 (right) shows the results where a
group size below 5 renders all networks unsolvable with
both coding and routing. As the networks generally become
solvable with larger group sizes, roughly the same advantage
of NC over routing than in the setting without any QoS can
be observed, peaking at 7.2%. Just as before, a number of
graphs are not able to serve the QoS requirement (causing the
drop in average throughput) but in this case they are generally
not satisfiable by both coding or routing. Although there is
no additional coding gain observable, one could principally
imagine graphs where this might be the case, a simple example
being the butterfly network with a 100% sink constraint.

C. Global Key-Sharing Limitations
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Figure 5.  Differences in throughput between NC in three scenarios with

different numbers of available keys in the MoteLab network. To achieve full
NC throughput with 11 keys, groups of 6 are sufficient, while with 7 keys we
need groups of 8 and with 3 keys groups of 11 or more.

Given a fixed limited number of keys available to be
distributed in a network, NC can reduce the group size needed
to achieve the same throughput as with routing. Inversely, with
a given maximum group size and throughput, fewer keys are
needed in a network with NC. Fig. 5 shows how the limitation
influences NC throughput depending on the group size in the
MoteLab network. The lower the number of distributed keys,
the longer it takes to reach the saturation point where larger
key-sharing groups show no further throughput effect.

VI. DISCUSSION & CONCLUSION

While the main focus of this work was to evaluate security
considerations, similar constraints can occur due to other
non-security related reasons, including but not limited to en-
ergy, protocol, and bandwidth constraints. Energy constraints
play a role in WSNs where it is generally not advisable
that nodes listen to potential transmissions of all neighbors.
Protocol constraints are a factor in networks with cluster-
based medium access where only nodes in the same cluster
may overhear transmissions. Bandwidth constraints happen
when WSN nodes operate on different frequencies to increase
available bandwidth, thus globally constraining neighborhood
size. We believe that our model and results are useful and
transferable to other scenarios apart from security concerns.

In this paper, we analyzed the impact of increased security
and smaller sizes of key-sharing groups on the effectiveness of
NC. Furthermore, we investigated how neighborhoods should

be composed in order to optimize NC throughput. It is
important to answer these questions in order to design efficient
and secure communication mechanisms for networks utilizing
NC. We conclude that the traditional assumption that NC only
works with one single network-wide key does not hold. While
in networks which are limited to a very small group size the
usefulness of NC is indeed questionable, even small increases
can have a positive effect on throughput and its related metrics.
The trade-off between group size and coding gain can be
quantified with the use of our integer linear program. By
choosing an appropriate group size, a compromise between
the considered conflicting objectives can be found. Finally,
as justified in this paper, if networks are created with NC and
group size already determined, negative throughput effects can
be mitigated through an integrated treatment of security and

network planning. REFERENCES

—

[1] http://motelab.eecs.harvard.edu, motelab: Harvard network
testbed (retrieved 01/02/2013).

[2] R. Ahlswede, N. Cai, S.-Y.R. Li, and R.W. Yeung. Network information
flow. Information Theory, IEEE Transactions on, 46(4), July 2000.

[3] K. Bhattad and K. R. Narayanan. Weakly secure network coding.
NetCod, April 2005.

[4] N. Cai and R.W. Yeung. Secure network coding. In Information Theory,
2002. IEEE International Symposium on, page 323, 2002.

[5] Claude Castellucia, Karim El Defrawy, and Gene Tsudik. Link-layer
encryption effect on achievable capacity in wireless network coding. In
INFOCOM IEEE Conference on Computer Communications Workshops,
2010, pages 1-5. IEEE, 2010.

[6] R. Dougherty, C. Freiling, and K. Zeger. Insufficiency of linear coding
in network information flow. Information Theory, IEEE Transactions
on, 51(8):2745 — 2759, 2005.

[7] J. Feldman, Malkin T., R. A. Servedio, and C. Stein. On the capacity
of secure network coding. In 42nd Annual Allerton Conference on
Communication, Control, and Computing. Camb. University Press, 2004.

[8] C. Fragouli, J.-Y. Le Boudec, and J. Widmer. Network coding: An
instant primer. 2005.

[9] C. Fragouli and E. Soljanin. Network coding fundamentals.

Trends Netw., 2:1-133, January 2007.

M. Ghaderi, D. Towsley, and J. Kurose. Network coding performance

for reliable multicast. In Military Communications Conference, 2007.

MILCOM 2007. IEEE, pages 1 -7, 2007.

C. Gkantsidis and P.R. Rodriguez. Network coding for large scale

content distribution. In INFOCOM 2005. 24th Annual Joint Conference

of the IEEE Computer and Communications Societies. Proceedings

IEEE, volume 4, pages 2235 — 2245 vol. 4, march 2005.

T. Ho, M. Medard, R. Koetter, D.R. Karger, M. Effros, Shi. J., and

B. Leong. A random linear network coding approach to multicast.

Information Theory, IEEE Transactions on, 52(10):4413 —4430, 2006.

S. Jaggi, P. Sanders, P.A. Chou, M. Effros, S. Egner, K. Jain, and

L.M.G.M. Tolhuizen. Polynomial time algorithms for multicast net-

work code construction. [Information Theory, IEEE Transactions on,

51(6):1973 — 1982, 2005.

S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and J. Crowcroft.

Xors in the air: Practical wireless network coding. SIGCOMM Comput.

Commun. Rev., 36:243-254, August 2006.

R. Koetter and M. Medard. An algebraic approach to network coding.

Networking, IEEE/ACM Transactions on, 11(5):782 — 795, 2003.

S.-Y.R. Li, RW. Yeung, and Ning Cai. Linear network coding.

Information Theory, IEEE Transactions on, 49(2):371 381, 2003.

A. Ramamoorthy, J. Shi, and R.D. Wesel. On the capacity of network

coding for random networks. Information Theory, IEEE Transactions

on, 51(8):2878-2885, 2005.

Y.E. Sagduyu and A. Ephremides. Crosslayer design for distributed mac

and network coding in wireless ad hoc networks. In Information Theory,

2005. Proceedings. International Symposium on, 2005.

Ender Yiiksel, Hanne Riis Nielson, and Flemming Nielson. Zigbee-2007

security essentials. In Proc. 13th Nordic Workshop on Secure IT-systems,

pages 65-82, 2008.

sensor

Found.

[10]

(11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]



