
 
 
 
 

Department of Computer Science  
 
 
 

 
 
 
 
 
 
 

CS-RR-15-09 
 
 
 
 

 
 
 

 
 
 
 

Department of Computer Science, University of Oxford   
Wolfson Building, Parks Road, Oxford, OX1 3QD  

Synthesising robust and optimal parameters for cardiac 
pacemakers using symbolic and evolutionary  

computation techniques 
 

Marta Kwiatkowska, Alexandru Mereacre, Nicola Paoletti, 
and Andrea Patane’ 



Abstract. We consider the problem of automatically finding safe and robust val-
ues of timing parameters of cardiac pacemaker models so that a quantitative
objective, such as the pacemaker energy consumption or its cardiac output (a
heamodynamic indicator of the human heart), is optimised in a finite path. The
models are given as parametric networks of timed I/O automata with data, which
extend timed I/O automata with priorities, real variables and real-valued func-
tions, and specifications as Counting Metric Temporal Logic (CMTL) formulas.
We formulate the parameter synthesis as a bilevel optimisation problem, where
the quantitative objective (the outer problem) is optimised in the solution space
obtained from optimising an inner problem that yields the maximal robustness
for any parameter of the model. We develop an SMT-based method for solving
the inner problem through a discrete encoding, and combine it with evolution-
ary algorithms and simulations to solve the outer optimisation task. We apply
our approach to the composition of a (non-linear) multi-component heart model
with the parametric dual chamber pacemaker model in order to find the values of
multiple timing parameters of the pacemaker for different heart diseases.

Keywords: parameter synthesis, timed I/O automata, cardiac pacemaker, satis-
fiability modulo theories, evolutionary strategies

1 Introduction

Motivation. The growing demand for wearable health monitoring devices, from fitness
apps running on smart watches to implantable devices such as cardiac pacemakers and
glucose monitoring, calls for design methodologies that can ensure their safety, effec-
tiveness and energy efficiency. Model-based verification [9,21,31] has proved useful in
establishing key correctness properties of cardiac pacemakers [19], but the approach has
limitations, in that it is not clear how to redesign the model if it fails to satisfy a given
property. Instead, the parameter synthesis problem aims to automatically find optimal
values of parameters to guarantee that a given property is satisfied. Similarly to veri-
fication, this problem has prohibitive complexity and may suffer from undecidability,
typically tackled through discretisation of the parameter space.

In [15], we presented a parameter synthesis method for timed I/O automata (TIOA)
that optimises the choice of timing delays for a given objective function to guarantee
that a property, expressed in Counting MTL, a generalisation of Metric Temporal Logic,
is satisfied. The method is based on exploring finite discrete paths and the corresponding
timing constraints. We have applied the techniques to cardiac pacemakers, deriving
robust values for safety and energy efficiency, but could only guarantee partial coverage
via sampling, as fully exhaustive exploration was not practical.
Contribution. In this paper, we tackle, for the first time, the problem of ensuring effec-
tiveness for pacemakers defined in terms of cardiac output (a heamodynamic indicator
of the human heart), as well as safety. To this end, we extend the models and logic
of [15] with real-valued data variables, and provide a novel method for synthesising
timing delays that are simultaneously safe and robust, whilst guaranteeing that a given
quantitative objective is optimised. This is formulated as a bi-level optimisation prob-
lem, which we solve through a combination of symbolic, SMT-based, analysis of finite



paths based on discrete encoding (for the inner problem), with evolutionary computa-
tion techniques (for the outer problem). We consider a novel multi-component heart
model given as a network of TIOA with data [5] and extend it in order to compute the
cardiac output. We apply the developed techniques to the synthesis of multiple pace-
maker parameters for different heart conditions, in order to optimise, at the outer level,
either energy consumption or cardiac output, on top of the solution space that yields a
safe heart rhythm (formulated as a CMTL property) with maximum robustness.

Related work. The undecidability of the parametric reachability problem is proved
in [16]. The majority of work for timed systems concerns synthesis from logic formu-
las, e.g. [8], with the exception of [1,2] who consider a reference valuation. In [7,23],
the authors show PSPACE-completeness of the emptiness problem and TCTL, respec-
tively. Robustness under a given timed perturbation is considered in [39] and parameter
synthesis for reachability for probabilistic timed automata in [22]. SMT-based verifi-
cation of timed and hybrid systems has received a lot of attention recently, see e.g.
[10]. In [26], the authors present an SMT-based timed system extension to the IC3 al-
gorithm. [25] and [27] respectively develop real-time bounded model checking (BMC)
approaches for LTL and CTL. [20] presents an SMT technique to generate inductive
invariants for hybrid systems. Sturm et al [38] applies real quantifier elimination tools
to synthesise continuous and switched dynamical systems. The dReal solver [18] uses
a relaxed notion of satisfiability in order to provide decision procedures for non-linear
hybrid systems.

In this paper, we extend the model and logic of [15], and replace the path exploration
with a fully symbolic BMC-based algorithm. We adopt the pacemaker model from [21]
but consider a different heart model [5], which we enhance with the blood pressure
component.

2 Background

2.1 Timed I/O automata with priorities and data

We extend the timed I/O automata model with priorities of [15] with data variables. Let
X be a set of non-negative real-valued variables, called clocks. Let D be a set of real-
valued variables, called data. A variable valuation is a function η = η|X ∪ η|D where
η|X : X → R≥0 and η|D : D → R. We denote the set of variables with V = X ∪D. Let
Γ be a set of real-valued parameters. A parameter valuation is a function γ : Γ → R
mapping each parameter p to a value in its domain dom(p) ⊆ R.

Let Y be a set and V(Y) denote the set of all valuations over Y . We consider guard
constraints of the form

∧
i vi ./i fi, where vi ∈ X is a clock, ./i ∈ {<,6, >,>}

and fi : V(D) × V(Γ ) → R is a real-valued function over data variable and param-
eter valuations. A variable valuation η and a parameter valuation γ satisfy the above
constraint iff

∧
i η(vi) ./i fi(η|D, γ) holds. We denote with B(V ) the set of guard

constraints over V . The reset of a set of variables V ′ ⊆ V is an arbitrary function
r : V ′ × V(V ) × V(Γ ) → R. Given valuations η and γ, η is updated by reset r to the
valuation η[r] = {v 7→ r(v, η, γ) | v ∈ V ′} ∪ {v 7→ η(v) | v 6∈ V ′} that applies the
reset r to the variables in V ′ and leaves unchanged the others. We denote with R the



set of reset functions. The valuation η after time δ ∈ R≥0 has elapsed is denoted with
η+δ and is such that η+δ(v) = η(v) + δ if v ∈ X and η+δ(v) = η(v) otherwise. This
implies that all clocks proceed at the same speed and data variables are not affected by
the passage of time.

Definition 1 (Deterministic Timed I/O Automaton with Priority and Data). A de-
terministic timed I/O automaton (TIOA) with priority and data A = (X , Γ,D, Q,
q0, Σin, Σout,→) consists of:

– A finite set of clocks X , data variables D and parameters Γ .
– A finite set of locations Q, with the initial location q0 ∈ Q.
– A finite set of input actions Σin and a finite set of output actions Σout.
– A finite set of edges →⊆ Q × (Σin ∪ Σout) × N × B(V ) × R × Q. Each edge
e = (q, a, pr, g, r, q′) is described by a source location q, an action a, a priority
pr, a guard g, a reset r and a target q′.

We require that priorities define a total ordering of the edges out of any location, and
that output actions have higher priority than input actions. The TIOAs as defined above
are able to synchronise on matching input and output actions, thus forming networks of
communicating automata. We say that an output edge is enabled when the associated
guard holds. On the other hand, an input edge is enabled when both its guard holds
and it can synchronise with a matching output action fired by another component of the
network. A component of a network of TIOAs is enabled if, from its current location,
there is at least one outgoing edge enabled. Also, we assume that output edges are
urgent, meaning that they are taken as soon as they become enabled. As shown in [15],
priority and urgency imply that the TIOA is deterministic.

Definition 2 (Network of TIOAs). A network of TIOAs with m components is a tuple
N = ({A1, . . . ,Am},X , Γ,D, Σin, Σout) of TIOAs, where

– for j = 1, . . . ,m, Aj = (X , Γ,D, Qj , qj0, Σin, Σout,→j) is a TIOA,
– X , Γ,D, Σin, Σout are the common sets of clocks, parameters, data variables, input

and output actions, respectively,

We define the set of network modes by Q = Q1 × · · · × Qm, with initial mode q0 =
(q10 , . . . , q

m
0 ) and the initial variable valuation η0. A state of the network is a pair (q, η)

where q ∈ Q and η ∈ V(V ).

A parametric network of TIOAs is a network where the parameter valuation is unknown,
and is denoted by N (·). N (γ) denotes the network obtained by instantiating valuation
γ. We describe the formal semantics of a network of TIOAs in terms of timed paths. In
the following, we use the predicate enabled(N , j, q, η, γ) (see Section 5.1 for its formal
encoding) to indicate whether the j-th component of network N is enabled from the
network mode q under variable valuation η and parameter valuation γ.

Definition 3 (Path of a TIOA Network). Let N be a network of TIOAs and n ∈ N+.
Let ρ = (q0, η0) t0−−→ (q1, η1) t1−−→ · · · tn−2−−−−→ (qn−1, ηn−1) be a timed sequence of
length n where, for i = 1, . . . , n− 1, ti−1 ≥ 0, qi ∈ Q and ηi is a variable valuation.
Then, ρ is the timed path of network N if for any position i = 0, . . . , n− 2:



I) there exists at least one component enabled: ∃j. enabled(N , j, qji , ηi + ti, γ); let
Ei,ti be the set of such components;

II) each component j ∈ Ei,ti fires the edge eji = (qji , a
j
i , pr

j
i , g

j
i , r

j
i , q

j
i+1) ∈→j that

is enabled and with maximum priority among the enabled edges;
III) the variable valuation is updated according to the elapsed time and the resets of

enabled components1: ηi+1 := ηi + ti[
⋃
j∈Ei,ti

rji ]; and
IV) ti is the least time for which there are enabled components: ∀t′ < ti. Ei,t′ = ∅.

For k,m ∈ N, ρ[k] = (qk, ηk) is the k-th state of the path, ρ[k,m] is the subpath of
length m − k + 1 starting at position k, ρ〈k〉 = tk is the k-th delay and ρ〈k,m〉 =∑m
k′=k tk′ is the total time spent in the subpath ρ[k,m]. For t ∈ R>0, we denote with ρ@t

the smallest index o such that
o∑

k=0

ρ〈k〉 > t. If no such index exists, then ρ@t = n− 1.

When the network is parametric, i.e. of the form N (·), the corresponding parametric
path is denoted with ρ(·).

In the following, we denote with Π the set of finite timed paths. Given t ∈ R≥0, we
also define the path up to time t as the path ρ with length |ρ| = ρ@t, that is, such that:
(a) ρ〈0, |ρ| − 1〉 ≤ t; and (b) let ρ′ be the 1-step extension of ρ, then ρ′〈0, |ρ′| − 1〉 > t.
We say that a parametric path ρ(·) is up to time t if, for each γ ∈ V(Γ ), ρ(γ) is up to t.

Example 1. Consider the TIOAs A1 and A2 in Fig. 1. The automata A1 and A2 form

(a) A1 (b) A2 (c) A2 with additional
variables

Fig. 1: Example network N with two components, A1 and A2.

a network. They communicate with each other by means of actions {VP,AP,AS} ∈
Σin ∪ Σout. We distinguish input (marked with ?) and output actions (marked with
!). For instance, when automaton A2 takes a transition and outputs the action VP!, the
automatonA1 synchronises by taking the corresponding transition with the input action

1 In order to have consistent resets, we assume that different components cannot update the same
variable with different values during the same transition.



VP?. We use Roman numbers to denote priorities, with the lowest number denoting the
highest priority. The networkN has three clocks t, x and y, and two variables α, and β.
The initial mode of the network is (q, z) and the initial values for the α and β variables
are zero. Each edge of the automaton is labelled with an action, a guard over the set of
clocks and a reset over the set of clocks and variables. For instance, one of the edges
from q′ to q′ is labelled with the guard t ≥ T − β, action AP and clock reset t := 0.
The network N has also three parameters T , P and J .

There are two ways to take an edge. First, when an input action is enabled. Second,
when the clock satisfies a given guard. For example, automaton A2 has two transitions
labelled with the conditions x ≥ P − α and y ≥ J . As soon as the clock y satisfies
the guard y ≥ J , the automaton takes the corresponding transition and outputs the
action VP!, resetting to zero the value of the clock y and assigning the value of five to
the variable β. When multiple transitions are enabled in a location, then the one with
the highest priority will be taken. Consider the finite path below, where transitions are
labelled with enabled output actions:

((q, z), (α = 0, β = 0, t = 0, x = 0, y = 0))
↓ J,VP

((q′, z), (α = 0, β = 5, t = 0, x = J, y = 0))
↓ T−5,AP

((q′, z), (α = 0, β = 5, t = 0, x = J+T−5, y = T−5))
↓ P−J−T+5,AS

((q, z), (α = 10, β = 5, t = P−J−T+5, x = 0, y = P−J)).

Each element of the tuple represents the state of the network and the values of the
variables. The network starts in the initial state (q, z) with the values of the variables
(α = 0, β = 0, t = 0, x = 0, y = 0). In the automaton A2, after J time units have
passed, the guard y ≥ J becomes true and the corresponding transition is triggered at
this point, outputting the action VP and resetting the clock t to 0 and the variable β
to 5. The automaton A1 then synchronises with A2 via the matching input, VP, which
moves the automaton to q′. Then A1 takes transition labelled with T − β and A2 does
no transition. Then the automaton takes the transitions labelled with P − α outputting
the action AS and the state of the network becomes (q, z). Note that, in order to take
the transition labelled with action VP in N , the parameters P and J have to satisfy
the urgency constraint P − α < J . Similar relations can be derived for the remaining
transitions of the path.

2.2 Counting MTL

We work with the Counting Metric Temporal Logic (CMTL), which is an extension of
MTL with the counting operator (#) [33,15], now interpreted over TIOAs with data.
Let E(V ) be the set of constraints

∧
i ci ./i gi over variables in V = X ∪ D, where

ci ∈ R, ./i ∈ {<,≤,=,≥, >} and gi : V(V )→ R is a real-valued function over V . To
this end, we replace CMTL atomic propositions by predicates from E(V ). For instance,
given two variables x, y ∈ V , a constraint from E(V ) is x = 1∧ y ≥ 10. The syntax of



CMTL is defined by

ϕ ::= e |
∑
j∈J

cj#
uj
`j
ej ./ b | ϕ ∧ ϕ | ¬ϕ | ϕ U [`,u]ϕ,

where J is a finite set of indices, ./ ∈ {>,>, <,6}, b ∈ Z, cj ∈ Z, ` ∈ R>0, `j ∈ R>0,
u ∈ R>0 ∪ {∞}, uj ∈ R>0 ∪ {∞} are time points such that ` 6 u and `j 6 uj , and
e, ej ∈ E(V ) for all j ∈ J . The counting term #

uj
`j
ej counts how many times, in

the interval of time [`j , uj ], ej holds true. Such terms can be combined to form a so-
called basic counting formula

∑
j∈J cj#

uj
`j
ej ./ b, i.e. a linear constraint (with integer

coefficients) over counting terms. The semantics of CMTL is defined over timed paths
as follows.

Definition 4. Let ρ = (q0, η0) t0−−→ (q1, η1) t1−−→ · · · tn−1−−−−→ (qn, ηn) be the finite timed
path of the network N (γ) of TIOAs with parameter valuation γ and i ∈ N be an index.
We say that N satisfies ϕ at i, denoted (ρ, i) |=N ϕ, iff

(ρ, i) |=N e iff ηi |= e

(ρ, i) |=N
∑
j∈J

cj#
uj
`j
ej ./ b iff

∑
j∈J

cj

ρ[i,|ρ|]@uj−1∑
k=ρ[i,|ρ|]@`j

1 (ηk |= ej)

 ./ b

(ρ, i) |=N ϕ1 ∧ ϕ2 iff (ρ, i) |=N ϕ1 ∧ (ρ, i) |=N ϕ2

(ρ, i) |=N ¬ϕ1 iff (ρ, i) 6|=N ϕ1

(ρ, i) |=N ϕ1 U [`,u]ϕ2 iff ∃i′. i 6 i′ s.t.
i′∑
k=i

ρ〈k〉 ∈ [`, u] ∧ (ρ, i′) |=N ϕ2 ∧

∀i′′. i 6 i′′< i′ ∧ (ρ, i′′) |=N ϕ1,

where ϕ1, ϕ2 are CMTL formulas, i′, i′′ ∈ N, e ∈ E(V ), `j ∈ R>0 and 1 (ηk |= ej) is
the characteristic function that returns 1 if ηk |= ej and 0 otherwise.

We define ♦[`,u]ϕ := true U [`,u]ϕ and �[`,u]ϕ := ¬♦[`,u]¬ϕ. Details on the de-
cidability and complexity of the logic can be found in [32,33].

Example 2. Let A2 from Fig. 1c be the modified version of the TIOAs A2 from Fig. 1,
where we add a new variable act. The variable act identifies the presence of the action
VP or AS through expression act = 1 or act = 0, respectively. We also modify au-
tomatonA1 by adding the update act := 2 to the edge labelled with the action AP!. We
set the initial valuation to act := −1. We consider the following CMTL formula which
states that, starting from any time in the interval [0, 100], the number of performed VP
actions in the interval of time [0, 7] has to be no lower than 1 and at most 4:

�[0,100]
(
#7

0(act = 1) ≥ 1 ∧#7
0(act = 1) ≤ 4

)
(1)



3 Robust Optimal Synthesis Problem

We introduce a parameter synthesis problem for networks of TIOAs that asks for the
parameter valuation that, first, maximises parameter robustness and, second, minimises
some cost function, e.g. energy consumption. This problem is motivated by the fact that,
in the design of medical devices, safety is of paramount importance and it is desirable
to maintain patient’s physiological properties in a robust way w.r.t. perturbations of
parameter values. We express such properties in CMTL, which we use to formulate
the requirement of a safe heart rhythm (see Sect. 4). We also assume a cost function
f : Π → R that maps timed paths to reals.

Thus, we aim at finding a valuation γ with maximum robustness radius, i.e. a quan-
tity ε ∈ R+ such that a CMTL formula φ is guaranteed to hold for any perturbation of
γ bounded by ε. Then, we synthesise parameters that yield the minimum cost on top
of the solution space with maximum ε. This problem can be effectively formulated as a
bi-level optimisation problem (see e.g. [12]), where robustness maximisation and cost
optimisation represent the so-called inner and outer problems, respectively.

Let ε ∈ R+ and γ ∈ V(Γ ). The ε-bounded perturbations of γ are denoted by the
set Bε(γ) = {γ′ | ∀p ∈ Γ. |γ′(p) − γ(p)| ≤ ε}. Given property φ and path ρ(·) of
network N (·), we say that a parameter valuation γ is ε-robust w.r.t. φ if it holds that
∀γ′ ∈ Bε(γ). ρ(γ′) |=N (γ′) φ. Note that, for arbitrary ε, there can exist perturbed
valuations outside the domain of parameters, i.e. Bε(γ) 6⊆ V(Γ ). In the following, we
only admit the case when Bε(γ) ⊆ V(Γ ).

Problem 1 (Robust Optimal Synthesis).
LetN (·) be a parametric network of TIOAs, t ∈ R≥0, k ∈ N+, φ be a CMTL property
and f be a cost function. Let ρ(·) be the parametric path of N (·) of length k and ρ′(·)
be the parametric path up to time t. The robust optimal synthesis problem is finding a
parameter valuation γ that solves the following bi-level optimisation problem:

min
γo∈V(Γ )

f(ρ′(γo)) subject to γo ∈ arg max
γi∈V(Γ )

ε

subject to Bε(γi) ⊆ V(Γ ) and ∀γ′ ∈ Bε(γi). ρ(γ′) |=N (γ′) φ.

Note that in the above problem the path lengths for the inner and outer problem are
arbitrary and in general not interrelated. In practice, as explained in Sect. 5.3, f is
evaluated through simulation and thus we can support longer lengths for ρ′.
Running example. We formulate an instance of Problem 1 by taking the CMTL property
in Example 2 and the modified network defined therein. In the inner problem, we take
the parametric path ρ of length k = 15. In the outer problem, we consider the path ρ′

up to time t = 100 and aim to minimise the number of AS actions performed along ρ′,
leading to the objective f(ρ′) = #100

0 (act = 0).

4 Heart and Pacemaker Models

In this section we describe the heart and the pacemaker models, and provide the proper-
ties and functions for the synthesis problem. The pacemaker has the role of maintaining



the synchronisation between the atrium and the ventricle. In particular, we consider a
basic DDD pacemaker specification [37], that is, pacing and sensing both the atrium
and the ventricle, and provide a TIOA network adapted from [21].

The heart model is used to reproduce the propagation of the cardiac action potential,
and is a TIOA translation of the model by Lian et al [30] (see [5] for details). In [5],
the authors provide a probabilistic model where parameters are drawn from probability
distributions derived from patients data. Here, parameters are set to a given fixed value,
thus resulting in a fully deterministic model. The composed heart-pacemaker model
consists of 11 TIOA components, with 11 clock variables, 7 data variables and 18 action
labels.

Heart model. The high-level structure of the model is depicted in Fig. 2a. It comprises
five main conduction nodes and two main conduction paths: from the atrium to the
ventricle (antegrade conduction) or vice-versa (retrograde). The Atrium component is
responsible for modelling the sinoatrial (SA) node, i.e. the natural pacemaker of the
heart. This has a predefined firing rate, given by parameter SA d. It can also produce
ectopic beats with rate SA ectopD. In Fig. 3 we depict the sub-network that models
the atrium. In Fig. 3a, we illustrate the automata for the SA node and the ectopic beat
generator, respectively. When their clocks (x and y) satisfy the corresponding guards,
the output action Abeat is produced, which indicates the generation of an atrial impulse.
a dV is a variable storing the action potential in the atrium, which might vary depending
on whether the beat is regular or ectopic. The TIOA in Fig. 3b models the current state
of the atrium. In the Refractory mode the atrium component starts a timer, modelled
by clock z. After the atrial refractory period has elapsed (z ≥ Atr refrD), the atrium
changes its mode to Excitable. In this mode, it can receive three types of actions: an
SA node signal, Abeat; a pacing signal from the pacemaker, AP; or a retrograde signal
from the ventricle, AtrRetroReached. Finally, the atrium generates the output action
Aget to notify the pacemaker of the atrial impulse, and returns to the Refractory mode.
The aPeriod variable is used to store the duration of the last atrial cycle.

RA conductor 

Ventricle 

AV node 

Atrium 

RV conductor Vget! 

Aget! 

AP? 

VP? 
Vget! 

Aget! 

VP? 

AP? 

(a) Heart model

AVI AP? 
AS? 

VS? 

VP! 

LRI VP? 
AS? 

VS? 
AP! PVARP VP? 

VS? 

AS! 

VRP Vget? 

VP? 
VS! 

Aget? 

URI VS? 

VP? 

VP! 

AP! 

Vget? 

Aget? 

(b) Pacemaker model

Fig. 2: Heart and pacemaker models.

The Ventricle component is similar to the Atrium component, i.e., it has an intrinsic
beat generator and an ectopic beat generator. In addition, it has a variable vPeriod to
store the ventricular period. The RA conductor and RV conductor are used to model
the propagation delay of the action potential from the atrium to the ventricle and back
(antegrade or retrograde conduction).



Wait Sync 

x≥SA_d, Abeat!, 
a_dV:=SA_dV 

NextAtrBeat!, 
x:=0 

NextAtrBeat!, 
x:=0 

Sync y≥SA_ectopD, Abeat!, 
a_dV:=SA_ectopdV, y:=0 

I

II 

(a) SA node (top) and ectopic beat genera-
tion (bottom) components

Refractory Excitable 
z≥Atr_refrD 

ASync AsenseRetro Asense 

GenerateAnte
Wave 

AP? Abeat? 

Aget! arg! 

Aget! 

AtrRetroReached? 
NextAtrBeat!, 
aPeriod:=z 
z:=0 

III III 

(b) Atrium state component

Fig. 3: The Atrium component.

The AV node component is responsible for delaying the entrance of the action po-
tential from the atrium into the ventricle. The AV conduction delay (AVD) is given by
an exponential function AVD := AVDmin + α exp(−Trec

τc
), where Trec is the AV re-

covery time, AVDmin is the shortest AVD when Trec →∞, α is the longest extension
of AVD when Trec = 0 and τc is the conduction time constant. More details of the AV
node constants and parameters are provided in [5]. We remark that some guards of the
heart model components contain non-linear functions.

Pacemaker model. We briefly describe the components of the basic DDD pacemaker
model shown in Fig. 2b (see [9] for details): AVI maintains the synchronisation between
the atrium and the ventricle, LRI sets a lower bound for the heart rate, URI sets an upper
bound for the heart rate, PVARP detects intrinsic atrial events, and VRP detects intrinsic
ventricle events. The pacemaker communicates with the heart model by means of four
actions: AP (atrial pace), VP (ventricle pace), Aget (atrial sense) and Vget (ventricle
sense). Every component has associated a timing parameter, which we discuss in Sect.
6. By changing these parameters one can control, for instance, the pacing rate in the
atrium or ventricle, or the signal propagation delay from the atrium to the ventricle.

Cardiac output. Cardiac output (CO, cm3·s−1) is an important heamodynamic

PS

PD

TDTS

T

SV
TS

Aortic
flow
Blood
pressure

Fig. 4: Blood pressure (black) com-
puted considering a square wave aor-
tic flow (red).

indicator that describes the volume of blood
pumped by a ventricle over time and is used in
clinical practice to monitor patients with heart
conditions.

We compute CO following the modified
Windkessel method in [17] for modelling the
cardiovascular system, where the aortic flow is
modelled as a square wave, which is more re-
alistic than the standard Windkessel model (see
e.g. [3]) where it is approximated as a series of
impulses.

The ventricular period alternates in two
parts: the systole (TS) and the diastole (TD).
During systole the ventricles first contract and



reach a maximum pressure giving rise to a heart beat. Then, they drive the blood flow
to the pulmonary and aortic valves. During diastole, ventricular pressure drops to its
minimum and blood starts flowing from the atria to the ventricles until it is ejected in
the next systole. Therefore, each wave in the the aortic flow signal has amplitude SV

TS

and period TS (see Fig. 4), where SV (cm3) is the stroke volume, i.e. the difference
between the volume at diastole and that at systole.

Following [17], the maximum arterial pressure at systole PS (mmHg) is computed
as PS = PD · exp

(−TS
R·C

)
+R · SVTS

(
1− exp

(−TS
R·C

))
, where R (mmHg·s·cm−3) and C

(cm3·mmHg−1) are the aortic resistance and compliance parameters, respectively. The
first term of the equation describes the decay of the diastolic pressure at the previous
cycle with rate 1

R·C during TS , while the second term accounts for the pressure given
by the aortic flow. The equation for the minimum pressure at diastole, PD (mmHg), is
PD = PS · exp

(−TD
R·C

)
, which describes the decay of the pressure at systole during TD.

Finally, CO = C · (PS − PD) /T depends on the difference between PS and PD over
the heart period T = TS + TD.

At each ventricular event (actions Vget or VP), we compute the CO of the previous
cycle, assuming TS = 0.25 · T and TD = 0.75 · T , where T is the time elapsed from
the previous ventricular event. We consider the parameters of a healthy patient, namely,
C = 1.3, R = 0.9 and SV = 90 [24]. The initial diastolic pressure is set to 80.
Properties. We consider two variants of the robust optimal synthesis problems (Probl.
1) where, in the outer problem, we minimise the energy consumption of the pace-
maker or optimise the cardiac output, respectively. In the first variant, we take a sim-
plified model assuming that only atrial and ventricular pacing contribute to energy
consumption, with weights 2 and 3 respectively. Thus, the cost function is given by
f(ρ′) = 2 · #60000

0 (act = AP ) + 3 · #60000
0 (act = V P ), where act is a variable

storing the last performed action, and AP, V P ∈ R identify an AP or a VP ac-
tion, respectively. By abuse of notation, the operator # denotes a function of ρ′, i.e.,
it counts how often an expression from E(V ) holds true in the path ρ′. In the sec-
ond variant, we seek to find parameters that make the computed cardiac output as
close as possible to a given reference value CO (set to 80 cm3·s−1). Let V beat(ρ′)
be the set of states along path ρ′ where a ventricular beat happens. Then, f(ρ′) =(∑

(q,η)∈V beat(ρ′) |η(CO)− CO|
)
/ (|V beat(ρ′)|) is the cost function, i.e. the mean

difference between the valuations of CO in V beat(ρ′) and the reference CO.
For both variants, in the inner problem we find parameters that guarantee a safe

heart rhythm with maximum robustness. We express this requirement by imposing that
the ventricular period (the time distance between two consecutive ventricular beats)
is always within the interval [500, 1000] ms, i.e. between 60 and 120 BPM. The cor-
responding CMTL property is φ = �[0,T ] (vPeriod ∈ [500, 1000]), where the time
bound T = ρ〈0, |ρ| − 1〉 is chosen to cover the whole length of path ρ.

5 Parameter Synthesis Algorithms

We now present methods to solve the bi-level optimisation problem introduced in Sect.
3. We restrict ourselves to safety properties, i.e. formulas of the form �[`,u]φ, and to



reachability properties, of the form ♦[`,u]φ, where φ is a CMTL formula without tempo-
ral operators. First, we describe the algorithm for the inner problem, namely maximising
the robustness radius w.r.t. a given property. Second, we devise a method for optimising
the outer objective by exploiting the solution of the inner problem. Both methods are
based on encoding the TIOA model and the synthesis problem as a Satisfiability Mod-
ulo Theories (SMT) problem, which we describe below. In our implementation, we use
the Z3 theorem prover [13].

5.1 SMT encoding

We provide a discrete encoding of the problem in the theory of bit-vectors (SMT UF BV).
Clocks, parameters and variables are expressed as bit-vectors and therefore have finite
domains. Through this discrete SMT encoding, the verification problem for TIOAs with
data and CMTL formulas is NEXPTIME [28]. Below we describe techniques and con-
straints that characterizes the encoding.
Abstraction of non-integer values and non-linear functions. We now introduce the no-
tion of TIOAs extended with non-deterministic variables, which are necessary to pro-
vide a sound encoding of the problem. Intuitively, such variables can be updated in a
non-deterministic way to a number of possible values.

Let V̄ be the set of non-deterministic variables; let v̄ ∈ V̄ and η and γ be valua-
tions of variables and parameters, respectively. Then, the reset r of v̄ induces a set of
admissible values r(v̄, η, γ) and a set of admissible updated valuations η[r] = {η′ |
η′(v̄) ∈ r(v̄, η, γ) and η′(v′) = η(v′) for v′ 6= v̄}. This implies that a network N of
thus extended TIOAs can have multiple admissible paths. We denote with Π(N ) the
set of such paths. Clearly, fixing a valuation for the non-deterministic variables at each
state of the path induces a deterministic path according to Def. 3.

Non-deterministic variables are used to provide an interval-based abstraction for
non-integer values and non-linear functions as follows. Consider a generic update y :=
f(x) with f : D−→R, where y ∈ V and D is the discrete and finite domain of f . For
each x ∈ D, we pre-compute the discrete bounds of f on x, [f(x)⊥, f(x)>] as

f(x)⊥ ≤
⌊

min
x′∈[x,x+1)

f(x′)

⌋
and f(x)> ≥

⌈
max

x′∈[x,x+1)
f(x′)

⌉
Then, we encode the update y := f(x) as y′ ∈ [f(x)⊥, f(x)>] using a non-deterministic
variable y′ ∈ V̄ . In this way, we provide a conservative over-approximation of the orig-
inal system, since the above interval-based abstraction induces additional behaviours
but preserves the original ones. As discussed later, this potentially leads to spurious
counter-examples, i.e. valuations that violate the given property in the abstracted sys-
tem but not in the original one. In this work, we did not implement a refinement step for
excluding spurious counter-examples [11], but we experimentally evaluated their num-
ber (see Sect. 6). In general, the quality of the abstraction is affected by the dynamics
of the functions involved, e.g. the presence of large variations in small intervals.
Transition relation. We illustrate the constraints that characterise the transition relation:

T (s, s′) ⇐⇒ ∃t, e. T ′(s, t, e, s′) ∧ priority(s, e) ∧ urgency(s, t, e)



where s = (q, η) and s′ = (q′, η′) are states of the network; t is the time spent in s;
and e = (e1, . . . , em) is the vector of the edges fired by the components of the network.
Predicate T ′(s, t, e, s′) describes the transition relation when no priority and urgency
constraints hold, and is defined as:

T ′(s, t, e, s′) =

 m∧
j=1

enabled(s, t, e, j) ∧ Trgj(ej) = q′j ∧ localReset(s, t, e, η′, j)


∧

∧
x∈Vglbl

globalReset(η, t, e, η′, x)

where Trgj(ej) gives the target location of edge ej in component j. In order to sim-
plify the reset constraints, we treat separately clock and data variables that are local,
i.e. updated in one single component j, V j , from those that can be reset by multiple
components Vglbl.

Predicate enabled(s, t, e, j) tells whether, from state s, the edge taken by compo-
nent j is enabled:

enabled(s, t, e, j) = Grdj(ej , η + t) ∧ Srcj(ej) = qj ∧Actj(ej) ∈ Σin =⇒
∨
j′ 6=j

Actj(ej) = Actj
′
(ej′))



where Grdj(ej , η + t) evaluates the guard of ej in the variable valuation after time
t elapses; Srcj(ej) gives the source location of ej ; Actj(ej) is the action; and with
Actj

′
(ej′) we indicate the co-action of Actj

′
(ej
′
), i.e. mapping an input to the corre-

sponding output action (and vice-versa).

The following predicate handles the resets of local variables:

localReset(s, t, e, η′, j) =∧
x∈V j

ite
(
Resj(ej , η + t, x,⊥), η′(x) = η + t(x), Resj(ej , η + t, x, η′(x))

)

where ite is the if-then-else function; Resj(ej , η + t, x, η′(x)) is a predicate imposing
on η′(x) the admissible resets of variable x at edge ej and with variable valuation
η+ t. Note that this allows us to express the non-deterministic updates discussed above.
Indeed, for fixed ej , η, t and x, Resj(ej , η + t, x, η′(x)) can hold for multiple values of
η′(x), thus implementing a choice of admissible resets. When instead x is not updated
by ej , Resj(ej , η + t, x,⊥) is true and Resj(ej , η + t, x, r) is false for any valuation r.



On the other hand, the update of a global variable x is encoded by:

globalReset(η, t, e, η′, x) = ite(

m∨
j=1

¬Resj(ej , η + t, x,⊥), (2)

m∧
j=1

¬Resj(ej , η + t, x,⊥) =⇒ Resj(ej , η + t, x, η′(x)),

(3)

η′(x) = η + t(x)) (4)

As explained in Def. 3, we need to assume that different components cannot update
the same variable with different values during the same transition. Indeed assume that
there exist two components j1 and j2 that update (deterministically) the same variable x
along the transition e with two values r1 and r2, respectively, such that r1 6= r2. Then,
the constraint at Eq. 3 would reduce to:

Resj1(ej1 , η + t, x, η′(x)) ∧ Resj2(ej2 , η + t, x, η′(x))

=

η′(x) = r1 ∧ η′(x) = r2

which is clearly unsatisfiable.
Finally, urgency and priority constraints are described by the following:

urgency(s, t, e) =

∀
0≤t′<t

m∧
j=1

∧
ej∈Ej

Actj(ej) ∈ Σout =⇒ ¬(Grdj(ej , η + t) ∧ Srcj(ej) = qj)

priority(s, e) =

m∧
j=1

∧
e′∈−→ j

enabled(s, t, e′, j) =⇒ Prij(ej) ≤ Prij(e′)

where e′ = (e1, . . . , ej−1, e′, ej+1, . . . , em) (i.e. equals to e, but the j-th edge), and
Prij(ej) is the priority of edge ej .

Note that in this encoding functions Srcj ,Trgj ,Actj ,Resj ,Grdj ,Prij are all sym-
bolic, i.e. uninterpreted functions plus constraints for imposing their interpretation ac-
cording to the model. Importantly, this enables model synthesis (not discussed here),
when we drop the constraints for their interpretation.
Quantifier elimination from urgency constraints. We exploit the fact that, unlike clas-
sical hybrid automata, TIOAs do not allow continuous flows. This implies that the
valuation of data variables can only change after a reset. Therefore, for any guard
g =

∧
i vi ./i fi, where vi is a clock, and fi is a function over data variables and

parameters, the value of fi stays constant for all the time spent in the current state. In
turn, this implies that, for each clause ci = (vi ./i fi) of the guard, there exists at most



one time value t̄i such that ci holds for all t′ ≤ t̄i, and does not for t′ > t̄i, or vice
versa.

The idea is based on finding the minimum time t̄ s.t. g becomes true. This is calcu-
lated as t̄ = ite(t> ≤ t<, t>,∞) where t> gives the minimum time s.t. all the clauses
where ./i∈ {>,≥} (the delays) are true, and t< gives the maximum time s.t. clauses
where ./i∈ {<,≤} (the time-outs) are true. Clearly, if t> is greater than t<, the guard
is always false from the current state and t̄ =∞.

Let η be the current variable valuation, η|D the valuation restricted to data variables,
and γ the parameter valuation. Then,

t> = max{ max
vi≥fi∈clauses(g)

(yi − η(vi)), max
vi>fi∈clauses(g)

(yi − η(vi) + 2−h)}

t< = min{ min
vi≤fi∈clauses(g)

(yi − η(vi)), min
vi<fi∈clauses(g)

(yi − η(vi)− 2−h)}

where yi = fi(η|D, γ) is the value of the function fi; and 2−h is the smallest positive
real that we can express with precision h in our discrete SMT encoding (see Sect. 5).
Finally, by urgency, we can conclude that the time spent in the current state will be the
least t̄ among all the output edges2, which allows dropping the above urgency constraint
that contains quantifiers.

5.2 The inner problem

The main algorithm for solving the inner problem is given in Alg. 1, which extends
the SMT-based method for bounded model checking (BMC) [4] in order to synthesise
the space of parameters that yields maximum robustness. Below, we first explain the
synthesis method for safety properties, and then show how this is adapted to reachability
properties.

Given a safety property ϕ, the algorithm returns the maximum robustness radius ε,
a parameter valuation γ̄ that is ε-robust w.r.t. ϕ, and an under-approximation Unsafe of
the true unsafe parameter valuations. We encode an SMT problem where the Unsafe
region is built by searching for counter-examples (CEs) to safety, which amounts to
finding valuations s.t. ¬ϕ holds at some point in the path, up to a fixed length n. Enu-
merating all possible counter-examples up to n, especially when n is large, is clearly
infeasible. Here, we implement several solutions to overcome this problem.

First, we exploit incremental solving, so that CEs are computed step-wise, for in-
creasing path lengths, exploiting the fact that SMT solvers can use the clauses learned
in the previous steps to improve the solution time of the current step. Second, we in-
clude an algorithm for counter-example generalization (procedure GeneralizeCE, Alg.
2), that, given a CE, attempts to derive an unsafe region that contains the CE. Third,
we restrict the search space for counter-examples to the extent necessary to prove the
actual maximum robustness radius ε, thus avoiding the computation of irrelevant CEs.
Counter-example generation. In Alg. 1, we first initialize ε, Unsafe and γ̄ (lines 2-
4). The Init predicate (line 5) is used to constrain the initial automata locations and

2 Since we use digital clocks, we take the ceiling of the least t̄



variable valuation. Command Assert adds in the SMT solver a formula that must hold
true. At a generic step k of the path, we first assert the safety property up to the current
total time ρ〈0, k〉 if this is lower than the time bound u (line 7). In this case, the assertion
is named with a literal pk, meaning that the satisfaction value of �[`,min(u,ρ〈0,k〉)]φ is
the same as pk. During the counter-example generation cycle (lines 8-17), MaxRadius
procedure is called to update the maximum ε and ε-robust valuation γ̄ according to
the current Unsafe region. This information is used to temporarily restrict the search
space for CEs to the region Bε(γ̄) (line 11). Solve ¬pk checks if the negated safety is
satisfied under the current assertions. If so, the solver returns a model, in our case a
counter-example γCE , which we generalize to γ′CE by calling GeneralizeCE. γ′CE is
then excluded from the search space (line 15) and added to Unsafe (line 16). The Pop
command removes from the solver all the constraints asserted after the last Push (in this
case, only Bε(γ̄)). If instead no CEs can be found in Bε(γ̄), we can conclude that, up to
step k, ε is the actual max radius and γ̄ is ε-robust. Thus, we can exit the CE generation
loop, assert the transition constraints (line 21) and increase the step to k + 1. When
ε < 1, the algorithm terminates since it implies that no robust parameters exist (lines
18-19). In the algorithm, T indicates the transition predicate between states of the path,
i.e. T (s, s′) = ∃t. s t−→ s′. We remark that, by bounding and discretising the parameter
space, we can ensure that the cycle at lines 8-17 always terminates. Note that the bound
n on the path length is given in input to the algorithm. Other stopping criteria could be
considered based on, for instance, the size of Unsafe or the worst-case time bound.

Spurious counter-examples. Due to the abstraction induced by the non-deterministic
variables, a CE γCE can be spurious, i.e. it does not violate the property in the original
system. Let η = η̄1, . . . , η̄k be a sequence of valuations over V̄ , γ ∈ V(Γ ), and ρ(γ,η)
be the path ofN (γ) where the non-deterministic variables at i-th state are set to η̄i. Let
η∗ be the sequence of valuations describing the evolution of the original system. For
a safety property ϕ, any CE γCE generated by Alg. 1 is such that ∃η. ρ(γCE ,η) ∈
Π(N (γCE))∧ρ(γCE ,η) 6|=N (γCE) ϕ, i.e. γCE violates ϕ for some valuations η of V̄ .
The first term of the conjunction expresses that η is admissible, that is, ρ(γCE ,η) is a
path of N (γCE). Then, γCE is spurious if ρ(γCE ,η

∗) |=N (γCE) ϕ.

Counter-example generalisation. The GeneralizeCE procedure is executed on top of the
solver used in Alg. 1 and exploits the ability of SMT solvers to generate unsatisfiable
cores, i.e., when a formula is unsatisfiable under the current assertions, produce a subset
of its clauses whose conjunction is still unsatisfiable. The functioning of the algorithm
is also illustrated in Fig. 5. Given a CE γCE , the idea is to derive a larger unsafe region
γ′CE that contains γCE . This is achieved by asserting the safety property (line 3) and
the valuation γCE (line 4). In particular, we associate each assertion p = γCE(p) for
p ∈ Γ (used to assert γCE) with a literal gp. If formula

∧
p∈Γ gp (line 5) is unsatisfiable,

the solver returns an unsat core, i.e. a set UnsatCore ⊆ {gp | p ∈ Γ}. If UnsatCore
is a strict subset of the gp literals, we say that the generalization is successful since we
obtain a larger region: γ′CE = {γ | γ(p) = γCE(p) if gp ∈ UnsatCore}. Otherwise,
γ′CE = γCE . As an example, let γCE = (p1 = 3 ∧ p2 = 5), and let gp1 and gp2
be the corresponding literals. If UnsatCore = {gp2}, then the generalization γ′CE =
(p2 = 5) strictly contains γCE . Importantly,

∧
p∈Γ gp being unsatisfiable means that

γCE violates safety for any valuation of the non-deterministic variables and, therefore,



it is a CE also for the original system, i.e., it holds that

∀η. ρ(γCE ,η) ∈ Π(N (γCE)) =⇒ ρ(γCE ,η) 6|=N (γCE) ϕ. (5)

This applies also to its generalization γ′CE .
In the implementation, we use a more advanced algorithm (Alg. 4) that can rule out

even larger unsafe regions. Given a CE γCE , it works by guessing an intersection of
half-spaces of the form γ′′CE =

∧
p∈Γ p ./p γCE , where ./p is chosen uniformly in

{≥,≤} (line 5). For each p, the literal gp is used to label the assertion Gen(p) that de-
scribes the half-space associated to p. Now,

∧
p∈Γ gp being unsatisfiable (line 8) means

that safety is violated for any valuation in γ′′CE (and, as above, for any valuation of
non-deterministic variables). If this is the case, the generalisation is successful, since
γ′′CE strictly contains γCE apart from isolated cases, e.g., when γCE lies in one of the
corner points of a rectangular parameter space and γ′′CE = γCE . Similarly to Alg. 1, the
UNSAT core can be used to generalise γ′′CE further, by dropping one or more half-space
constraints (line 10). Using the above example, assume that γ′′CE = (p1 ≥ 3 ∧ p2 ≥ 5)
and that UnsatCore = {gp1}. Then, γ′′CE is generalised to γ′CE = p1 ≥ 3. Note that,
in general, the guess γ′′CE has lower likelihood of being found unsatisfiable than the
counter-example, γCE , itself, but this approach performed better in our experiments.

(a) (b) (c) (d) (e) (f)

Fig. 5: Examples of counter-example generalization for a 2D parameter space. Given a
CE γCE (red cross), Alg. 2 can find a generalization (red area) γ′CE = (p1 = γCE(p1))
(b) or γ′CE = (p2 = γCE(p2)) (c). In Alg. 4, we guess a region γ′′CE = (p1 ≥
γCE(p1)∧ p2 ≥ γCE(p2)) (d) and if unsatisfiable, we can generalise obtaining γ′CE =
γ′′CE , γ′CE = (p1 ≥ γCE(p1)) (e) or γ′CE = (p2 ≥ γCE(p2)) (f).

Maximum robustness radius. Procedure MaxRadius (Alg. 3) takes the current Unsafe
region and the previous maximum radius ε, and returns the updated maximum ε together
with an ε-robust valuation γ̄, such that Bε(γ̄) ∧ Unsafe is unsatisfiable. To this aim, we
just need to find a valuation γ̄ such that

Bε(γ̄) ⊆ V(Γ ) ∧ ∀γ′ ∈ Bε(γ̄).¬(γ′ ∧ Unsafe). (6)

Procedure FindRobustParam (not shown) performs this check and returns such γ̄ if
any exists. In this case, we increment ε and repeat the procedure as long as an ε-robust
valuation is found. Otherwise, we decrement it and repeat the procedure until Eq. 6 is
met. In our implementation, ε is discretized too. We remark that this procedure uses
a separate SMT solver (SMT QBVF) so it can be efficiently parallelized. Since we
consider parameters with bounded domains, Bε(γ̄) ⊆ V(Γ ) in Eq. 6 implies that ε is
bounded too, and thus, that the algorithm terminates.



Spurious robust valuations. Since we do not exhaustively search for CEs, Unsafe is
an under-approximation of the true unsafe set. For the same reason, there could be3

spurious ε-robust valuations γ s.t. they meet Eq. 6, but CEs exist inBε(γ). This happens
when Alg. 1 terminates without inspecting region Bε(γ). The following proposition
characterises when a valuation is in the solution space of the inner problem.

Proposition 1 (Inner problem solution). Let γ ∈ V(Γ ), Unsafe and ε be as returned
by Alg. 1. Then, γ is a solution of the inner problem in Probl. 1 iff it holds that:

i) γ is ε-robust w.r.t. Unsafe, i.e. it satisfies Eq. 6; and
ii) no counter-examples can be found in Bε(γ).

Note that ii) can be decided with one iteration of the CE generation loop in Alg. 1
within region Bε(γ). Nevertheless, the algorithm guarantees that the returned ε is the
maximum robust radius and that γ̄ is a solution of the inner problem. Indeed, γ̄ is
computed by Alg. 3 and therefore meets Eq. 6. Further, no CEs exist in Bε(γ̄) (γ̄ is not
spurious), otherwise the incremental synthesis algorithm could not exit the loop at lines
8-17 and would proceed by updating ε and γ̄.

Algorithm 1 Incremental Synthesis

Require: Parametric networkN (·), CMTL property �[`,u]φ, path length n ∈ N+

Ensure: Maximum robust radius ε, ε-robust valuation γ̄ and Unsafe region
1: function IncrementalSynth(N (·), φ, n)
2: ε := 1
3: Unsafe := ⊥
4: γ̄ := ⊥
5: Assert Init(ρ[0])
6: for k = 0, . . . , n− 1 do
7: Assert pk : �[`,min(u,ρ〈0,k〉)]φ
8: repeat . CE generation cycle
9: (ε, γ̄) := MaxRadius(Unsafe, ε)

10: Push
11: Assert Bε(γ̄)
12: (SAT, γCE) := Solve ¬pk
13: Pop
14: γ′CE := GeneralizeCE(γCE)
15: Assert ¬γ′CE
16: Unsafe := Unsafe ∨ γ′CE
17: until SAT
18: if ε < 1 then
19: return (0,⊥,>)

20: if k < n− 1 then
21: Assert T (ρ[k], ρ[k + 1])

22: return (ε, γ̄,Unsafe)

3 Not to be confused with the spurious counter-examples discussed before.



Algorithm 2 Counter-example generalization
Require: Counter-example γCE
Ensure: Generalization γ′CE s.t. γCE =⇒ γ′CE
1: function GeneralizeCE(γCE)
2: Push
3: Assert pk
4: for all p ∈ Γ do Assert gp : p = γCE(p)

5: (SAT, γ) := Solve
∧
p∈Γ gp

6: if SAT then γ′CE := γCE
7: else γ′CE :=

∧
p.gp∈UnsatCore p = γCE(p)

8: Pop
9: return γ′CE

Algorithm 3 Computation of maximum robust radius
Require: Unsafe region, starting radius ε
Ensure: Maximum robust radius ε and valuation γ̄ that is ε-robust
1: function MaxRadius(Unsafe, ε)
2: γ̄ := FindRobustParam(Unsafe, ε,⊥)
3: if γ̄ = ⊥ then inc := −1
4: else inc := 1
5: repeat
6: ε := ε+ inc
7: γ̄ := FindRobustParam(Unsafe, ε)
8: until (inc < 0 ⇐⇒ γ̄ = ⊥) ∧ ε > 0
9: if inc > 0 then ε := ε− inc

10: return (ε, γ̄)

Algorithm 4 Counter-example generalization using half-spaces
Require: Counter-example γCE
Ensure: Generalization γ′CE s.t. γCE =⇒ γ′CE
1: function GeneralizeCE(γCE , γ̄)
2: Push
3: Assert pk
4: for all p ∈ Γ do
5: ./= U{≤,≥} . Choose randomly a half-space to generalize
6: Gen(p) := p ./ γCE(p)
7: Assert gp : Gen(p)

8: (SAT, γ) := Solve
∧
p∈Γ gp

9: if SAT then γ′CE := γCE
10: else γ′CE :=

∧
p.gp∈UnsatCoreGen(p)

11: Pop
12: return γ′CE

Encoding of counting formulas for incremental synthesis. The safety property pk :
�[`,min(u,ρ〈0,k〉)]φ at step k (see Alg. 1, line 7) is encoded from previous assertions as



pk : pk−1 ∧ (` ≤ ρ〈0, k〉 ≤ u =⇒ φ). The encoding of φ when φ ∈ E(V ) is
straightforward. Here we show the encoding of counting formulas.

We recall the semantics of a Basic Counting Formula (BCF)
∑
j∈J cj#

uj
`j
ej ./ b:

(ρ, i) |=N
∑
j∈J

cj#
uj
`j
ej ./ b iff

∑
j∈J

cj

ρ[i,|ρ|]@uj−1∑
k=ρ[i,|ρ|]@`j

1 (ηk |= ej)

 ./ b

where 1 (ηk |= ej) is the characteristic function that return 1 if ηk |= ej and 0, other-
wise. Note that the right-hand side of the above can be rewritten as∑

j∈J
cj

|ρ|−1∑
k=i

1 ((ρ〈i, k〉 − ρ〈i〉) ∈ (`j , uj ] ∧ ηk |= ej)

 ./ b

i.e. we “count” the satisfaction of ηk |= ej only if, starting from i, the time spent up to
the k-th step is in within the bounds of the counting formula: (ρ〈i, k〉−ρ〈i〉) ∈ (`j , uj ].

In addition, we need to account for the fact that, in the incremental synthesis al-
gorithm, the length of the path unrolled at a generic step is not enough to decide the
counting formula, because it does not cover the upper time bound uj . This implies that
in the counter-example generation phase, the solver can find interpretations for the vari-
ables of the path positions not covered (and thus, not yet constrained by the transition
relation), such that the negated property holds, thus giving wrong counter-examples.
Let tunroll be the variable that tells the total time covered at a generic iteration it of the
algorithm, i.e. tunroll = ρ〈0, it〉. Then, the following predicate characterises if the path
length is enough to decide the formula at position i:

sufficientPath ⇐⇒
∧
j∈J

tunroll ≥ ρ〈i〉+ uj

In order to avoid the above problem, we just need to make the counting formula
trivially true when the current path length is insufficient. This leads to:

sufficientPath =⇒

∑
j∈J

cj

|ρ|−1∑
k=i

1 ((ρ〈i, k〉 − ρ〈i〉) ∈ (`j , uj ] ∧ ηk |= ej)

 ./ b

Incremental synthesis for CMTL reachability fragment. In Alg. 1, we presented the in-
cremental synthesis method for the safety fragment of CMTL, based on finding counter-
examples to a safety property. Here we illustrate the incremental synthesis algorithm for
reachability CMTL formulas, i.e. of the form ♦[`,u]φ, where φ is a CMTL formula with-
out temporal operators. This is presented in Alg. 5. The structure is the same as its safety
counterpart but, in this case, a counter-example (CE) to ♦[`,u]φ is a parameter valuation
s.t. φ never holds (or ¬φ always holds). Due to the incremental nature of the algorithm,
a CE can be determined at a generic path position k if either:

– the total time at k exceeds the upper time bound of the formula, i.e. ρ〈0, k〉 > u,
and φ never holds in the time interval [`, u]. This is encoded in the algorithm by
literal UBk (line 11).



– k is the final path position (k = n− 1) and φ never holds up to k. In this case, a CE
is reported even if the total time does not exceed the upper bound u in the formula.
Therefore, we ignore the fact that φ might be reached eventually at longer path
lengths, because we focus on satisfying the reachability specification on bounded
paths.

– ρ〈0, k〉 ≤ u and k < n − 1 (i.e. k is not the final position and does not exceed u),
but there exist a k, i-loop for some i along which φ never holds. For the sake of
simplicity, we assume that the satisfaction value of φ never changes across succes-
sive loop iterations (e.g. when φ is a predicate from E(V )). In this way, to check for
a CE it suffices to check that, up to position k, φ is never reached and there exists
a loop. In the algorithm, this loop checking is implemented through the formula at
line 9. If φ is instead a counting formula, its satisfaction value could change across
loop iterations and thus additional checks are needed (not shown here) to determine
whether φ eventually holds along the loop unrolling.

Similarly to the safety algorithm, the property pk : ♦[`,min(u,ρ〈0,k〉)]φ at step k is en-
coded from previous assertions as pk : pk−1 ∨ (` ≤ ρ〈0, k〉 ≤ u =⇒ φ).

Algorithm 5 Incremental Synthesis for reachability

Require: Parametric networkN (·), CMTL property ♦[`,u]φ, path length n ∈ N+

Ensure: Maximum robust radius ε, ε-robust valuation γ̄ and Unreach region
1: function IncrementalSynth(N (·), φ, n)
2: ε := 1
3: Unreach := ⊥
4: γ̄ := ⊥
5: Assert Init(ρ[0])
6: Assert T (ρ[0], ρ[1])
7: for k = 1, . . . , n− 1 do
8: Assert pk : ♦[`,min(u,ρ〈0,k〉)]φ
9: if k < n− 1 then Assert loopk :

∨k−1
k′=0 ρ[k′] = ρ[k] . Loop checking literal

10: else Assert loopk : >
11: Assert UBk : ρ〈0, k〉 > u . Upper bound literal
12: repeat . CE generation cycle
13: (ε, γ̄) := MaxRadius(Unreach, ε)
14: Push
15: Assert Bε(γ̄)
16: (SAT, γCE) := Solve ¬pk ∧ (UBk ∨ loopk)
17: Pop
18: γ′CE := GeneralizeCE(γCE)
19: Assert ¬γ′CE
20: Unreach := Unreach ∨ γ′CE
21: until SAT
22: if ε < 1 then
23: return (0,⊥,>)

24: if k < n− 1 then
25: Assert T (ρ[k], ρ[k + 1])

26: return (ε, γ̄,Unreach)



Running example. To simplify the presentation, we fix T = 10 and consider only
parameters J ∈ [1, 41] and P ∈ [11, 51]. Fig. 6 shows the incremental synthesis algo-
rithm run on our example. The counter-example J = 33 and P = 49 indicated in plot
(b) clearly violates the property (Eq. 1), since it gives the following path:

((q, z), (α = 0, β = 0, t = 0, x = 0, y = 0, act = −1)) 33−−→
((q′, z), (α = 0, β = 5, t = 0, x = 33, y = 0, act = 1)) . . .

where, starting from position 0, no VP action is fired in the time interval [0, 7]. At the
final step, we obtain ε = 2 and γ̄ = {J 7→ 4, P 7→ 32}. Such parameters lead to the
following path which can be shown to meet our CMTL property:

((q, z), (0, 0, 0, 0, 0,−1)) 4−→ ((q′, z), (0, 5, 0, 4, 0, 1)) 4−→ ((q′, z), (0, 5, 0, 8, 0, 1)) 4−→

((q′, z), (0, 5, 0, 12, 0, 1)) 4−→ ((q′, z), (0, 5, 0, 16, 0, 1)) 4−→ ((q′, z), (0, 5, 0, 20, 0, 1)) 4−→

((q′, z), (0, 5, 0, 24, 0, 1)) 4−→ ((q′, z), (0, 5, 0, 28, 0, 1)) 4−→ ((q′, z), (0, 5, 0, 32, 0, 1)) 0−→

((q, z), (10, 5, 0, 0, 0, 0)) 4−→ ((q′, z), (10, 5, 0, 4, 0, 1)) 4−→ ((q′, z), (10, 5, 0, 8, 0, 1)) 4−→

((q′, z), (10, 5, 0, 12, 0, 1)) 4−→ ((q′, z), (10, 5, 0, 16, 0, 1)) 4−→ ((q′, z), (10, 5, 0, 20, 0, 1))

In the above, variable names are omitted and their ordering is as in the previous path.
The validity of Eq. 1 can be shown for every valuation in Bε(γ̄) in a similar way.

15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

P

J

(a)

15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

P

J

(b)

15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

P

J

(c)

Fig. 6: Counter-examples generation cycle for the running example. Plot (a) shows the
Unsafe region (red points) during step k = 1. Procedure MaxRadius computes the
maximum ε (here, 8) and the ε-robust valuation γ̄ (J = 25, P = 43, blue dot in plot b).
The search for further CEs is restricted to Bε(γ̄) (grey-bordered). Then, a CE γCE is
found (J = 33, P = 49, red cross). The GeneralizeCE procedure manages to find the
larger unsafe region γ′CE = J ≥ 33 ∧ P ≥ 49 (light red). Plot (c) shows the results at
the final step (k = 15) with ε = 2 and γ̄ = {J 7→ 4, P 7→ 32}.

5.3 The outer problem

We present two methods for solving the outer problem. The former is based on the
enumeration of ε-robust valuations, thus providing an exact solution to the outer prob-
lem, but is infeasible with high-dimensional parameter spaces. Note that enumeration
is possible because we discretise the parameter space. The latter method provides an



approximate solution by exploiting evolutionary strategies (ES). In both methods, the
outer objective is evaluated through simulation. Importantly, simulation can cover path
lengths that are prohibitive for BMC, which allows us to consider objective functions
over large time bounds.
Exact solution. The method consists of the following three steps:

1. Enumerate all valuations that meet Eq. 6. Let Γ ′ be the set of such valuations.
2. Simulate all γ ∈ Γ ′ and compute the outer objective f(γ).
3. Following the ordering by the cost function f(γ), return the first valuation that

meets condition ii) of Prop. 1.

Optimisation with Evolutionary Strategies. ES are a class of stochastic optimisation
methods which mimic the principles of Darwinian evolution in order to optimise a given
objective. They work on a set of candidate solutions, the population, which at each
iteration of the algorithm (generation) is subjected to various natural operators, until a
pre-defined termination criterion is satisfied (e.g. max number of generations).

The procedure for solving the outer problem through ES is shown in Algorithm
6. We implement a non-isotropic self-adaptive (µ/ρ+ λ)-ES, i.e. µ parents are used
to generate λ offspring candidates through a ρ-parents recombination, and only the
µ best solutions of the combined parents together with the offspring set are used in
the next generation. In particular, we consider a 2-parents dominant recombination,
which randomly takes two candidates from the parents set (line 5 of Algorithm 6) and
generates a child by a parameter-wise random selection of the two parents’ valuations
(line 6). Since we deal with discrete parameters, we use the mutation operator in [34],
which extends the principle of maximum entropy used in real ES problems to the integer
case. We also include a self-adaptation mechanism [6] that changes the parameters of
the mutation operator at each iteration.

Let p ∈ Γ and n = |Γ |. We randomly generate an additive mutation zp from the
distribution (line 8):

P {Z = k} =
σ̄p

2− σ̄p
(1− σ̄p)|k| , σ̄p = 1− σp/n(

1 + (σp/n)
2
)1/2

+ 1

(7)

where σp is a parameter controlled by the self-adaptive part of the algorithm, called
mean step. This is mutated at each iteration according to the log-normal rule [6] (line
7):

σp = exp (τ0N (0, 1)) · σp · exp (τN (0, 1)) (8)

whereN (0, 1) are realizations of a standardized Gaussian process, and τ0 and τ are the
learning parameters, which we set to τ0 = 1√

2n
and τ = 1√

2
√
n

as in [36]. The initial

value of σp is typically model-dependent and can be tuned to improve the performance
of the algorithm. In order to avoid premature stagnation of the algorithm, we reset σp
to its initial value with a small probability [35].

In order to determine the best valuations at each generation, we define an order �
that takes into account the outer objective and, following the feasible-over-infeasible
principle [14], penalizes valuations outside the solution space of the inner problem. Let



γi and γj be two valuations, f(γi) and f(γj) be their objective function values. Then,
γi � γj if either:

1. γi meets condition i) of Prop. 1, and γj does not; or
2. γi meets i) and ii), and γj meets only i); or
3. both γi and γj meet i) and ii), and f(γi) ≤ f(γj)

Algorithm 6 Evolutionary Strategy for solving the outer problem
Require: Ordering relation �, maximum number of generations genmax

Ensure: Solution to the outer problem γo
1: function (µ/ρ+ λ)-ES(�, genmax)
2: P(0) := RandomInitialize(µ) . generates µ random valuations
3: for gen = 1, . . . , genmax do
4: for i = 1, . . . , λ do . γi is the i-th valuation in the offspring set
5: (γp1 , . . . , γpρ)← RandomSelection

(
P(gen)

)
. selects ρ parents

6: γi := Recombination(γp1 , . . . , γpρ)
7: γi := MutateStrategyParameters (γi) . Eq. 8
8: γi := MutateObjectParameters (γi) . Eq. 7
9: P(gen+1) :=

(
P(gen) ∪ {γi|i = 1, . . . , λ} ,�, µ

)
. best µ valuations w.r.t. �.

10: γo := sup(P(gen+1),�) . γo is the best valuation
11: return γo

We say that a solution is feasible for the outer problem if it solves the inner problem
as per Prop. 1. Note that, if the population at a generic iteration i, Pi, contains feasible
solutions, then, for any j > i, Pj will contain feasible solutions too. Indeed, by the
order defined, if Pi has at least one feasible point, then the best solution in Pi is also
feasible. Since, for any k, the best solutions of Pk are kept in Pk+1 (see line 9 of the
algorithm), we conclude that, for j > i, Pj will contain feasible solutions too.
Running example. We obtain the exact solution J = 4, P = 48, which gives an outer
objective of 2 (the number of AS actions fired within time 100). Due to the size of the
problem, this required enumerating and simulating only 133 valuations at step 1 of the
exact method. For the same reason, the ES algorithm is also able to achieve the optimal
solution, being in this case J = 4, P = 45. In particular, this was obtained at the first
iteration of the algorithm, run with λ = 100, µ = 50 and ρ = 2.

6 Results

We apply our method to synthesise pacemaker parameters that ensure a safe heart
rhythm and optimise either energy consumption or cardiac output (see Sect. 4 for the
formulation of the problem and properties). We consider two parameters that are crit-
ical for the correct functioning of the pacemaker device. The first parameter, TLRI,
regulates the frequency of atrial impulses: TLRI− TAVI is the amount of time that the
pacemaker waits before delivering an atrial pace when no atrial or ventricular events
are detected, where TAVI is the pacemaker atrioventricular delay (default value: 150
ms). The second parameter, TURI, sets an upper bound on the heart rate. In particular,
it is the amount of time that the pacemaker waits before pacing the ventricle, after an



atrial stimulus has occurred and TAVI elapsed. We set the domain of both parameters
to [10, 2000] ms, and add constraints to exclude from the search pacemaker parameters
that are not physiologically meaningful: we require TLRI ≥ TURI, TLRI > TAVI
and TURI ≥ TAVI. Note that the approach can be applied also to other pacemaker
parameters: TAVI, TVRP (ventricular refractory period), TPVARP (post-ventricular
atrial refractory period) and TPVABP (post-ventricular atrial blanking period).

Fig. 7 summarizes the synthesis results obtained with the following heart conditions:
bradycardia, i.e. slow heart rate, reproduced through an increased SA node firing rate
(SA d = 1500 ms, i.e. 40 BPM), and the AV conduction defect obtained by increasing
the AV delay (AVDmin = 150 ms, default: 50 ms). In the experiments we consider a
path length of 20 for solving the inner problem and solve the outer problem with both
exact and ES methods.

200 400 600 800 1000 1200 1400 1600 1800 2000

200

400

600

800

1000

1200

1400

1600

1800

2000  

TURI (ms)

 

T
LR

I (
m

s)

(a) Bradycardia. Inner problem solu-
tion time: 7354 s, ε = 250 ms.

200 400 600 800 1000 1200 1400 1600 1800 2000

200

400

600

800

1000

1200

1400

1600

1800

2000

TURI (ms)

T
LR

I (
m

s)

(b) AV defect. Inner problem solution
time: 6601 s, ε = 240 ms.

Outer objective: Energy Cardiac Output
Condition: Bradycardia AV defect Bradycardia AV defect

Method: Exact ES Exact ES Exact ES Exact ES
Best: 770,300 770,640 750,480 750,320 770,320 770,320 750,630 750,350
Cost: 158 158 400 400 9.14 9.14 9.37 9.37

Runtime: 2369 1101 913 1268 1547 118 848 111

Fig. 7: Unsafe regions (red areas and dots) returned by Alg. 1 in the two experiments.
Grey areas indicate pacemaker parameters that are not physiologically relevant and thus
are excluded from the search space. The table shows the results of the outer optimisation
for the energy and cardiac output objectives (see Sect. 4), comparing the exact and the
ES-based methods. The best solutions are in the format TLRI,TURI. Runtimes are in
seconds. ES parameters are λ = 100, µ = 50, ρ = 2 and 50 generations.

The two experiments return similar robustness radii: ε = 240 for bradycardia and
ε = 250 for AV defect. In the bradycardia case, we obtain TLRI = 770 ms, i.e. a
pacing rate in the atrium of 77.92 BPM, for all objectives and solution methods for
the outer problem. In the AV defect case, the synthesis experiments yield a similar
TLRI value (750 ms, i.e. 80 BPM) and optimal cardiac output. However, the energy
consumption of the pacemaker is much higher since, with this heart condition, impulses
from the atrium are not correctly propagated, and thus a higher number of paces is



required in the ventricle. We remark that, with our method, we are able to find the
parameters that guarantee a safe heart rhythm despite large perturbations. For instance,
the exact solution γo to the AV defect and energy experiment is TLRI = 750 ms and
TURI = 480 ms, which implies that safety holds for all the parameters in Bε(γo),
i.e., with ε = 250, for all TLRI ∈ [500, 1000] ms and TURI ∈ [230, 730] ms. For
all our results, we observe that the nominal parameter values (TLRI = 1000 ms and
TURI = 500 ms [37]) are included in Bε(γo), meaning that the default pacemaker
settings are safe but have a smaller tolerance.

200 400 600 800 1000 1200 1400 1600 1800 2000

200

400

600

800

1000

1200

1400

1600

1800

2000

TURI (ms)

T
LR

I (
m

s)

(a) Full Unsafe region for bradycardia

200 400 600 800 1000 1200 1400 1600 1800 2000

200

400

600

800

1000

1200

1400

1600

1800

2000

TURI (ms)

T
LR

I (
m

s)
(b) Full Unsafe region for multiple
heart parameters

Fig. 8: (a) Full synthesis regiosn for bradycardia (see experiment at Fig. 7 a) and (b) for
multiple SA rates and AV delays: SA d ∈ [1250, 1500] ms and AVDmin ∈ [0, 200] ms.

Notably, the evolutionary approach is able to yield the same optimal objective value
as the exact method. This is due to the fact that, with two parameters, the solution space
of the inner problem (which corresponds to the domain of the outer problem) is quite
small. Indeed, we obtain only 107 ε-robust valuations for bradycardia, and 52 for the AV
defect. With the ES algorithm, we also achieve better performance in most cases, and the
runtime improvement becomes even more marked with higher-dimensional parameter
spaces, as shown at the end of this section. The only exception is the runtime obtained
for the energy objective in the AV defect experiment, where the exact method performs
slightly better than ES, which is explained by the small number of feasible points in the
outer problem.

In Fig. 8a, we illustrate the full synthesis region for the bradycardia experiment, ob-
tained without restricting the search space for CEs (lines 9-13 of Alg. 1). By comparing
with the region in Fig. 7a, we observe that the algorithm explores considerably fewer
CEs, thus improving the runtime. We also report that the abstraction of real-valued and
non-linear variables is adequate, in the sense that only a few CEs are potentially spu-
rious, i.e. such that Eq. 5 does not hold. These constitute only 0.31% of the parameter
space and are given by the set

{γ ∈ V(Γ ) | (γ(TLRI) = 510 ∧ γ(TURI) ∈ [150, 510]) ∨
(γ(TLRI) = 1020 ∧ γ(TURI) ∈ [150, 1010])}



Synthesis for ranges of heart conditions. With our approach, we can also synthesise
parameters that are safe for a range of possible heart conditions, thus taking into ac-
count uncertainty in the heart dynamics. In Sect. 5.1, we extended TIOAs with non-
deterministic variables in order to bound real-valued and non-linear functions. Non-
deterministic variables can also be used to express uncertainty in the model’s dynamics,
so that we can synthesise parameters that are safe for all the admissible valuations of
such variables. In this way, we can conveniently approximate also probabilistic heart
parameters with non-deterministic variables that range within an adequate truncation
of the corresponding probability distribution, e.g. based on percentile rank. Or, we can
express time tolerance for a range of pacemaker parameters. For instance, we can syn-
thesise parameters that are safe for multiple bradycardia SA node firing rates and AV
delays, as shown in Fig. 8b.

Performance evaluation We analyse the performance of the synthesis algorithm con-
sidering a 2D (TLRI and TURI), a 3D (TLRI, TURI and TAVI) and a 4D (TLRI,
TURI, TAVI and TPVARP) parameter space. Experiments were performed with a
path length of 8 for the inner problem and with the bradycardia parameters (see Sect.
6), and are reported in Fig. 9.

0 2 4 6 8
0

200

400

600

800

1000

1200

Path length

T
im

e 
(s

)

2D
3D
4D

1.62%

1.73%

1.26%

Exact ES
2D 117 69
3D 12697 123
4D >20000 3134

Fig. 9: Synthesis algorithm performance for different numbers of parameters. The figure
shows the incremental runtimes (seconds) for the inner problem. Percentanges indicate
the fraction of time taken by Alg. 3. The table compares the computation time (sec-
onds) of the exact method and the evolutionary strategy in solving the outer problem,
performed at path length 8. The time for the exact solution in the 4D case exceeded
the timeout of 20000 seconds. ES parameters are λ = 100, µ = 50, ρ = 2 and 50
generations.

7 Conclusion and Future Work

We have studied the problem of robust optimal parameter synthesis for networks of
TIOAs with priorities and data and proposed a solution based on SMT solving and evo-
lutionary strategies. We have applied the method to synthesise pacemaker parameters
that are both safe and robust, while optimising energy consumption or cardiac output.
As the main property specification language, we have considered the safety and reacha-



bility fragments of CMTL, which are sufficient to express relevant properties for cardiac
pacemakers.

As future work we plan to apply the approach to additional safety properties, vali-
date synthesis results with cardiologists and include advanced pacemaker features like
rate-modulation [29], hysteresis and a battery model for optimising the expected life-
time of the device.

Acknowledgments. This work is supported by the ERC AdG VERIWARE and ERC
PoC VERIPACE.

References

1. É. André, T. Chatain, L. Fribourg, and E. Encrenaz. An inverse method for parametric
timed automata. International Journal of Foundations of Computer Science, 20(05):819–
836, 2009.

2. É. André and L. Fribourg. Behavioral cartography of timed automata. In RP, pages 76–90.
Springer, 2010.

3. T. Arai, K. Lee, and R. J. Cohen. Cardiac output and stroke volume estimation using a hybrid
of three windkessel models. In EMBC, pages 4971–4974. IEEE, 2010.

4. A. Armando, J. Mantovani, and L. Platania. Bounded model checking of software using
SMT solvers instead of SAT solvers. STTT, 11(1):69–83, 2009.

5. B. Barbot, M. Kwiatkowska, A. Mereacre, and N. Paoletti. Estimation and verification of
hybrid heart models for personalised medical and wearable devices. In 13th International
Conference on Computational Methods in Systems Biology (CMSB 2015), volume 9308 of
LNCS, pages 3–7. Springer, 2015.

6. H.-G. Beyer and H.-P. Schwefel. Evolution strategies–a comprehensive introduction. Natural
computing, 1(1):3–52, 2002.

7. L. Bozzelli and S. La Torre. Decision problems for lower/upper bound parametric timed
automata. FMSD, 35(2):121–151, 2009.

8. V. Bruyere and J.-F. Raskin. Real-time model-checking: Parameters everywhere. In
FST&TCS 2003, pages 100–111. Springer, 2003.

9. T. Chen, M. Diciolla, M. Kwiatkowska, and A. Mereacre. Quantitative verification of im-
plantable cardiac pacemakers over hybrid heart models. Information and Computation,
236:87–101, 2014.

10. A. Cimatti, S. Mover, and S. Tonetta. SMT-Based Verification of Hybrid Systems. In J. Hoff-
mann and B. Selman, editors, Proceedings of the Twenty-Sixth AAAI Conference on Artificial
Intelligence, July 22-26, 2012, Toronto, Ontario, Canada. AAAI Press, 2012.

11. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction
refinement. In Computer aided verification, pages 154–169. Springer, 2000.

12. B. Colson, P. Marcotte, and G. Savard. An overview of bilevel optimization. Annals of
operations research, 153(1):235–256, 2007.

13. L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In Tools and Algorithms for the
Construction and Analysis of Systems, pages 337–340. Springer, 2008.

14. K. Deb. An efficient constraint handling method for genetic algorithms. Computer methods
in applied mechanics and engineering, 186(2):311–338, 2000.

15. M. Diciolla, C. H. P. Kim, M. Kwiatkowska, and A. Mereacre. Synthesising Optimal Timing
Delays for Timed I/O Automata. In EMSOFT’14. ACM, 2014.

16. L. Doyen. Robust parametric reachability for timed automata. Information Processing Let-
ters, 102(5):208–213, 2007.



17. N. Fazeli and J.-O. Hahn. Estimation of cardiac output and peripheral resistance using
square-wave-approximated aortic flow signal. Frontiers in physiology, 3, 2012.

18. S. Gao, S. Kong, and E. M. Clarke. Satisfiability modulo ODEs. In Formal Methods in
Computer-Aided Design (FMCAD), 2013, pages 105–112. IEEE, 2013.

19. A. O. Gomes and M. V. M. Oliveira. Formal specification of a cardiac pacing system. In FM
2009: Formal Methods, pages 692–707. Springer, 2009.

20. S. Gulwani and A. Tiwari. Constraint-based approach for analysis of hybrid systems. In
Computer Aided Verification, pages 190–203. Springer, 2008.

21. Z. Jiang, M. Pajic, S. Moarref, R. Alur, and R. Mangharam. Modeling and verification of
a dual chamber implantable pacemaker. In Tools and Algorithms for the Construction and
Analysis of Systems, pages 188–203. Springer, 2012.

22. A. Jovanović and M. Kwiatkowska. Parameter synthesis for probabilistic timed automata
using stochastic games. In RP’14, volume 8762 of LNCS, pages 176–189, 2014.

23. A. Jovanović, D. Lime, and O. H. Roux. Integer parameter synthesis for timed automata. In
TACAS, pages 401–415. Springer, 2013.

24. D. R. Kerner. Solving windkessel models with mlab.
http://www.civilized.com/mlabexamples/windkesmodel.htmld, 2007.

25. R. Kindermann, T. Junttila, and I. Niemelä. Beyond lassos: Complete SMT-based bounded
model checking for timed automata. In Formal Techniques for Distributed Systems, pages
84–100. Springer, 2012.

26. R. Kindermann, T. Junttila, and I. Niemelä. SMT-based induction methods for timed systems.
In Formal Modeling and Analysis of Timed Systems, pages 171–187. Springer, 2012.

27. M. Knapik and W. Penczek. Bounded model checking for parametric timed automata. In
Transactions on Petri Nets and Other Models of Concurrency V, pages 141–159. Springer,
2012.

28. G. Kovásznai, A. Fröhlich, and A. Biere. On the complexity of fixed-size bit-vector logics
with binary encoded bit-width. In SMT, pages 44–56, 2012.

29. M. Kwiatkowska, H. Lea-Banks, A. Mereacre, and N. Paoletti. Formal modelling and vali-
dation of rate-adaptive pacemakers. In ICHI, pages 23–32. IEEE, 2014.

30. J. Lian, H. Krätschmer, D. Müssig, and L. Stotts. Open source modeling of heart rhythm and
cardiac pacing. Open Pacing Electrophysiol Ther J, 3:4, 2010.

31. D. Méry and N. K. Singh. Closed-loop modeling of cardiac pacemaker and heart. In Foun-
dations of Health Information Engineering and Systems, pages 151–166. Springer, 2013.

32. J. Ouaknine and J. Worrell. On the decidability of metric temporal logic. In Logic in Com-
puter Science, 2005. LICS 2005. Proceedings. 20th Annual IEEE Symposium on, pages 188–
197. IEEE, 2005.

33. A. Rabinovich. Complexity of metric temporal logics with counting and the pnueli modali-
ties. Theoretical Computer Science, 411(22):2331–2342, 2010.

34. G. Rudolph. An evolutionary algorithm for integer programming. In Parallel Problem Solv-
ing from Nature—PPSN III, pages 139–148. Springer, 1994.

35. G. Rudolph. Self-adaptive mutations may lead to premature convergence. Evolutionary
Computation, IEEE Transactions on, 5(4):410–414, 2001.

36. H.-P. P. Schwefel. Evolution and optimum seeking: the sixth generation. John Wiley & Sons,
Inc., 1993.

37. B. Scientific. Pacemaker system specification. Boston Scientific, 2007.
38. T. Sturm and A. Tiwari. Verification and synthesis using real quantifier elimination. In

Proceedings of the 36th international symposium on Symbolic and algebraic computation,
pages 329–336. ACM, 2011.

39. L.-M. Traonouez. A parametric counterexample refinement approach for robust timed spec-
ifications. arXiv preprint arXiv:1207.4269, 2012.


