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Abstract. With passenger and cargo tra�c growing rapidly world-wide,
and unmanned aerial vehicles (UAV) poised to enter commercial airspaces,
a secure next generation of air tra�c management systems is required.
Recent articles in the academic and hacker community highlight cru-
cial security challenges faced by integral parts of these next generation
protocols, with the most dangerous attacks based on classic message in-
jection. In this article, we analyze the possibility and e�ectiveness of
detecting such attacks on critical air tra�c infrastructures with a single
receiver based on physical layer information. Using hypothesis testing
and anomaly detection schemes, we develop an intrusion detection sys-
tem (IDS) that can accurately detect attackers within 40 seconds.

1 Introduction

The air tra�c load has experienced tremendous growth over the last decade. The
reported average number of registered �ight movements over Europe is around
26,000 per day. Large European airports may spike to more than 1,500 daily
takeo�s and landings. This tendency is still increasing and forecasts assume that
movements will nearly double between 2009 and 2030. With growing adoption
of unmanned aerial vehicle technology for civil applications, we may even expect
an additional boost in overall air tra�c over the coming years.

The Automatic Dependent Surveillance-Broadcast (ADS-B) protocol is a cru-
cial part of the procedural improvements of the next generation of air tra�c
management. In less dense airspaces above large unpopulated areas such as in
Canada, Australia, or the Atlantic Ocean, ADS-B is already the only means
of air tra�c surveillance today. With single sensors providing a coverage ra-
dius of up to 400 km, the system o�ers not only high accuracy but is also very
cost-e�cient. Both of these features are strong drivers of a quick adoption and
the use of ADS-B will be mandatory by 2017 in Europe and 2020 in the US.
However, the protocol is also widely considered to be insecure by hacker and aca-
demic communities and by practitioners because of its lack of authentication.
Consequently, recent high-pro�le cases of aircraft incidents such as the disap-
pearance of Malaysian aircraft MH370 or hijacked emergency signals created a
lot of speculation about insecure air tra�c control (ATC) protocols [3,8].

Due to decade-long roll out and planning times for new protocols and related
prohibitive costs, there is currently no upgrade on the horizon which could ad-
dress the security �aws of ADS-B in the foreseeable future. Taking the former



into account, there is an urgent need for separate, transparent countermeasures
that do not require modi�cations to the current ADS-B systems but can signif-
icantly improve the real-world security of the protocol.

In this paper, we make the following contributions:

� We develop an IDS based on physical layer measurements to detect false-
data injection attacks into ATC networks in less than 40 seconds without
additional cooperation by the aircraft or infrastructure overhead.

� We analyse di�erent features based on statistical tests and combine them
into a uni�ed approach using one-class anomaly detection.

� We validate our system against real-world data from our OpenSky sensor
network and simulated attackers conducting message injection attacks.

Related Work There are several works that use statistical testing of received
signal strength (RSS) patterns to detect attackers in wireless networks but to
the best of our knowledge, this work is the �rst to apply such techniques in the
unique aircraft domain. The works most similar to ours are [2] and [12]. In [2],
the authors consider attacks on RSS-based wireless localization systems in WiFi
and ZigBee. Their models use statistical hypothesis testing to detect signi�cant
deviations from the expected RSS readings of the landmarks used for localization.
While we also utilize statistical tests in our IDS, the aircraft location problem is
di�erent since an attacker does not use signal strength to change the outcome of
the localization but directly injects messages with false data. In [12], the authors
use RSS patterns to detect the spoo�ng of a MAC address, which shares some
similarities to spoo�ng identities with ADS-B. They analyze antenna diversity
and use it to improve on the examined detection algorithms.

In contrast to LANs, in our work we exploit the location data encoded in
ADS-B, and the large velocities and distances found in air tra�c. While RSS
is a di�cult property in settings without line-of-sight (LOS) that are a�ected
by multi-path, the LOS propagation of air tra�c communication provides sound
conditions for physical layer schemes. Furthermore, we go beyond statistical tests
and apply an anomaly detection approach that can integrate arbitrary features.

2 Overview of ADS-B Security Concerns

In this section, we give a short overview of the ADS-B protocol, its known
security �aws and non-technical considerations about potential solutions.

The ADS-B Protocol

Currently rolled out into all major airspaces, and mandatory by 2017 (Europe) /
2020 (USA), ADS-B is a satellite-based replacement of traditional primary and
secondary surveillance radar systems. Aircraft use onboard satellite navigation
(e.g., GPS) to fetch their own position and velocity; these and other relevant data
are periodically transmitted by the ADS-B Out subsystem. The broadcasted
messages are processed by ATC ground stations, and in the future also by other
aircraft close by, if equipped with ADS-B In (see Fig. 1 for an illustration).
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Fig. 1. ATC system architecture. [14] The position provided by the global naviga-
tion satellite system (GNSS) is processed by the aircraft and broadcasted through the
ADS-B Out system alongside other situational information. ATC ground stations and
other aircraft (via ADS-B In) receive these messages over the two possible data links,
1090 Extended Squitter (1090ES) or Universal Access Transceiver (UAT).

Security Overview In recent years, ADS-B's susceptibility to radio frequency
attacks has generated a lot of attention in hacker circles [4,6], the mainstream
media [15], and among academic researchers [7,10]. It has been shown that an
attacker can easily record and analyze the unencrypted ADS-B messages. Worse,
an adversary actively interfering with ATC communication poses a severe threat
to aviation safety. As adversarial action on the ADS-B data link can also impact
the tra�c collision avoidance system (TCAS), it is crucial to deploy counter-
measures promptly to facilitate widespread deployment of the protocol.

When the ADS-B protocol was designed in the early 1990s, precise manipu-
lation of radio frequency communication was possible only for powerful military
adversaries. The required cost and engineering knowledge were considered too
prohibitive to add security mechanisms to the protocol. With the recent advent of
cheap, accessible software-de�ned radios and specialized hardware for the recep-
tion of ATC communication, the threat model has shifted considerably. Today,
typical wireless attacks such as eavesdropping, jamming and modi�cation, in-
sertion and deletion of messages are feasible for anyone with widely available
o�-the-shelf hard- and software (see, e.g., [4,7,10]). For a full overview of such
attacks and their potential impact, and also possible ways to address these vul-
nerabilities, see [13]. Here, we focus on the insertion of fake data into radar
systems as detailed in the next section. Crucially, all proposed countermeasures
require either upgrades to the protocol or a large number of sensors to facilitate
physical layer defenses such as passive localization. These characteristics make
them unsuitable in many scenarios due to some non-technical considerations:



Legacy requirements A viable security design for ADS-B must not require changes
to the existing protocol, or additional cooperation from the aircraft. This legacy
requirement is common to slow-changing industries such as aviation. ADS-B, for
example, has been in development since the early 1990s and is only now being
deployed, more than two decades later. Hence, countermeasures against ADS-B
attacks need to work alongside the current system without disrupting it.

Cost e�ectiveness Cost is considered a main driver for the adoption of new
ATC protocols. Conventional radar technologies are both more expensive to
deploy and experience much higher maintenance cost compared to ADS-B. The
International Civil Aviation Organization (ICAO) speci�es the technological cost
of operating traditional radar techniques to monitor an en-route airspace at $6-
14 million, while ADS-B surveillance comes in signi�cantly cheaper at $380,000
[5]. The ability to rely solely on ADS-B data would be very cost e�ective. This
is a crucial argument, especially considering the massive investments already
made during the development of ADS-B. Countermeasures requiring a large
number of stations also negate this cost advantage and ignore the reality of ATC
deployments in Canada, Australia or over oceans, where single sensors cover a
radius up to the radio horizon of about 400 km.

The Case for Intrusion Detection

As argued in [13] and [14], we believe that given the current state of the ADS-B
roll out, there is a strong need for transparent countermeasures as cryptographic
means are not a feasible option in the medium term due to the requirements dis-
cussed above. Air tra�c management as a critical infrastructure system has
many characteristics of supervisory control and data acquisition (SCADA) sys-
tems. Cardenas et al. [1] note that threats on these systems need to be dealt with
by defense-in-depth mechanisms and anomaly detection schemes. They argue an
adversary may hide the speci�c exploits but cannot conceal their ulterior goals
and intentions. Indeed, there must be a noticeable adverse e�ect to the physical
system (i.e., the management of air tra�c), otherwise the attack may even be
ignored, e.g., when somebody is simply relaying live ADS-B data.

As such physical e�ects are achieved through injection of malicious data
which does not match the expected behaviour, an anomaly detection system can
help with the discovery of the attacker and provide the base for defense-in-depth
mechanisms. A high rate of attack detection is at the heart of any such system
where non-detection might cause disastrous consequences. However, in the real
world low false positive rates are just as crucial. While they can normally be
sorted out by using voice communication with the aircraft, constant nagging
and false alarms can potentially have an adverse e�ect on overall system safety.

3 Modeling False-Data Injection Attackers

In the following, we describe the model that an attacker uses to inject false data
into an ADS-B target receiver. The injection of false data provides the basis



of most of the attacks on the ADS-B system as discussed in the literature [7].
Executed correctly, they are subtle but have devastating e�ects on the system.

We assume that the attacker injects a ghost aircraft, either collected at an
earlier time and replayed, or created from scratch. In both cases, we assume a
non-naive attacker who has su�cient knowledge to inject valid-looking messages
that are well-formed with reasonable content, withstanding a super�cial check.

This means the attacker creates correctly formatted ADS-B messages, cov-
ering the expected types (position, velocity, identi�cation) in valid sequential
orders and spacings according to the standard speci�cation [9]. We also assume
the attacker uses a legitimate ICAO address and reasonable �ight parameters
(e.g., believable altitude and speed) to create a valid-looking aircraft that cannot
be distinguished from a real one using standard ATC procedures.

Signal Strength We model the attacker's use of di�erent RSS patterns using a
single antenna. We assume all attackers are more or less stationary on the ground
attacking speci�c sensors in transmission distance, i.e., we do not consider UAVs.
Weather e�ects on RSS have proven negligible for our use case [14].

� Attacker 1: This attacker uses a straight-forward constant sending strength,
resulting in a Gaussian distribution due to the noisy nature of the channel.
Without loss of generality, we assume the standard settings of a typical
software-de�ned radio with a 100mW power output and a distance of 500m
to the sensor under attack. This creates a signal with a RSS of about -65 dBm
at the receiver; the standard deviation of the random noise is 3.5 dB.

� Attacker 2: The RSS is a random variable X, within the limits of the hard-
ware. To simulate a random stationary non-adjusting attacker, we assume
the RSS received at the attacked sensor to be fully random within the typ-
ical values of legitimate aircraft (in our case, the 5%/95% percentiles are
-75.60 dBm and -63.54 dBm, respectively).

� Attacker 3: This attacker adjusts the sending strength in an attempt to
be in line with the position the injected messages are representing to the
attacked sensors. More concretely, the attacker knows the position of the
receiver with a maximum error of 1 km (mean: 500m) on which he bases the
calculation of the distance to the claimed �ight positions.

Our goal is to get an accurate read of legitimate aircraft behavior, enabling us to
detect all but the most knowledgeable, powerful and carefully carried out attacks
by entities who have perfect knowledge of the IDS and its sensor locations.

4 Intrusion Detection

In this section, we describe the physical layer features that we select for our
IDS and how we combine them in a uni�ed detection approach. When receiving
ADS-B messages from an aircraft, the ground station can measure and store
the RSS. Due to the attacker's positioning on the ground, the measurements



of injected ADS-B messages are highly unlikely to match the RSS of legitimate
samples. Furthermore, they should be comparably constant over time compared
to aircraft covering distances of hundreds of miles in relation to the receiver.
Using standard hypothesis testing, an IDS can judge the probability whether a
collected RSS sample stems from a legitimate aircraft or not.

Pearson Correlation Coe�cient In physical space, we calculate the Pearson cor-
relation coe�cient ρ between the distance (derived from the position claim in the
ADS-B messages) and the RSS. Path loss suggests a strong negative relationship
in legitimate �ights, while an injection attacker who does not adjust the sending
strength in line with the claimed distance should show no correlation. Formally,
we test the null hypothesis H0 stating that there is no association between the
two variables in the population against the alternative hypothesis HA, stating
that there is a negative association between the two variables in the population:

H0: ρ = 0 (1)

HA : ρ < 0 (2)

We consider a sample where H0 is rejected at the 99% signi�cance level a
legitimate �ight sample and an attack if the hypothesis is accepted.

Autocorrelation Coe�cient In signal space, we use the autocorrelation coe�cient
(ACF) to identify attackers that are stationary and/or do not adapt their sending
strength. Autocorrelation is the cross-correlation of a signal with itself. It can be
used to show that a time series is not random, but instead exhibits signi�cant
correlations between the original observations and the same observations shifted
backwards by a lag τ . The ACF helps to �nd repeated patterns such as periodic
signals in a noisy channel. Formally, we test the null hypothesis H0 which states
that there is no autocorrelation R (τ) in the population against the alternative
hypothesis HA, saying that there is a a positive autocorrelation:

H0: R (τ) = 0 (3)

HA : R (τ) > 0 (4)

We run these tests for lags 1 to 8 and take their mean to create a single
measure for �nding autocorrelation signi�cant at the 1% level. We again consider
a sample where H0 is rejected at the 99% signi�cance level a legitimate �ight
sample and an attack if the hypothesis is accepted.

Detection of Multiple Antennas Legitimate ADS-B-equipped �ights send alter-
natingly using two separate antennas, one on top of the aircraft and one on the
bottom, as speci�ed in [9]. This setup creates a behavior that a sophisticated
attacker needs to mimic. Fig. 2 shows an example of the distinctive RSS pat-
terns. To exploit this feature, we divide the full RSS time series into their two
antenna subparts according to their time slots and compare various features that
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Fig. 2. RSS samples of a �ight's two separate antennas.

show only on the newly created time series. For example, with 300 samples per
�ight, we found a di�erence of around 1.8 dBm (σ = 1.4) in the means of the
two antennas in our sample data. A single-antenna attacker, who does not adapt
his sending power to mimic two antennas, is expected to exhibit no signi�cant
di�erence between the RSS of messages in alternating time slots. Based solely on
RSS time series, we can identify other di�erences between a single-antenna user
(i.e., an anomaly that would most likely be caused by an attacker) and messages
sent out by commercial aircraft:

� The ACF of the divided antenna time series falls much faster than the one
by a single-antenna attacker.

� Even lags (2, 4, 6, 8) of the combined ACF are greater than odd lags.
� Similarly, the ACF for a lag of 1 is typically higher for the separated anten-
nas, while for an attacker divided and combined ACF are similar.

Furthermore, we found that separating the antennas �rst vastly improves the
results of the correlation features discussed in this section.

Combined Anomaly Detection We combine our features in a one-class clas-
si�cation problem. One-class classi�ers try to separate one class of data, the
target data, from the rest of the feature space. Our target class is a well-sampled
class of aircraft behavior based on collected RSS data. The outlier class is un-
known and online target samples are used at the time of learning. The process
creates an n-dimensional classi�er, where n is the number of features. For new
samples, this classi�er decides if they �t into the expected space or if they are
rejected (i.e., classi�ed as an anomaly worth investigating).

5 Experimental Design

First, we analyze the e�ectiveness of our selected features on their own, using
standard hypothesis testing before we combine them with a machine learning ap-
proach to create a more robust IDS. We employ the MATLAB toolkits Dd_Tools
and PRTools1 to create data descriptions of our air tra�c data. We de�ne one-
class datasets based on legitimate data collected with an ADS-B sensor and use
various one-class classi�ers to create descriptions which include the data.

1 See http://prlab.tudelft.nl/david-tax/dd_tools.html and http://prtools.org



Fig. 3. Visualization of the 7,159 �ight trajectories used for our anomaly analysis.

Data We used a data sample consisting of 7,159 �ights, each �ight with 200
or more received messages, collected over 24 hours and visualized in Fig. 3. The
data collection was conducted with an OpenSky sensor installed at the top of
our lab building. OpenSky is a participatory sensor network that collects raw
ADS-B message data and stores them in a database for further research [11].

For our anomaly detection approach, we test several di�erent classi�ers with
5-fold cross validation and the fraction of outliers in training set to zero (i.e., all
training samples are accepted as legitimate). While the training sets are drawn
from our collected sample of legitimate �ights only, the separate test sets for each
attacker have an added 2% of falsely-injected data (amounting to 143 �ights) to
be detected by the classi�er. To verify our models and test our IDS, the RSS
patterns of the attackers are simulated as described in Section 3.

6 Results

Table 1 shows the results of the examined detection approaches. The hypothesis
tests each detect attackers 1 and 2 with more than 99% probability. Especially
the autocorrelation feature proves to be accurate, with few legitimate �ights
misclassi�ed as false positives (0.1%). As expected, both tests fail to detect the
more sophisticated attacker 3. To counter this, we analyze the distinct antenna
characteristics, which detects over 90% of all three attackers with a false positive
rate of 3.9%. On its own, the antenna method requires 300 messages to become
reliable enough, as aircraft may move in ways that can obfuscate their antenna
features in the short run.

With the combined classi�er, we can accurately detect all attackers 1 and
2 without false negatives and one single false positive (less than 0.01%), using a
small RSS sample of 200 messages. At the standard rate of 5.4 ADS-B messages
per second, this allows detection in under 40 seconds, assuming no message loss.
Even with a typical loss of 30% [14], this can be achieved in less than one minute.



Table 1. E�ectiveness of the examined detection approaches. We used 7,159 legitimate
�ights and 143 simulated attackers for every class, with 200+ messages per �ight. The
percentages show the average detection rates over 5-fold cross validation.

Detection Rate [%] attacker 1 attacker 2 attacker 3 legit �ights (FPs)

Pearson 99.8 99.9 0.2 18.6

Autocorrelation 99.6 99.4 0.3 0.1

Antenna Detection 92.6 94.0 95.5 3.9

Combined Detection 100 100 98.8 <0.01

As illustrated in Fig. 4 a), attacker 3 who easily deceives the individual hy-
pothesis tests, can be too good. He would need to introduce additional random-
ness and patterns similar to the spoofed airplanes to fall within the expected
data range. This demonstrates the strength of the anomaly detection approach
where the precise type of anomaly need not be known in advance. The results
may see further improvement through the collection of more samples. This nat-
urally increases the con�dence of the system and improves detection results at
the cost of slower reaction times.

Fig. 4 b) shows the results of the comparison between various tested classi-
�ers, depending on the number of samples. The Parzen classi�er performs best,
having the lowest number of misclassi�ed attackers. It is followed by K-Means,
but the Minimax, Minimum Spanning Tree and k-Nearest Neighbors classi�ers
also achieve a near-zero false negative rate as 200 samples are collected, still
signi�cantly improving on pure hypothesis testing.
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Fig. 4. a) 2D-Parzen classi�er example with 200 collected samples. Red crosses are
legitimate �ight samples. Attacker 1 and 2 are entirely classi�ed as anomaly here,
while attacker 3 creates few false positives. b) Complete classi�er comparison with
5-fold cross validation. Joint false negative rates for attackers 1 + 2.



7 Conclusion & Future Work

In this article, we proposed an IDS for false-data injection attacks on the ADS-B
protocol used in air tra�c control. We provided a threat model for such injection
attacks on ADS-B and developed an IDS based on RSS measurements. We vali-
dated our system against real-world data from our OpenSky sensor network and
found that the Parzen classi�er performed best in our sample. In future work,
we plan to analyze more sophisticated attackers, additional features to deal with
them such as the angle of arrival, and the long-term stability of our system.
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