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Abstract

Despite several decades of research into segmentation techniques,
unsupervised medical image segmentation is barely usable in a clinical
context, and still at vast user time expense. The Fast Marching method
is an established segmentation technique for generic spaces, which typi-
cally requires manual initialisation. This paper illustrates unsupervised
organ segmentation through the use of a novel automated labelling al-
gorithm followed by a hypersurface front propagation method — Fast
Marching. The labelling stage relies on a pre-computed image partition
forest obtained directly from CT scan data.

We perform a systematic analysis of the effects of the Fast March-
ing method parameters, and compare the performance of the algo-
rithm in different settings for a specific task. We also introduce novel
approaches to the choice of some parameters of the Fast Marching
relying on the results of hierarchical image segmentation algorithms.

We have implemented all procedures to operate directly on 3D vol-
umes, rather than slice–by–slice, because our algorithms are dimensio-
nality–independent. The results picture segmentations which identify
abdominal organs (such as the liver and kidneys), but can easily be
extrapolated to other body parts.

Quantitative analysis of our unsupervised segmentation compared
against hand–segmented gold standards for kidney segmentation in-
dicates an average Dice similarity coefficient of 90%. Results were
obtained over volumes of CT data with 9 kidneys, computing both
volume–based similarity measures (such as the Dice and Jaccard coef-
ficients, true positive volume fraction) and size–based measures (such
as the relative volume difference). Our analysis considers both healthy
and diseased kidneys, although extreme pathological cases were ex-
cluded from the overall count. Such cases are difficult to segment both
manually and automatically due to the large amplitude of Hounsfield
unit distribution in the scan, and the wide spread of the tumorous tis-
sue inside the abdomen. In the case of kidneys that have maintained
their shape, the similarity range lies around the values obtained for
inter–operator variability. Whilst the procedure is fully unsupervised,
our tools also provide a light level of manual editing.
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1 Introduction

In a clinical or clinical research context, the shapes of anatomical structures
of interest are typically found from single slices of CT or MRI imaging data
using commercial software (such as Mimics [1] or Simpleware [2]). These
shapes are segmented from individual images manually: this involves set-
ting a threshold then going through slice by slice and tidying up regions
which have not been detected correctly. Processing a set of scan slices takes
many user hours. The uptake of computer–based segmentation methods in
research fields which process large volumes of visual data (such as scans)
depends crucially on shortening this user time.

In this paper we refer to segmentation as the process of identifying and
labelling a 3D region of semantic importance (such as an organ, blood vessel,
tumour or bone). In doing so, we pre-process the data in order to group vox-
els with similar characteristics into regions — a process known in Computer
Vision as (2D) image segmentation. In order to avoid ambiguity, we will
refer to the vision segmentation technique as partitioning the image, and to
the medical segmentation technique as labelling the features of interest.

Level set and Fast Marching methods have been previously used for
medical image analysis. In [21, 19, 20, 22, 17] Malladi et al. use level set
methods to identify features in 2D and 3D images. Fast Marching for feature
labelling in medical images was investigated in a number of papers [16, 15,
18, 4, 5].

The behaviour of the Fast Marching method for interface motion depends
on several parameters. These include the growth rate of the front interface,
and the spacing of the lattice on which we discretise the model. Other
factors that have impact on the success of the method are the choice of the
seed points, i.e. the initial interface from which the motion begins, and the
stopping criteria for this motion.

There is no detailed analysis of parameter choices for the method and
their comparison for a specific task. Concentrating on other aspects of the
algorithms, the literature just mentions empirical parameter choices made
in their work. Our results fill this gap in the literature. We introduce novel
approaches to the selection of some of the parameters. We also perform sys-
tematic experiments intended to identify the influence of various parameter
choices on the performance of the Fast Marching method.

Current practice for medical imaging [20, 16, 15, 18, 29] leaves the ini-
tialisation of level sets or Fast Marching to the user. Even commercial
software for processing scan data expects the user to hand–seed any region
growing methods, and this on a slice–by–slice basis. In other cases, heavily
data–specific methods are used for automated seed (initial region) choice
[4, 5]. We present a new approach for fully automatic labelling and recon-
struction of features, such as organs, which combines Fast Marching with a
hierarchical image partitioning method.
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Figure 1: A CT axial slice with manually identified features. Aorta ,

kidneys , liver , ribs , spine , spinal cord and spleen are visible in their
respective colour.

Following our previous work on decision-support systems for renal seg-
mentation [9, 11], we illustrate unsupervised organ segmentation through
the use of a novel automated labelling algorithm followed by a hypersurface
front propagation method. The labelling stage relies on a pre-computed
image partition forest obtained directly from CT scan data.

2 Context

We illustrate our algorithms with abdominal CT scan image volumes in
DICOM format, typically comprising up to 50 axial slices, 512× 512 voxels
each. A scan slice is presented in Figure 1 with the features of interest
labelled manually.

Fast Marching–based labelling is easily generalised to any dimensionality.
We choose always to run it on 3D data volumes, preserving the original
resolution.

We sometimes refer to the greyscale value of each voxel, appearing to
be oblivious to its provenance. In practice, the CT scanner associates to
each voxel a scalar Hounsfield Unit (HU) proportional to the radiodensity
of the tissue at that point. The HU value range (several thousand units) is
much larger than the available range of greyscale values (256). Instead of
applying a lossy linear mapping from one to the other, we make use of a
careful windowing mechanism [31], which preserves granularity detail in a
given subrange of interest, and only shrinks the less relevant ranges of HUs
in the image. In order to obtain greyscale data, we pre-process the raw data
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with windowing and then edge-preserving smoothing with several iterations
of anisotropic diffusion filtering [23].

3 Image Partitioning

The pre-processing is followed by a partitioning step, where the 3D data
volume is organised into a tree–based representation of adjacency graphs.
The nodes of the trees are regions of voxels, and the parental relationship
is that of inclusion. Essentially, the data is partitioned into a hierarchy of
inter–connected regions and subregions.

We call this data structure an Image Partition Forest (IPF). We have de-
scribed elsewhere [10, 12] how we use a watershed and waterfall approach [3]
to construct the IPF in a bottom-up manner. A first layer is constructed
by running the watershed transform [3, 12] on the original 3D image. This
process views the gradient magnitude of the input image as a landscape
and locates water catchment basins. Then four other layers of coarser de-
tail are made by running the waterfall transform [3, 12] on the previous
layer, which transforms the input partition into a ‘stepped’ landscape and
performs watershed on it.

Figure 2 illustrates a 2D projection through a 3D IPF, and its different
levels of coarseness. The bottom–most level is made up of the raw im-
age voxels; it is followed by a layer of over-segmented regions (not shown),
followed by increasingly coarse regions that belong together and gradually
group themselves around organs and other features.

The most crucial aspect of automating the segmentation is the way in
which we use the IPF to find a rough approximation of an organ and seed
from it a hypersurface front propagation method which helps localise the
organ boundaries more accurately.

For instance, since the typical HU range (and hence windowed greyscale)
for kidneys is known from radiology studies [31], we can choose as kid-
ney candidates those regions in the IPF which are within the desired mean
greyscale range. Furthermore, filtering regions which correspond roughly to
kidneys can also be based on anatomical knowledge. The IPF candidate
regions should be in a high layer of the IPF (layers 3–5); in an axial slice,
the right kidney should lie ‘west’ of the spine and anatomically close to it;
also, the right kidney should span a reasonable number of voxels (depending
on the number of slices in the image).
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(a) (b)

(c) (d)

Figure 2: Four of the six layers (finest layers not shown) in a 3D IPF,
representing image partitions in decreasing detail level.
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4 Feature Labelling with Fast Marching

4.1 Fast Marching basics

The Fast Marching method is an efficient iterative algorithm, introduced by
Sethian [25, 28], for numerical approximation of the development of fronts
propagating through R

n space.
A propagating front is a closed hypersurface, each point of which moves

in the direction of the surface normal with some speed F . Let S(t) ⊂
R
n, t ∈ [0,∞) be the propagating interface in space Rn. If the speed function

F = F (~x) does not change sign, the equation of the evolution of the front
can be represented in terms of the arrival time function T : Rn → R, such
that

T (~x) = t ⇐⇒ ~x ∈ S(t)

as the eikonal equation (see, for instance, [29]):

|∇T | =
1

F
(1)

Fast Marching discretises the eikonal equation (1) with upwind approx-
imation schemes, in R

3:
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where ∆x,∆y,∆z are the spacing of the discretization lattice, Tijk and Fijk

the values of these functions on the points of the lattice. Using the fact that
the front crosses each point only once, an efficient O(N logN) algorithm,
where N is the total number of points in the lattice, is deviced to determine
the values Tijk in the order the front propagates (details in [25, 26, 27, 28, 29,
30]). An O(N) complexity implementation of Fast Marching can be found
in [34, 24].

4.2 Seeds

Seeds are points which initialise the front (we denote the set of these as
S(0) ∈ R

n). There can be more than one seed for a given front. In cur-
rent practice for medical imaging, the choice of seeds is left to the user
[20, 16, 15, 18, 29]. In other cases, heavily data specific approaches are used
for automated seed extraction [4, 5] in multi–stage segmentation. Yet we
seed our Fast Marching automatically from a subset of the candidate regions
output via the IPF. Our take to the seeding process relies on the automatic
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generation of the IPF structure. Whilst filtering the candidate regions re-
lies on anatomical structure, this can be hard–coded into the unsupervised
segmentation, as seen in Section 3. Only voxels which are in the expected
healthy-tissue greyscale range are considered and used as seeds, as shown in
Figure 4(d).

The candidate regions chosen using the IPF do not approximate the
kidneys sufficiently well themselves. Local heterogeneities of high gradient
magnitude value are usually missed and most regions have displaced edges.
Because of this, these candidate regions may miss necessary pieces of tissue
or contain chunks of external tissue. This is why the Fast Marching is
employed.

The set of seed points is the zero level set of function S(~x) before the
front expansion begins. This means that the time function T (~x) has to be
equal to 0 at, and only at, these points:

T (~x) = 0 ⇐⇒ ~x ∈ S(0)

The requirements [29] for the set of seed points in Fast Marching Methods
are:

• all the seed points are within the target region to be identified, OR

• the seed points comprise a closed front which encloses the target region
(or target regions) to be identified.

In the first case an expanding wave is generated beginning from the seed
points to grow until the boundary of the target region. In the second case,
the propagating front has a negative speed term and it develops inwards.

However, for the purpose of identifying features on medical images it is
more reasonable to define seed points within target regions and propagate
outwards. This is because some physiological features are not simply con-
nected in the CT image space. This means that identifying such features
with the front propagating inwards in Fast Marching would require several
runs of the method. Also, some elaborate stopping criteria would be needed
to correctly locate the different borders of features.

The procedure is much simpler in case of using a front propagating out-
wards. We use an initial curve which encloses only points which belong to
the feature. This approach is illustrated in Figure 3 on the example of a
kidney. When such a front expands, it approaches both the inner and outer
boundaries of the kidney, and it shapes only the area of the feature (exclud-
ing the renal pelvis). In contrast, a curve, which encloses a part of (or the
whole) renal pelvis, approaches only one of the inner and outer borders —
the inner in case of a negative speed term, and the outer otherwise.

Even a single seed point can usually be sufficient for the method to
identify the feature successfully. This is just the degenerate case of an initial
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(a) A suitable initial front for a
kidney. When developing out-
wards it approaches both the in-
ner and outer borders of the kid-
ney, thus shaping the organ.

(b) An unsuitable candidate for
a kidney. If expanding, it only
approaches the outer border. If
contracting, on the contrary, the
inner boundary alone is shaped.

Figure 3: Two candidates for an initial front for Fast Marching within the
feature.

front like the one in Figure 3a. Thus, an initial curve can be replaced with
a set of points (or a single point) within the feature.

Figure 4b depicts a layer of the IPF constructed by the partitioning
algorithm for the example image in Figure 4a. It can be seen that the
main features are well outlined. However, further analysis reveals that the
borders between the regions in some cases do not follow precisely the physical
boundaries between features. Hence, they cannot be used as end-results
of feature segmentation. The result of the filtering process for candidate
regions, reported in Section 3, is depicted in Figure 4c and illustrates some
of possible shortcomings of this intermediate result.

In order to seed the Fast Marching, within a given candidate region for a
specific feature we choose only points within a fixed greyscale range inferred
from the typical radiodensity HU of the feature. This is repeated for all
organs of interest within the abdomen. In Figure 4d the seed point sets
chosen from these regions for all the features are depicted.

4.3 Speed functions

Fast Marching for feature segmentation places important requirements on
its speed term, i.e. the rate of development of the front interface. The
speed function has to converge to zero rapidly in the vicinity of the feature
boundary to be identified. This is devised to make sure that the expanding
interface does not go beyond the border of the targeted object but rather
shapes it precisely.

The features’ boundaries usually correspond to noticeable changes in the
image and hence are characterized by high values of the gradient magnitude
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(a) Example of a single abdominal CT slice.
Note the cyst on left kidney (right-hand side
of spine).

(b) A layer of the IPF resulting from the
segmentation of (a). Projection on a single
slice of the 3D structure IPF.

(c) The regions approximating the features
in the IPF. Kidney region includes the cyst.
Liver is undersegmented.

(d) The seed points extracted from the re-
gions in (c). Only points in healthy-tissue
range for that organ are included.

Figure 4: Image partitioning and seed extraction from the resulting IPF
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function. In contrast, the area within the organ is commonly monotonous
and monochrome. This means that the same gradient magnitude function
tends to have smaller values within the feature. As a consequence, the speed
term has to be chosen according to these properties of the gradient image.
The speed must have relatively high values at points with small gradient
magnitude and vice versa.

In [15], Malladi and Sethian use the speed term

F (~x) =
1

1 + |∇Gσ ∗ I(~x)|

for shape recovery on medical images, where Gσ ∗ I(~x) is the original image
smoothed with Gaussian filter [29]. While in [16] the same authors suggest

F (~x) = e−α|∇Gσ∗I(~x)|, α > 0,

as a speed term for the same task, without discussing the relative merits of
these choices.

In [4] and [5] two other speed terms are suggested but again there is no
comparative analysis.

We show a series of systematic experiments with the speed term expres-
sions like in equations (2) and (3). These are carried out on raw images and
on images pre-processed with windowing, smoothing.

In this paper we illustrate the effects by running the Fast Marching
algorithm on a single CT slice. We always start the method at the same
point on the right kidney and compare the development of the interface
visually. The more precisely the right kidney is shaped the more successful
we consider the speed term expression (in CT axial slices, the right kidney
is on the left of the image).

F (~x) =
1

(

1 +
(

|∇I(~x)|
C

)n)m , C > 0, n,m ∈ N (2)

F (~x) = e−C|∇I(~x)|, C > 0 (3)

4.3.1 Base image: inversed gradient magnitude speed terms

To start with, we use the original single CT image data (without any smooth-
ing techniques) to construct the speed term for Equation (1). The simplest
expression is F (~x) = 1

1+|∇I(~x)| , where I(~x) is the HU value proportional

to the radiodensity of the tissue at point ~x on the CT scan, and ∇I(~x) is
the gradient function of the HU image. Figure 5 depicts the results for this
speed term with closed white contours corresponding to several level sets
of S(~x) with a fixed level step. It is easy to see that, although they follow
some patterns in the image, the expansion of the interface does not capture
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Figure 5: Fast Marching with speed term F (~x) = 1
1+|∇I(~x)| , closed white

contours correspond to several level sets of S(~x) with a fixed level step. The
impact of the image data is weak and the kidney boundary is not detected
(right kidney on left of image).

(a) F (~x) = 1
1+|∇I(~x)|2

. The sensitivity to

feature changes in the image is still very low
and the feature boundary is crossed early.

(b) F (~x) = 1
1+|∇I(~x)|3

. The improvement

upon the previous expressions is not suffi-
ciently good.

Figure 6: Fast Marching with speed terms F (~x) = 1
1+|∇I(~x)|2

and F (~x) =
1

1+|∇I(~x)|3
. Note that the thicker white line of the front indicates the overlap

of several level sets.
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the kidney. This speed term is not sufficiently sensitive to the pronounced
changes in the image.

Subsequently, a faster decreasing candidate for the speed term is found
to be more successful in capturing the variation of the image. We increase
the impact of the image data on the development of the interface. The goal
is to suppress the expansion of the interface when it reaches the border of the
right kidney and, at the same time, make it faster in relatively homogeneous
areas of the organ.

We then study the inverse of the squared gradient magnitude of the HU
value and then the inverse of the cubed gradient magnitude for the speed
term. The outcome for these expressions is shown in Figure 6 (we always
add 1 to the denominator to avoid the degenerate case).

The results, illustrated in Figure 6, show that these speed expressions
work better than the inverse of the gradient in Figure 5. First, the interface
develops within the right kidney for some time. When it reaches the border,
the high gradient magnitude of the HU value prohibits it from crossing
the border for several iterations. The indicator for this is the thick white
layer on some part of the border of the organ. However, at some point the
propagating front breaks the chain and flows out of the region corresponding
to the kidney. It is worth noticing that, by the time this happens, a part
of the kidney is still not within the expanding region. The conclusion is
that these expressions are better than the first one but do not yet solve the
problem.

4.3.2 Base image: exponential gradient magnitude speed terms

In order to emphasize the image data even more in the development of the
front, we then consider expressions exponential to the gradient magnitude of
the image HU value from Equation (3). If the constant C is too small, like
in Figure 7a (C = 0.016), then the sensitivity of the interface to image data
is again very low. A larger value C = 0.2 provides a considerably better
performance for the method (see Figure 7b), but it is still not sufficiently
good for the exact task. The interface still goes beyond the area of the right
kidney leaving a part of it uncovered.

Figure 7d confirms that larger values of the coefficient C prove more
useful for the task. Moreover, if we stop the development of the front at some
specific time with an exponential speed term and large enough coefficient, it
is easy to notice that it follows the contour of the kidney. To illustrate this,
we consider F (~x) = e−0.5|∇I(~x)| and cease the interface expansion at some
time point. The outcome is shown in Figure 8.

Despite being quite promising, this expression for the speed term in the
eikonal equation (1) still has some problems. A further consideration of
Figure 8 reveals that the interface has a large number of holes — some parts
of the kidney are not covered by the front. The main reason for this is the
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(a) F (~x) = e
−0.016|∇I(~x)|. The sensitivity to

the image data is low because of a very small
coefficient.

(b) F (~x) = e
−0.2|∇I(~x)|. This expression

provides better results than all the speed
term candidates considered so far.

 

(c) F (~x) = e
−0.5|∇I(~x)|. The front does not

cross the kidney boundary at the lower part
any more.

(d) F (~x) = e
−0.9|∇I(~x)|. The expanding re-

gion approximates the kidney but there are
a lot of holes in it.

Figure 7: Fast Marching with speed term F (~x) = e−C|∇I(~x)|, C > 0.
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Figure 8: The interface at some time point with F (~x) = e−0.5|∇I(~x)|. It
covers the kidney but contains too many holes.

considerable level of noise in CT scans.

4.3.3 Windowed image: exponential gradient magnitude

Our first step to tackle this issue is not to use the base HU values for the
image but to introduce windowing (for details see [31]). As a result of
windowing the scale of the voxel values narrows to the greyscale value range
— from 0 to 255 — and, hence, minor deviations are smoothed out.

The advantage of using windowed images over base unsmoothed images
is easily seen from the comparison of the output of the method on the base
image and Figure 9 where the windowed image is used. The proportion of
holes in the interface in Figure 9a is much less than in Figure 8. Also, in both
images in Figure 9 the front interfaces manage to cover the whole boundary
of the kidney without including most of the renal pelvis. (In these images,
the renal pelvis occupies the inner darker part within a kidney.) While the
interface on the base image also covers a substantial part of the renal pelvis
before having included the whole kidney.

However, this technique is enough to smooth out only minor noise. We
introduce further smoothing techniques to tackle this issue in a more generic
fashion.
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(a) F (~x) = e
−0.5|∇W (~x)|. The number of

holes is considerably less compared to the
raw image (without windowing).

(b) F (~x) = e
−|∇W (~x)|. The whole kidney is

covered without crossing the border inwards
and including the renal pelvis.

Figure 9: The interface at some time point on the windowed image with
exponential speed term. Note the coefficients 0.5 and 1.

Figure 10: Fast Marching with speed term F (~x) = 1
1+|∇ADW (~x)|2

. The im-

provement over the unsmoothed image is huge, see Figure 6a for comparison.
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4.3.4 ADF smoothed image: inversed gradient magnitude

Papers such as [16], [29] advise to smooth the input image with some edge
preserving technique before using it in the Fast Marching method. In our
experiments we use anisotropic diffusion filtering (first introduced by Perona
and Malik [23]). We start with windowing the image to project the inter-
esting part of the scale onto a smaller one. Then we make several iterations
of anisotropic diffusion on the windowed image. And only after that do we
use the image data to build the speed term expression F (~x) for the eikonal
equation (1).

Interestingly, the application of anisotropic diffusion filtering (ADF)
largely improves the performance of the Fast Marching method even for
the simpler speed term expressions. For instance, Figure 10 depicts the
development of the interface with speed term

F (~x) =
1

1 + |∇ADW (~x)|2
.

We denote the image data resulting from windowing and anisotropic diffu-
sion by ADW (~x). The huge improvement in the performance of the method
caused by the introduction of the smoothing techniques becomes evident if
we compare this result with Figure 6a.

4.3.5 ADF smoothed image: exponential gradient magnitude

Now let us analyse the growth of the interface on an ADF smoothed image
when we use the speed term that worked best for the unsmoothed data —
exponential expression. Two different remarks about the experiment results
in Figure 11: the interface undergoes extremely slow expansion from one
image to another; also, most holes on the interface close as it develops.

The use of the ADF smoothing has a tremendous impact on the im-
age data. Within the area corresponding to the organ it smooths out the
differences in the values of neighbouring voxels making that area relatively
uniform. Meanwhile, due to its edge-preserving quality, ADF does not have
detrimental influence on the borders on the organ. As a result, the gradient
magnitude values are low within the organ and much higher closer to the
borders.

Because of the above, the expansion of the wave is very fast within the
organ. By time point T = 10 it has covered most of the area of the right
kidney. At the same time, the growth of the interface becomes much slower
after that, since it has reached the organ borders. Subsequently, even until
time point T = 360 the main movement is towards the local deviations and
not across the borders.

Figure 11 shows the expansion of the wave front near the borders of the
right kidney. The number of white marks within the interface decreases from
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(a) T = 10 (b) T = 20 (c) T = 40

(d) T = 50 (e) T = 360 (f) T = 370

Figure 11: The expansion of the interface on smooth image with speed term
F (~x) = e−|∇ADW (~x)|. Notice how slow the growth of the region is and how
the holes close as it develops.
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one time point to the next (only a handful of time points are illustrated).
This trend is explained by the fact that the exponential speed expression is
strong enough to hold back the growth of the interface across the border of
the organ for a sufficiently long time. By contrast, the smoothing technique
makes the inner area of the organ less diverse and enabling the interface to
break the resistance and include local high-gradient-magnitude zones.

Thus, a good smoothing technique always increases the efficiency of the
method. The speed term expression still remains task dependent and has to
be carefully chosen for each job. We choose Equation (3) with C = 1 based
on the results of our experiments.

4.4 Stopping criteria and morphological closing

Stopping criteria describe when and how the development of the propagating
front is stopped. Existing approaches to stopping criteria include ceasing
the development of the front at a fixed time [18] or histogram-based methods
[4]. The development of the front in Fast Marching slows down at points
with high gradient magnitude values (in particular, in the neighbourhood
of organ boundaries). We devise an algorithm for capturing the moment of
slow development of the front and ceasing the expansion process there.

In case of our favoured speed term function

F (~x) = e−|∇ADW (~x)|

its value decreases rapidly for high values of the gradient magnitude. This
means that the development of the propagating front slows down at points
in the image with high gradient magnitude values. Figure 11 shows this
fact in an evident way. Expanding from a single point the front reaches the
kidney border in about 40 time units. But even after another 220 units the
increase in the area it occupies is negligible.

However, even if the expansion speed becomes too small in the vicinity
of feature borders, the development of the front does not stop there. After a
long delay, the interface eventually “overshoots” the boundary and enters the
surrounding areas. This trend is illustrated in Figure 11f. Another reason
for this “overshooting” is that the organ boundaries are not always very
distinctive, i.e. the gradient magnitude is not high along the whole border,
but undergoes variations. Then the front crosses the border where the image
gradient magnitude values are low (Figure 12 illustrates the segmentation
of the aorta, which is physically connected to other blood vessels).

Taking into account everything stated, we considered two options for the
stopping criteria for the Fast Marching:

• stop the expansion of the front at a fixed point in time, or

• estimate the time when the development is sufficiently slow and stop
it then.
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Using a fixed point in time T0 as a stopping criterion for the propagating
front in Fast Marching suggests the following procedure:

1. Identify the seed points.

2. Run Fast Marching for the image volume from the initial seed points.

3. Make a set U of the points for which the time function value is less
than or equal to T0,

~x ∈ U ⇐⇒ T (~x) ≤ T0. (4)

4. Label the set U as the considered feature.

Several remarks about stopping the expansion at a fixed time point are
worth making. This approach is evidently preferable for organs without
very distinct boundaries. One such organ is the abdominal aorta. It has
numerous connections with other smaller blood vessels. The image gradient
magnitude at the connection points is usually not high and the wave expands
to the other vessels easily.

An obvious drawback of the stopping criterion with a fixed time point is
its inconsistency with the variable volume of each feature. If the parameter
T0 works well on only one slice of an image, the shape of the feature may
still be well underestimated for that parameter in case of, say, ten slices.
And, vice versa, if the organ is outlined well by Fast Marching with a fixed
time stop on ten slices, it may overshoot on a single slice.

Fortunately, our scheme for seed points choice mitigates this effect. The
seed points chosen from the feature approximations from the IPF are more
or less uniformly distributed over the whole area of the feature and their
number is proportional to the size of the feature. Then the propagating
front reaches the border for different feature volumes approximately at the
same time. This provides an alternative stopping criterion.

Namely, it is possible to capture slow development of the front and cease
the process there. The feature segmentation procedure can be refined as
follows:

1. Identify the seed points.

2. Run Fast Marching for the image volume from the seed points.

3. Sort all the lattice points into an array in increasing order of the time
function values resulting from the Fast Marching method.

4. Set two parameters: a small time step ∆T and a percentage P ∈
[0, 100].
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(a) The manual segmentation of the aorta and the seed points of Fast Marching for the
aorta. The blood vessel connected to the aorta is not included in the manually selected
region. All the seeds are within the aorta without extending to other blood vessels.

(b) The region at time T = 4.0 and at time T = 8.0 of Fast Marching. The region is still
within the borders of the targeted area in the first image. The targeted region has been
“overshot” by the wave in the second image.

(c) The region at time T = 12.0 and at time T = 16.0. The region continues developing in
the neighbouring blood vessel. By time T = 16.0 the region has already shaped the aorta
and the blood vessel connected to it.

Figure 12: The development of Fast Marching for the aorta.
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5. Start at the beginning of the sorted array of points and set T0 = ∆T ,
N = 0, ∆N = 0.

6. While the time value of the current point is ≤ T0, move forward along
the array, meanwhile increment the counters N , ∆N .

7. If ∆N < N ∗P/100 or all the points have been considered, then cease
the process. Label the set of the points from the beginning of the
sorted array to the current position as the considered feature.

8. If ∆N ≥ N ∗P/100, then increase T0 by ∆T and set ∆N = 0. Return
to Step 6.

The key idea is to consider equal intervals of points of time and count
the number of positions first reached by the front for each time interval. The
first such time interval with a sufficiently low number of new positions for
the front in comparison with the the number of all positions already reached
is selected and the propagation is brought to a stop right after that time
interval.

This approach is obviously better for internal organs with well expressed
boundaries. The slowdown in the movement of the interface for such features
is adequate and the scheme manages to capture it. These features include
the kidneys, the vertebra, etc. Our segmentation procedures for considered
organs are based on this approach.

The regions output by the Fast Marching are then finalised with several
iterations of morphological closing [13] in order to remove spurious holes
and to smooth out the boundaries.

5 Unsupervised Segmentation

Putting all the above elements together, we construct the following novel
unsupervised segmentation procedure:

1. Pre-process the data with windowing and anisotropic diffusion filtering
(as per §2)

2. Partition the data and construct the IPF (§3)

3. For each feature of interest, filter the resulting IPF for candidate re-
gions based on anatomical knowledge (§3)

4. Within candidate regions, choose seed points which are in an expected
healthy-organ greyscale range (§4.2)

5. Choose hypersurface front propagation and its parameters, and seed
it from Step 4 (§4.3)
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6. Advance the front until it makes little or no progress (§4.4)

7. Finalise the labelled regions with several iterations of morphological
closing (§4.4).

Steps 2–4 of the unsupervised method are illustrated on a slice in Fig. 4,
and some final results on another slice in 13(a).

6 Results and Validation

We have illustrated our findings on a variety of single slice volumes, so as
to make it possible to print each image. We have carried out extensive
experiments on 3D volumes of up to 50 CT slices, allowing for both parti-
tioning and Fast Marching to extend in all three dimensions. We varied the
algorithm parameters systematically, and the overall results were consistent
with what is summarised here.

6.1 Kidney segmentation

Our first quantitative evaluation is based on 7 CT volumes of 5–38 slices
each. A knowledgeable operator traced contours manually for kidneys with
a typical inter-operator variability of 93–94% (Dice coefficient). Table 1
shows the comparison between the manually traced gold standard and the
output of our unsupervised segmentation algorithm, quantified using Dice
similarity coefficient (DSC) [8], Jaccard similarity coefficient (JSC), true
positive volume fraction (TPVF), true negative volume fraction (TNVF),
precision (Prec) and relative volume difference (RVD) [32, 6]. The Dice
coefficient evaluation is split per kidney in Table 2 and is close to the inter-
observer variability. The evaluation outcome can readily be compared to
kidney segmentation results previously reported in the literature [7, 14].

Our dataset contains images of low resolution (5mm slice thickness, 0.68–
0.78mm pixel resolution), acquired with or without contrast agent admin-
istration and covers both healthy and diseased kidneys. However, we have
excluded cases with kidneys severely distorted with huge tumours, necrosis
and shifted within the abdomen, as depicted in Figure 14. For such dis-
eased organs with prominent malignant tissue, the Dice coefficient indicated
a lower match of around 30%, but these represent only a tiny fraction of
the overall cases studied. There is no agreed convention on whether to in-
clude tumourous tissue into the segmentation, and the decision is mostly
task-dependent. In our case only healthy tissue had been labelled in the
gold standard, yet the machine crossed the relatively weak boundaries be-
tween the tumour and the healthy tissue, and went on to label both, thus
mis-segmenting the organ.
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(a) Final results shown on a single axial CT slice

(b) 3D reconstruction of labelled features using marching cubes

Figure 13: 3D abdominal feature labelling
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Sim M Mean SD

DSC 90.37 ± 1.69

JSC 82.47 ± 2.8

1-RVD 92.57 ± 5.98

TPVF 92.81 ± 4.8

TNVF 99.86 ± 0.07

Prec 88.29 ± 2.47

Table 1: Match of our
segmentation against gold
standards with different
similarity measures

Kidney DSC

A 93.016
B 91.528
C 91.394
D 91.025
E 90.824
F 90.360
G 90.024
H 87.752
I 87.396

Table 2: Dice similar-
ity coefficient of our
segmentation and gold
standards per kidney

Figure 14: Extremely
tumourous left kidney
on which our algo-
rithm yields only 30%
DSC

Feature Dice Coefficient (% match)
Mean Std dev

Aorta 88.40 ± 1.90

Spinal Cord 89.54 ± 4.14

Spleen 84.14 ± 5.63

Vertebra 85.70 ± 7.57

Liver 81.44 ± 17.73

Right Kidney 74.65 ± 23.68

Left Kidney 75.70 ± 23.92

Table 3: Match of our segmentation against gold standards

6.2 Multi-organ abdominal segmentation

Our second quantitative evaluation is based on 5 patient image volumes
of 1–21 slices each. A consultant radiologist traced contours manually for
multiple abdominal organ, slice by slice. This amounted to many hours of
work for the several dozen slices.

Average DSC of the manually traced gold standard and the output of
our unsupervised segmentation algorithm for each organ is reported in Ta-
ble 3. For a segmented region S, Dice normalises the volume of its correctly
segmented parts (G ∩ S) over the average of S with its corresponding gold

standard G thus: Dice = 2 |G∩S|
|G|+|S| .

For particular images with healthy organs of expected anatomical shape
and radiodensity, the algorithm performed well, with the Dice coefficient
around 90%. However, for diseased organs with prominent malignant tissue,
the Dice coefficient indicated a lower match (cases like the one depicted in
Figure 14 were included in the dataset thus lowering the overal performance
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score). The overall mean in Table 3 is brought down by pathological cases
(such as the one illustrated in Figure 14 where there is a disagreement over
the inclusion of tumourous tissue between machine and manual segmentation
results.

The results of labelling a 40 slice volume have been piped into Marching
Cubes [33], yielding the unsupervised 3D reconstruction shown in Figure 13.
Once the 3D shapes are available, evaluation techniques (such as volume cal-
culations, evaluation of thickness, or rate of growth) become straightforward
to compute, as does preparation for 3D printing.

On a laptop with average configuration our unsupervised segmentation
algorithm runs for 20–30 minutes for an image volume of 20 slices. Running
it on a parallel super–computer would shorten the overall time, but we are
keen to maintain our image analysis software tool to lowest configuration
parameters so as to make it more readily accessible to clinicians.

7 Discussion

The proposed segmentation algorithm, being based on two different estab-
lished techniques, combines strengths and weaknesses of both. In other
words, the quality of the end result depends on how well the IPF partition
approximates the image structure and the performance of FMM at identify-
ing organ boundaries. We consider errors of the algorithm on several image
volumes of different sizes.

7.1 Image 1: A Single Slice

(a) Manually traced reference segmentation (b) The machine-segmented result

Figure 15: Segmentation results for a single slice Image 1
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Figure 16: The IPF region filtered for liver (Step 3) and FMM seeds gener-
ated from this region (Step 4) in Image 1

The ground truth segmentation and the result of our approach for a single
slice image are presented in Figure 15. It can be seen from the images that
FMM has a tendency of leaving out a narrow band at the neightbourhood of
organ boundaries (kidneys, aorta and spleen). This is because it slows down
the front development as soon as it gets closer to the organ boundaries
where the variability of image intensities increases rapidly. We perform
morphological operations on the FMM result to partially solve this issue but
a more elaborate solution may be needed (see Step 7 of the segmentation
procedure).

In case of the liver IPF regions covering it appear smaller than the ex-
pected average. As a result the seeds cover a very small proportion of the
actual liver region and an early slowdown in the front expansion is falsely
identified as arrival at the boundaries by the stopping criterion. Changing a
parameter of the stopping criterion fixes this problem for the specific image.

Finally, the highly porous parts of the spine are also badly identified as
can be seen from Figure 15. The reason is the local high variability of image
intensities in these regions. This trend continues in other images and is the
main factor bringing down the performance of our approach for vertebra
identification. One solution that will fix this problem is extra smoothing of
the image in the pre-processing step but this may cause the loss of important
details in other parts of the image.

7.2 Image 2: Twenty Slice Volume

Figure 17 depicts ground truth and our segmentation results for a twenty
slice image with pronounced renal tumours. The presence of malignant
tissue changes the spatial and intensity characteristics of the image. This
makes the task of segmentation harder to perform since the assumptions
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(a) Manually traced reference segmentation (b) The machine-segmented result

Figure 17: Segmentation results for a twenty slice Image 2

Figure 18: The IPF region filtered for liver (Step 3) and FMM seeds gener-
ated from this region (Step 4) in Image 2

from biological knowledge about the image structure may no longer be true.
As a result we see poor segmentation outcome.

The region identified as liver covers big chunks of neighbouring tissues
including a portion of the right kidney. This is a result of deficient par-
titioning of the image as shown in Figure 18. The IPF region selected in
Step 3 stretches to the right (this corresponds to anatomical left) to include
leftmost voxels of the right kidney and inferior vena cava. Since there are
FMM seed points for liver both in the right kidney and inferior vena cava,
parts of these are contained in the final result. We assume that a more
careful selection of seed points should be used in such cases to guarantee
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Figure 19: The IPF region filtered for left kidney (Step 3) and FMM seeds
generated from this region (Step 4) in Image 2

that all seeds are inside the set of voxels comprising the considered organ.
We have a partially similar situation for the left kidney (see Figure 19).

The organ is displaced by a big tumour and, because of overlapping greyscale
ranges in the tumour and the kidney, the region selected from the IPF
contains samples of both (the two yellow areas depicted in the first image in
Figure 19 are actually connected in 3D and form a single 3D region). The
filtering for seeds based on grayscale values eliminates most of the voxels
in the area of the tumour but even a single seed voxel in it is enough for
the FMM front to grow to cover both the left kidney and the malignant
formation.

The other difficulty here is that the boundary between the kidney and
the tumour is exceptionally weak. This means that an FMM front started
within the kidney can easily cross the border and leak into the tumour re-
gion. Anyway, this is an instance of the hardest cases of abdominal organ
segmentation and we don’t expect our approach to handle it in a faultless
manner. Semi-automated or manual tools can be used to correct segmenta-
tion results in such cases.

8 Conclusions and Future Work

The novelty of seeding a front propagation method automatically from a
carefully crafted hierarchical structure makes our segmentation entirely un-
supervised. Our current experiments on kidneys show a match between au-
tomated segmentation results and manually labelled gold standard of 90%.
This is similar to the state-of-the-art algorithms [7, 14], albeit on different
data. We are not aware of open access benchmarking data for the abdomen.

All our results have been validated qualitatively by a human judge.
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Quantitative comparisons with other approaches will be carried out in fu-
ture. Since new medical scanners produce data with increasingly higher res-
olution and accuracy, experiments on a wider class of volumes are needed,
including on MRI data (which we have started tackling).

Future experiments will include the possibility of marching towards a
feature from the outside inwards. This would be particularly suitable for
segmenting bone tissue.

Whilst the procedure is fully unsupervised, in practice users (particularly
clinicians) sometimes prefer to override some of the automatic features of
the algorithms. For that consideration, all our software tools provide both
automatic and manual parameter setting, providing a light level of super-
vision if desired. The overall time saver for the user is, in any case, the
automation of the overall segmentation, leaving them the much less onerous
option of fine tuning the final labelled volume as a post–processing task.
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