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1 Introduction

Kalman Filtering [8] is a method to make real-time predictions for systems with some
known dynamics. Traditionally, problems requiring Kalman Filtering have been complex
and nonlinear. Many advances have been made in the direction of dealing with nonlinearities
(e.g., Extended Kalman Filter [1], Unscented Kalman Filter [7]). These problems also tend to
have inherent state space equality constraints (e.g., a fixed speed for a robotic arm) and state
space inequality constraints (e.g., maximum attainable speed of a motor). In the past, less
interest has been generated towards constrained Kalman Filtering, partly because constraints
can be difficult to model. As a result, constraints are often neglected in standard Kalman
Filtering applications.

The extension to Kalman Filtering with known equality constraints on the state space is
discussed in [5, 12—-14,16]. In this paper, we discuss two distinct methods to incorporate
constraints into a Kalman Filter. Initially, we discuss these in the framework of equality
constraints. The first method, projecting the updated state estimate onto the constrained
region, appears with some discussion in [5,12]. We propose another method, which is to
restrict the optimal Kalman Gain so the updated state estimate will not violate the constraint.
With some algebraic manipulation, the second method is shown to be a special case of the
first method.

We extend both of these concepts to Kalman Filtering with inequality constraints in the
state space. This generalization for the first approach was discussed in [11].! Constraining
the optimal Kalman Gain was briefly discussed in [10]. Further, we will also make the
extension to incorporating state space constraints in Kalman Filter predictions.

Analogous to the way a Kalman Filter can be extended to solve problems containing
non-linearities in the dynamics using an Extended Kalman Filter by linearizing locally (or
by using an Unscented Kalman Filter), linear inequality constrained filtering can similarly be
extended to problems with nonlinear constraints by linearizing locally (or by way of another
scheme like an Unscented Kalman Filter). The accuracy achieved by methods dealing with
nonlinear constraints will naturally depend on the structure and curvature of the nonlinear
function itself. In the two experiments we provide, we look at incorporating inequality
constraints to a tracking problem with nonlinear dynamics.

2 Kalman Filter

A discrete-time Kalman Filter [8] attempts to find the best running estimate for a recursive
system governed by the following model:

Ty = Flp—1Tp—1 + Up j—1, U -1 ~ N (0, Qrp-1) (2.1)

IThe similar extension for the method of [16] was made in [6].

The subscript k on a variable stands for the k-th time step, the mathematical notation N (i, ) denotes a
normally distributed random vector with mean p and covariance ¥, and all vectors in this paper are column
vectors (unless we are explicitly taking the transpose of the vector).



2L = HkZL’k + Vg, Vi ~~ N(07 Rk) (22)

Here z, is an n-vector that represents the true state of the underlying system and Fy, ;1
is an n x n matrix that describes the transition dynamics of the system from zj;_; to xy.
The measurement made by the observer is an m-vector z;, and Hy is an m X n matrix that
transforms a vector from the state space into the appropriate vector in the measurement space.
The noise terms uy, ,—; (an n-vector) and v, (an m-vector) encompass known and unknown
errors in Fy ;1 and Hj and are normally distributed with mean O and covariances given
by n x n matrix QJx,—1 and m X m matrix 7y, respectively. At each iteration, the Kalman
Filter makes a state prediction for x;, denoted Zy;—;. We use the notation k|k — 1 since we
will only use measurements provided until time-step £ — 1 in order to make the prediction at
time-step k. The state prediction error Zy;—; is defined as the difference between the true
state and the state prediction, as below.

Tph—1 = T — Tijp—1 (2.3)

The covariance structure for the expected error on the state prediction is defined as
the expectation of the outer product of the state prediction error. We call this covariance
structure the error covariance prediction and denote it Pk|k_1.3

Pyp1=E [(fkue—l) (jk:|k—1)/i| (2.4)

The filter will also provide an updated state estimate for xj, given all the measurements
provided up to and including time step k. We denote these estimates by ;. We similarly
define the state estimate error Iy, as below.

Tk = Tp — Tijk (2.5)

The expectation of the outer product of the state estimate error represents the covariance
structure of the expected errors on the state estimate, which we call the updated error
covariance and denote Pyy.

Pyr = E [(fk\k) (i‘k\ky} (2.6)

At time-step k, we can make a prediction for the underlying state of the system by
allowing the state to transition forward using our model for the dynamics and noting that
[E [u x—1] = 0. This serves as our state prediction.

Tph—1 = Frp—1Tp—1k—1 (2.7)

If we expand the expectation in Equation (2.4), we have the following equation for the
error covariance prediction.

Prjk—1 = Frr—1Pe1jp—1Fpp 1 + Qrp—1 (2.8)

3We use the prime notation on a vector or a matrix to denote its transpose throughout this paper.
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We can transform our state prediction into the measurement space, which is a prediction
for the measurement we now expect to observe.

Zhjk—1 = Hplpp—1 (2.9)

The difference between the observed measurement and our predicted measurement is the
measurement residual, which we are hoping to minimize in this algorithm.

Vi = 2k — Zklk—1 (2.10)

We can also calculate the associated covariance for the measurement residual, which is
the expectation of the outer product of the measurement residual with itself, E [v,v;]. We
call this the measurement residual covariance.

Sy = Hkpk‘k_lH]/€+Rk 2.11)

We can now define our updated state estimate as our prediction plus some perturbation,
which is given by a weighting factor times the measurement residual. The weighting factor,
called the Kalman Gain, will be discussed below.

Tk = Tppp—1 + K (2.12)

Naturally, we can also calculate the updated error covariance by expanding the outer
product in Equation (2.6).*

P = 1=Ky Hy) Pyp—1 1=K Hy,)' + Ky R K, (2.13)

Now we would like to find the Kalman Gain K}, which minimizes the mean square state
. -2 .. .
estimate error, [E “xk“{‘ ] This is the same as minimizing the trace of the updated error

covariance matrix above.> After some calculus, we find the optimal gain that achieves this,
written below.’

Ky, = Pyy—1H,,5; (2.14)

The covariance matrices in the Kalman Filter provide us with a measure for uncertainty
in our predictions and updated state estimate. This is a very important feature for the various
applications of filtering since we then know how much to trust our predictions and estimates.
Also, since the method is recursive, we need to provide an initial covariance that is large
enough to contain the initial state to ensure comprehensible performance. For a more detailed
discussion of Kalman Filtering, we refer the reader to the following book [1].

4The I in Equation (2.13) represents the n x n identity matrix. Throughout this paper, we use I to denote
the same matrix, except in Appendix A, where I is the appropriately sized identity matrix.

Note that v'v = trace [vv’] for some vector v.

®We could also minimize the mean square state estimate error in the N norm, where N is a positive definite
and symmetric weighting matrix. In the N norm, the optimal gain would be K}Y = N 3 K.
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3 Equality Constrained Kalman Filtering

A number of approaches have been proposed for solving the equality constrained Kalman
Filtering problem [5, 12-14,16]. In this paper, we show two different methods. The first
method will restrict the state at each iteration to lie in the equality constrained space. The
second method will start with a constrained prediction, and restrict the Kalman Gain so that
the estimate will lie in the constrained space. Our equality constraints in this paper will be
defined as below, where A is a ¢ x n matrix, b a ¢-vector, and xy, the state, is a n-vector.’

Az, =0 3.1

So we would like our updated state estimate to satisfy the constraint at each iteration, as
below.

A = b (3.2)

Similarly, we may also like the state prediction to be constrained, which would allow a
better forecast for the system.

Adigey = b (3.3)

In the following subsections, we will discuss methods for constraining the updated state
estimate. In Section 4, we will extend these concepts and formulations to the inequality
constrained case, and in Section 6, we will address the problem of constraining the prediction,
as well.

3.1 Projecting the state to lie in the constrained space

We can solve the following minimization problem for a given time-step k, where ig . is the
constrained estimate, W, is any positive definite symmetric weighting matrix, and zy, is
the unconstrained Kalman Filter updated estimate.

iﬁk = arg min {(x — :i“k‘k)/Wk (x — :i"k‘k) s Ax = b} (3.4

z€R™

The best constrained estimate is then given by

il = dggn — Wit A (AWTA) T (Adyy, — b) (3.5)

To find the updated error covariance matrix of the equality constrained filter, we first
define the matrix T below.

T =W A (AW, A (3.6)

Equation (3.5) can then be re-written as following.

7A and b can be different for different k. We don’t subscript each A and b to avoid confusion.
8Note that T A is a projection matrix, as is (I —YA), by definition. If A is poorly conditioned, we can use
a QR factorization to avoid squaring the condition number.

6



P = T — T (AZpyy, — b) 3.7)

We can find a reduced form for x; — :%ﬁ . as below.

T — jjﬁk = T — jfk\k + T (Ai’]ﬂk —b— (Al’k - b)) (38&)
= T — i"k\k +7T (AﬂAkac — AQEk) (3.8b)
= —(I=TA) (Zup — k) (3.8¢)

Using the definition of the error covariance matrix, we arrive at the following expression.

Plngk =E [(zk - “%Zk) (n — jflk)/} (3.9a)
=B |(1-TA4) (g — o) (s — ) (1-TAY| (3.9b)
= (I-TA4) Py, (I-TA) (3.9¢)
= P — TAPs — Pp AT + TAP AT (3.9d)
= Pui — TAPy, (3.9¢)
= (I=TA) P (3.9f)

It can be shown that choosing W, = P,;| ,i results in the smallest updated error covariance.

This also provides a measure of the information in the state at &.°

3.2 Restricting the optimal Kalman Gain so the updated state estimate
lies in the constrained space

Alternatively, we can expand the updated state estimate term in Equation (3.2) using Equation
(2.12).

Then, we can choose a Kalman Gain K ,f, that forces the updated state estimate to be in
the constrained space. In the unconstrained case, we chose the optimal Kalman Gain K,
by solving the minimization problem below which yields Equation (2.14).

K}, = argmintrace [(I—K Hy) Pyp—1 (1—KHy)' + KRy K'] (3.11)
KeRnxm

Now we seek the optimal K} that satisfies the constrained optimization problem written
below for a given time-step k.

If M and N are covariance matrices, we say NN is smaller than M if M — N is positive semidefinite.
Another formulation for incorporating equality constraints into a Kalman Filter is by observing the constraints
as pseudo-measurements [14,16]. When W}, is chosen to be Pk_ ; both of these methods are mathematically
equivalent [5]. Also, a more numerically stable form of Equation (3.9) with discussion is provided in [5].

7



K]f = arg mintrace [(I —KHk) Pk\k—l (I —KHk), + KRkK/]
K€eRnxm (3.12)
s.t. A (Zi’k|k_1 + KVk) =b

We will solve this problem using the method of Lagrange Multipliers. First, we take the
steps below, using the vec notation (column stacking matrices so they appear as long vectors,
see Appendix A) to convert all appearances of A in Equation (4.8) into long vectors. Let
us begin by expanding the following term.!°

trace [(1—K Hy) Pyp—1 (1=K Hy,) + KR K]
= trace [Pk|k—1 — KHkPk|k_1 — Pk;\k;—lH]/cK, + KHkPk|k—1H]/QK/ + KRkK/}

Qél) trace [Pkwg,l — KHkPk“g,l — Pk‘kle];K/ + KSkK/] (3133)
= trace [ Py—1]| — trace [K Hy, Pyy—1] — trace | Pyy_1 H, K'| + trace [K S, K']

We now expand the last three terms in Equation (3.13a) one at a time.!!

trace | K Hy Pyjj—1] A Vec [(HkPMk_l),]/Vec (K] 3.14)
= vec [Pkm,lH,’leec [K] .
trace [ Py Hy K'] 22 vec [K]' vee [Py Hy] (3.15)
trace [K S; K] 22 vec [K]' vec [K Sy]
(3.16)

A vec (K] (S ®1) vec [K]

Remembering that trace [Pk\k—l] is constant, our objective function can be written as
below.

vec [K] (I®S},) vec [K'] — vec [Pk‘k,lH,’g]/vec (K]
— vec [K] vec [Pyjp—1 Hy]

Using Equation (A.8) on the equality constraints, our minimization problem is the fol-
lowing.

(3.17)

K} = argmin vec [K]' (Sy ® 1) vec [K]
KeRnxm

— VEC [Pk‘k_lﬂllc]/VeC [K] (3.18)
— vec [K]' vec [Pk‘k,lH,g]
sit. (v, ® A)vec [K] = b — Ay

0Throughout this paper, a number in parentheses above an equals sign means we made use of this equation
number.
""We use the symmetry of Py~ in Equation (3.14) and the symmetry of Sy in Equation (3.16).
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Further, we simplify this problem so the minimization problem has only one quadratic
term. We complete the square as follows. We want to find the unknown variable p which will
cancel the linear term. Let the quadratic term appear as follows. Note that the non-“vec [K]"
term is dropped as is is irrelevant for the minimization problem.

(vec [K] + u) (Sk ®@1) (vec [K] + p) (3.19)

The linear term in the expansion above is the following.

vec [K] (S, @ 1) i+ i’ (S, @ 1) vec [K] (3.20)

So we require that the two equations below hold.

(Sk ® 1) p = —vec [Pyjp—1 Hy]

(3.21)
p (S ®@1) = —vec [Pk|k,1H,’J/
This leads to the following value for p.
il (A:.B) — (Skjl &® I) vec [Pk|k—1H]/J
A _vec [Pejp—1H,S; ] (3.22)

C _vec [ K]

Using Equation (A.6), our quadratic term in the minimization problem becomes the
following.

(vec [K — Ki)) (Sp @1) (vec [K — K3)) (3.23)
Let | = vec [K — K}]. Then our minimization problem becomes the following.
K =argmin I (S, ® 1)1

IeRmn (3.24)
S.t. (Vllc & A) (l + vec [Kk]) =b-— Aik\k—l

We can then re-write the constraint taking the vec [K}] term to the other side as below.
(l/]; X A) l=0b-— Afi'k|k_1 — (l/]/c X A) veC [Kk]

(A:& b— A.fl'k|k_1 — vec [AKka]
=b— Ai‘]ﬂk,l — AKkI/k
@12,

(3.25)

AZ g
This results in the following simplified form.
K =argmin I (S, ® 1)1

leRmn (3.26)
S.t. (V,lq &® A)l =b-— Ai’]ﬂk

We form the Lagrangian £, where we introduce ¢ Lagrange Multipliers in vector A =
(A Agy vy A)



L=I(SoD)l—N[(v,®A)l—b+ AZyy] (3.27)

We take the partial derivative with respect to [.!2

oL
o 20 (S, @1) = N (v, @ A) (3.28)
Similarly we can take the partial derivative with respect to the vector .

When both of these derivatives are set equal to the appropriate size zero vector, we have
the solution to the system. Taking the transpose of Equation (3.28), we can write this system
as Mn = p with the following block definitions for M, n, and p.

QSk X I Vi & A,:|
M= | 3.30
[Vk ® A Opgxq ( .
n = [ﬂ (3.31)
o O[mnxl]
p= {b ol A:%MJ (3.32)

We solve this system for vector n in Appendix C. The solution for [ is pasted below.

([Sitw (isi ) ™ @ |4 (Aa) 7)) (b= Ad) (3.33)

Bearing in mind that b — AZy), = vec [b — AZyx], we can use Equation (A.8) to re-write
[ as below.!?

vee | A (AA) ™ (b= Ady) (viSi ')~ Sy (3.34)

The resulting matrix inside the vec operation is then an n by m matrix. Remembering
the definition for /, we notice that K — K}, results in an n by m matrix also. Since both of
the components inside the vec operation result in matrices of the same size, we can safely
remove the vec operation from both sides. This results in the following optimal constrained
Kalman Gain K}%.

Ky, — A (AA) ™ (Adgy — b) (S5 ')~ Sy (3.35)

If we now substitute this Kalman Gain into Equation (2.12) to find the constrained
updated state estimate, we end up with the following.

B = T — A’ (AA") ™ (A, — b) (3.36)

2We used the symmetry of (Si ® I) here.
'3Here we used the symmetry of S; " and (v},.S; luk)_l (the latter of which is actually just a scalar).
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This is of course equivalent to the result of Equation (3.5) with the weighting matrix W),
chosen as the identity matrix. The error covariance for this estimate is given by Equation
(3.9).1

4 Adding Inequality Constraints

In the more general case of this problem, we may encounter equality and inequality con-
straints, as given below.!

Al’k:b

4.1

So we would like our updated state estimate to satisfy the constraint at each iteration, as
below.

A = b

4.2
Ciyp < d *2)

Similarly, we may also like the state prediction to be constrained, which would allow a
better forecast for the system.

AZpp—1 =b

4.3
Clpp— <d 43

We will present two analogous methods to those presented for the equality constrained
case. In the first method, we will run the unconstrained filter, and at each iteration constrain
the updated state estimate to lie in the constrained space. In the second method, we will
find a Kalman Gain K/* such that the the updated state estimate will be forced to lie in the
constrained space. In both methods, we will no longer be able to find an analytic solution
as before. Instead, we use numerical methods.

4.1 By Projecting the Unconstrained Estimate

Given the best unconstrained estimate, we could solve the following minimization problem
for a given time-step k, where f,ﬁk is the inequality constrained estimate and W is any
positive definite symmetric weighting matrix.

“We can use the unconstrained or constrained Kalman Gain to find this error covariance matrix. Since the
constrained Kalman Gain is suboptimal for the unconstrained problem, before projecting onto the constrained
space, the constrained covariance will be different from the unconstrained covariance. However, the difference
lies exactly in the space orthogonal to which the covariance is projected onto by Equation (3.9). The proof is
omitted for brevity.

15C and d can be different for different k. We don’t subscript each C' and d to simplify notation.
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ikp‘k = arg min (.’L‘ — ik\k)/Wk (.’L‘ — ik\k)
x

st. Az =b (4.4)
Cr <d

For solving this inequality constrained optimization problem, we can use a variety of
standard methods, or even an out-of-the-box solver, like fmincon in Matlab. Here we use
an active set method [4]. This is a common method for dealing with inequality constraints,
where we treat a subset of the constraints (called the active set) as additional equality
constraints. We ignore any inactive constraints when solving our optimization problem.
After solving the problem, we check if our solution lies in the space given by the inequality
constraints. If it doesn’t, we start from the solution in our previous iteration and move in the
direction of the new solution until we hit a set of constraints. For each iteration, the active
set is made up of those inequality constraints with non-zero Lagrange Multipliers.

We first find the best estimate (using Equation (3.5) for the equality constrained problem
with the equality constraints given in Equation (4.1) plus the active set of inequality con-
straints. Let us call the solution to this fkp‘}; ; since we have not yet checked if the solution

lies in the inequality constrained space.'® In order to check this, we find the vector that we
moved along to reach jkﬁ}; ;- This is given by the following.

~ Px ~ P
5= Thkj — Thlk,j—1 4.5)

We now iterate through each of our inequality constraints, to check if they are satisfied.
If they are all satisfied, we choose 7,.x = 1. If they are not, we choose the largest value
of Tiax such that Zy)x j—1 + Tmaxs lies in the inequality constrained space. We choose our
estimate to be

P _ P
Tpikj = Thlk,j—1 T TmaxS (4.6)

If we find the solution has converged within a pre-specified error, or we have reached a
pre-specified maximum number of iterations, we choose this as the updated state estimate to
our inequality constrained problem, denoted :i:,ﬁ .- If we would like to take a further iteration
on j, we check the Lagrange Multipliers at this new solution to determine the new active
set.'” We then repeat by finding the best estimate for the equality constrained problem
including the new active set as additional equality constraints. Since this is a Quadratic
Programming problem, each step of j guarantees the same estimate or a better estimate.

When calculating the error covariance matrix for this estimate, we can also add on the
safety term below.

(jgfw’ - j“fllw’—l) (fzk,j - iﬂk,j—ly 4.7)

16For the inequality constrained filter, we allow multiple iterations within each step. The j subscript indexes
these further iterations.
"The previous active set is not relevant.
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This is a measure of our convergence error and should typically be small relative to the
unconstrained error covariance. We can then use Equation (3.9) to project the covariance
matrix onto the constrained subspace, but we only use the defined equality constraints. We
do not incorporate any constraints in the active set when computing Equation (3.9) since
these still represent inequality constraints on the state. Ideally we would project the error
covariance matrix into the inequality constrained subspace, but this projection is not trivial.

4.2 By Restricting the Optimal Kalman Gain

We could solve this problem by restricting the optimal Kalman gain also, as we did for equal-
ity constraints previously. We seek the optimal K, that satisfies the constrained optimization
problem written below for a given time-step k.

K* = argmintrace [(I—K Hy) Pyp—1 (1 —K Hy,) + KRy K]
KER”XW‘L

st. A (i“k|k71 + Kka:) =0 (4.8)
C (Zpppr + Kpvi) < d

Again, we can solve this problem using any inequality constrained optimization method
(e.g., fmincon in Matlab or the active set method used previously). Here we solved the
optimization problem using SDPT3, a Matlab package for solving semidefinite programming
problems [15]. When calculating the covariance matrix for the inequality constrained esti-
mate, we use the restricted Kalman Gain. Again, we can add on the safety term for the
convergence error, by taking the outer product of the difference between the updated state
estimates calculated by the restricted Kalman Gain for the last two iterations of SDPT3. This
covariance matrix is then projected onto the subspace as in Equation (3.9) using the equality
constraints only.

S5 Dealing with Nonlinearities

Thus far, in the Kalman Filter we have dealt with linear models and constraints. A number of
methods have been proposed to handle nonlinear models (e.g., Extended Kalman Filter [1],
Unscented Kalman Filter [7]). In this paper, we will focus on the most widely used of these,
the Extended Kalman Filter. Let’s re-write the discrete unconstrained Kalman Filtering
problem from Equations (2.1) and (2.2) below, incorporating nonlinear models.

Ty = fk,kfl (951%1) + U k-1, Uk, k—1 ™ N(0> Qk,k71> (5.1)

Z = hk (ZL’k) + Vg, Vi ~ N(O, Rk) (52)

In the above equations, we see that the transition matrix F}, ,_; has been replaced by the
nonlinear vector-valued function fj ;1 (-), and similarly, the matrix Hj, which transforms a
vector from the state space into the measurement space, has been replaced by the nonlinear
vector-valued function Ay (-). The method proposed by the Extended Kalman Filter is to
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linearize the nonlinearities about the current state prediction (or estimate). That is, we
choose Fj,;,—; as the Jacobian of fj ,_; evaluated at 2,1, and Hj, as the Jacobian of Ay,
evaluated at ;1 and proceed as in the linear Kalman Filter of Section 2.8 Numerical
accuracy of these methods tends to depend heavily on the nonlinear functions. If we have
linear constraints but a nonlinear fj ;_; (-) and hy (-), we can adapt the Extended Kalman
Filter to fit into the framework of the methods described thus far.

5.1 Nonlinear Equality and Inequality Constraints

Since equality and inequality constraints we model are often times nonlinear, it is important
to make the extension to nonlinear equality and inequality constrained Kalman Filtering
for the methods discussed thus far. Without loss of generality, our discussion here will
pertain only to nonlinear inequality constraints. We can follow the same steps for equality
constraints.!” We replace the linear inequality constraint on the state space by the following
nonlinear inequality constraint ¢ (x) = d, where ¢ (-) is a vector-valued function. We can
then linearize our constraint, ¢ (x;) = d, about the current state prediction Ty|k—1, Which
gives us the following.?

C (fi‘;ﬂk_l) + C (Ik - i’k“g_l) é d (53)

Here C' is defined as the Jacobian of c evaluated at Z;,_;. This indicates then, that the
nonlinear constraint we would like to model can be approximated by the following linear
constraint

Cap S d+ Clpp—1 — ¢ (Zppp—1) (5.4)

This constraint can be written as C'zj, < d, which is an approximation to the nonlinear
inequality constraint. It is now in a form that can be used by the methods described thus
far.

The nonlinearities in both the constraints and the models, fi ;1 (-) and hg (), could
have been linearized using a number of different methods (e.g., a derivative-free method,
a higher order Taylor approximation). Also an iterative method could be used as in the
Iterated Extended Kalman Filter [1].

6 Constraining the State Prediction

We haven’t yet discussed whether the state prediction (Equation (2.7)) also should be con-
strained. Forcing the constraints should provide a better prediction (which is used for fore-

"®We can also do a midpoint approximation to find Fjy_; by evaluating the Jacobian at
(ik,l‘ k=1t T k,l) /2. This should be a much closer approximation to the nonlinear function. We use
this approximation for the Extended Kalman Filter experiments later.

YWe replace the ‘<’ sign with an ‘=" sign and the ‘S’ with an ‘&’ sign.

20This method is how the Extended Kalman Filter linearizes nonlinear functions for fr k-1 () and hy (-).
Here &x—1 can be the state prediction of any of the constrained filters presented thus far and does not

necessarily relate to the unconstrained state prediction.
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casting in the Kalman Filter). Ideally, the transition matrix F}, ;,_; will take an updated state
estimate satisfying the constraints at time £ — 1 and make a prediction that will satisfy the
constraints at time k. Of course this may not be the case. In fact, the constraints may depend
on the updated state estimate, which would be the case for nonlinear constraints. On the
downside, constraining the state prediction increases computational cost per iteration.

We propose three methods for dealing with the problem of constraining the state predic-
tion. The first method is to project the matrix Fj, ;_; onto the constrained space. This is
only possible for the equality constraints, as there is no trivial way to project Fj ;_; to an
inequality constrained space. We can use the same projector as in Equation (3.9f) so we
have the following.?!

Fly=(1-"TA) Fj (6.1)

Under the assumption that we have constrained our updated state estimate, this new
transition matrix will make a prediction that will keep the estimate in the equality constrained
space. Alternatively, if we weaken this assumption, i.e., we are not constraining the updated
state estimate, we could solve the minimization problem below (analogous to Equation (3.4)).
We can also incorporate inequality constraints now.

if;k_l = arg min (m — £k|k_1)l Wi (x — 3AU1<:|1<:—1)
x

st. Az =b (6.2)
Cr <d

We can constrain the covariance matrix here also, in a similar fashion to the method
described in Section 4.1. The third method is to add to the constrained problem the additional
constraints below, which ensure that the chosen estimate will produce a prediction at the
next iteration that is also constrained.

A1 Fe1 p76 = b 6.3)
Crs1Frg1 12k < digga '

If Agy1,bk11, Cryq or diiq depend on the estimate (e.g., if we are linearizing nonlinear
functions a (-) or b(-), we can use an iterative method, which would resolve Ay ; and by4
using the current best updated state estimate (or prediction), re-calculate the best estimate
using A1 and by, and so forth until we are satisfied with the convergence. This method
would be preferred since it looks ahead one time-step to choose a better estimate for the
current iteration.”> However, it can be far more expensive computationally.

2'In these three methods, the symmetric weighting matrix W can be different. The resulting YT can
consequently also be different.
22Further, we can add constraints for some arbitrary n time-steps ahead.
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7 Experiments

We provide two related experiments here. We have a car driving along a straight road with
thickness 2 meters. The driver of the car traces a noisy sine curve (with the noise lying only
in the frequency domain). The car is tagged with a device that transmits the location within
some known error. We would like to track the position of the car. In the first experiment,
we filter over the noisy data with the knowledge that the underlying function is a noisy
sine curve. The inequality constrained methods will constrain the estimates to only take
values in the interval [—1,1]. In the second experiment, we do not use the knowledge that
the underlying curve is a sine curve. Instead we attempt to recover the true data using an
autoregressive model of order 6 [3]. We do, however, assume our unknown function only
takes values in the interval [—1, 1], and we can again enforce these constraints when using
the inequality constrained filter.

The driver’s path is generated using the nonlinear stochastic process given by Equation
(5.1). We start with the following initial point.

zo = [0 m} (7.1)

0 m

Our vector-valued transition function will depend on a discretization parameter 7' and
can be expressed as below. Here, we choose 7" to be 7/10, and we run the experiment from
an initial time of O to a final time of 10.

(Tp-1), + T
1= 7.2
fk,kz 1 |:Sln((.1’k1)1+T) ( )
And for the process noise we choose the following.
0.1m? 0
Q-1 = { 0 0 mz] (7.3)

The driver’s path is drawn out by the second element of the vector xj, — the first element
acts as an underlying state to generate the second element, which also allows a natural
method to add noise in the frequency domain of the sine curve while keeping the process
recursively generated.

7.1 First Experiment

To create the measurements, we use the model from Equation (2.2), where H}, is the square
identity matrix of dimension 2. We choose Ry as below to noise the data. This considerably
masks the true underlying data as can be seen in Fig. 1.2

10 m?2 0} (7.4)

sz[ 0 10 m?

23The figure only shows the noisy sine curve, which is the second element of the measurement vector. The
first element, which is a noisy straight line, isn’t plotted.
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Noisy Measurements
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Figure 1: We take our sine curve, which is already noisy in the frequency domain (due to process
noise), and add measurement noise. The underlying sine curve is significantly masked.

For the initial point of our filters, we choose the following point, which is different from
the true initial point given in Equation (7.1).

. 0 m
Zolo = ll m] (7.5)
Our initial covariance is given as below.?*.
b _[1m* 01 76
=101 1m? '

24Nonzero off-diagonal elements in the initial covariance matrix often help the filter converge more quickly
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In the filtering, we use the information that the underlying function is a sine curve, and
our transition function fj;_; changes to reflect a recursion in the second element of xj, —
now we will add on discretized pieces of a sine curve to our previous estimate. The function
is given explicitly below.

(7.7)

frgk—1= {( (xp—1), + T ]

T—1); +sin (wg-1), + 1) —sin ((zx-1),)

For the Extended Kalman Filter formulation, we will also require the Jacobian of this
matrix denoted [}, ;_1, which is given below.

1 0
Frp = (7.8)
’ cos ((xp—1); +T) —cos ((x-1);) 1
The process noise )y x—1, given below, is chosen similar to the noise used in generating
the simulation, but is slightly larger to encompass both the noise in our above model and to
prevent divergence due to numerical roundoff errors. The measurement noise Ry is chosen
the same as in Equation (7.4).

0.1 m? 0 } (7.9)

Qrp-1 = { 0 0.1m?

The inequality constraints we enforce can be expressed using the notation throughout the
chapter, with C' and d as given below.

C = {0 L } (7.10)

1
d= ll} (7.11)

These constraints force the second element of the estimate zy; (the sine portion) to lie
in the interval [—1,1]. We do not have any equality constraints in this experiment. We run
the unconstrained Kalman Filter and both of the constrained methods discussed previously.
A plot of the true position and estimates is given in Fig. 2. Notice that both constrained
methods force the estimate to lie within the constrained space, while the unconstrained
method can violate the constraints.

7.2 Second Experiment

In the previous experiment, we used the knowledge that the underlying function was a noisy
sine curve. If this is not known, we face a significantly harder estimation problem. Let us
assume nothing about the underlying function except that it must take values in the interval
[—1,1]. A good model for estimating such an unknown function could be an autoregressive
model. We can compare the unconstrained filter to the two constrained methods again using
these assumption and an autoregressive model of order 6, or AR(6) as it is more commonly
referred to.
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True Position and Estimates
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Figure 2: We show our true underlying state, which is a sine curve noised in the frequency domain,
along with the estimates from the unconstrained Kalman Filter, and both of our inequality constrained
modifications. We also plotted dotted horizontal lines at the values -1 and 1. Both inequality
constrained methods do not allow the estimate to leave the constrained space.

In the previous example, we used a large measurement noise Rj to emphasize the gain
achieved by using the constraint information. Such a large Ry is probably not very realistic,
and when using an autoregressive model, it will be hard to track such a noisy signal. To
generate the measurements, we again use Equation (2.2), this time with Hj and Ry as given
below.

Hy=1[0 1] (7.12)

Ry = [0.5 m?] (7.13)



Our state will now be defined using the following 13-vector, in which the first element
is the current estimate, the next five elements are lags, the six elements afterwards are
coeflicients on the current estimate and the lags, and the last element is a constant term.

Bk = (Y Yho1 0 ks o ap oo ] (7.14)

Our matrix Hj, in the filter is a row vector with the first element 1, and all the rest as
0, SO Yg|x—1 is actually our prediction Zy;_; in the filter, describing where we believe the
expected value of the next point in the time-series to lie. For the initial state, we choose a
vector of all zeros, except the first and seventh element, which we choose as 1. This choice
for the initial conditions leads to the first prediction on the time series being 1, which is
incorrect as the true underlying state has expectation 0. For the initial covariance, we choose
I[13x13 and add 0.1 to all the off-diagonal elements.”> The transition function fr -1 for the
AR(6) model is given below.

[ min (I, max (=1, 1yp—1 + - - - + QY6 + oz7))_
min (1, max (—1,yx_1))

(1, max (—
min (1, max (—1, yx_2))
min (1, max (—1, yx_3))
min (1, max (—1,yx_4))
min (1, max (—1, y5—5)) (7.15)
o
iy
Qg
Q7
Putting this into recursive notation, we have the following.
min (1, max (—1, (zx-1)7 (zp-1); + -+ + (T4-1)13))
min(l max (—1, (x5_1),))
min (1, max (—1, (x5_1),))
min (1, max (—1, (x5_1),))
min (1, max (—1, (x5_1),))
min (1, max (=1, (zx-1);)) (7.16)

(Tr-1)7
)

(xk—l

(xk—1)12
(xk*1)13

The Jacobian of f ;. is given below. We ignore the min () and max (-) operators since
the derivative is not continuous across them, and we can reach the bounds by numerical error.

23The bracket subscript notation is used through the remainder of this paper to indicate the size of zero
matrices and identity matrices.
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Further, when enforced, the derivative would be 0, so by ignoring them, we are allowing
our covariance matrix to be larger than necessary as well as more numerically stable.

(kal)’r T ;(xk—l)lg (xkfl)l (xk‘fl)fj 1
Li5x5) Ox1) O5x7) (7.17)
Oprxe Li7x)

For the process noise, we choose () ;1 to be a diagonal matrix with the first entry as 0.1
and all remaining entries as 10~ since we know the prediction phase of the autoregressive
model very well. The inequality constraints we enforce can be expressed using the notation
throughout the chapter, with C' as given below and d as a 12-vector of ones.

Tigne
C=1|-- 0 éj-gomxﬂ (7.18)

These constraints force the current estimate and all of the lags to take values in the range
[—1,1]. As an added feature of this filter, we are also estimating the lags at each iteration
using more information although we don’t use it — this is a fixed interval smoothing. In
Fig. 3, we plot the noisy measurements, true underlying state, and the filter estimates. Notice
again that the constrained methods keep the estimates in the constrained space. Visually, we
can see the improvement particularly near the edges of the constrained space.

8 Conclusions

We’ve provided two different formulations for including constraints into a Kalman Filter.
In the equality constrained framework, these formulations have analytic formulas, one of
which is a special case of the other. In the inequality constrained case, we’ve shown two
numerical methods for constraining the estimate. We also discussed how to constrain the
state prediction and how to handle nonlinearities. Our two examples show that these methods
ensure the estimate lies in the constrained space, which provides a better estimate structure.
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Appendix A Kron and Vec

In this appendix, we provide some definitions used earlier in the chapter. Given matrix
A € R™™ and B € RP*4, we can define the right Kronecker product as below.2

26The indices m, n, p, and ¢ and all matrix definitions are independent of any used earlier. Also, the subscript
notation a, ,, denotes the element in the first row and n-th column of A, and so forth.
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Figure 3: We show our true underlying state, which is a sine curve noised in the frequency domain,
the noised measurements, and the estimates from the unconstrained and both inequality constrained
filters. We also plotted dotted horizontal lines at the values -1 and 1. Both inequality constrained
methods do not allow the estimate to leave the constrained space.

CLLlB s al,nB
(A@B)=| + -~ (A.1)

am1B - amaB

Given appropriately sized matrices A, B, C, and D such that all operations below are
well-defined, we have the following equalities.

(A® B) = (A ® B (A.2)
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(A®B)'=(A"®B™) (A.3)

(A® B) (C ® D) = (AC ® BD) (A.4)

We can also define the vectorization of an [m x n| matrix A, which is a linear transfor-
mation on a matrix that stacks the columns iteratively to form a long vector of size [mn x 1],
as below.

a1

am,l
1.2

vec[d] = | ° (A.5)

Am,2

a1n

Am,n

Using the vec operator, we can state the trivial definition below.

vec [A + B] = vec [A] + vec [B] (A.6)

Combining the vec operator with the Kronecker product, we have the following.
vec [AB] = (B’ ®I) vec [A] (A7)
vec [ABC] = (C' @ A) vec [B] (A.8)
We can express the trace of a product of matrices as below.

trace [AB] = vec [B'] vec [A] (A.9)

trace [ABC] = vec [B] (I1®C) vec [A] (A.10a)
= vec [A]' 1®B) vec [C] (A.10b)
= vec [A] (C ®1) vec [B] (A.10c)

For more information, please see [9].
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Appendix B Analytic Block Representation for the inverse
of a Saddle Point Matrix

My is a saddle point matrix if it has the block form below.?’

_ |As  Bg
Mg = [Bs s (B.1)
In the case that Ag is nonsingular and the Schur complement Jg = — (C’s + BgAngfg)

is also nonsingular in the above equation, it is known that the inverse of this saddle point
matrix can be expressed analytically by the following equation (see e.g., [2]).

(B.2)

n

Y= {Agl + Ag' BiJg BeAg' —Ang’Sjgl}

—Jg'BgAG! Jg!

Appendix C Solution to the system Mn = p

Here we solve the system M n = p from Equations (3.30), (3.31), and (3.32), re-stated below,
for vector n.

25, @1 e @A 1] _ | Opunxy (C.1)
V@A Ogwq | [N [b— Adip '

M is a saddle point matrix with the following equations to fit the block structure of
Equation (B.1).%

As =25, ®1 (C.2)
Cs = Ofguy (C4)
We can calculate the term Ag' By.
AG'BL =12(Sr@D)] ' (v, @ A (C.52)
1

(A2AS 5 (St e1) (n @ A) (C.5b)

1
S (Sn) @ A (C.5¢)

2"The subscript S notation is used to differentiate these matrices from any matrices defined earlier.
2We use Equation (A.2) with BY to arrive at the same term for B in Equation (C.1).
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And as a result we have the following for Jg.

1
Js = =3 (v, ® A) [(Sy 'vi) ® A'] (C.6a)
1
(A —5 (ViS¢ we) @ (A1) (C.6b)
Jg Lis then, as below.
It = —2[(vhS; ) ® (AA)] (C.7a)
2 (Sw) T @ (AA) T (C.7b)

For the upper right block of M !, we then have the following expression.

AG'ByJgt = [(Sy'vk) @ A'] [(y,gs,;luk)‘l ® (AA’)‘l] (C.8a)
(Ad)

2180w (S ) T @ [ (aan ™ (C.8b)

Since the first block element of p is a vector of zeros, we can solve for n to arrive at the
following solution for /.

([5itm (Sc ) ™" @ |47 (aa) '] ) (b = Adge) (C.9)

The vector of Lagrange Multipliers )\ is given below.

—2 [ (S ) T @ (AA) ] (b Adg) (C.10)
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