
Journal of Artificial Intelligence Research 55 (2016) 499-564 Submitted 07/15; published 02/16

Module Extraction in Expressive Ontology Languages
via Datalog Reasoning

Ana Armas Romero ana.armas@cs.ox.ac.uk

Mark Kaminski mark.kaminski@cs.ox.ac.uk

Bernardo Cuenca Grau bernardo.cuenca.grau@cs.ox.ac.uk

Ian Horrocks ian.horrocks@cs.ox.ac.uk

Department of Computer Science,

University of Oxford,

Wolfson Building, Parks Road,

Oxford, OX1 3QD, UK

Abstract

Module extraction is the task of computing a (preferably small) fragment M of an
ontology O that preserves a class of entailments over a signature of interest ⌃. Extracting
modules of minimal size is well-known to be computationally hard, and often algorithmically
infeasible, especially for highly expressive ontology languages. Thus, practical techniques
typically rely on approximations, where M provably captures the relevant entailments,
but is not guaranteed to be minimal. Existing approximations ensure that M preserves
all second-order entailments of O w.r.t. ⌃, which is a stronger condition than is required
in many applications, and may lead to unnecessarily large modules in practice. In this
paper we propose a novel approach in which module extraction is reduced to a reasoning
problem in datalog. Our approach generalises existing approximations in an elegant way.
More importantly, it allows extraction of modules that are tailored to preserve only specific
kinds of entailments, and thus are often significantly smaller. Our evaluation on a wide
range of ontologies confirms the feasibility and benefits of our approach in practice.

1. Introduction

Module extraction is the task of computing, given an ontology O and a signature of interest
⌃, a (preferably small) subset M of O (a module) that preserves the class of ⌃-entailments
of O relevant to the application at hand. Such a module is therefore indistinguishable from
O w.r.t. relevant ⌃-entailments, and the application can safely rely on M instead of O for
all tasks that concern only symbols from ⌃.

Module extraction has received a great deal of attention in recent years (Seidenberg
& Rector, 2006; Stuckenschmidt, Parent, & Spaccapietra, 2009; Cuenca Grau, Horrocks,
Kazakov, & Sattler, 2008; Kontchakov, Wolter, & Zakharyaschev, 2010; Del Vescovo, Par-
sia, Sattler, & Schneider, 2011; Nortje, Britz, & Meyer, 2013; Gatens, Konev, & Wolter,
2014). Modules have found numerous applications in ontology reuse (Cuenca Grau et al.,
2008; Jiménez-Ruiz, Cuenca Grau, Sattler, Schneider, & Berlanga Llavori, 2008), matching
(Jiménez-Ruiz & Cuenca Grau, 2011), debugging (Suntisrivaraporn, Qi, Ji, & Haase, 2008;
Ludwig, 2014) and classification (Armas Romero, Cuenca Grau, & Horrocks, 2012; Tsarkov
& Palmisano, 2012; Cuenca Grau, Halaschek-Wiener, Kazakov, & Suntisrivaraporn, 2010).

c�2016 AI Access Foundation. All rights reserved.

Armas Romero, Kaminski, Cuenca Grau, & Horrocks

The preservation of relevant entailments is formalised via inseparability relations (Konev,
Lutz, Walther, & Wolter, 2009). The strongest such notion is model inseparability, which re-
quires that it must be possible to turn any model ofM into a model of O by (re-)interpreting
only symbols outside ⌃; in this case, M preserves all second-order ⌃-entailments of O
(Konev, Lutz, Walther, & Wolter, 2013). A weaker and more flexible notion is that of
deductive inseparability, which only requires O and M to entail the same ⌃-formulas in
a particular query language. Unfortunately, the decision problems associated with module
extraction are generally of high complexity or even undecidable, especially for expressive
ontology languages. For model inseparability, checking whether M is a module of O w.r.t.
⌃ is undecidable even if O is restricted to the lightweight description logic (DL) EL (Konev
et al., 2013), for which standard reasoning is tractable (Baader, Brandt, & Lutz, 2005).
For deductive inseparability, the problem is typically decidable for lightweight DLs and
“reasonable” query languages, albeit still of high worst-case complexity; for instance, it is
ExpTime-complete for EL if we consider concept inclusions as the query language (Lutz
& Wolter, 2010). Practical algorithms that ensure minimality of the extracted modules are
known only for ELI ontologies satisfying a particular acyclicity condition (Konev et al.,
2013) as well as for dialects of DL-Lite (Kontchakov et al., 2010). To the best of our knowl-
edge, the complexity of module extraction for ontology languages that are not based on
DLs, such as variants of datalog± (Cal̀ı, Gottlob, Lukasiewicz, Marnette, & Pieris, 2010),
remains largely unexplored.

Practical module extraction techniques are typically based on sound approximations,
which ensure that the computed fragment M is a module (i.e., inseparable from O w.r.t.
⌃), but provide no minimality guarantee. The most popular such techniques are based
on a family of polynomially checkable conditions based on the notion of syntactic locality
(Cuenca Grau, Horrocks, Kazakov, & Sattler, 2007a; Cuenca Grau et al., 2008; Sattler,
Schneider, & Zakharyaschev, 2009). Each locality-based module M enjoys a number of
desirable properties w.r.t. the signature ⌃ of interest:

(P1) It is model inseparable from O, thus preserving all second-order ⌃-entailments of O.

(P2) It is depleting, in the sense that O \M is inseparable from the empty ontology; this
implies that no relevant information is “left behind” after extracting M from O.

(P3) It is self-contained, in that it preserves not only the relevant entailments w.r.t. ⌃, but
also w.r.t. all other symbols in its signature.

(P4) It is justification-preserving, in the sense that each subset-minimal fragment of O
preserving a ⌃-entailment (each justification) is contained in M.

(P5) It can be computed e�ciently, even for ontologies in expressive description logics.

Model inseparability ensures that modules can be used regardless of the query language
relevant to the application at hand. Depletingness and self-containment have been iden-
tified as important properties for ontology reuse and modular ontology development tasks
(Sattler et al., 2009; Jiménez-Ruiz et al., 2008). Finally, the preservation of justifications
enables the use of modules for optimising debugging and explanation services (Schlobach &
Cornet, 2003; Kalyanpur, Parsia, Horridge, & Sirin, 2007), as well as incremental reasoning
(Suntisrivaraporn, 2008; Cuenca Grau et al., 2010).

500

Module Extraction in Expressive Ontology Languages via Datalog Reasoning

Locality-based module extraction techniques are easy to implement, and surprisingly
e↵ective in practice. Their main drawback is that the extracted modules can be rather
large, which limits their usefulness in some applications (Del Vescovo, Klinov, Parsia, Sat-
tler, Schneider, & Tsarkov, 2013). One way to address this issue is to develop techniques
that approximate minimal modules more closely, while still fulfilling properties (P1)–(P4).
E↵orts in this direction have confirmed that locality-based modules can be far from optimal
in practice (Gatens et al., 2014); however, these techniques apply only to rather restricted
ontology languages and utilise algorithms with high worst-case complexity.

Another approach to computing smaller modules is to weaken properties (P1)–(P4),
which are stronger than many applications require. In particular, model inseparability is a
very strong condition, and deductive inseparability w.r.t. a query language suitable for the
application at hand would usually su�ce.

In this paper, we propose a novel approach that reduces module extraction to a reasoning
problem in the basic rule-based language datalog (Abiteboul, Hull, & Vianu, 1995; Dantsin,
Eiter, Gottlob, & Voronkov, 2001). The connection between module extraction and datalog
was first observed by Suntisrivaraporn (2008), who showed that locality?-module extraction
for EL ontologies could be reduced to propositional datalog reasoning. Our approach takes
this connection much farther, and generalises locality-based modules in an elegant way. The
key distinguishing features of our approach are as follows:

• It is applicable not only to ontology languages based on description logics, but also
to expressive rule-based knowledge representation formalisms that extend datalog
with existential quantification and disjunction in the head of rules (Cal̀ı et al., 2010;
Bourhis, Morak, & Pieris, 2013; Alviano, Faber, Leone, & Manna, 2012).

• It is sensitive to the di↵erent inseparability relations proposed in the literature; in
particular, we can extract deductively inseparable modules with the query language
tailored to the specific requirements of the application at hand. This allows us to
relax property (P1) and extract significantly smaller modules.

• In all cases, our modules are depleting and capture all justifications of relevant en-
tailments; moreover, our approach can be adapted to either ensure or dispense with
self-containment, depending on the application needs.

• It not only ensures tractability of module extraction for DL-based ontology languages,
but also enables the use of highly scalable o↵-the-shelf datalog reasoners.

We have implemented our approach using the RDFox datalog reasoner (Motik, Nenov,
Piro, Horrocks, & Olteanu, 2014). Our evaluation over complex, real-world, ontologies shows
that module size consistently decreases as we consider weaker inseparability relations, which
could significantly improve the usefulness of modules in applications.

2. Preliminaries

In Section 2.1 we introduce the language of first-order rules, which is powerful enough
to fully capture expressive rule-based ontology languages such as datalog± (Cal̀ı et al.,
2010), and datalog±,_ (Bourhis et al., 2013; Alviano et al., 2012), as well as all mainstream

501

Armas Romero, Kaminski, Cuenca Grau, & Horrocks

description logics (Baader, Calvanese, McGuinness, Nardi, & Patel-Schneider, 2003). Most
of our results in this paper hold for arbitrary knowledge bases consisting of such first-order
rules, and hence are applicable to a very wide range of knowledge representation formalisms.

In Section 2.2 we introduce the syntax and first-order semantics of the description logic
SROIQ (Horrocks, Kutz, & Sattler, 2006), which underpins the W3C standard ontology
language OWL 2 (Motik, Patel-Schneider, & Parsia, 2012; Cuenca Grau, Horrocks, Motik,
Parsia, Patel-Schneider, & Sattler, 2008). We then introduce a normal form for SROIQ
and establish its correspondence to first-order rules. Finally, in Section 2.3 we briefly recall
the well-known hyperresolution calculus for first-order logic (Bachmair & Ganzinger, 2001),
which we exploit in many of our technical results to show that a module preserves the
required consequences of the given ontology.

Throughout this paper, we assume basic familiarity with first-order logic and we use
standard first-order logic notions, such as predicates, constants, variables, terms, atoms,
formulas, sentences, interpretations and entailment (written |=). We define a signature as
a set of predicates; furthermore, given a first-order sentence �, we use Sig(�) to denote the
signature of �. We then say that � is a ⌃-sentence if Sig(�) ✓ ⌃. Analogously, we denote
with Ct(�) the set of constants in �. These definitions extend naturally to sets of sentences;
indeed, later on in the paper we will speak of ⌃-rules, ⌃-datasets, and ⌃-ontologies with the
obvious meaning. The restriction of signatures to contain just predicates and the separate
treatment of constants will be convenient for working with inseparability relations later on.

A set of function-free sentences F 0 is a (model) conservative extension of a set F if for
each model I of F there is a model J of F 0 with the same domain as I and such that
AI = AJ for each A 2 Sig(F) and aI = aJ for each a 2 Ct(F).

We deviate slightly from the standard definition of first-order logic in that our definition
does not include the nullary symbols > and ?, which are interpreted as true and false re-
spectively in every first-order interpretation. Similarly, we consider first-order logic without
equality ⇡ and hence we do not assume that ⇡ is interpreted as the identity relation over
the domain in every interpretation. Instead, we treat ?, > and ⇡ as ordinary predicates,
the meaning of which we axiomatise explicitly in every knowledge base. We assume that ?
is nullary, > is unary and ⇡ is binary. Given a set F of function-free sentences, we then
define the following sets of sentences F?, F>, and F⇡.

• F? is empty if F contains no occurrences of ?, and the singleton set {¬?} otherwise.

• F> is empty if F contains no occurrence of >; otherwise, it is the set

{ 8x
1

, . . . , xn[A(x
1

, . . . , xn) ! >(xi)] | A 2 Sig(F) n-ary, 1 i n }

• F⇡ is empty if F contains no occurrences of ⇡; otherwise, it consists of the sentences
(EQ1)–(EQ5) given next. Sentence (EQ1) is instantiated for each constant a 2 Ct(F);
furthermore, sentences (EQ2) and (EQ5) are instantiated for each n-ary predicate A

502

Module Extraction in Expressive Ontology Languages via Datalog Reasoning

in Sig(F) and each xi in x = x
1

, . . . , xn:

! a ⇡ a (EQ1)

8x [A(x) ! xi ⇡ xi] (EQ2)

8x, y [x ⇡ y ! y ⇡ x] (EQ3)

8x, y, z [x ⇡ y ^ y ⇡ z ! x ⇡ z] (EQ4)

8x, y [A(x) ^ xi ⇡ y ! A(x
1

, . . . , xi�1

, y, xi+1

, . . . , xn)] (EQ5)

We consider substitutions as functional mappings between two sets of terms. Given a
substitution � and a term t not in the domain of �, in an abuse of notation the expres-
sion t� denotes t. Substitutions can be applied to formulas: given an atom A(t

1

, ..., tn),
A(t

1

, ..., tn)� = A(t
1

�, ..., tn�), and given a non-atomic formula �, �� is the result of ap-
plying � to all atoms in �. This application is extended to sets of formulas in the natural
way. Given two substitutions � and ⌧ , their composition is the substitution �⌧ such that
t(�⌧) = (t�)⌧ for each t in the domain of �. We say that � and ⌧ are compatible if they
coincide over the intersection of their domains. If � and ⌧ are compatible, their union is the
substitution � [⌧ such that t(� [⌧) = t� for each t in the domain of � and t(� [⌧) = t⌧
for each t in the domain of ⌧ . Finally, we use dom(�) (resp. range(�)) to denote the domain
(resp. the range) of �.

2.1 Rule-Based First-Order Languages

Rule-based languages are prominent knowledge representation formalisms closely related to
ontology languages (Dantsin et al., 2001; Bry, Eisinger, Eiter, Furche, Gottlob, Ley, Linse,
Pichler, & Wei, 2007; Cal̀ı et al., 2010). In this paper, we focus on monotonic formalisms
and hence on rule languages that can be seen as fragments of first-order logic. We next
define a general notion of first-order rule which underpins the datalog± and datalog±,_

families of languages (Cal̀ı et al., 2010; Alviano et al., 2012).
A fact � is a function-free ground atom. A finite set of facts is called a dataset. A rule r

is a function-free first-order sentence of the form

8x['(x) ! 9y (x,y)] (1)

where x and y are disjoint vectors of variables, ' is a (possibly empty) conjunction of distinct
atoms over constants and variables from x; and is built from atoms over constants and
variables from x [y using conjunction (^) and disjunction (_). Note that any fact is also
a rule. Formula ' is the rule body and 9y (x,y) is the rule head. The head of a rule can
be empty, in which case we represent it as ⇤. Universal quantifiers in rules are omitted
for brevity. Rules are required to be safe, that is, all universally quantified variables in the
head must occur in the body. A rule is datalog if its head is either empty or it consists
of a single atom where all variables are universally quantified. Note that, for any set F of
function-free sentences, the set F? [F> [F⇡ contains only datalog rules.

A (first-order) ontology O is a finite set of rules satisfying O? [O> [O⇡ ✓ O. We
assume w.l.o.g. that di↵erent rules in O do not share existentially quantified variables and
that the only rule with empty head is ? ! ⇤.

503

Armas Romero, Kaminski, Cuenca Grau, & Horrocks

roles
⇡(R, x, y) = R(x, y)

⇡(R�, x, y) = R(y, x)
concepts

⇡(?c, x) = ?
⇡(>c, x) = >(x)
⇡(o, x) = x ⇡ o

⇡(¬C, x) = ¬⇡(C, x)
⇡(C1 u C2, x) = ⇡(C1, x) ^ ⇡(C2, x)
⇡(C1 t C2, x) = ⇡(C1, x) _ ⇡(C2, x)
⇡(9R.C, x) = 9y[⇡(R, x, y) ^ ⇡(C, y)]
⇡(8R.C, x) = 8y[⇡(R, x, y) ! ⇡(C, y)]

⇡(9R.Self, x) = ⇡(R, x, x)
⇡(� nR.C, x) = 9x1, . . . , xn[

V
i(⇡(R, x, xi) ^ ⇡(C, xi)) ^

V
i 6=j ¬(xi ⇡ xj)]

⇡(nR.C, x) = 8x1, . . . , xn+1[
V

i(⇡(R, x, xi) ^ ⇡(C, xi)) !
W

i 6=j xi ⇡ xj]
axioms

⇡(C1 v C2) = 8x[⇡(C1, x) ! ⇡(C2, x)]
⇡(R1 � · · · �Rm v S) = 8x1, . . . , xm+1[

Vm
i=1 ⇡(Ri, xi, xi+1) ! ⇡(S, x1, xm+1)]

⇡(Disj(R1, R2)) = 8x, y[⇡(R1, x, y) ^ ⇡(R2, x, y) ! ?]
⇡(Ref(R)) = 8x[>(x) ! ⇡(R, x, x)]

Figure 1: Semantics of SROIQ via translation into first-order logic.

A datalog program is an ontology containing only datalog rules. Given a datalog program
P and a dataset D, their materialisation, denoted with P(D), is the set of facts entailed
by P [D. Such materialisation can be computed in time polynomial in the size of D using
forward chaining (Abiteboul et al., 1995; Dantsin et al., 2001).

To conclude this section, we define the languages typically used for querying first-order
ontologies. We define a Boolean positive existential query (Boolean PEQ) as a non-empty
sentence q built from function-free atoms using only 9, ^ and _; such a query holds w.r.t.
an ontology O if O |= q. A Boolean PEQ is a conjunctive query (CQ) if it is disjunction-
free. The following proposition, the proof of which is straightforward, establishes a useful
connection between Boolean PEQ evaluation and entailment of first-order rules.

Proposition 1. Let O be an ontology, r =
Vn

i=1

�i(x) ! 9y (x,y) a rule, and let � be
a substitution mapping all universally quantified variables in r to fresh distinct constants.
Then, O |= r i↵ O [{�i�}ni=1

|= 9y �.

2.2 Description Logics

Description logics (DLs) (Baader et al., 2003) are a family of knowledge representation
formalisms that correspond to decidable fragments of first-order logic. DLs are the logi-
cal formalisms underpinning the standard ontology languages: OWL DL is based on the
description logic SHOIN (Horrocks, Patel-Schneider, & van Harmelen, 2003), whereas
its revision OWL 2 is based on the more expressive logic SROIQ (Horrocks et al., 2006;
Cuenca Grau et al., 2008; W3C OWL Working Group, 2012).

504

Module Extraction in Expressive Ontology Languages via Datalog Reasoning

The basic building blocks in SROIQ are pairwise disjoint countable sets of atomic
concepts, which correspond to unary predicates, atomic roles, which correspond to binary
predicates, and individuals, which correspond to constants. A role R is either an atomic
role or the inverse S� of an atomic role S. Complex concepts are constructed according to
the following grammar, where ?c and >c are the special bottom and top concepts, A is an
atomic concept, R is a role, o is an individual and n � 1:

C ::= ?c | >c | A | {o} | ¬C | C
1

u C
2

| C
1

t C
2

|
9R.C | 8R.C | 9R.Self | �nR.C | nR.C

We assume that concept expressions of the form �1R.C are replaced by their equivalent
9R.C. A general concept inclusion axiom (GCI) is an expression of the form C

1

v C
2

,
where C

1

and C
2

are concepts. A role inclusion axiom (RIA) is an expression of the form
R

1

� · · ·�Rm v R where each Ri is a role and R is an atomic role. A role disjointness axiom
is an expression of the form Disj(R

1

, R
2

) with R
1

and R
2

roles. Finally, a reflexivity axiom
is an expression of the form Ref(R) with R a role.

A SROIQ ontology is a finite set of GCIs, RIAs, role disjointness and reflexivity ax-
ioms. In order to ensure the decidability of basic reasoning tasks, each SROIQ ontology
must satisfy certain additional conditions (e.g., the set of RIAs must satisfy a regularity
condition); these conditions are, however, immaterial to the results in this paper and we
refer the reader to the work of Horrocks et al. (2006) for further details.

The semantics of SROIQ can be given by a direct translation into first-order logic
(Baader et al., 2003; Motik, 2006) using the mapping function ⇡ in Figure 1. Given a
SROIQ ontology O, let FO = {⇡(↵) | ↵ 2 O}; we then define

⇡(O) = FO [F?
O [F>

O [F⇡
O

A first-order interpretation is a model of O if it is a model of ⇡(O).
Note that ⇡(O) is not always a set of first-order rules as defined in Section 2.1. However,

O can always be polynomially normalised into an entailment preserving SROIQ ontology
O0 such that ⇡(O0) is a set of rules. We next define normalised SROIQ ontologies and
assume from here onwards (unless otherwise stated) that SROIQ ontologies are normalised.

Definition 2. A SROIQ ontology O is normalised if it consists only of axioms of the form

A v ?c A v {o} >c v A {o} v A A v B
1

tB
2

A
1

uA
2

v B

A v 9R.B A v 9R.Self 9R.A v B 9R.Self v A A v nR.B

R
1

�R
2

v S R� v S Disj(R,S) Ref(R)

with A
(i), B(i) atomic concepts, o an individual, R

(i), S atomic roles, and n � 1. ⇧

Table 1 shows the application of ⇡ to normalised axioms. Clearly, ⇡(O) is a set of rules
whenever O is normalised. Moreover, ⇡ establishes a bijection between O and ⇡(O) in this
case. Since O and ⇡(O) are semantically equivalent, it is thus natural to identify them, and
we shall do so in the remainder of this paper.

505

Armas Romero, Kaminski, Cuenca Grau, & Horrocks

↵ ⇡(↵)
A v ?c A(x) ! ?
A v {o} A(x) ! x ⇡ o
>c v A >(x) ! A(x)
{o} v A (! A(o))
A v B

1

tB
2

A(x) ! B
1

(x) _B
2

(x)
A

1

uA
2

v B A
1

(x) ^A
2

(x) ! B(x)
A v 9R.B A(x) ! 9y[R(x, y) ^B(y)]
A v 9R.Self A(x) ! R(x, x)
9R.A v B R(x, y) ^A(y) ! B(x)
9R.Self v A R(x, x) ! A(x)
A v nR.B A(x) ^

Vn+1

i=1

[R(x, yi) ^B(yi)] !
W

i 6=j yi ⇡ yj
R

1

�R
2

v S R
1

(x, y) ^R
2

(y, z) ! S(x, z)
R� v S R(x, y) ! S(y, x)
Disj(R,S) R(x, y) ^ S(x, y) ! ?
Ref(R) >(x) ! R(x, x)

Table 1: Correspondence between normalised SROIQ axioms and rules.

Proposition 3. Let O be a SROIQ ontology and let O0 be the result of exhaustively
applying to O the rewriting rules in Figure 2. Then, O0 satisfies the following properties:
(i) it is normalised; (ii) it is of size polynomial in the size of O (assuming unary encoding
of numbers); and (iii) it is a conservative extension of O.

Proof. It is easy to see that a rewrite rule is always applicable to every axiom that is not
normalised; furthermore, no rule is applicable to normalised axioms. Thus, O0 is normalised.
Furthermore, note that the rules in Figure 2 are a syntactic variant of the structural trans-
formation in first-order logic (Nonnengart & Weidenbach, 2001). This implies that O0 can
be computed in time polynomial in the size of O (assuming unary encoding of numbers),
and also that it is a conservative extension of O.

2.3 Hyperresolution and Proofs

Reasoning w.r.t. ontologies can be realised by means of hyperresolution (Robinson, 1965;
Bachmair & Ganzinger, 2001), which generalises forward chaining for datalog.

Hyperresolution is applicable to sets of first-order clauses—universally quantified sen-
tences of the form

V
i �i !

W
j �j with �i and �j atoms (possibly containing function sym-

bols). Thus, it is only applicable to ontologies containing existentially quantified rules after
Skolemisation and subsequent transformation into Conjunctive Normal Form (CNF).

For each rule r of the form (1) and each existentially quantified variable y in r, let f r
y

be a function symbol globally unique for r and y of arity |x|, and let ✓
sk

be the substitution
such that ✓

sk

(y) = f r
y (x) for each r and y. The Skolemisation of r is the sentence

sk(r) = '(x) ! (x,y)✓
sk

506

Module Extraction in Expressive Ontology Languages via Datalog Reasoning

?c v C)
D v {o}) X v {o}, D v X

9S�.D v C) 9P.X v D, S� v P
9S.D v C) 9S.X v C, D v X

�mS�.D v C) �mP.D v C, S� v P
�mS.D v C) >c v (m�1)S.D t C
D u C

1

v C
2

) X u C
1

v C
2

, D v X
¬C

1

v C
2

) >c v C
1

t C
2

C
1

t C
2

v C
3

) C
1

v C
3

, C
2

v C
3

8S�.C
1

v C
2

) 8P.C
1

v C
2

, P� v S
8S.C

1

v C
2

) >c v 9S.X t C
2

, X u C v ?c

9S�.Self v C) 9P.Self v C, S� v P
(m�1)S�.C

1

v C
2

) (m�1)P.C
1

v C
2

, P� v S
(m�1)S.C

1

v C
2

) >c v �mS.C
1

t C
2

C v >c)
{o} v D) {o} v X, X v D

C v 9S�.D) C v 9P.D, P� v S
C v 9S.D) C v 9S.X, X v D

C v 8S�.D) C v 8P.D, S� v P
C v 8S.D) C v 8S.X, X v D

C v 9S�.Self) C v 9P.Self, P� v S
C v nS�.D) C v nP.D, S� v P
C v nS.D) C v nS.X, X v D
C
1

v D t C
2

) C
1

v X t C
2

, X v D
C
1

v ¬C
2

) C
1

u C
2

v ?c

C
1

v C
2

u C
3

) C
1

v C
2

, C
1

v C
3

C
1

v �mS�.C
2

) C
1

v �mP.C
2

, P� v S
C
1

v �mS.C
2

) C
1

v 9S.Xi, Xi v C
2

, Xi uXj v ?c (1i<jm)
D

1

v D
2

) D
1

v X, X v D
2

R
1

�R
2

�R
3

� · · · �Rk v S) R
1

�R
2

v P, P �R
3

� · · · �Rk v S
Q� �R v S) P �R v S, Q� v P
R �Q� v S) R � P v S, Q� v P
Disj(R,Q�)) Disj(R,P), Q� v P
Disj(Q�, R)) Disj(P,R), Q� v P

Ref(Q�)) Ref(Q)

Figure 2: Normalisation of SROIQ axioms, where C
(i) are concepts, D

(i) are non-atomic
concepts di↵erent from ?c and >c, X is a fresh atomic concept, Q and S are
atomic roles, R

(i) are roles, P is a fresh atomic role, and m � 2, n � 1, k � 3.

A CNF of sk(r) is a set of first-order clauses that is a conservative extension of sk(r). Such
a CNF can be obtained in polynomial time using the standard structural transformation
(Nonnengart &Weidenbach, 2001). In this paper we consider an arbitrary but fixed function

507

Armas Romero, Kaminski, Cuenca Grau, & Horrocks

 mapping each rule r to some CNF of sk(r). The function extends to ontologies in the
obvious way, and we refer to (O) as a clausification of O. By the well-known properties of
Skolemisation and the structural transformation we have that O |= � i↵ (O) |= � for each
ontology O and each first-order sentence � over Sig(O).

Let r =
Vn

i=1

�i !
Wm

j=1

�j be a clause and let 'i = i _ ⇠i with 1 i n be ground
disjunctions of atoms where ⇠i is a single atom; furthermore, let � be a most general unifier
(MGU) of each �i, ⇠i. The ground disjunction of atoms

Wn
i=1

 i_
Wm

j=1

�j� is a hyperresolvent
of r and '

1

, . . . ,'n. This disjunction can be empty, in which case we denote it with ⇤. Let
C be a set of clauses, D a dataset and ' a disjunction of ground atoms. A hyperresolution
proof (or simply a proof) of ' in C [D is a pair ⇢ = (T,�) where T is a directed, rooted
tree, and � is a mapping from nodes in T to disjunctions of ground atoms such that for
each node v in T the following properties are satisfied:

1. if v is the root of T then �(v) = ',

2. if v is a leaf in T then either (! �(v)) 2 C or �(v) 2 D, and

3. if v has children w
1

, . . . , wn then �(v) is a hyperresolvent of a clause from C and
�(w

1

), . . . ,�(wn).

The support of ⇢, denoted by supp(⇢), is the set of clauses in C that take part in ⇢ as
described in properties 2 and 3 above. We write C [D ` ' to indicate that there exists a
proof of ' in C [D. Hyperresolution is sound (if C [D ` ' then C [D |= '), and complete
in the following sense: if C [D |= ' then there exists ✓ ' such that C [D ` (Robinson,
1965). In particular, C is unsatisfiable i↵ C [D ` ⇤.

Given proofs ⇢ = (T,�) and ⇢0 = (T 0,�0), we say that ⇢ is embeddable into ⇢0 if there
exists a mapping ◆ : T ! T 0 satisfying the following properties for each v 2 T : (i) if v is a
leaf of T , then ◆(v) is a leaf of T 0; (ii) if w is an ancestor of v in T then ◆(w) is an ancestor
of ◆(v) in T 0, and (iii) �(v) ✓ �0(◆(v)) [{?}. Furthermore, given a substitution ⌧ , we say
that ⇢ is embeddable into ⇢0 modulo ⌧ if it is embeddable into the proof (T 0,�0⌧), where
�0⌧ (v) = �0(v)⌧ for each v 2 T 0.

3. Module Extraction

In this section, we recapitulate the key notions of inseparability relation and module that
have been proposed in the description logic literature (Cuenca Grau et al., 2008; Kontchakov
et al., 2010; Konev et al., 2013; Sattler et al., 2009; Konev et al., 2009). Furthermore, when
required, we adapt these notions to the setting of first-order rules and prove some basic
results that will be exploited throughout this paper.

3.1 Inseparability Relations and Modules

Intuitively, given an ontology O and a signature ⌃, a module of O w.r.t. ⌃ is a subset M
of O that is indistinguishable from O w.r.t. reasoning tasks where only predicates in ⌃ are
considered of interest. The indistinguishability criteria depend on the specific task at hand,
and are usually formalised by means of inseparability relations.

508

Module Extraction in Expressive Ontology Languages via Datalog Reasoning

Definition 4. An inseparability relation is a family S = {⌘S
⌃

| ⌃ a set of predicates } of
equivalence relations between ontologies satisfying the following properties:

• if O0 is a conservative extension of O and ⌃ = Sig(O), then O ⌘S
⌃

O0; and

• O
1

⌘S
⌃

O implies O
2

⌘S
⌃

O for all O
1

✓ O
2

✓ O and ⌃. ⇧

The first property ensures that inseparability is stable under model-preserving trans-
formations, whereas the second one ensures that it is consistent with the monotonicity of
first-order logic. The following definition captures the most common inseparability relations
studied in the literature.

Definition 5. For a signature ⌃, we say that ontologies O and O0 are

• ⌃-model inseparable (O ⌘m

⌃

O0), if for every model I of O (resp. of O0) there exists a
model J of O0 (resp. of O) with the same domain such that AI = AJ for each A 2 ⌃.

• ⌃-query inseparable (O ⌘q

⌃

O0) if for each Boolean PEQ q over ⌃ and dataset D over
⌃ we have O [D |= q i↵ O0 [D |= q.

• ⌃-fact inseparable (O ⌘f

⌃

O0) if for each fact � over ⌃ and dataset D over ⌃ we have
O [D |= � i↵ O0 [D |= �.

• ⌃-implication inseparable (O ⌘i

⌃

O0) if for each ⌃-rule r of the form A(x) ! B(x) we
have O |= r i↵ O0 |= r. ⇧

A few observations about the notions introduced in Definition 5 are in order. First,
note that in the definition of query and fact inseparability the quantification over queries
and datasets is relative to the same signature ⌃; this is the standard convention adopted in
the literature (Lutz & Wolter, 2010; Baader, Bienvenu, Lutz, & Wolter, 2010). Second, the
restriction to Boolean queries in the definition of query inseparability is strictly technical:
the obvious extension to non-Boolean queries leads to an equivalent definition. Finally,
observe that our notion of fact inseparability is the natural generalisation of inseparability
w.r.t. atomic instance queries in description logics (Lutz & Wolter, 2010).

Example 6. Let us consider the ontology Oex from Figure 3, which will serve as a running
example. Let us also consider the signatures ⌃i and fragments Mi of Oex given next:

⌃
1

= {B,C,D,H} M
1

= {r
5

, r
6

, r
7

, r
8

}
⌃
2

= {A,B} M
2

= ;
⌃
3

= {A,C,D,R} M
3

= {r
1

, r
2

}

The only non-tautological ⌃
1

-implication entailed by Oex is D(x) ! H(x), which also
follows fromM

1

; thus,M
1

is ⌃
1

-implication inseparable fromOex. Furthermore, any subset
of Oex not containing M

1

does not entail D(x) ! H(x) and is hence not ⌃
1

-implication
inseparable from Oex. As we will see later on, the requirement of fact inseparability is
stronger than that of implication inseparability; indeed, M

1

is not ⌃
1

-fact inseparable from
Oex since, for D

1

= {B(a), C(a)}, we have Oex [D
1

|= D(a) but M
1

[D
1

6|= D(a).

509

Armas Romero, Kaminski, Cuenca Grau, & Horrocks

r
1

: A(x) ! 9y
1

[R(x, y
1

) ^B(y
1

)] Av 9R.B
r
2

: A(x) ! R(x, o) Av 9R.{o}
r
3

: B(x) ^ C(x) ! D(x) B u C vD
r
4

: R(x, y) ^ C(y) ! E(x) 9R.C v E
r
5

: D(x) ! F (x) _G(x) D v F tG
r
6

: F (x) ! 9y
2

S(x, y
2

) F v 9S.>c

r
7

: S(x, y) ! H(x) 9S.>c vH
r
8

: G(x) ! H(x) GvH

Figure 3: Example ontology Oex in both rule and DL notation.

It can be checked that M
2

is ⌃
2

-fact inseparable from Oex. It is, however, not ⌃
2

-query
inseparable: for D

2

= {A(a)}, we have Oex [D
2

|= 9yB(y) but M
2

[D
2

6|= 9yB(y).
Finally, consider M

3

and ⌃
3

. As we will see later on, M
3

is ⌃
3

-query inseparable
from Oex; however, it is not ⌃

3

-model inseparable. Indeed, the interpretation I where
�I = {a, o}, AI = {a}, BI = CI = {o}, DI = ; and RI = {(a, o)} is a model of M

3

.
This interpretation, however, cannot be extended to a model of r

3

(or, consequently, to a
model of O) without reinterpreting A, C, D or R. We will also see that to ensure ⌃

3

-model
inseparability it su�ces to extend M

3

with rule r
3

. ⇧

Model inseparability can be characterised in terms of preservation of second-order con-
sequences (Konev et al., 2013): ontologies O and O0 are ⌃-model inseparable if and only
if for each second-order ⌃-sentence ' we have O |= ' i↵ O0 |= '. Additionally, as we
show next, query and fact inseparability can be characterised in terms of preservation of
first-order rules and datalog rules, respectively.

Proposition 7. The following statements hold for each signature ⌃ and each pair of
ontologies O

1

and O
2

:

1. O
1

⌘q

⌃

O
2

i↵ O
1

|= r , O
2

|= r holds for each ⌃-rule r with non-empty head.

2. O
1

⌘f

⌃

O
2

i↵ O
1

|= r , O
2

|= r holds for each datalog ⌃-rule r with non-empty head.

Proof. We prove the first statement; the second one is analogous. Suppose O
1

⌘q

⌃

O
2

and consider an arbitrary rule r =
Vn

i=1

�i(x) ! 9y (x,y) over ⌃ such that 6= ⇤, and
a substitution � mapping universally quantified variables in r to fresh distinct constants.
Furthermore, consider the dataset D = {�i�}ni=1

, and the Boolean PEQ q = 9y (x,y)�
(note that q is indeed a Boolean PEQ since by hypothesis is non-empty). By Proposition 1,
Oi |= r i↵ Oi [D |= q. Together with O

1

⌘q

⌃

O
2

, this implies that O
1

|= r , O
2

|= r.
Assume now that O

1

|= r , O
2

|= r holds for each ⌃-rule r with a non-empty head. Let
q be a Boolean PEQ over ⌃ and D a ⌃-dataset and consider the rule r =

V
�2D � ! q. By

Proposition 1 we have Oi[D |= q i↵ Oi |= r, and since, by assumption, O
1

|= r , O
2

|= r, it
follows that O

1

[D |= q , O
2

[D |= q and hence O
1

and O
2

are ⌃-query inseparable.

It immediately follows that the inseparability relations in Definition 5 are naturally
ordered from strongest to weakest for each non-trivial ⌃ as given next:

⌘m

⌃

(⌘q

⌃

(⌘f

⌃

(⌘i

⌃

510

Module Extraction in Expressive Ontology Languages via Datalog Reasoning

Furthermore, we can now identify the classes of entailments that are relevant to each insep-
arability relation.

Definition 8. For each inseparability relation S 2 {m, q, f, i}, let relS be the function
mapping each ontology O and signature ⌃ to a set of relevant entailments as follows:

relS(O,⌃) =

8
>><

>>:

{� | O |= � and � is a second-order ⌃-sentence } if S = m

{ r | O |= r and r is a ⌃-rule with non-empty head } if S = q

{ r | O |= r and r is a datalog ⌃-rule with non-empty head } if S = f

{ r | O |= r and r is of the form A(x) ! B(x) with A,B 2 ⌃ } if S = i

⇧

The following theorem establishes that the inseparability relations in Definition 5 are
fully characterised by the preservation of relevant ⌃-entailments as in Definition 8.

Theorem 9. Let O and O0 be ontologies, ⌃ a signature, and let S 2 {m, q, f, i}. Then,
O ⌘S

⌃

O0 if and only if relS(O,⌃) = relS(O0,⌃).

Proof. A direct consequence of Definitions 5 and 8, Proposition 7 and the characterisation
of model inseparability in terms of second-order entailments in (Konev et al., 2013).

Inseparability relations allow us to formalise modules as well as their desirable properties.

Definition 10. Let O be an ontology, ⌃ a signature, and S an inseparability relation, and
let M ✓ O. We say that M is a ⌘S

⌃

-module of O if O ⌘S
⌃

M. Furthermore, M is

• minimal if no M0 (M is a ⌘S
⌃

-module of O;

• self-contained if O ⌘S
⌃[Sig(M)

M;

• depleting if O \M ⌘S
⌃

;; and strongly depleting if O \M ⌘S
⌃[Sig(M)

;.

Finally, we define a justification in O of a sentence � such that O |= � as a subset-minimal
O0 ✓ O such that O0 |= �. We say that M is justification-preserving if for each � in
relS(O,⌃) and each justification O0 of � in O we have O0 ✓ M. ⇧

Example 11. Consider again the ontologies and signatures in Example 6. We can see that
each Mi is a module of Oex; in particular, M

1

is a ⌘i

⌃1
-module, M

2

is a ⌘f

⌃2
-module , M

3

is a ⌘q

⌃3
-module, and M

3

[{r
3

} is a ⌘m

⌃3
-module. ⇧

The inseparability requirement ensures that modules can be used instead of O for rea-
soning purposes, provided that the entailments relevant to the application at hand are
captured by the given inseparability relation and contain only symbols from ⌃.

Minimality ensures that the module contains as little irrelevant information as possible
while still satisfying the inseparability requirement. Although minimality is clearly desirable
in most applications of modules (e.g., reasoning over small ontology subsets is typically
preferable to reasoning over the whole ontology), extracting modules of minimal size is
invariably very hard (and often algorithmically infeasible) (Lutz & Wolter, 2010; Konev

511

Armas Romero, Kaminski, Cuenca Grau, & Horrocks

et al., 2013); thus, practical techniques aim at computing modules that are typically much
smaller than O, albeit not necessarily minimal.

Self-contained modules are inseparable from O not only w.r.t. the relevant signature
⌃, but also w.r.t. their own signature. Depletingness ensures that no relevant information
is “left behind” after extracting the module from O, i.e., that O \ M is inseparable from
the empty ontology. The most basic form of depletingness is formulated in terms of ⌃,
whereas a stronger variant requires inseparability w.r.t. the symbols in M as well. Self-
contained and depleting modules are especially well-suited for ontology reuse and modular
ontology development applications. For instance, if M is both self-contained and depleting,
the developer of O can remodel the sub-domain characterised by ⌃ by replacing M in O
with a new set of axioms, with the guarantee that any changes performed will not have any
unintended interactions with the rest of O.

Justification-preservation enables the use of modules for ontology debugging and repair
(Schlobach & Cornet, 2003; Kalyanpur et al., 2007; Kalyanpur, Parsia, Sirin, & Hendler,
2005; Horridge, Parsia, & Sattler, 2008; Kalyanpur, Parsia, Sirin, & Cuenca Grau, 2006).
The justification of an entailment is a useful form of explanation; furthermore, ontology
repair services typically rely on the computation of all justifications of an unintended en-
tailment as a first step towards obtaining a repair plan. Computing justifications, however,
is a computationally intensive task and practical module extraction techniques have been
e↵ectively exploited to optimise this process (Suntisrivaraporn et al., 2008).

We conclude this section by briefly discussing the impact of normalisation on module
extraction. As pointed out in Section 2.2, our technical results are applicable to ontologies
consisting of rules; when referring to DL ontologies, we implicitly assume they are given in
rule form and are therefore normalised. We argue that normalisation techniques stemming
from the structural transformation preserve inseparability and hence it is possible to obtain
a module for a DL ontology once a module for its normalisation has been computed.

Definition 12. A normalisation function norm maps SROIQ ontologies to normalised
SROIQ ontologies s.t. the following holds for all ontologies in its domain:

• norm(O) is a conservative extension of O; and

• O
1

✓ O
2

implies norm(O
1

) ✓ norm(O
2

). ⇧

Definition 12 captures the standard normalisation techniques stemming from the struc-
tural transformation, such as the one discussed in Section 2.2. Furthermore, it is typically
straightforward in practice to keep track of the correspondence between the axioms in the
original ontology O and those in norm(O). As shown by the following proposition, this
correspondence allows us to e�ciently obtain a module of O once a module for norm(O)
has been computed.

Proposition 13. Let ⌃ be a signature, S an inseparability relation, and norm a normali-
sation function. Then, M ⌘S

⌃

O i↵ norm(M) ⌘S
⌃

norm(O).

Proof. By definition, S satisfies that O
1

✓ O
2

✓ O and O
1

⌘S
⌃

O implies O
2

⌘S
⌃

O.
Therefore, if norm(M) contains a ⌘S

⌃

-module of norm(O) then norm(M) is a ⌘S
⌃

-module
of norm(O) itself. On the other hand, since norm(O) (resp. norm(M)) is a conservative

512

Module Extraction in Expressive Ontology Languages via Datalog Reasoning

↵ ?-local w.r.t. ⌃ >-local w.r.t. ⌃
A v ?c if A /2 ⌃ never
A v {o} if A /2 ⌃ never
>c v A never if A /2 ⌃
{o} v A never if A /2 ⌃

A v B
1

tB
2

if A /2 ⌃ if B
1

/2 ⌃ or B
2

/2 ⌃
A

1

uA
2

v B if A
1

/2 ⌃ or A
2

/2 ⌃ if B /2 ⌃
A v 9R.B if A /2 ⌃ if {R,B} \ ⌃ = ;
A v 9R.Self if A /2 ⌃ if R /2 ⌃
9R.A v B if R /2 ⌃ or A /2 ⌃ if B /2 ⌃
9R.Self v A if R /2 ⌃ if B /2 ⌃
A v mR.B if A /2 ⌃ or R /2 ⌃ or B /2 ⌃ never
R

1

�R
2

v S if R
1

/2 ⌃ or R
2

/2 ⌃ if S /2 ⌃
R v S� if R /2 ⌃ if S /2 ⌃
Disj(R,S) if R /2 ⌃ or S /2 ⌃ never
Ref(R) never if R /2 ⌃

Table 2: Syntactic locality for normalised SROIQ axioms

extension of O (resp. of M), and we can asume w.l.o.g. that ⌃ contains no symbols from
Sig(norm(O)) \ Sig(O), we have that norm(O) ⌘S

⌃

O (resp. norm(M) ⌘S
⌃

M). Since ⌘S
⌃

is
an equivalence relation, it follows that M ⌘S

⌃

O i↵ norm(M) ⌘S
⌃

norm(O).

3.2 Syntactic Locality

For many of the inseparability relations introduced in Section 3.1, checking whether M is
a module for O w.r.t. ⌃ is typically of very high complexity, and often undecidable, even
for rather lightweight ontology languages (Lutz & Wolter, 2010; Konev et al., 2013).

Consequently, practical module extraction techniques are typically based on approxi-
mations, which ensure that the computed M is a module, yet not necessarily a minimal
one. One such approximation that is often exploited in practice is based on the notion of
syntactic locality (Cuenca Grau et al., 2007a; Cuenca Grau, Horrocks, Kazakov, & Sattler,
2007b; Sattler et al., 2009; Cuenca Grau et al., 2008).

Intuitively, a normalised SROIQ axiom is ?-local (resp. >-local) if treating all atomic
concepts and roles outside ⌃ as the ? (resp. >) concept and role, respectively, leads to the
axiom being an “obvious” tautology.

Definition 14. A normalised SROIQ axiom ↵ is ?-local (resp. >-local) w.r.t. a signature
⌃ if it satisfies the conditions given in the second (resp. third) column in Table 2. A
normalised SROIQ ontology O is ?-local (resp. >-local) w.r.t. ⌃ if each of its axioms is
?-local (resp. >-local) w.r.t. ⌃. Finally, we say that O is local w.r.t. ⌃ if it is either ?-local
or >-local w.r.t. ⌃. ⇧

The key properties of ?- and >-locality, established in the existing literature (Cuenca
Grau et al., 2008; Sattler et al., 2009), are summarised in the following proposition.

513

Armas Romero, Kaminski, Cuenca Grau, & Horrocks

Proposition 15. Let O be a SROIQ ontology, ⌃ a signature and x 2 {?,>}.

1. If O is x-local w.r.t. ⌃ then O ⌘m

⌃

;.

2. If M ✓ O and O\M is x-local w.r.t. ⌃[Sig(M), then M is a self-contained, strongly
depleting, and justification-preserving ⌘m

⌃

-module of O.

Property 2 in Proposition 15 immediately suggests the notion of locality-based module.

Definition 16. Let O be a normalised SROIQ ontology, ⌃ a signature, and x 2 {?,>}.
The x-module for O w.r.t. ⌃, denoted Mx

[O,⌃], is the smallest subset M ✓ O such that

O \M is x-local w.r.t. ⌃ [Sig(M).
The ?>⇤-module for O w.r.t. ⌃ is the least fixpoint of the sequence {Mi}i�1

where
M

1

= M?
[O,⌃] and Mi is defined as follows for i � 2:

Mi =

(
M>

[M
i�1,⌃]

if i is odd

M?
[M

i�1,⌃]
if i is even

⇧

Example 17. Consider ontology Oex from Figure 3 and the signature ⌃ = {B,C,D,R}.
We have that M?

[Oex,⌃] = {r
3

�r
8

}, M>
[Oex,⌃] = {r

1

�r
3

}, and M?>⇤

[Oex,⌃] = {r
3

}. ⇧

Locality-based modules as in Definition 16 can be computed in polynomial time. Fur-
thermore, by Proposition 15, they are self-contained, strongly depleting and justification-
preserving. They are, however, generally not minimal, even amongst strongly depleting and
self-contained modules.

4. Overview

We now provide a high-level overview of our approach to module extraction, which is based
on a novel reduction to a reasoning problem in datalog. Our approach builds on recent
techniques that exploit datalog engines for ontology reasoning (Kontchakov, Lutz, Toman,
Wolter, & Zakharyaschev, 2011; Stefanoni, Motik, & Horrocks, 2013; Zhou, Nenov, Cuenca
Grau, & Horrocks, 2014; Zhou, Cuenca Grau, Nenov, Kaminski, & Horrocks, 2015). The
connection between module extraction and datalog was first observed in (Suntisrivaraporn,
2008), where it was shown that ?-module extraction for the lightweight DL EL+ can be
reduced to propositional datalog reasoning.

Our approach takes this connection much farther by providing a unified framework that
supports module extraction for arbitrary ontologies consisting of first-order rules, as well as
for a wide range of inseparability relations. Modules obtained using our approach can be
tailored to the requirements of the application at hand. In addition to being significantly
smaller in practice, our modules preserve the features of syntactic locality modules: they
are widely applicable, they can be e�ciently computed in practice, and they satisfy a wide
range of additional properties.

In what follows, we fix w.l.o.g. an arbitrary ontology O and a signature ⌃ ✓ Sig(O).
Unless otherwise stated, our definitions and theorems are parameterised by such O and ⌃.
As stated in Section 2, we assume that rules in O do not share variables.

514

Module Extraction in Expressive Ontology Languages via Datalog Reasoning

Our overall strategy to extract a module M of O can be roughly summarised by the
following steps:1

1. Choose a substitution ✓ mapping all existentially quantified variables in O to fresh
Skolem constants, and obtain a datalog program P from O by

(a) Skolemising all rules in O using ✓ to obtain function-free rules ' ! , which
may contain both ^ and _ in the head; and

(b) replacing each of the resulting rules '! with the set {'! � | � an atom in }
of datalog rules; in this way, disjunctions in the head of rules are turned into con-
junctions and split into di↵erent datalog rules.

Clearly, such a program P logically entails O and thus preserves all its consequences.

2. Choose a ⌃-dataset D
0

of “initial facts” and compute the materialisation of P [D
0

.

3. Choose a set Dr of “relevant facts” in the materialisation (possibly containing symbols
outside ⌃), and compute the supporting rules P 0 in P for each such fact.

4. Output the subset M ✓ O of all rules in O that correspond to some rule in P 0.

The subset M described above is fully determined by the substitution ✓ and the datasets
D

0

and Dr. The main intuition behind our module extraction approach is that we can pick
✓, D

0

and Dr (and hence also M) such that each proof ⇢ of a ⌃-consequence ' of O to be
preserved under the inseparability relation of interest can be embedded into a collection of
proofs in P [D

0

of a relevant fact from Dr. In this way, we can ensure that M contains all
the necessary rules to entail '.

Example 18. To illustrate how our strategy might work in practice, consider our running
example ontology Oex from Figure 3 and signature ⌃ = {B,C,D,H}.

Assume that our goal is to compute a module M that is ⌃-implication inseparable from
Oex. Recall from Example 6 that the sentence ' = D(x) ! H(x) is the only non-trivial
⌃-implication entailed by Oex, and therefore the only requirement for M is that M |= '.
Furthermore, note that proving Oex |= ' amounts to proving Oex [{D(a)} |= H(a) with a
some fresh constant (cf. Proposition 1 in Section 2.1).

Figure 4(a) depicts a hyperresolution proof ⇢ showing how H(a) can be derived from
D(a) and the set of clauses corresponding to r

5

–r
8

, where rule r
6

is transformed into the
clause r

6

= F (x) ! S(x, f r6
y2 (x)). It follows that M = {r

5

–r
8

} is ⌃-implication inseparable
from Oex since it covers the support of ⇢. Moreover, M is minimal since H(a) cannot be
derived from any subset of {r

5

–r
8

}.
In our approach, we take D

0

and Dr to contain, respectively, the initial fact D(a) and
the fact H(a) to be proved. We also make ✓ map variables y

1

and y
2

to fresh constants cy1
and cy2 , respectively. The resulting datalog program P is shown in Figure 5.

Figure 4(b) depicts proofs ⇢0 and ⇢00 of H(a) in P [{D(a)}. The support of proof ⇢00 in
the datalog program consists of rules r00

5

and r
8

, which stem from rules r
5

and r
8

in Oex; we

1. For simplicity, in this section we overlook certain technical details such as the presence of constants in

O. These will be thoroughly addressed later on.

515

Armas Romero, Kaminski, Cuenca Grau, & Horrocks

H(a)

S(a, f r6
y2 (a)) _H(a)

F (a) _H(a)

F (a) _G(a)

D(a)

r
5

r
8

r
6

r
7

H(a)

S(a, cy2)

F (a)

D(a)

r0
5

r0
6

r
7

H(a)

G(a)

D(a)

r00
5

r
8

⇢

(a)

⇢0 ⇢00

(b)

Figure 4: Proofs of H(a) from D(a) in (a) Oex and (b) the corresponding datalog program

r0
1

: A(x) ! R(x, cy1) r00
1

: A(x) ! B(cy1)
r
2

: A(x) ! R(x, o)
r
3

: B(x) ^ C(x) ! D(x)
r
4

: R(x, y) ^ C(y) ! E(x)
r0
5

: D(x) ! F (x) r00
5

: D(x) ! G(x)
r0
6

: F (x) ! S(x, cy2)
r
7

: S(x, y) ! H(x)
r
8

: G(x) ! H(x)

Figure 5: Datalog program obtained from Oex using ✓ = {y
1

7! cy1 , y2 7! cy2}

can see, however, that {r
5

, r
8

} (M and hence M does not entail '. The same situation
arises if we were to consider ⇢0 only, in which case we would recover only rules r

5

–r
7

. This
is because the datalog program is a strengthening of Oex and one particular proof in the
datalog program may not translate back into a proof over the original ontology. Indeed, in
order to compute M, we need to consider the supports of both ⇢0 and ⇢00, in which case we
would successfully recover M. ⇧

In this example, our approach would allow us to compute a minimal module. This is,
however, not the case in general: since P is a strengthening of the given ontology there may
be proofs in P [D

0

of facts in Dr that do not correspond to proofs of any ⌃-consequence
of the ontology, which may then lead to the inclusion of unnecessary rules in the module.

In the following sections we describe our approach formally.

516

Module Extraction in Expressive Ontology Languages via Datalog Reasoning

• In Section 5, we define the general notion of a module setting, which captures the
degrees of freedom of our framework and uniquely specifies the datalog program P
and module M corresponding to specific choices of ✓, D

0

, and Dr. Furthermore, we
establish the key correspondence between proofs over the original ontology O and sets
of proofs over P [D

0

, which we exploit in many of our subsequent technical results.

• In Section 6, we describe concrete module settings for each of the inseparability rela-
tions introduced in Section 3.1, namely implication (Section 6.1), fact (Section 6.2),
query (Section 6.3), and model inseparability (Section 6.4) where we also show that
locality ?-modules can be precisely captured by an instantiation of our framework.

• In Section 7, we consider variants of the inseparability relations in Section 3.1 studied
in the literature, and describe specific module settings for them. These results show
that our framework can be easily adapted to capture new inseparability relations and
hence illustrate the generality and versatility of our approach.

• In Section 8, we show that our modules are consistent with the intuition that stronger
inseparability relations should lead to larger modules. For this, we introduce a notion
of homomorphism between module settings, which will allow us to establish contain-
ment relations between the modules specified in Sections 6 and 7.

• In Section 9, we study the additional properties of our modules. We show that they
are depleting and justification-preserving for all the inseparability relations in previ-
ous sections. Our modules, however, may not be strongly depleting or self-contained;
although this may be beneficial, as it allows us to extract smaller modules, these prop-
erties are still important for ontology reuse scenarios. Hence, we propose a technique
that ensures that extracted modules are also strongly depleting and self-contained.

• In Section 10, we briefly discuss the complexity of module extraction within our
framework and show tractability for DL-based ontology languages.

• Finally, in Section 11, we discuss the optimality of the module settings introduced in
Sections 6 and 7. In particular, although our modules are not minimal in general, we
aim at determining whether the modules obtained from the settings in Sections 6 and 7
are the smallest possible within our framework.

5. The Notion of a Module Setting

In this section we present our framework for module extraction. The key notion is that of
a module setting, which captures in a declarative way the main elements of our approach
discussed in Section 4.

Definition 19. A module setting for O and ⌃ is a tuple � = h✓,D
0

,Dri with

• ✓ a substitution mapping each constant and existentially quantified variable in O to
a (possibly fresh) constant;

• D
0

a dataset mentioning only predicates from ⌃; and

517

Armas Romero, Kaminski, Cuenca Grau, & Horrocks

• Dr a dataset mentioning only predicates from Sig(O) [{?}.

For each rule r = '(x) ! 9y (x,y) in O, let

⌅�(r) = { ('! �)✓ | � an atom in }

The program P� of � is defined as

P� =
[

r2O
⌅�(r)

and the support of � is the set

supp(�) = { r | r 2 supp(⇢) with ⇢ a proof in P� [D
0

of a fact from Dr }.

Finally, if F = { r 2 O | supp(�) \ ⌅�(r) 6= ; }, the module M� of � is defined as the
following subset of O:

M� = F [F? [F> [F⇡. ⇧

The mapping ✓ and the datasets D
0

and Dr constitute the degrees of freedom of our
framework, and Definition 19 ensures that specific choices of these parameters of the module
setting � fully determine the module M�.

The datalog program P� is obtained by applying ✓ to each rule r in O while at the
same time splitting the head atoms of r into di↵erent rules. The application of ✓ turns
existentially quantified variables into (possibly fresh) constants and hence transforms O
into a set of rules where all variables are universally quantified; additionally, ✓ maps the
constants occurring in O to (possibly di↵erent) constants. Since ✓ is not required to be
injective, it is possible for ✓ to map an existentially quantified variable and a constant from
O to the same constant. As we will see next, P� is a strengthening of O in the sense that it
preserves all consequences of O when coupled with an arbitrary dataset. Analogous datalog
strengthenings have been exploited to overestimate reasoning outcomes in description logic
ontologies (Krötzsch, Rudolph, & Hitzler, 2008b; Stefanoni et al., 2013; Krötzsch, Rudolph,
& Hitzler, 2008a; Zhou et al., 2014; Zhou, Nenov, Cuenca Grau, & Horrocks, 2013; Zhou,
Cuenca Grau, Horrocks, Wu, & Banerjee, 2013).

The support supp(�) collects all datalog rules participating in any proof in P� [D
0

of
any relevant fact from Dr. Intuitively, this support captures the “image” of the module in
P�. Finally, the module M� consists of all the rules in O that have a corresponding datalog
rule in the support supp(�).

Example 20. Let us reconsider Example 18 in Section 4, where we chose ✓ to map variables
y
1

and y
2

to fresh constants cy1 and cy2 , whereas D0

and Dr contain, respectively, the initial
fact D(a) and the fact H(a) to be proved. Definition 19 ensures that P� consists precisely
of the datalog rules in Figure 5. The support supp(�) consists of all rules in the support of
⇢0 and ⇢00 shown in Figure 4. Finally, M� consists of rules r

5

–r
8

, as required. ⇧

The following lemma establishes a key correspondence between hyperresolution proofs
in (the clausification of) O and sets of proofs in the datalog program P�. Such a correspon-
dence is already manifest in Figure 4 for our running example. Given an arbitrary dataset

518

Module Extraction in Expressive Ontology Languages via Datalog Reasoning

D and a substitution ⌧ from constants to constants that is compatible with ✓ in � (i.e., ⌧
and ✓ coincide over the intersection of their domains), the lemma shows that each proof ⇢
of a disjunction of facts ' =

Wn
i=1

�i in (O)[D has a corresponding set of proofs T of each
disjunct �i⌧ in P� [D⌧ . This implies, in particular, that P� is indeed a strengthening of
O. Furthermore, the set T is both support and structure preserving : for every clause from
(r) participating in ⇢, there is a proof in T with a datalog rule from ⌅�(r) in its support;
finally, each proof in T is embeddable into ⇢ and hence its structure is compatible with that
of ⇢ (cf. Section 2.3).2

Lemma 21. Let � be a module setting for O and ⌃ and let its corresponding substitution
be ✓. Let D be a dataset and ⌧ an arbitrary substitution from constants in D into constants
that is compatible with ✓. Finally, let ' be a (possibly empty) disjunction of facts and
⇢ = (T,�) a proof of ' in (O) [D. Then there exists a non-empty set T of proofs in
P� [D⌧ satisfying the following properties:

1. Each ⇢0 2 T is a proof of �⌧ for some � 2 ' [{?}. Furthermore, for each � 2 '
there is some proof of �⌧ in T .

2. For each r 2 O with (r)\ supp(⇢) 6= ;, either r = ? ! ⇤ or there exists ⇢0 2 T with
⌅�(r) \ supp(⇢0) 6= ;.

3. Each ⇢0 2 T is embeddable into ⇢ modulo ⌧ [✓.

Proof. To prove these results it su�ces to show that

(a) for each � 2 ' there exists a proof ⇢0 in P� [D⌧ of �⌧ that is embeddable into ⇢
modulo ⌧ [✓, and

(b) for each r 2 O s.t. (r) \ supp(⇢) 6= ;, either r = ? ! ⇤ or there exists � 2 ' [{?}
and a proof ⇢0 of �⌧ in P� [D⌧ that is embeddable into ⇢ modulo ⌧ [✓, and such
that ⌅�(r) \ supp(⇢0) 6= ;.

In order to be able to reason by induction on the depth d of ⇢, we prove that the above
properties hold even if ' is a disjunction of (not necessarily function-free) ground atoms.

d = 0
If supp(⇢) = ; then ' is a fact in D and '(⌧ [✓) = '⌧ 2 D⌧ so there exists a trivial
proof ⇢0 in P� [D⌧ of '(⌧ [✓), which is clearly embeddable into ⇢ via ⌧ [✓.
If supp(⇢) 6= ; then (O) must contain a clause of the form (! '). Since, by
assumption, the only rule in O with an empty head is ? ! ⇤, it must be the case
that ' 6= ⇤ and for each � 2 ' there exists a proof ⇢0 in P� [D⌧ of �✓ = �(⌧ [✓) of
depth 0 that is supported by (! �✓) 2 ⌅�(r) and embeddable into ⇢ modulo ⌧ [✓.
In either case, both properties are satisfied.

2. In Lemma 21, as well as in some of our subsequent technical results, we prove statements about (O)

rather than about O. In such cases, we consider an extension of ✓ in

�
where functional terms fr

y

(t)
occurring in (O) are mapped to y✓ whenever y is in the domain of ✓; by slight abuse of notation and

for the sake of simplicity, we also refer to such an extended substitution as ✓.

519

Armas Romero, Kaminski, Cuenca Grau, & Horrocks

d > 0
Let ⇢ = (T,�) with v the root of T and w

1

, . . . , wn the children of v. Consider a clause
s 2 (O) such that ' is a hyperresolvent of s and �(w

1

), . . . ,�(wn). Then, s must be
of the form

Vn
i=1

�0i ! '0 where

– �(wi) = �i _ i for each 1 i n, and

– ' =
Wn

i=1

 i _ '0� with � a MGU of �i, �0i for each 1 i n.

(a) Let � 2 '. We need to find a proof ⇢0 = (T 0,�0) of �(⌧ [✓) in P� [D⌧ that
is embeddable into ⇢ modulo ⌧ [✓. If � 2 i then by induction hypothesis
we can find such a proof. If � 2 '0� then it holds that � = �0� for some
�0 2 '0. By induction hypothesis, we have a proof ⇢i = (Ti,�i) in P� [D⌧
of each �i(⌧ [✓) that is embeddable modulo ⌧ [✓ into a proper subproof of ⇢.
Because � is a MGU of �i and �0i, with �i = �0i�, we have that �(⌧ [✓) is a
MGU of of �i(⌧ [✓) and �0i✓. Indeed, �i = �0i� implies �i(⌧ [✓) = (�0i�)(⌧ [✓);
on the other hand, since the e↵ect of ✓ on each functional term f(t) does not
depend of t, we have (�0i�)(⌧ [✓) = (�0i(⌧ [✓))(�(⌧ [✓)); moreover, because
⌧ [✓ only extends the domain of ✓ to constants in D but not in O, we have
(�0i(⌧ [✓))(�(⌧ [✓)) = (�0i✓)(�(⌧ [✓)), and thus �i(⌧ [✓) = (�0i✓)(�(⌧ [✓)). We
can hence combine all the ⇢i with (

Vn
i=1

�0i ! �0)✓ 2 P�, to obtain a proof of
(�0✓)(�(⌧[✓)) = (�0�)(⌧[✓) = �(⌧[✓) in P�[D⌧ that is clearly also embeddable
into ⇢ modulo ⌧ [✓.

(b) Consider r 2 O such that there exists r0 2 (r) \ supp(⇢). We need to find
� 2 ' [{?} and a proof ⇢0 = (T 0,�0) of �(⌧ [✓) in P� [D⌧ that is embeddable
into ⇢ modulo ⌧ [✓ and has some rule from ⌅�(r) in its support.

Assume first that r0 = s and r 6= ? ! ⇤. Then it must be '0 6= ⇤ since, by
assumption, ? ! ⇤ is the only rule in O with an empty head. We can then pick
any �0 2 '0 and have ⇢0 be a proof of (�0�)(⌧ [✓) in P� [D⌧ that is supported
by (

Vn
i=1

�0i ! �0)✓ 2 ⌅�(r), as we saw when considering property (a).

Assume now that r0 6= s and r 6= ? ! ⇤. Then there must be some i such that r0

supports a proof ⇢̃i of �i _ i that is a subproof of ⇢. Since ⇢̃i is of depth <d, by
i.h. there must be some �00i 2 �i _ i [{?} and a proof ⇢00i = (T 00,�00) of �00i (⌧ [✓)
in P�[D⌧ that is supported by some rule in ⌅�(r) and is embeddable into ⇢̃i. If
�00i 2 i [{?} ✓ ' [{?} then ⇢0 = ⇢00 is the proof we are looking for. If �00i = �i
(and �i 6= ?) we can combine ⇢00 with suitable proofs of each �j(⌧ [✓) for the
remaining j (which we know exist by i.h.), as before, to construct a proof ⇢0 in
P� [D⌧ of �(⌧ [✓) for some � 2 ', that is embeddable into ⇢ modulo ⌧ [✓.

Lemma 21 and Proposition 1 establish how the datasets D
0

and Dr in � can be chosen
so as to ensure that M� preserves the required ⌃-consequences.

Suppose that M� is required to preserve some ⌃-consequence r = '(x) ! 9y (x,y) of
O. By Proposition 1, given any substitution mapping variables in x to distinct constants
c, it must be the case that O ['(c) |= 9y (c,y). Since P� is a strengthening of O we also
have P� ['(c) |= 9y (c,y). Assume that we now choose D

0

and Dr so as to satisfy the
following requirements:

520

Module Extraction in Expressive Ontology Languages via Datalog Reasoning

1. the instantiation '(c) of the body of r must be embeddable in D
0

; and

2. the set of all facts � in the materialisation of P� ['(c) satisfying the instantiation
9y (c,y) of the head of r must be embeddable into Dr.

By completeness of hyperresolution, and given that P� is a datalog program, there must
exist a fact � s.t. � |= 9y (c,y) and P� ['(c) ` �. By Lemma 21 and Definition 19, the
aforementioned requirements on D

0

and Dr su�ce to guarantee that M� will preserve the
consequence r.

Example 22. Consider again our running example in Section 4 and the associated module
setting � = h✓,D

0

,Dri given in Example 20. We can see that our choices of D
0

= {D(a)}
and Dr = {H(a)} satisfy our su�cient requirements for M� to entail ' = D(x) ! H(x).
First, any instantiation of the body D(x) of ' is isomorphic to (and hence embeddable into)
D

0

. Second, the materialisation of P� [{D(a)} consists of facts F (a), S(a, cy2) and H(a),
where the latter is isomorphic to the instantiation of the head of '; since we chose Dr to
consist precisely of H(a), the second requirement is also satisfied. ⇧

The following theorem makes precise the aforementioned su�cient requirements for M�

to preserve the entailment of a ⌃-rule r. Furthermore, it shows that whenever M� entails
r, it also contains all the justifications for r in the original ontology O.

Theorem 23. Let r = '(x) ! 9y (x,y) be a rule and � = h✓,D
0

,Dri a module setting
for O and ⌃ such that for each substitution � mapping all variables in x to pairwise distinct
constants, there exists another substitution ⌧� that is compatible with ✓ and such that

• ('�)⌧� ✓ D
0

, and

• ((�)⌧�)�0 [{?} ✓ Dr for each substitution �0 mapping variables in y to constants
and such that P� [('�)⌧� |= ((�)⌧�)�0.

Then O |= r i↵ M� |= r. Furthermore, if O0 is a justification for r in O, then O0 ✓ M�.

Proof. Since M� ✓ O, it follows from monotonicity of first-order logic that O |= r whenever
M� |= r. To prove the opposite direction of the implication, it su�ces to show that if
O0 ✓ O is a justification for r in O, then O0 ✓ M�.

If = ⇤ then, by minimality ofO0, given a substitution � mapping variables in x to fresh
distinct constants, there must be a proof ⇢ of ⇤ in (O) ['� such that supp(⇢) \ (r) 6= ;
for each r 2 O0. By assumption, there exists a substitution ⌧� that is compatible with ✓ and
such that ('�)⌧� ✓ D

0

. By Lemma 21, for each r 2 O0 either r = ? ! ⇤ or there exists a
proof ⇢? in P� [('�)⌧� of ? such that supp(⇢?)\⌅�(r) 6= ;. If r = ? ! ⇤ then, since by
assumption the only rule in O with an empty head is ? ! ⇤, in particular it must also be
the case that O |= '(x) ! ?. It su�ces to show that in this case also M� |= '(x) ! ?
(as we do next when considering 6= ⇤): then, it follows that ? 2 Sig(M�) and therefore
r = ? ! ⇤ 2 M� because M� is an ontology. If r 6= ? ! ⇤ then, since ('�)⌧� ✓ D

0

and
? 2 Dr, it follows that r 2 M�.

If 6= ⇤ we can assume w.l.o.g. that =
Wn

i=1

 i with m > 0 and each i a conjunction
of atoms. For a fresh predicate Q, consider the ontology

OQ = { i(x,y) ! Q(x) | 1 i n }

521

Armas Romero, Kaminski, Cuenca Grau, & Horrocks

It is immediate that, for each subset O00 ✓ O, it is O00 |= r i↵ O00 [OQ |= '(x) ! Q(x).
Therefore, by minimality of O0, there must be some O0

Q ✓ OQ such that O0 [O0
Q is a

justification of '(x) ! Q(x) in O [OQ. By minimality of O0 [O0
Q, given a substitution

� mapping variables in x to fresh distinct constants, there must be a proof ⇢ of Q(x)� in
(O [OQ) ['� such that (r) \ supp(⇢) 6= ; for each r 2 O0 [O0

Q.

By assumption, there is a substitution ⌧� that is compatible with ✓ and such that
('�)⌧� ✓ D

0

. Since OQ does not contain any existentially quantified variables, or any

constants that do not occur already in O, there exists a module setting �Q = h✓Q,DQ
0

,DQ
r i

for O [OQ and ⌃ such that ✓Q = ✓, and therefore P�
Q = P� [OQ. By Lemma 21, for

each s 2 O0 ✓ O0 [O0
Q either it is s = ? ! ⇤ or there exists a proof ⇢0 in P�

Q [('�)⌧� of
either (Q(x)�)⌧� or ? such that s0 2 ⌅�

Q(s) \ supp(⇢0) 6= ;.
If s = ? ! ⇤ then there must be some proof in (O [OQ) ['� of a disjunction of the

form ?_� (with � possibly empty). By Lemma 21 there exists a proof ⇢? in P�
Q [('�)⌧�

of ?. Furthermore, since ? does not mention Q, and neither does the body of any rule in
P�

Q = P�[OQ, the proof ⇢? must actually be a proof in P�[('�)⌧�. Because ('�)⌧s ✓ D
0

and ? 2 Dr, it follows that supp(⇢?) ✓ supp(�). Hence ? 2 Sig(M�), and consequently
s = ? ! ⇤ 2 M�.

Otherwise, if ⇢0 is a proof of � = ? then, as before, ⇢0 must be a proof in P� [('�)⌧�.
Then, since ('�)⌧s ✓ D

0

and ? 2 Dr, we have s0 2 supp(�) and thus s 2 M�. If ⇢0 is a
proof of � = (Q(x)�)⌧�, let ⇢0 = (T,�) with v the root of T and w

1

, . . . , wm its children.
The rule applied at the top of ⇢0 must be from OQ and therefore di↵erent from s0. In
particular, this rule must be of the form i(x,y) ! Q(x), with ((i�̃)⌧�) =

Vm
j=1

�(wj)
for some extension �̃ of � to y. Clearly, there is some substitution �0 with domain y such
that ((i�̃)⌧�) = ((i�)⌧�)�0. The rule s0 must thus be in the support of a proof ⇢0j in
P�

Q [('�)⌧s of some �(wj). Since r does not mention Q neither does �(wj), and again we
have that ⇢0 must in fact be a proof in P� [('�)⌧�. This implies P� [('�)⌧s |= �(wj) and
hence by assumption �(wj) 2 Dr. Finally, since ('�)⌧� ✓ D

0

, we have s0 2 supp(�) and
consequently s 2 M�.

6. Modules for each Inseparability Relation

Theorem 23 tells us how to choose a module setting � so that its corresponding module
M� preserves a particular consequence of O. However, in order for M� to be a ⌘S

⌃

-module
of O for a given inseparability relation S, it must preserve not one, but all of the (possibly
infinitely many) relevant consequences in relS(O,⌃) (recall Theorem 9 in Section 3).

In this section we consider each inseparability relation S 2 {m, q, f, i}, and formulate a
specific module setting �S which provably yields a ⌘S

⌃

-module of O. Later on in Section 11
we will consider the optimality of these module settings—that is, whether there may exist
a di↵erent setting that yields a smaller module for the relevant inseparability relation.

6.1 Implication Inseparability

Our running example immediately suggests a natural module setting �
i

= h✓i,Di

0

,Di

ri that
guarantees implication inseparability.

522

Module Extraction in Expressive Ontology Languages via Datalog Reasoning

As in our example, we pick the substitution ✓i to be as “general” as possible by Skolemis-
ing each existentially quantified variable to a distinct fresh constant and mapping constants
occurring in O to themselves. To pick Di

0

and Di

r we rely on the application of the su�cient
conditions established in Theorem 23 to each of the (quadratically many) ⌃-implications
A(x) ! B(x) with x = (x

1

, . . . , xn). More precisely, to capture the instantiations of the
body A(x) we define D

0

to contain a fact A(c1A, . . . , c
n
A) involving fresh constants ciA uniquely

associated to the predicate A; furthermore, to capture the head of the implication, we define
Dr so as to contain a fact B(c1A, . . . , c

n
A). In this way, the dataset Di

0

contains linearly many
and Di

r quadratically many facts in the size of the signature ⌃.

Definition 24. For each existentially quantified variable y in O, let cy be a fresh constant.
Furthermore, for each A 2 ⌃ of arity n, let cA = (c1A, . . . , c

n
A) be an array of fresh constants.

The module setting �
i

= h✓i,Di

0

,Di

ri is defined as follows:

• ✓i = { y 7! cy | y existentially quantified in O} [{ c 7! c | c 2 Ct(O) },

• Di

0

= {A(cA) | A 2 ⌃ }; and

• Di

r = {B(cA) | A 6= B predicates in ⌃ of the same arity } [{?}. ⇧

The module setting �
i

is reminiscent of the datalog encodings typically used to check
whether a concept A is subsumed by another concept B w.r.t. a “lightweight” ontology O
(Krötzsch et al., 2008b; Stefanoni et al., 2013). There, existentially quantified variables in
rules are also skolemised as fresh constants to produce a datalog program P, and then it is
checked whether P [{A(a)} |= B(a).

The module setting �
i

captures implication inseparability as a straightforward conse-
quence of Theorem 23.

Theorem 25. M�
i ⌘i

⌃

O.

Proof. Consider an arbitrary rule of the form A(x) ! B(x) with x = (x
1

, . . . , xn) a vector
of distinct variables and A,B distinct n-ary predicates from ⌃. Let � be a substitution
mapping x

1

, . . . , xn to distinct constants c
1

, . . . , cn, and ⌧� another substitution such that
ci⌧� = ciA. By definition of �

i

we have (A(x)�)⌧� 2 Di

0

and (B(x)�)⌧� 2 Di

r, and thus, by
Theorem 23, it follows that O |= A(x) ! B(x) i↵ M�

i |= A(x) ! B(x).

6.2 Fact Inseparability

By Theorem 9, fact inseparability requires the preservation of all the datalog ⌃-rules entailed
by O. Thus, in contrast to implication inseparability, it may require the preservation of a
very large (and possibly even infinite) set of entailments. Unsurprisingly, the module setting
�
i

cannot be used to capture fact inseparability as illustrated by the following example.

Example 26. Consider Oex and ⌃
1

= {B,C,D,H}, for which M�
i = {r

5

–r
8

}. As seen in
Example 18, for D = {B(a), C(a)} it is the case that Oex [D |= D(a), while we also have
M�

i [D 6|= D(a); hence, M�
i is not ⌃

1

-fact inseparable from Oex.
Equivalently, Oex entails the datalog rule r

3

= B(x)^C(x) ! D(x), whereas M�
i does

not and hence Theorem 23 is no longer applicable since D, which instantiates the body of
r
3

, cannot be embedded into Di

0

= {B(cB), C(cC), D(cD), H(cH)}. ⇧

523

Armas Romero, Kaminski, Cuenca Grau, & Horrocks

Thus, we will next define a suitable module setting �
f

= h✓f ,Df

0

,Df

ri to capture fact
inseparability. As in the previous case, we will exploit the su�cient conditions given in
Theorem 23. To this end, we first need to make sure that Df

0

(resp. Df

r) captures all possible
body (resp. head) instantiations of all possible datalog rules over ⌃ that may be entailed
by O. We achieve this by choosing Df

0

and Df

r to be the “most constrained” ⌃-dataset
possible, which is typically referred to in the literature as the critical dataset (Marnette,
2009; Cuenca Grau, Horrocks, Krötzsch, Kupke, Magka, Motik, & Wang, 2013).

Definition 27. Let ⌃ be a signature and let ⇤ be a fresh constant. The critical ⌃-dataset
is defined as follows:

D⇤
⌃

= {A(

nz }| {
⇤, . . . , ⇤) | A n-ary predicate in ⌃ } ⇧

Indeed, it is straightforward to see that every ⌃-dataset (and hence any datalog rule
instantiation) can be embedded into D⇤

⌃

by mapping every constant into ⇤.
As in the case of �

i

, we choose the substitution ✓f to be as general as possible by mapping
existentially quantified variables to distinct fresh constants. However, in contrast to �

i

, we
require all constants occurring in O to be mapped to ⇤ rather than to themselves. This
choice is justified by the following example.

Example 28. Consider Oex and ⌃ = {A,C,E}. Clearly, for D = {A(a), C(o)} we have
Oex [D |= E(a) due to rules r

2

and r
4

in Oex. If we were to pick ✓f to be ✓i, which maps
constant o in Oex to itself, we would obtain M�

f = ; even if we choose Df

0

and Df

r as the
critical ⌃-dataset. Indeed, the relevant fact E(⇤) would not be provable from P�

f [Df

0

. ⇧

We are now ready to define �
f

formally.

Definition 29. Let constants cy be as in Definition 24, and let ⇤ be a fresh constant. The
module setting �

f

= h✓f ,Df

0

,Df

ri is defined as follows:

• ✓f = { y 7! cy | y existentially quantified in O} [{ c 7! ⇤ | c 2 Ct(O) },

• Df

0

= D⇤
⌃

, and

• Df

r = D⇤
⌃

[{?}. ⇧

Example 30. The datalog program generated by ✓f for Oex coincides with that of Figure 5
in all rules except for r

2

, which now becomes

r0
2

: A(x) ! R(x, ⇤)

If we consider again ⌃
1

= {B,C,D,H} and D = {B(a), C(a)} from Example 26, we clearly
have P�

f [Df

0

` D(⇤) 2 Df

r since {B(⇤), C(⇤)} ✓ Df

0

. The unique proof ⇢ of D(⇤) in P�
f [Df

0

is only supported by r
3

; this guarantees that r
3

2 M�
f and thus ⇢ corresponds directly to

a proof of D(a) in M�
f [D. Hence, we have M�

f [D |= D(a), as required.
If we now consider the signature ⌃ = {A,C,E} from Example 28, we can observe in

Figure 6 how our choice of mapping constant o to ⇤ ensures that the module contains the
necessary rules r

2

and r
4

. ⇧

524

Module Extraction in Expressive Ontology Languages via Datalog Reasoning

E(a)

R(a, c)

A(a)

r
2

r
4

C(o)

E(⇤)

R(⇤, ⇤)

A(⇤)
r0
2

r
4

C(⇤)

(a) (b)

Figure 6: Proofs of (a) E(a) in Oex [{A(a), C(o)} and (b) E(⇤) in P�
f [Df

0

We can now exploit Theorem 23 once more to show that �
f

captures fact inseparability.

Theorem 31. M�
f ⌘f

⌃

O.

Proof. Let r = ' ! � be a datalog rule over ⌃. Let � be a substitution mapping all
variables in r to pairwise distinct constants, and ⌧⇤ a substitution mapping each constant
in the range of � to ⇤. By definition of �

f

we have ('�)⌧⇤ ✓ Df

0

and (��)⌧⇤ ✓ Df

r and thus,
by Theorem 23 it follows that O |= r i↵ M�

f |= r. Finally, by Proposition 7, this implies
M�

f ⌘f

⌃

O.

6.3 Query Inseparability

Positive existential queries constitute a much richer query language than facts as they allow
for existentially quantified variables. Thus, the query inseparability requirement inevitably
leads to larger modules.

Example 32. Consider Oex and ⌃ = {A,B}. Given the ⌃-dataset D = {A(a)} and the
⌃-query q = 9yB(y), we have that Oex[D |= q (due to rule r

1

). In this case, however, M�
f

is empty and thus M�
f [D 6|= q. Indeed, the only additional facts in the materialisation of

P�
f [{A(⇤), B(⇤)} are R(⇤, cy1) and B(cy1), and hence neither r0

1

nor r00
1

(cf. Figure 5) are
in supp(�

f

). This suggests that, although the critical ⌃-dataset D⇤
⌃

is constrained enough
to embed every ⌃-dataset, we may need to consider additional relevant facts to capture all
proofs of all ⌃-queries. In particular, rule r

1

implies that B has a non-empty extension
whenever A does: a dependency that is then checked by q. This can be captured by
considering fact B(cy1) as relevant, in which case r

1

would be included in the module. ⇧

By Theorem 9, query inseparability requires the preservation of all ⌃-rules entailed by
O (and not just of those that are datalog). In particular, first-order rules may involve
existentially quantified variables, which correspond in our framework to Skolem constants.
This naturally suggests a module setting �

q

that di↵ers from �
f

only in that ⌃-facts involving
Skolem constants (and not just those mentioning only ⇤) are also considered relevant.

Definition 33. Let constants cy and ⇤ be as in Definition 29. We define the module setting
�
q

= h✓q,Dq

0

,Dq

r i as follows:

• ✓q = ✓f ,

525

Armas Romero, Kaminski, Cuenca Grau, & Horrocks

B(f r1
y1 (a))

A(a)

r,2
1

B(cy1)

A(⇤)
r00
1

(a) (b)

Figure 7: Proofs of (a) B(f r1
y1 (a)) in Oex [{A(a)} and (b) B(cy1) in P�

q [Dq

0

• Dq

0

= D⇤
⌃

, and

• Dq

r = {A(a
1

, . . . , an) | A 2 ⌃, each aj is either ⇤ or some cy } [{?}. ⇧

Example 34. Coming back to Example 32, we can observe in Figure 7 how a proof of
B(f r1

y1 (a)) in (Oex)[{A(a)} that is supported by r,2
1

: A(x) ! B(f r1
y1 (x)) can be recovered

from a proof of B(cy1) in P�
q [Dq

0

that is supported by r00
1

. The definition of �
q

ensures
that B(cy1) 2 Dq

r , and hence r
1

2 M�
q . ⇧

Theorem 35. M�
q ⌘q

⌃

O.

Proof. Let r = '! 9y be a rule over ⌃ with a non-empty head. Let � be a substitution
mapping all variables in r to pairwise distinct constants and ⌧⇤ a substitution that maps each
constant in the range of � to ⇤. By definition of �

q

we have ('�)⌧⇤ ✓ Dq

0

, and also �0 ✓ Dq

r

for each substitution �0 mapping all variables in r to constants in Ct(Dq

0

[Dq

r) [range(✓q).
Thus, by Theorem 23, it follows that O |= r i↵ M�

q |= r. By Proposition 7, this implies
M�

q ⌘q

⌃

O.

6.4 Model Inseparability

Model inseparability di↵ers substantially from all the previous inseparability relations:
rather than just the preservation of rule-shaped consequences, it requires the preservation of
models (and hence of second-order consequences). Theorem 23, which we have repeatedly
exploited to show that our modules preserve the required entailments, relies on the prop-
erties of hyperresolution (a first-order logic calculus); hence, it is not applicable to show
preservation of second-order logic consequences. In particular, as the following example
illustrates, the modules generated by �

q

may not be ⌃-model inseparable from O.

Example 36. Consider Oex and ⌃ = {A,C,D,R}, in which case M�
q = {r

1

, r
2

}. As we
saw in Example 6, the interpretation I where �I = {a, o}, AI = {a}, BI = CI = {o},
DI = ; and RI = {(a, o)} is a model of M�

q ; however, it can be readily checked that it
cannot be extended to a model of O without reinterpreting A, C, D or R. ⇧

Intuitively, when constructing a model of O, fixing the interpretation of certain pred-
icates restricts the ways in which the remaining predicates can be interpreted. These re-
strictions are obviously determined by the dependencies introduced by the rules in O. To
capture model inseparability, we need to ensure that M� preserves all such relevant depen-
dencies between predicates in ⌃. For this, we pick ✓ and D

0

in such a way that any model

526

Module Extraction in Expressive Ontology Languages via Datalog Reasoning

R(⇤, ⇤)

A(⇤)
r⇤
1

R(⇤, ⇤)

A(⇤)
r0
2

D(⇤)

B(⇤)

A(⇤)
r⇤⇤
1

r
3

C(⇤)

Figure 8: All proofs in P�
m [Dm

0

of facts from Dm

r in Example 39.

of O can be embedded in the materialisation of P� [D
0

; in turn, we choose Dr in such
a way that it captures the ⌃-reducts of all those models. If this is the case, the proofs in
P� [D

0

of facts from Dr will then capture all the dependencies between predicates in ⌃.

Example 37. Note that I in Example 36 cannot be embedded in the materialisation of
P�

q [Dq

0

since the only facts over {B,C} that it contains are C(⇤) and B(cy1), and the
constant o cannot be mapped to both cy1 and ⇤. ⇧

To capture all models of O, we once more pick D
0

= D⇤
⌃

; but now, in contrast to �
q

,
we choose a substitution ✓ that maps both existentially quantified variables and constants
in O to ⇤. Furthermore, to ensure that Dr captures the ⌃-reducts of all those models, we
pick Dr as D⇤

⌃

as well.

Definition 38. The module setting �
m

= h✓m,Dm

0

,Dm

r i is as follows:

• ✓m = { y 7! ⇤ | y existentially quantified in O} [{ c 7! ⇤ | c 2 Ct(O) },

• Dm

0

= D⇤
⌃

, and

• Dm

r = D⇤
⌃

[{?}. ⇧

Example 39. Consider Oex, ⌃ and I as in Example 36. The substitution ✓m maps the
existentially quantified variables in r

1

and r
6

to ⇤. Thus, rules r
1

and r
6

in Oex correspond
to the following rules in P�

m :

r
1

 r⇤
1

: A(x) ! R(x, ⇤), r⇤⇤
1

: A(x) ! B(⇤)
r
6

 r⇤
6

: F (x) ! S(x, ⇤)

The materialisation of P�
m [Dm

0

contains facts A(⇤), C(⇤), D(⇤), R(⇤, ⇤), and B(⇤). Con-
sequently, it is now possible to embed the interpretation I into the aforementioned materi-
alisation by mapping both a and o to ⇤.

Figure 8 shows all (non-trivial) proofs in P�
m [Dm

0

of facts from Dm

r . We can observe
that the module M�

m consists of rules r
1

–r
3

. Clearly, any model of M�
m can be extended to

a model of Oex since no predicates from M�
m occur in the head of any rule in Oex\M�

m . ⇧

Theorem 40 shows that the module M�
m is ⌃-model inseparable from O. Indeed, every

model I of M�
m can be extended to a model of O in the following way: (i) predicates not

occurring in the materialisation of P�
m [Dm

0

are interpreted as empty, (ii) predicates in
the support of �

m

(and hence occurring in M�
m) are interpreted as in I, and (iii) all other

predicates A with arity n are interpreted as (�I)n.

527

Armas Romero, Kaminski, Cuenca Grau, & Horrocks

Theorem 40. M�
m ⌘m

⌃

O.

Proof. Let I be a model of M�
m . W.l.o.g., we assume that I is defined over all of Sig(O).

Let J be an interpretation with the same domain � as I, and such that

AJ =

8
<

:

AI if A 2 ⌃ [Sig(supp(�
m

))
�arity(A) if A 2 Sig(P�

m(Dm

0

)) \ (⌃ [Sig(supp(�
m

)))
; otherwise

Note that ⌃ [Sig(supp(�
m

)) ✓ Sig(P�
m(Dm

0

)).
Consider r : '! 2 O. We now show that J |= r.
Assume first = ⇤. Then r = ? ! ⇤ and we need to check that ? is interpreted as

false. If ? /2 Sig(P�
m(Dm

0

)) then this is the case by definition of J . If ? 2 Sig(P�
m(Dm

0

))
then, since ? 2 Dm

r , it must be ? 2 Sig(supp(�
m

)) and therefore also ? 2 Sig(M�
m). This

implies that ? ! ⇤ 2 M�
m and thus, since I is a model of M�

m , it must be the case that
? is interpreted as false. Since ? 2 Sig(supp(�

m

)), by definition of J we then have that
both ?J and ?I are false.

Assume now 6= ⇤. If Sig() 6✓ Sig(P�
m(Dm

0

)) then, because P�
m [Dm

0

only mentions
one constant (namely, ⇤), it follows that also Sig(') 6✓ Sig(P�

m(Dm

0

)) and therefore 'J = ;
and J |= r. Hence, in the following we assume Sig() ✓ Sig(P�

m(Dm

0

)).
If Sig() \ (⌃ [Sig(supp(�

m

))) = ;, then AJ = �arity(A) for each A 2 Sig() and it
is immediate that J |= r. Otherwise suppose that there exists a substitution � over all
variables in r such that J |= '� (if no such substitution exists then J |= r holds trivially).
Then 'J 6= ; and it must be Sig(') ✓ Sig(P�

m(Dm

0

)). Let �⇤ be a substitution that maps
all variables to ⇤; because ⇤ is the only constant in P�

m[Dm

0

, it folows that '�⇤ ✓ P�
m(Dm

0

)
and thus also �⇤ ✓ P�

m(Dm

0

).
By assumption, there exists � = A(⇤, . . . , ⇤) 2 �⇤ with A 2 ⌃[Sig(supp(�

m

)). Because
'�⇤ ✓ P�

m(Dm

0

), there is a proof ⇢�,r of � in P�
m [Dm

0

that is supported by a rule from
⌅�

m(r). If A 2 ⌃ then, by definition of �
m

, it is � 2 D�
m

r and consequently r 2 M�
m .

If, on the other hand, A /2 ⌃, there must be �0 2 Dm

r and a proof ⇢0 of �0 in P�
m [Dm

0

such that some proof of A(⇤, . . . , ⇤) is a subproof of ⇢0. Replacing this subproof with ⇢A,r

results in another proof of �0 in P�
m [Dm

0

that is supported by a rule in ⌅�
m(r). Thus

r 2 M�
m in this case as well. Rules in ⌅�

m(r) have the same body as r, so r 2 M�
m implies

Sig(') ✓ Sig(supp(�
m

)), and thus I and J agree over Sig('). By assumption, J |= '�, so
we have I |= '� as well, and, since r 2 M�

m , also I |= �. Finally, since �⇤ ✓ P�
m(Dm

0

),
we have that Sig() ✓ Sig(P�

m(Dm

0

)) and therefore I ✓ J , so J |= �. Since � is
arbitrary, we can conclude that J |= r.

The modules generated by �
m

are similar in spirit to locality-based modules in that
certain symbols outside the signature of the module are interpreted as either the empty set
or the universal relation (of the relevant arity) over the interpretation domain. As we will
show later on, M�

m ✓ M?
[O,⌃] whenever O is a normalised SROIQ ontology. However, as

illustrated by the following example, our modules are incomparable to >- and ?>⇤-modules.

Example 41. For O = Oex and ⌃ = {D,F} we have the following:

M�
m = {r

5

} M>
[O,⌃] = {r

1

-r
3

} M?>⇤

[O,⌃] = ;.

528

Module Extraction in Expressive Ontology Languages via Datalog Reasoning

Consequently, M�
m is neither contained in M>

[O,⌃], nor in M?>⇤

[O,⌃]. To see that the converse

is also true, consider O = {r
1

, r
9

}, with r
9

= C(x) ! B(x), and ⌃ = {A,C,R}. Then, we
have the following:

M�
m = {r

1

} M>
[O,⌃] = M?>⇤

[O,⌃] = O ⇧

We have already mentioned that modules generated by �
m

are included in locality
?-modules. To conclude this section, we show how �

m

can be modified to precisely capture
?-modules. For this, it su�ces to modify �

m

by making Dr the critical dataset over the
entire signature of O (instead of just ⌃) as given in the following definition.

Definition 42. The module setting �
b

= h✓b,Db

0

,Db

r i is as follows:

• ✓b = ✓m,

• Db

0

= D⇤
⌃

, and

• Db

r = D⇤
Sig(O)

[{?}. ⇧

The following proposition shows that M�
b coincides with the ?-locality module of a

SROIQ ontology O relative to ⌃.

Proposition 43. If O is a normalised SROIQ ontology, then M�
b = M?

[O,⌃].

Proof. By definition, M?
[O,⌃] is the smallest subset M ✓ O such that every axiom in O\M

is ?-local w.r.t. ⌃ [Sig(M). To show that M?
[O,⌃] ✓ M�

b , it su�ces to show that, for each

r 2 O\M�
b , r is ?-local w.r.t. ⌃[Sig(M�

b). Consider r 2 O\M�
b . Since Db

r contains all
facts that can occur in P�

b(Db

0

), we have that supp(�
b

) consists of all rules in the support of
any proof in P�

b[Db

0

. Furthermore, we have that Sig(M�
b)[⌃ = Sig(P�

b(Db

0

)). Therefore,
there can be no proof in P�

b [Db

0

that has a rule from ⌅�
b(r) in its support. Because the

only constant mentioned in P�
b [Db

0

is ⇤, this means that some predicate from the body
of r does not occur at all in Sig(P�

b(Db

0

)) = Sig(supp(�
b

)) [⌃. As can be observed in
Tables 1 and 2, this implies that r is ?-local w.r.t. Sig(supp(�

b

)) [⌃.
To see that M�

b ✓ M?
[O,⌃], consider r 2 M�

b . There must exist r0 2 ⌅�
b(r) such that

r0 2 supp(⇢) for some proof ⇢ in P�
b [Db

0

. To show that r 2 M?
[O,⌃], let us reason by

induction on the depth d of ⇢.

d = 0 Then the body of r is empty and thus r is not ?-local w.r.t. any signature. It
follows that r 2 M?

[O,⌃].

d > 0 It su�ces to consider the case where r0 is the rule applied at the top of ⇢, since
we already know by induction hypothesis that, for each s 2 O such that a rule
from ⌅�

b(s) is in the support of a (proper) subproof of ⇢, it is s 2 M?
[O,⌃]. Since

Sig(Db

0

) = ⌃, this implies that, if ⇢ = (T,�) with v the root of T and w
1

, . . . , wn

its children, then Sig(�(wi)) ✓ Sig(M?
[O,⌃]) [⌃. Consequently, the body of r

must have its signature fully contained in Sig(M?
[O,⌃]) [⌃. It follows that r is

not ?-local w.r.t. Sig(M?
[O,⌃]) [⌃ and hence r 2 M?

[O,⌃].

529

Armas Romero, Kaminski, Cuenca Grau, & Horrocks

7. Additional Inseparability Relations

The bulk of the research on module extraction has focused on the inseparability relations
considered in Section 6. In this section we show how our framework can be seamlessly
adapted to other interesting inseparability relations.

7.1 Classification Inseparability

Classification—the problem of identifying all subsumption relationships between all pairs of
atomic concepts and all pairs of atomic roles in a DL ontology—is a fundamental reasoning
task in ontology engineering. Classifying a first-order ontology O amounts to computing,
for each predicate A in O, all the entailed implications A(x) ! B(x) where B is a predicate
of the same arity as A, referred to as a subsumer of A in O.

Locality ?-modules have been successfully exploited for optimising classification of DL
ontologies (Tsarkov & Palmisano, 2012; Cuenca Grau et al., 2010; Armas Romero et al.,
2012). In addition to being model-inseparable from the given ontology and satisfying the
properties in Proposition 15 from Section 3.2, ?-modules enjoy an additional property that
makes them well-suited for optimising classification (Cuenca Grau et al., 2007a, 2010):

Proposition 44. Let O be an ontology, ⌃ a signature, and r a rule of the form A(x) !
where A 2 ⌃ and either = ? or = B(x) with B 2 Sig(O). Then, O |= r i↵ M?

[O,⌃] |= r.

It follows from Proposition 44 that the ?-module for ⌃ = {A} in O captures all sub-
sumers of A in O, and hence it is indistinguishable from O w.r.t. to all implications having
A in the body. We can capture this additional property of ?-modules by means of the
following inseparability relation.

Definition 45. Ontologies O and O0 are ⌃-classification inseparable (O ⌘c

⌃

O0) if for
each rule r of the form A(x) ! , where A 2 ⌃ and either = ⇤ or = B(x) with
B 2 Sig(O[O0), we have O |= r i↵ O0 |= r. Furthermore, rel

c

is the function mapping each
ontology O and signature ⌃ to the following set of rules:

rel

c

(O,⌃) = {r=A(x) ! | O |= r, A 2 ⌃ and =? or =B(x) with B 2 Sig(O)} ⇧

It follows straightforwardly from the definition that O ⌘c

⌃

O0 holds i↵ rel

c

(O,⌃) co-
incides with rel

c

(O0,⌃); hence, Theorem 9 in Section 3 trivially extends to classification
inseparability. Furthermore, it can be readily checked that ⌘c

⌃

(⌘i

⌃

for each non-trivial
signature ⌃, and hence classification inseparability is (as expected) a stronger requirement
than implication inseparability. Finally, although ?-modules ensure classification insepara-
bility from O, they are also model-inseparable (a much stricter requirement) and, as shown
in Section 13, can be much larger than necessary for ontology classification.

Example 46. Consider our example ontology Oex. We can observe how classification insep-
arability is a stronger requirement than implication inseparability by considering ⌃ = {G}.
Clearly, M = ; is ⌃-implication inseparable from Oex, whereas ⌃-classification insepa-
rability requires rule r

8

to be contained in M. To see how ?-modules di↵er from min-
imial classification-inseparable modules consider ⌃ = {A}; in this case, we have that
M?

[Oex,⌃] = {r
1

, r
2

}, but A has no subsumers in Oex and therefore the empty ontology
is already ⌃-classification inseparable from Oex. ⇧

530

Module Extraction in Expressive Ontology Languages via Datalog Reasoning

The following module setting extends �
i

from Definition 24 to capture classification
inseparability. As one would naturally expect, the only required modification is to extend
Di

r with facts involving predicates outside ⌃.

Definition 47. For each A 2 ⌃ of arity n, let cA = (c1A, . . . , c
n
A) be an array of fresh

constants. The module setting �
c

= (✓c,Dc

0

,Dc

r) is defined as follows:

• ✓c = ✓i,

• Dc

0

= Di

0

, and

• Dc

r = {B(cA) | A 2 ⌃ and B 2 Sig(O) distinct predicates of the same arity } [{?}.
⇧

Example 48. Consider again O = Oex and ⌃ = {A}. Since no fact from Dc

r is provable in
P�

c [Dc

0

the module M�
c is empty and thus also minimal in this case. ⇧

We can show that �
c

captures implication inseparability using an argument analogous
to that in the proof of Theorem 25.

Theorem 49. M�
c ⌘c

⌃

O.

7.2 Weak Query Inseparability

One of the possible applications of modules based on query inseparability is to optimise
query answering. In particular, if M is ⌃-query inseparable from O, then O [D |= q i↵
M[D |= q for any ⌃-query q and ⌃-dataset D; thus, we can replace O with M to answer an
arbitrary query w.r.t. arbitrary data provided that only symbols in ⌃ are deemed relevant.

While the aforementioned notion of query inseparability is useful for situations where
the data is unknown or frequently changing, in many situations the data in an ontology is
considered fixed and hence one could potentially extract smaller modules by not requiring
M to be robust under extensions with arbitrary data.

Botoeva, Kontchakov, Ryzhikov, Wolter, and Zakharyaschev (2014) investigated a re-
stricted notion of query inseparability that is well-suited for cases where the data in an
ontology can be considered fixed. In this paper, we will refer to this restricted notion as
weak query inseparability.

Definition 50. Ontologies O and O0 are ⌃-weak query inseparable (O ⌘wq

⌃

O0) if for each
Boolean PEQ q over ⌃ we have O |= q i↵ O0 |= q. Furthermore, rel

wq

is the function
mapping each ontology O and signature ⌃ to the set

rel

wq

(O,⌃) = { q | O |= q and q is a Boolean PEQ such that Sig(q) ✓ ⌃ } ⇧

Again, Theorem 9 extends naturally to weak query inseparability; indeed, O ⌘wq

⌃

O0 if
and only if rel

wq

(O,⌃) coincides with rel

wq

(O0,⌃). Moreover, the requirements in Defini-
tion 50 are weaker than those of query inseparability and hence ⌘q

⌃

(⌘wq

⌃

for each ⌃. As
a result, weak query inseparability may yield smaller modules, as we show in Section 13.

We next propose a module setting �
wq

that captures weak query inseparability. The
main di↵erence between �

wq

and �
q

in Section 6.3 is that the initial dataset Dwq

0

is chosen as

531

Armas Romero, Kaminski, Cuenca Grau, & Horrocks

empty rather than D⇤
⌃

. This is a natural choice given that we no longer have the requirement
that arbitrary ⌃-datasets must be embeddable into Dwq

0

. Furthermore, ✓wq di↵ers from ✓q

in that it maps constants from Ct(O) to themselves (same as ✓i).

Definition 51. Let constants cy, for each existentially quantified variable y in O, be as in
Definition 24. The module setting �

wq

= h✓wq,Dwq

0

,Dwq

r i is defined as follows:

• ✓wq = ✓i,

• Dwq

0

= ;, and

• Dwq

r = {A(a
1

, . . . , an) | A 2 ⌃, each aj either in Ct(O) or equals some cy }[{?}. ⇧

Example 52. Consider the extension of Oex with the fact ! D(i) (seen as a ground rule)
and the signature ⌃ = {B,C,D,H}. It can be readily checked that M�

q = {r
3

, r
5

�r
8

},
whereas M�

wq = {r
5

�r
8

}. ⇧

Theorem 53. M�
wq ⌘wq

⌃

O.

Proof. Any Boolean PEQ q can be seen as the rule (! q). Consequently, M�
wq ⌘wq

⌃

O
follows from Theorem 23 by a similar argument to that in the proof of Theorem 35.

8. Module Containment

Intuitively, the more expressive the language for which preservation of consequences is
required, the larger the modules need to be. For instance, since ⌘f

⌃

(⌘i

⌃

, it is to be
expected that the module M�

i obtained for implication inseparability is contained in the
module M�

f for fact inseparability. We next show that all our modules in Sections 6 and 7
are consistent with this intuition.

Our first step will be to introduce a notion of homomorphism between module settings,
which will then allow us to establish containment between their corresponding modules.

Definition 54. For a module setting � = h✓,D
0

,Dri, let Ct(�) denote the set of con-
stants occurring in D

0

, Dr, and in the range of ✓. A substitution µ : Ct(�) ! Ct(�0) is a
homomorphism from � to �0 if the following conditions hold:

• ✓µ = ✓0;

• D
0

µ ✓ D0
0

; and

• Drµ ✓ D0
r.

We write � ,! �0 to denote that a homomorphism from � to �0 exists. ⇧

The fact that � ,! �0 (witnessed by some homomorphism µ) implies that �0 is “more
general” than �, in the sense that any proof in P� [D

0

of a fact in Dr can be embedded
(via µ) in a support-preserving way into a proof in P�0 [D0

0

of a fact in D0
r. It follows that

supp(�) is contained in supp(�0) (modulo µ) and hence we also have M� ✓ M�0
.

Theorem 55. If �,�0 are s.t. � ,! �0, then M� ✓ M�0
.

532

Module Extraction in Expressive Ontology Languages via Datalog Reasoning

Proof. Let � = h✓,D
0

,Dri and �0 = h✓0,D0
0

,D0
ri, and let µ : Ct(�) ! Ct(�0) be a homomor-

phism from � to �0. Since Drµ ✓ D0
r, it su�ces to show that for any rule r 2 O and any

proof ⇢ in P� [D
0

of a fact � 2 Dr such that supp(⇢)\⌅�(r) 6= ;, there exists a proof ⇢0 in
P�0 [D0

0

of �µ such that supp(⇢0)\⌅�0
(r) 6= ;. We prove the following more general claim.

Let r be a rule in O and ⇢ a proof of a fact � (not necessarily in Dr) in P� [D
0

such
that supp(⇢) \ ⌅�(r) 6= ;. We show by induction on the depth d of ⇢ that there is a proof
⇢0 of �µ in P�0 [D0

0

such that supp(⇢0) \ ⌅�0
(r) 6= ;.

d = 0
Since, by assumption, supp(⇢) \ ⌅�(r) 6= ;, we have r = (!) and (! �) 2 ⌅�(r)
with � = �✓ for some � 2 , and also (! �✓0) 2 ⌅�0

(r). Since ✓ is defined over all
constants in O, it holds that (�✓)µ = �(✓µ) = �✓0, and hence we have a proof of �µ in
P�0 [D0

0

supported by a rule in ⌅�0
(r).

d > 0
Let ⇢ = (T,�) with v the root of T and w

1

, . . . , wn the children of v. Let s be
the rule used to derive �(v) from �(w

1

), . . . ,�(wn). Finally, for each i let ⇢i be the
subproof of �(wi). If for any i we have supp(⇢i) \ ⌅�(r) 6= ;, the claim follows by the
induction hypothesis since sµ 2 P�0

. Otherwise, we have s 2 ⌅�(r). Moreover, by
the induction hypothesis, every �(wi)µ has a proof in P�0 [D0

0

, and the claim follows
since sµ 2 ⌅�0

(r).

It is straightforward to construct homomorphisms between the module settings in Sec-
tions 6 and 7 in accordance with the containment relationship of their corresponding insepa-
rability relations. The following result, which establishes the intuitive relationships between
our modules, then follows immediately from Theorem 55.

Corollary 56.
M�

i ✓ M�
f ✓ M�

q ✓ M�
m ✓ M�

b

M�
i ✓ M�

c ✓ M�
b

M�
wq ✓ M�

q

As already illustrated by examples throughout Sections 6 and 7, these containment
relations are strict for many O and ⌃. Furthermore, it can be easily checked that these
containment relations are complete, in the sense that module settings that are unrelated in
Corollary 56 (e.g., M�

f and M�
wq) are incomparable.

9. Depletingness, Self-Containment, and Justification-Preservation

The minimal requirement on a module is to preserve all relevant consequences w.r.t. a
given inseparability relation. As we argued in Section 3, however, in some applications it is
desirable that modules satisfy additional properties. In this section, we establish whether
our modules in Sections 6 and 7 satisfy the (strong) depletingness, self-containment, and
justification-preservation properties enjoyed by locality-based modules.

To establish our results, it is convenient to abstract away from the notion of module
setting for a fixed O and ⌃ and consider instead families of module settings; that is,
functions that assign a module setting to each pair of O and ⌃.

533

Armas Romero, Kaminski, Cuenca Grau, & Horrocks

Definition 57. A module setting family is a function that maps each pair of ontology
O and signature ⌃ to a module setting for O and ⌃. Given an inseparability relation
S, we say that is S-admissible if, for each pair of O and ⌃, M (O,⌃) is a ⌘S

⌃

-module
of O. Furthermore, we say that is depleting (resp. strongly depleting, self-contained,
justification-preserving) if so is M (O,⌃) for each O and ⌃.

Finally, for each S 2 {m, q, f, i, c,wq}, we denote with S the (S-admissible) family
induced by the module setting �S as defined in Sections 6 and 7. ⇧

9.1 Depletingness and Justification-Preservation

As discussed in Section 3, depletingness of M ensures that O \M is inseparable from the
empty ontology and hence no relevant information is left behind in O after extracting M.
As illustrated by the following example, not all modules are depleting.

Example 58. Consider O consisting of the following rules and let ⌃ = {A,B}:

s
1

= A(x) ! B(x) ^ C(x) s
2

= A(x) ! D(x) ^ E(x) s
3

= D(x) ! B(x)

Clearly, both M
1

= {s
1

} and M
2

= {s
2

, s
3

} are implication-inseparable from O and hence
⌘i

⌃

-modules. However, neither of them is depleting. ⇧

We next show that all the modules we defined in Sections 6 and 7 are depleting.

Proposition 59. S is depleting for each S 2 {m, q, f, i, c,wq}.

Proof. Let O and ⌃ be arbitrary and let M = S(O,⌃). By Theorems 25, 31, 35, 40,
49 and 53, it su�ces to show S(O\M,⌃) = ;. By the definition of a module (cf. Defi-
nition 19), it holds that S(O\M,⌃) ✓ O\M. Furthermore, since O\M ✓ O, it follows
that S(O\M,⌃) ✓ M. Consequently, S(O\M,⌃) = ;.

We next show that our modules are also justification-preserving and hence can be seam-
lessly exploited in ontology debugging applications.

Proposition 60. S is justification-preserving for each S 2 {m, q, f, i, c,wq}.

Proof. Let � 2 relS(O,⌃) and let O0 be a justification of � in O. We need to check that

O0 ✓ M

S
(O,⌃). Since � 2 relS(O,⌃) and O0 |= �, it follows by definition of relS that

� 2 relS(O0,⌃). By Theorems 25, 31, 35, 40, 49 and 53, we have M

S
(O0,⌃) ⌘S

⌃

O0, and

therefore M

S
(O0,⌃) |= �. By the definition of a module (cf. Definition 19) it is immediate

that O0 ✓ O implies M

S
(O0,⌃) ✓ M

S
(O,⌃). Finally, by minimality of O0, we have

M

S
(O0,⌃) = O0 and therefore O0 ✓ M

S
(O,⌃).

We conclude by addressing the e↵ect of normalisation on these properties. Similarly
to our treatment of normalisation in Proposition 13 from Section 3, we show that we can
recover a depleting and justification-preserving module for a SROIQ ontology O from one
such module for its normalisation norm(O).

Proposition 61. Let S be an inseparability relation, and let be a module setting family
that is S-admissible and depleting. Let norm be a normalisation function. Let O be a
SROIQ ontology and let M ✓ O be such that the following holds:

534

Module Extraction in Expressive Ontology Languages via Datalog Reasoning

1. M (norm(O),⌃) ✓ norm(M) and

2. norm(O\M) ✓ norm(O)\norm(M).

Then, M is a depleting and justification-preserving ⌘S
⌃

-module of O.

Proof. Let O0 = norm(O). Proposition 13 implies that M is a ⌘S
⌃

-module of O0.
We next show thatM is depleting. SinceM (O0,⌃) ✓ norm(M), we haveO0\norm(M) ✓

O0\M (O0,⌃). Proposition 59 implies that O0\M (O0,⌃) ⌘S
⌃

;, and hence by monotonicity of
first-order logic also O0\norm(M) = norm(O\M) ⌘S

⌃

;. Since norm(O\M) is a conservative
extension of O\M, by Definition 4 we have norm(O\M) ⌘S

⌃

O\M, and thus O\M ⌘S
⌃

;.
To show that M is justification-preserving, let ' 2 relS(O,⌃) and consider a jus-

tification Õ ✓ O of ' in O. Suppose there is some ↵ 2 Õ\M. Then ↵ 2 O\M
and norm(↵) ✓ norm(O\M) = O0\norm(M). Since M (O0,⌃) ✓ norm(M), this implies
norm(↵) \ M (O0,⌃) = ;. On the other hand, since norm(O) is a conservative extension
of O, we have ' 2 relS(norm(O),⌃). Also, because norm(Õ) is a conservative extension
of Õ, we have norm(Õ) |= ' and there must be a justification Õ0 of ' in norm(Õ) ✓ O0.
By Proposition 60, M (O0,⌃) is justification-preserving, and consequently Õ0 ✓ M (O0,⌃).
Furthermore, by minimality of Õ there is no proper subset of Õ whose normalisation in-
cludes Õ0. It follows that norm(↵) \ Õ0 6= ; and hence norm(↵) \ M (O0,⌃) 6= ;. This is
a contradiction that stems from assuming that ↵ 2 Õ \M. Therefore Õ ✓ M, i.e., M is
justification-preserving.

9.2 Self-Containment and Strong Depletingness

In contrast to locality-based modules, the modules obtained using our approach are neither
strongly depleting, nor self-contained. To see this, consider the following example.

Example 62. Let ⌃ = {A,D} and O = {r
10

–r
15

} with

r
10

= (! A(o))
r
11

= A(x) ! 9y.[R(x, y) ^B(y)]
r
12

= A(x) ! 9y.[R(x, y) ^ C(y)]
r
13

= R(x, y) ! D(x)
r
14

= B(x) ! C(x)
r
15

= (! C(i))

Let M
1

= {r
10

–r
13

} and M
2

= {r
11

–r
13

}. We can check that

M�
f = M�

q = M�
m = M�

wq = M
1

M�
i = M�

c = M
2

Clearly, O |= C(i) and M�
wq 6|= C(i) where C is in the signature of M

1

; hence, M�
wq is not

self-contained. Furthermore, M�
wq is not strongly depleting since O\M�

wq |= C(i). For the
remaining inseparability relations, observe that O |= B(x) ! C(x) andMi 6|= B(x) ! C(x)
for 1 i 2. Since both B and C are in the signatures of M

1

and M
2

it follows that
none of our modules is self-contained (note that implications are relevant consequences for
all relations other than wq). Furthermore, since we also have that O \Mi |= B(x) ! C(x),
we can conclude that our modules are also not strongly depleting. ⇧

535

Armas Romero, Kaminski, Cuenca Grau, & Horrocks

Self-containment and strong depletingness are not always needed for applications. Thus,
the fact that our modules do not satisfy them by default can be beneficial as it may allow
us to compute smaller modules.

However, as mentioned in Section 3, these properties can be useful in certain ontology
reuse scenarios. We next show that our framework can be adapted so as to satisfy these
properties whenever they are required. This can be achieved via a fixpoint construction
where modules are computed w.r.t. iterative extensions of the initial signature. Such fixpoint
constructions are reminiscent of the standard algorithms for computing locality modules
(Cuenca Grau et al., 2007a, 2008).

Definition 63. Let S be a module setting family for an inseparability relation S. We
define the family S

self as the function mapping each O and ⌃ to the least fixpoint of the
sequence {Mi}i�0

as defined next:

⌃
0

= ⌃ Mi = M

S
(O,⌃

i

) for i � 0
⌃i = ⌃i�1

[Sig(Mi�1

) for i > 0

⇧

The aforementioned fixpoint is well-defined: since ⌃i ✓ ⌃ [Sig(O) for each i � 0 and
⌃[Sig(O) is finite, there must be some i

0

� 0 such that ⌃i0 = ⌃j and Mi0 = Mj for each
j > i

0

. We show that, with this adaptation, our modules satisfy the required properties.

Proposition 64. S
self is self-contained and strongly depleting for each S 2 {m, q, f, i, c,wq}.

Proof. Let M = S
self (O,⌃). It is immediate that M is a self-contained ⌘S

⌃

-module of O.
Strong depletingness of M follows from Proposition 59 for S 2 {m, q, f, i, c,wq}.

The construction in Definition 63 can straightforwardly be adapted to the case of non-
normalised SROIQ ontologies by following the same approach as in Proposition 61.

10. Complexity of Module Extraction

In this section, we argue that our modules can be e�ciently computed in many practically
relevant cases. For this, we analyse the complexity of the following decision problem.

Definition 65. Let L be a class of ontologies and let S 2 {m, q, f, i, c, b,wq} be an insepa-
rability relation. The decision problem isInModule

[L,S] is as follows:

• Input : an ontology O 2 L, a signature ⌃ and a rule r 2 O.

• Output : True if and only if r 2 M

S
(O,⌃). ⇧

Furthermore, we consider the following classes of ontologies, which are strongly con-
nected to DL-based ontology languages.

Definition 66. Let k be a fixed non-negative integer. The class Lk
arity consists of all

ontologies where predicates have arity at most k.
The graph of a conjunction of atoms ' is the undirected graph G' = (V,E) such that V

is the set of variables occurring in ', and E contains an edge between each pair of variables

536

Module Extraction in Expressive Ontology Languages via Datalog Reasoning

that occur together in some atom in '. A tree decomposition of G' is a tree T = (W,F),
such that there exists a labelling � mapping each vertex w 2 W to some subset �(w) ✓ V ,
and the following conditions are satisfied:

• for each v 2 V , there exists v 2 W with v 2 �(w),

• for each {v, v0} 2 E, there exists w 2 W with {v, v0} ✓ �(w), and

• for each v 2 V , the set {w 2 W | v 2 �(w) } induces a (connected) subtree of T .

The width of the tree decomposition T is maxw2W (|�(w)| � 1). The treewidth of ' is the
minimum width over all the tree decompositions of G'. The treewidth of a rule is defined
as the treewidth of its body. Finally, the class Lk

tw consists of all ontologies where each rule
has treewidth at most k. ⇧

The rules correspong to SROIQ ontologies are not only of fixed predicate arity, but
also their bodies are tree-shaped (see Section 2.2). The latter implies that rules stemming
from SROIQ ontologies have treewidth at most one.

As already discussed, an appealing feature of our approach is that module extraction
can be delegated to an o↵-the-shelf datalog reasoner, regardless of the language in which
ontologies are expressed. The following proposition establishes that both the datalog pro-
gram and the initial dataset exploited in our approach are of polynomial size; furthermore,
the datalog transformation ⌅� in the definition of a module setting (see Definition 19 in
Section 5) does not alter the shape of rules in the original ontology in any significant way.

Proposition 67. Let O be an ontology and ⌃ ✓ Sig(O) a signature. Furthermore, let
S 2 {m, q, f, i, c, b,wq} and S(O,⌃) = � = h✓,D

0

,Dri. Then, P� and D
0

are of size linear
in |O|. Furthermore, if O is in Lk

arity (resp. in Lk
tw) for some fixed k, then so is P�.

Proof. It is clear from Definition 5 that ⌅�(r) contains a datalog rule for each atom in the
head of r. Thus, P� is clearly of size linear w.r.t. |O|. Furthermore, D

0

contains one fact
for each predicate in ⌃, and since ⌃ ✓ Sig(O), it follows that D

0

is also of size linear w.r.t.
|O|. Finally, the transformation ⌅� does not increase the arity of predicates and the body
of each rule ⌅�(r) coincides with that of r and hence preserves its treewidth.

The computational properties of datalog programs of bounded arity and/or treewidth
are well-understood: fact entailment is NP-complete in combined complexity for programs
of bounded arity, and the complexity drops to PTime if we additionally restrict ourselves to
programs of bounded treewidth. Bounded arity of predicates implies that the corresponding
materialisation is polynomially bounded in size, and thus can be computed in a polynomial
number of steps (i.e., applications of the immediate consequence operator); furthermore,
bounded treewidth of rule bodies implies that each such step can be performed in polynomial
time (Grohe, Schwentick, & Segoufin, 2001; Chekuri & Rajaraman, 2000).

The complexity of module extraction, however, is not only determined by that of datalog
reasoning, but also by the complexity of computing the support of all proofs involved in a
relevant entailment.

The following theorem, proved by Zhou et al. (2014), establishes that computing such
support can also be reduced to standard datalog reasoning. Given a program P, a dataset

537

Armas Romero, Kaminski, Cuenca Grau, & Horrocks

D, and a set of facts F , the main idea is to extend P and D with additional rules and
facts that are responsible for computing the support of all proofs of facts from F in P [D.
Such support is “recorded” by means of fresh predicates: auxiliary predicates Q̄ are used
to record relevant facts in D of the form Q(c); furthermore, each rule r 2 P is represented
by a fresh constant dr, and a fresh unary predicate Rel is used to capture the relevant rules
from P in the support.

Theorem 68 (Zhou et al., 2014). Let P be a datalog program, let D be a dataset, and
let F be a set of facts in the materialisation of P [D. Let Rel be a fresh unary predicate
and, for each predicate Q occurring in P [D, let Q̄ be a fresh predicate of the same arity.
Furthermore, let dr be a fresh constant for each r 2 P.

Let �(D, F) be the dataset �(D, F) = D [{ P̄ (c) | P (c) 2 F } and let �(P) be the
smallest datalog program including P and containing all of the following rules for each
r =

Vm
j=1

B
1

(xj) ! H(x) in P:

H̄(x) ^B
1

(x
1

) ^ . . . ^Bm(xm) ! Rel(dr)
H̄(x) ^B

1

(x
1

) ^ . . . ^Bm(xm) ! B̄j(x1

)
...

H̄(x) ^B
1

(x
1

) ^ . . . ^Bm(xm) ! B̄j(xm)

Then, a rule s 2 P is in the support of some proof in P [D of a fact from F i↵ Rel(ds)
is in the materialisation of �(P) [�(D, F).

The datalog program �(P) (resp. the dataset �(D, F)) in Theorem 68 is of size poly-
nomial in |P| (resp. in |D| and |F |) and does not use any predicates with arity greater than
that of predicates used in P. However, �(P) may have a larger treewidth than P. We next
argue that in the case of SROIQ ontologies the increase in treewidth is bounded.

Proposition 69. Let O be a normalised SROIQ ontology and ⌃ ✓ Sig(O) a signature.
Furthermore, let � be a module setting for O and ⌃. Then �(P�) has treewidth at most 2.

Proof. For each rule r 2 O whose head is formed only by (one or more) atoms that are
unary, or mention no more than one variable, it is straightforward that �(⌅�(r)) still
consists only of rules with tree-shaped bodies. For each r 2 O that does not mention more
than two variables, it is also straightforward that �(⌅�(r)) also consists only of rules with
tree-shaped bodies. Finally, if r mentions more than two variables, and its head contains
atoms that mention more than one variable, then r must be of one of the following forms:

• A(x) ^
Vm+1

i=1

[R(x, yi) ^B(yi)] !
W

i 6=j yi ⇡ yj
Then, the bodies of the rules in �(⌅�(r)) are of the form

A(x) ^
m+1^

i=1

[R(x, yi) ^B(yi)] ^ yi1 ⇡ yi2 1 i
1

< i
2

 m

Hence, they have treewidth 2 due to the cycle of length 3 formed by R(x, yi1), R(x, yi2)
and yi1 ⇡ yi2 .

538

Module Extraction in Expressive Ontology Languages via Datalog Reasoning

• R
1

(x, y) ^R
2

(y, z) ! S(x, z)
The body of the single rule in �(⌅�(r)) will be of the form R

1

(x, y)^R
2

(y, z)^S(x, z),
which has treewidth 2 due to the cycle of length 3 formed by its three atoms.

• The cases involving equality in the body of rules, namely x ⇡ y ^ y ⇡ z ! x ⇡ z,
A(x

1

, x
2

) ^ x
1

⇡ y ! A(y, x
2

), and A(x
1

, x
2

) ^ x
2

⇡ y ! A(x
1

, y), are analogous to
the previous case.

The following theorem establishes two practically relevant cases for which module ex-
traction in our framework can be performed in polynomial time. We first show that modules
M�

m ensuring model-inseparability are computable in polynomial time for arbitrary ontolo-
gies and signatures. Then, we establish that modules M� for the remaining inseparability
relations considered in this paper are also computable in polynomial time for all classes of
ontologies whose extended datalog program �(P�) in Definition 68 can be bounded in both
predicate arity and treewidth.

Theorem 70. Let L be a class of ontologies, S 2 {m, q, f, i, c,wq}, and LS,� the following
class of datalog programs:

LS,� = {�(P S
(O,⌃)) | O 2 L,⌃ ✓ Sig(O) }

The problem isInModule

[L,S] is decidable in polynomial time if either of the following condi-
tions is satisfied:

• S = m, or

• LS,� ✓ Lk
arity \ Lk0

tw for some fixed non-negative integers k and k0.

Proof. Consider an arbitrary ontology O and a signature ⌃. Let S(O,⌃) = h✓,D
0

,Dri
P = P S

(O,⌃), and F = Dr\P(D
0

). By Proposition 67, P and D
0

can be computed in time
polynomial in the size of O, and so can �(P). Therefore, it su�ces to show that �(D

0

, F)
can be obtained in polynomial time and so can the materialisation of �(P) [�(D

0

, F).
If S = m then Dr and �(D

0

, F) can be computed in linear time. Furthermore, it is easy
to see that computing the materialisation of �(P)[�(D

0

, F) is also feasible in linear time
since it boils down to propositional datalog reasoning.

Consider now S 2 {q, f, i, c,wq}. Note that �(P) 2 Lk
arity\Lk0

tw implies P 2 Lk
arity\Lk0

tw.
Hence, P(D

0

) can be computed in time polynomial in the size of O. Since F is always a
set of facts in P(D

0

) over predicates from ⌃, it can be computed in polynomial time.
Moreover, the dataset �(D

0

, F) can be computed in polynomial time as well and thus,
since �(P) 2 Lk

arity \ Lk0
tw, so can the materialisation of �(P) [�(D

0

, F).

Tractability of module extraction w.r.t. SROIQ ontologies is now an immediate conse-
quence of Theorem 70 and Proposition 69.

Corollary 71. Let S 2 {m, q, f, i, c,wq} and let O be a normalised SROIQ ontology. The
module M�S is computable in polynomial time.

539

Armas Romero, Kaminski, Cuenca Grau, & Horrocks

11. Optimality

As already discussed, in general, our modules are not minimal for their corresponding
inseparability relation. It is, however, of interest to determine which module setting families
yield the smallest possible modules for a given inseparability relation within the limits of
our framework. To this end, we next present and study a suitable notion of optimality
applicable to module setting families.

Our notion of module setting family in Definition 57 is rather general in that it does
not establish any relationship between the di↵erent module settings in the family. In or-
der to study optimality, it makes sense to restrict ourselves to families satisfying certain
uniformity conditions. Roughly speaking, we consider a family as uniform if (i) existen-
tially quantified variables and constants in ontologies are treated homogeneously within a
setting (i.e., di↵erent existential variables receive the same treatment, and so do di↵erent
constants) as well as consistently across di↵erent settings; and (ii) signatures are treated
monotonically across settings (i.e., if � and �0 are members of a family for some ontology
O and signatures ⌃ and ⌃0 with ⌃ ✓ ⌃0, then they treat predicates in ⌃ and Sig(O)\⌃0 in
exactly the same way).

Definition 72. A module setting family is uniform if, for each pair of ontologies O,O0

and signatures ⌃,⌃0, the module settings (O,⌃) = h✓,D
0

,Dri and (O0,⌃0) = h✓0,D0
0

,D0
ri

satisfy the following properties, where Ex(F) denotes the set of existentially quantified
variables in F :

1. If ⌃ = ⌃0, |Ct(O)| |Ct(O0)| and |Ex(O)| |Ex(O0)|, then there exists an injective
substitution ⌫ : dom(✓) ! dom(✓0) mapping variables to variables and constants to
constants such that

• ✓ = ⌫✓0,

• D
0

= {A(c) | A(c⌫) 2 D0
0

, c has only constants from Ct((O,⌃)) }, and
• Dr = {A(c) | A(c⌫) 2 D0

r, c has only constants from Ct((O,⌃)) }.

2. If O = O0 and ⌃ ✓ ⌃0, then

• ✓ = ✓0,

• D
0

= {A(c) 2 D0
0

| A 2 ⌃ },
• {A(c) 2 Dr | A 2 ⌃ } = {A(c) 2 D0

r | A 2 ⌃ }, and
• {A(c) 2 Dr | A 2 Sig(O)\⌃0 } = {A(c) 2 D0

r | A 2 Sig(O)\⌃0 }.

For S an inseparability relation, let S be the class of all uniform module setting families
that are S-admissible. We say that is S-optimal if 2 S and M (O,⌃) ✓ M

0
(O,⌃) for

every 0 2 S and each pair of O and ⌃. ⇧

It is easy to see that each of the S-admissible families S , with S 2 {m, q, f, i, c,wq},
is uniform. Furthermore, the following theorem establishes that m, i, c, and wq are
also optimal for their respective inseparability relations. The proof of the theorem is rather
technical and is deferred to the appendix.

540

Module Extraction in Expressive Ontology Languages via Datalog Reasoning

Theorem 73. The family S is S-optimal for S 2 {m, i, c,wq}.

In contrast, the families f and q for fact and query inseparability are not optimal.
To see this, consider the ontology O consisting of the following rules:

A(x) ! B(x) B(x) ! A(x) C(x) ! D(x)

Furthermore, let ⌃ = {A,C,D}. The module setting �
f

= f(O,⌃) yields M�
f = O.

Indeed, for D = {A(a)} we have a non-trivial proof of A(a) in O [D that involves rules
A(x) ! B(x) and B(x) ! A(x), which are then included in the module. However, it is
clear that M = {C(x) ! D(x)} is already ⌃-fact inseparable from O.

We now define a di↵erent setting � = h✓,D
0

,Dri, whose corresponding module is pre-
cisely M. For this, the idea is to define D

0

and Dr in such a way that the aforementioned
proofs of tautological statements are avoided. Consider D

0

and Dr as follows:

D
0

= {X(c0Y) | X,Y 2 ⌃} [{X(c1Y) | X,Y 2 ⌃ and X 6= Y }
Dr = {Y (c1Y) | Y 2 ⌃}

Datasets D
0

and Dr are disjoint, which guarantees that proofs of ⌃-tautologies are not taken
into account and therefore M� is indeed M. The construction of D

0

and Dr given for this
example ontology and signature can be generalised so as to define a uniform module setting
family that provides a counter-example to the optimality of f . There is, however, a price
to pay for such smaller modules, namely an increase in the size of module settings. Indeed,
 (O,⌃) is of size exponential in ⌃, whereas the size of f(O,⌃) remains polynomial. Such
exponential blowup is clearly undesirable in practice.

The following theorem establishes that f and q are not optimal. They do, however,
work well in practice, as shown in the evaluation presented in Section 13. The proof of the
theorem works by proposing “better” module setting families which, in both cases, incur the
aforementioned exponential blowup. We conjecture that such a blowup is unavoidable in
any optimal module setting family for fact or query inseparability (if such a family exists).
As in the case of Theorem 73, the proof is technical and is deferred to the appendix.

Theorem 74. The family S is not S-optimal for S 2 {f, q}.

12. Related Work

Module extraction has received a great deal of attention in the literature. In Section 12.1
we discuss the complexity of inseparability checking for di↵erent ontology languages and
inseparability relations. In Section 12.2 we recapitulate existing module extraction tech-
niques based on inseparability, and provide a brief overview of their practical applications.
Finally, in Section 12.3 we discuss a number of related problems, such as forgetting, uniform
interpolation, and partition-based reasoning.

12.1 Inseparability Relations

Inseparability relations originate in the notions of model and deductive conservative ex-
tensions for description and modal logics (Antoniou & Kehagias, 2000; Ghilardi, Lutz, &

541

Armas Romero, Kaminski, Cuenca Grau, & Horrocks

Wolter, 2006a; Ghilardi, Lutz, Wolter, & Zakharyaschev, 2006b), and constitute the foun-
dation of module extraction techniques (Konev et al., 2009).

Model inseparability is undecidable for all DLs that extend EL (Lutz & Wolter, 2010). It
is, however, tractable for ELI ontologies that are acyclic (Konev et al., 2013); furthermore,
it is coNexpTimeNP-complete for the description logic ALCI if signatures are restricted
to consist of atomic concepts only (Konev et al., 2013). For DL-LiteNbool and DL-LiteNhorn
it is coNexpTime-hard (Kontchakov et al., 2010), but no matching upper bound is known
to the best of our knowledge.

The complexity of query inseparability has been studied mainly for lightweight de-
scription logics. It is ExpTime-complete for EL (Lutz & Wolter, 2010), ⇧p

2

-complete and
coNP-complete for DL-LiteNbool and DL-LiteNhorn, respectively (Kontchakov et al., 2010),
and ExpTime-complete for DL-LiteHcore and DL-LiteHhorn (Konev, Kontchakov, Ludwig,
Schneider, Wolter, & Zakharyaschev, 2011; Botoeva et al., 2014). Baader et al. (2010)
considered a variant of query inseparability where the signature of datasets is restricted to
⌃ but the signature of queries is not, and identified decidable su�cient conditions for such
inseparability in ELI, which can be checked in polynomial time for EL. The complexity
of weak query inseparability (see Section 7.2) was studied by Botoeva et al. (2014); it is
known to be P-complete for DL-Litecore, DL-Litehorn and ELH, ExpTime-complete for
DL-LiteHcore and DL-LiteHhorn, and 2ExpTime-complete for Horn-ALCHI and Horn-ALCI.

The complexity of implication and classification inseparability coincides with that of
standard reasoning tasks such as subsumption checking (Konev et al., 2009). In the de-
scription logic literature implication inseparability has been studied in a more general form:
given L-ontologies O and O0 and a signature ⌃, the problem is to determine whether O
and O0 entail the same concept inclusion axioms C v D where C and D are (possibly com-
plex) L-concepts over ⌃. In this setting, inseparability has been found to be ⇧p

2

-complete for
DL-LiteNbool, coNP-complete forDL-LiteNhorn (Kontchakov et al., 2010), ExpTime-complete
for EL (Lutz & Wolter, 2010), 2ExpTime-complete for ALC (Ghilardi et al., 2006a), ALCI,
ALCQ andALCQI (Konev et al., 2009), and undecidable forALCQIO (Konev et al., 2009).
Note that this variant of implication inseparability is highly dependent on the ontology lan-
guage, whereas our results are largely logic-independent. We leave the investigation of such
inseparability relations within our framework as an interesting problem for future work.

12.2 Module Extraction

Practical module extraction techniques are typically based on approximations, which ensure
that the computed module is (model) inseparable from the given ontology, yet not neces-
sarily minimal. One such approximation, which we discussed in detail in Section 3, is based
on syntactic locality (Cuenca Grau et al., 2007a, 2008; Sattler et al., 2009). An implemen-
tation of ?-, >- and ?>⇤-module extraction is integrated in the OWL API (Horridge &
Bechhofer, 2011), and an alternative implementation can be downloaded as a separate Java
library.3 The semantic counterpart of syntactic locality, semantic locality, was proposed in
the work of Cuenca Grau et al. (2007b). Deciding semantic locality is, for any given DL,
as hard as checking satisfiability w.r.t. the empty TBox, and hence only tractable for log-
ics with restricted expressivity. For this reason modules based on syntactic locality, which

3. https://www.cs.ox.ac.uk/isg/tools/ModuleExtractor/

542

Module Extraction in Expressive Ontology Languages via Datalog Reasoning

can be extracted in polynomial time, have been the preferred choice in practice. Further-
more, an exhaustive comparison of syntactic and semantic locality modules revealed that
the di↵erence between them is not significant in most practical cases (Del Vescovo et al.,
2013).

Reachability-based modules (Suntisrivaraporn, 2008; Nortje, Britz, & Meyer, 2012;
Nortje et al., 2013) are a refinement of syntactic locality modules. Available in the same
three flavours (?-, >- and ?>⇤-reachability), they can also be computed in polynomial time.
While ?-reachability modules coincide with ?-modules, >- and ?>⇤-reachability modules
are generally subsets of their syntactic locality counterparts. This refinement comes at
the cost of losing depletingness, although reachability modules are still self-contained and
preserve all justifications for consequences over the reference signature ⌃.

Konev et al. (2013) and Gatens et al. (2014) developed module extraction techniques
for acyclic ELI and acyclic ALCQI, respectively. These techniques ensure that modules
are self-contained and depleting, and in the case of ELI also minimal. The polynomial
algorithm for ELI is implemented in the system MEX, the more general, non-tractable
algorithm for ALCQI is implemented in the system AMEX. In contrast to locality and
reachability modules, the applicability of these techniques is limited to a relatively restricted
class of ontologies, and tractability is only guaranteed for an even more restricted class.

Kontchakov et al. (2010) exploited the decidability of query inseparability forDL-LiteNbool
and DL-LiteNhorn for module extraction. Their techniques yield minimal or minimal deplet-
ing modules and have the same complexity as the corresponding inseparability relation
(⇧p

2

-complete and coNP-complete, respectively).

Baader et al. (2010) proposed exponential-time algorithms for extracting modules from
ELI ontologies that preserve a variant of query inseparability. Furthermore, they showed
that computing such modules is feasible in polynomial time for EL ontologies.

Recently, Rousset and Ulliana (2015) studied modularity in the context of deductive
triple stores, that is, RDF triple stores equipped with a set of datalog rules. The preservation
properties of such modules, however, are very di↵erent from the ones considered in our work.

Del Vescovo et al. (2011) considered the problem of finding a polynomial representation
of all modules of an ontology, for a particular notion of module. The proposed representa-
tion is called atomic decomposition and is applicable to any notion of a module that satisfies
certain properties that include self-containment and depletingness. The atomic decompo-
sition of an ontology for a suitable notion of module can be computed in polynomial time
using a module extraction algorithm as an oracle.

Module extraction has been identified as a key task to support knowledge reuse (Cuenca
Grau et al., 2008; Jiménez-Ruiz et al., 2008). Modules have also been exploited to optimise
ontology matching (Jiménez-Ruiz & Cuenca Grau, 2011) and the computation of justifica-
tions (Suntisrivaraporn et al., 2008; Ludwig, 2014) for ontology debugging and explanation.
Finally, module extraction techniques have been applied to optimising ontology classification
(Armas Romero et al., 2012; Tsarkov & Palmisano, 2012; Suntisrivaraporn, 2008; Cuenca
Grau et al., 2010) and have been integrated in the reasoners MORe and Chainsaw.

543

Armas Romero, Kaminski, Cuenca Grau, & Horrocks

12.3 Related Problems

Module extraction is strongly related to the notions of forgetting and (uniform) interpolation
(Eiter, Ianni, Schindlauer, Tompits, & Wang, 2006; Ludwig & Konev, 2014; Koopmann &
Schmidt, 2014; Konev, Walther, & Wolter, 2009; Nikitina & Rudolph, 2014; Wang, Wang,
Topor, & Pan, 2010). A uniform interpolant of an L-ontology O and a signature ⌃ is an
L-ontology O0 that only mentions symbols from ⌃ and which is inseparable from O w.r.t.
⌃ for a given inseparability relation. In contrast to modules, uniform interpolants are not
required to be subsets of O and they cannot contain any symbol outside ⌃ (all remaining
symbols are thus forgotten). The latter requirement implies that uniform interpolants for
a given ⌃ and O may not always exist (Konev et al., 2009; Lutz & Wolter, 2011; Wang,
Wang, Topor, Pan, & Antoniou, 2014).

Amir and McIlraith (2005) investigated partition-based reasoning techniques in propo-
sitional and first-order logic, where the goal is to improve the e�ciency of reasoning over
a knowledge base by first dividing its axioms into related partitions. The topology of the
partitions is described by means of a graph, where nodes represent partitions and an edge
between two partitions is labelled with the symbols they have in common. Such graph
structure is then exploited by a distributed message-passing algorithm, the correctness of
which is ensured by Craig’s interpolation theorem for first-order logic. Similar problems and
reasoning techniques have been studied in the context of description logics by Konev, Lutz,
Ponomaryov, and Wolter (2010) as well as by Schlicht and Stuckenschmidt (2009). The key
concern in partition-based reasoning is to find a partitioning that exhibits a suitable bal-
ance between number of partitions, their size, and the number of common symbols between
partitions in order to enable e�cient distributed reasoning. In this setting, partitions do
not necessarily capture the meaning of a given signature in the input knowledge base and
are therefore fundamentally di↵erent from modules.

Konev, Ludwig, Walther, andWolter (2012) studied the problem of computing the logical
di↵erence of ontologies O and O0—that is, the set of of queries that receive di↵erent answers
w.r.t. O and O0. Computing the logical di↵erence (or a concise representation thereof) has
been identified as a valuable resource for ontology versioning tasks (Jiménez-Ruiz, Cuenca
Grau, Horrocks, & Berlanga Llavori, 2011) and is closely related to inseparability checking;
indeed, inseparable ontologies are those that have an empty di↵erence.

Finally, Zhou et al. (2014) proposed a hybrid approach to ontology-based query answer-
ing where the bulk of the computation is delegated to a datalog reasoner. Given an ontology
O, dataset D , query q(x), and candidate answer tuple c, a core technique in this approach
is to compute fragments O0 ✓ O and D0 ✓ D such that O [D |= q(c) i↵ O0 [D0 |= q(c).
Similarly to our modules, these fragments are computed by first strengthening O into a dat-
alog program P and then exploiting the datalog reasoner to identify the axioms and facts
responsible for the validity of q(c). In contrast to query inseparable modules, however, the
fragment O0[D0 is only guaranteed to preserve the fixed query q(c) w.r.t. the fixed dataset
D, rather than all queries w.r.t. all datasets over a reference signature.

13. Implementation and Evaluation

In this section, we present our prototype module extraction system and discuss the results
of our evaluation on a suite of real-world ontologies.

544

Module Extraction in Expressive Ontology Languages via Datalog Reasoning

13.1 The PrisM System

We have implemented a prototype system for module extraction in Java, called PrisM,
which bundles RDFox as a black-box datalog reasoner (Motik et al., 2014). PrisM is
available online under academic license.4

PrisM accepts as input an OWL 2 ontology O, a signature ⌃ and a parameter S that
indicates the relevant inseparability relation. Our system currently supports the whole of
OWL 2, with the only exception of datatypes; furthermore, it supports the inseparability
relations S 2 {m, q, f, i, c,wq} defined in Sections 6 and 7.

PrisM computes an S-module Mout of O w.r.t. ⌃ according to the following steps.

1. Compute the normalisation norm(O) of O, where norm is the normalisation function
defined by the rules in Figure 2 from Section 2 (see also Proposition 3). Then, apply
the mapping ⇡ from Figure 1 to obtain an equivalent set of rules O0 = ⇡(norm(O)).

2. Consider the S-module setting �S = (✓S ,DS
0

,DS
r) for O0 and ⌃ as defined in Section 6

(for S 2 {m, q, f, i}) or 7 (for S 2 {c,wq}). Then, compute the corresponding module
M�S as follows:

(a) Construct the datalog program P�S as specified in Definition 19, and the datasets
DS

0

and DS
r from �S .

(b) Compute the support supp(�S) by exploiting the result in Theorem 68. For this,

• compute the datalog program �(P�S) and the dataset �(DS
0

,DS
r) using the

transformation � defined in Theorem 68;

• construct the materialisation Mat of �(P�S) [�(DS
0

,DS
r) using RDFox;

and

• construct supp(�S) as the set of rules r 2 P�S such that Rel(dr) 2 Mat

(c) Construct M�S from supp(�S) as specified in Definition 19.

3. Return Mout consisting of all axioms ↵ 2 O such that ⇡(norm(↵)) \M�S 6= ;.

The first step normalises the input OWL 2 ontology O into a set of rules O0. PrisM provides
an optimisation where O0 is constructed from a locality-based module of O, rather than from
O itself. Specifically, we use the ?-module M?

[O,⌃] if S is classification inseparability, and

the ?>⇤-module M?>⇤

[O,⌃] for all other inseparability relations. This optimisation does not
compromise the correctness of the overall procedure since model inseparability is stronger
than all other inseparability relations.

The second step computes the relevant S-module M�S for the set of rules O0 and sig-
nature ⌃. This is essentially done by following Definition 19; the only computationally
demanding part is the construction of the support supp(�S), which is achieved via materi-
alisation using RDFox in a black-box manner.

Finally, the third step constructs the module Mout for the input ontology O from the
module M�S for its corresponding set of rules O0. For this, PrisM keeps track of the cor-
respondence between the axioms in O and those in its normalisation norm(O). Correctness
of this step is ensured by Proposition 13.

4. http://www.cs.ox.ac.uk/isg/tools/PrisM/

545

Armas Romero, Kaminski, Cuenca Grau, & Horrocks

ID name predicates rules disjunctive existential expressivity
00001 ACGT-v1.0 2,019 5,512 105 259 SROIQ(D)
00004 BAMS-simplified 1,199 18,976 0 16,782 ALEHIF+

00024 DOLCE 603 2,148 53 184 SHOIN (D)
00026 GALEN-no-FIT 29,073 66,191 0 26,973 ALEH
00029 GALEN-doctored 3,740 7,447 0 2,367 ALEHIF+

00032 GALEN-undoctored 3,762 7,818 0 2,715 ALEHIF+

00347 LUBM-one-uni 68 84,771 0 8 ALEHI+(D)
00350 OBI 2,965 10,952 77 1,168 SHOIN (D)
00351 AERO 355 669 11 100 SROIQ(D)
00354 NIF-gross-anatomy 4,166 7,134 51 1,506 SROIF(D)
00463 Fly-anatomy-XP 8,047 42,107 0 9,433 ALERI+

00471 FMA-lite 78,986 168,828 0 42,734 ALEH+

00477 Gazetteer 150,981 382,158 0 156,743 ALE+

00512 Lipid 1,289 5,222 541 893 ALCHIN
00545 Molecule-role 9,222 153,020 0 6,276 ALE+

00774 RNA-v0.2 338 938 34 90 SRIQ(D)
00775 Roberts-family 183 2,020 1 73 SROIQ(D)
00778 SNOMED 54,982 191,891 18,323 60,377 SH
00786 NCI-v12.04e 93,628 193,453 65 76,957 SH(D)

Table 3: Test ontologies

13.2 Evaluation

We have evaluated our system on a set of test ontologies identified in the work of Glimm,
Horrocks, Motik, Stoilos, and Wang (2014) as non-trivial for reasoning. All ontologies
have been normalised prior to module extraction to make DL axioms equivalent to rules.
Further details on these ontologies are given in Table 3.5 The first and second columns in
the table indicate the ontology ID and name in the Oxford Ontology Repository. The third
and fourth columns provide the number of predicates and rules in the resulting ontology
after normalisation. The fifth and sixth columns specify how many of these rules contain
disjunction and existential quantification in the head. Finally, the last column indicates the
DL expressivity6 of the normalised ontology as given by the the OWL API.

All experiments were performed on a server with 2 Intel Xeon E5-2670 2.60GHz proces-
sors, each of which has 8 physical cores that serve 2 virtual cores each, making a total of 32
virtual cores. In our experiments we allocated 90GB of RAM, and RDFox was always run
on 16 threads. We have compared the module sizes and extraction times using our system
with those for locality-based ?- and ?>⇤-modules, computed using the OWL API. We have
followed the experimental methodology in the work of Del Vescovo et al. (2013), where two
kinds of signatures are considered:

• genuine signatures, which correspond to the signature of individual axioms, and

• random signatures, which include the signatures of several axioms.

5. The ontologies used in our experiments are available for download at https://krr-nas.cs.ox.ac.uk/

2015/jair/PrisM/testOntologies.zip.

6. We refer the reader to the work of Baader et al. (2003) for a detailed account on DL naming conventions.

546

Module Extraction in Expressive Ontology Languages via Datalog Reasoning

Unlike the work of Del Vescovo et al. (2013), who defined random signatures simply as
random subsets of the ontology signature, we extracted such signatures using a randomised
graph sampling algorithm. We first represented the syntactic dependencies between symbols
in the (normalised) ontology as a graph, and then traversed the graph in a randomised way
until we visited a set number n of nodes. The symbols corresponding to the visited nodes
were then taken as a random signature.7 The advantage of this approach is that it yields
signatures that are “semantically connected”, which we believe is likely to be the case in
practical applications. The number n was chosen by default as 0.1% of the total graph and
then increased by up to two orders of magnitude in cases where the resulting signatures
typically contained less than 15 predicates and thus were too small to provide additional
information w.r.t. genuine signatures.

For each kind of signature and each ontology, we have considered a sample of 400
runs and averaged module sizes and module extraction times. On the one hand, we have
compared the modules produced by �

c

(Section 7) with ?-modules. which are the only
kind of modules in the literature that guarantee our notion of classification inseparability.
On the other hand, we have compared the modules produced by �

m

, �
q

, �
wq

, �
f

, and
�
i

(Sections 6 and 7) with ?>⇤-modules. As discussed in Section 12.2, no other system
is (to the best of our knowledge) capable of computing modules specific to the deductive
inseparability relations considered in this paper. Furthermore, other module extraction
systems that ensure model inseparability, such as MEX and AMEX, are only applicable to
rather restricted ontology languages. Consequently, ?>⇤-modules seemed the best available
option for comparison to our approach.

Tables 4 and 5 provide the average number of rules in each kind of module for genuine and
random signatures, respectively. In both tables, the total number of rules in the normalised
ontology is provided at the top for comparison purposes, whereas the average size of the
signatures considered is specified towards the bottom. Table 5 additionally includes the
percentage n of the dependency graph covered by the random walks from which random
signatures were obtained.

We can observe that module size consistently decreases as we consider weaker insepa-
rability relations. The modules produced by �

c

can be several orders of magnitude smaller
than ?-modules, as in the cases of 00463, 00471, 00477 or 00545. Although those are rather
extreme cases, we observed in most cases at least a 25% decrease in size (see 00026, 00029,
00032, 00347, 00350, 00351, 00786). Our modules for model inseparability improve rea-
sonably on ?>⇤-modules in most cases, although the greatest di↵erence in size is of course
between ?>⇤-modules and �

i

-modules, reaching one order of magnitude for some ontologies
(see 00471 and 00477, and also 0004, 00463 and 00786 with genuine signatures). In realistic
ontologies, only a very small proportion of predicate pairs are related by atomic implication,
and this is often still the case when considering a datalog overestimation of the ontology;
thus, the di↵erence in size between ?>⇤-modules and �

i

is rather unsurprising. There is
naturally also a big di↵erence in size between �

wq

-modules and all other modules whenever
ontologies do not mention any constants, since the former are in that case obviously empty.
It is worth observing that, even though there are several cases where �

m

modules and �
q

modules are of very similar size (e.g. 00471), there are also cases where they di↵er signifi-

7. The functionality required to perform random walks is currently integrated in RDFox.

547

Armas Romero, Kaminski, Cuenca Grau, & Horrocks

00001 00004 00024 00026 00029 00032 00347 00350 00351 00354
total 5,512 18,976 2,148 66,191 7,447 7,818 84,771 10,952 669 7,134
? 678 18,306 1,000 14,253 187 690 84,726 803 133 826
�
c

558 16,942 883 9,799 94 479 23,651 558 74 618
>?⇤ 674 18,297 990 13,749 114 596 58,186 768 130 786
�
m

584 18,297 910 13,686 112 592 44,244 624 97 675
�
q

563 17,151 884 9,448 96 533 44,368 596 77 626
�
wq

514 0 875 0 0 0 43,761 538 64 111
�
f

563 17,108 884 5,962 96 533 31,322 596 77 626
�
i

558 655 882 3,279 18 130 11,234 558 67 617
|⌃| 2 3 2 3 3 3 2 2 2 2

00463 00471 00477 00512 00545 00774 00775 00778 00786
total 42,107 168,828 382,158 5,222 153,020 938 2,020 191,891 193,453
? 22,348 47,192 214,820 261 143,399 80 1,916 433 1,140
�
c

112 12 <1 86 6 76 1,491 426 390
>?⇤ 221 20 9 34 2 80 1,913 427 1,138
�
m

217 12 8 32 1 80 1,498 426 1,138
�
q

107 12 8 29 1 78 1,492 426 385
�
wq

0 0 0 0 0 0 1,490 0 0
�
f

80 1 <1 29 <1 78 1,492 426 371
�
i

12 1 <1 27 <1 76 1,491 397 120
|⌃| 3 2 3 2 3 2 2 3 3

Table 4: Average module sizes for genuine signatures.

cantly (e.g. 00786). Similarly, �
q

modules and �
f

modules have similar size in some cases
(e.g. 00350) but not in others (e.g. 00471), and the same happens with �

q

and �
wq

(exem-
plified by ontologies 00775 and 00354), and with �

f

and �
i

(see ontologies 00512 and 00004).
These observations suggest that our modules faithfully reflect the di↵erences between the
inseparability relations we considered, and that they could o↵er significant advantages for
practical applications

Tables 6 and 7 provide the average module extraction time (in milliseconds) for genuine
and random signatures, respectively. The extraction of our modules is consistently slower
than that of locality-based modules; however, the average extraction time rarely exceeds
1 minute, and is very often below 10 seconds (especially for genuine signatures). This
suggests that our modules are feasible for practical applications. Furthermore, since most
of the extraction time is invariably spent by the datalog reasoner, which is used as a black
box, future advancements in the area of datalog reasoning can lead to further performance
gains for systems implementing our technique.

14. Conclusion and Future Work

In this paper, we have proposed a novel approach to module extraction based on a reduction
to datalog reasoning. In contrast to existing techniques, our approach is not only applicable
to description logics, but also to highly expressive first-order rule formalisms. Furthermore,
our techniques can be easily customised so as to capture a wide range of inseparability
relations studied in the literature. In all cases our modules satisfy many desirable properties,

548

Module Extraction in Expressive Ontology Languages via Datalog Reasoning

00001 00004 00024 00026 00029 00032 00347 00350 00351 00354
total 5,512 18,976 2,148 66,191 7,447 7,818 84,771 10,952 669 7,134
? 857 18,904 1,053 27,771 1,890 3,279 84,732 1,795 315 1,537
�
c

691 17,607 933 17,879 1,223 2,483 58,203 1,084 208 1,240
>?⇤ 854 18,894 1,044 27,184 1,726 3,108 80,153 1,758 311 1,501
�
m

759 18,894 964 27,175 1,719 3,101 63,031 1,611 274 1,388
�
q

736 18,579 942 18,315 1,380 2,633 63,031 1,389 265 1,279
�
wq

517 0 875 0 0 0 62,455 539 81 113
�
f

735 18,536 942 18,255 1,364 2,620 58,980 1,389 241 1,278
�
i

688 2,511 931 17,646 1,060 2,314 50,362 1,080 191 1,238
|⌃| 43 82 20 107 104 107 11 92 56 79
% 1 1 1 0.1 1 1 10 1 10 1

00463 00471 00477 00512 00545 00774 00775 00778 00786
total 42,107 168,828 382,158 5,222 153,020 938 2,020 191,891 193,453
? 23,139 49,345 215,886 1,555 143,448 371 1,979 11,766 16,820
�
c

595 402 38 1,199 28 338 1,527 11,342 7,974
>?⇤ 982 1,658 1,050 837 16 371 1,977 11,762 16,817
�
m

973 1,450 1,049 819 14 369 1,561 11,651 16,817
�
q

757 1,450 1,049 774 14 368 1,557 11,644 8,969
�
wq

0 0 0 0 0 0 1,506 0 0
�
f

664 74 16 766 5 368 1,557 11,342 8,415
�
i

333 74 16 467 5 338 1,526 11,342 6,228
|⌃| 28 154 312 66 19 58 42 202 326
% 0.1 0.1 0.1 1 0.1 10 10 0.1 0.1

Table 5: Average module sizes for random signatures.

which makes them well-suited to applications such as ontology reuse, debugging, modular
ontology development, and reasoning optimisation. Last, but not least, our modules can
be e�ciently computed by reusing o↵-the-shelf datalog reasoners and our experimental
evaluation confirms their suitability in practice.

We envisage many directions for future work, which we outline next.

• State-of-the-art modular DL reasoners, such as MORe and Chainsaw, currently
rely on ?-modules to split the workload between a fully-fledged OWL reasoner and
an e�cient reasoner for a lightweight DL. It would be natural to exploit our modules
for classification inseparability (cf. Section 7.1) instead of ?-modules since all such
reasoners focus mainly on classification tasks. We believe that using our modules for
modular reasoning will significantly improve the separation of workload and lead to a
better use of the lightweight reasoner.

• So far, the use of modules for optimising data reasoning tasks, such as fact entailment
and query answering, has been rather limited. Indeed, it is well-known that ?-modules
are not well-suited for such tasks (Cuenca Grau et al., 2008). PAGOdA is the only
reasoning system we know of that exploits techniques akin to module extraction for
data reasoning (Zhou et al., 2014, 2015). It would be interesting to investigate how
our techniques could be exploited to improve PAGOdA’s performance. Furthermore,

549

Armas Romero, Kaminski, Cuenca Grau, & Horrocks

00001 00004 00024 00026 00029 00032 00347 00350 00351 00354
? 27 64 11 273 24 27 274 95 3 31
�
c

846 36,784 1,066 30,256 295 989 14,823 747 130 6,588
>?⇤ 43 95 19 418 39 42 463 124 5 43
�
m

831 18,244 1,013 25,884 231 826 15,268 724 126 722
�
q

857 62,680 1,074 29,051 241 903 14,688 798 136 3,530
�
wq

857 32,972 1,069 27,272 229 861 10,677 787 140 767
�
f

846 62,797 1,074 28,254 246 910 14,495 784 131 3,840
�
i

847 35,158 1,072 28,499 234 890 10,285 789 132 3,826

00463 00471 00477 00512 00545 00774 00775 00778 00786
? 122 506 1,154 18 363 5 10 722 569
�
c

4,176 9,729 52,529 378 34,705 161 963 1,657 3,449
>?⇤ 199 805 1,851 30 616 11 18 1,056 899
�
m

775 1,543 4,995 166 2,783 147 857 1,590 3,340
�
q

485 824 1,792 225 595 161 955 1,708 3,475
�
wq

455 790 1,753 210 552 154 966 1,612 3,419
�
f

463 788 1,772 229 580 164 967 1,700 3,526
�
i

456 792 1,759 229 579 164 965 1,691 3,479

Table 6: Average extraction times in milliseconds for genuine signatures.

00001 00004 00024 00026 00029 00032 00347 00350 00351 00354
? 26 58 10 284 35 39 276 107 4 29
�
c

1,076 36,376 1,162 56,125 2,989 5,737 15,708 2,065 423 13,664
>?⇤ 101 84 18 457 54 60 485 144 9 45
�
m

1,011 18,114 1,077 49,792 2,675 4,900 20,885 1,936 384 1,467
�
q

1,064 171,497 1,132 55,343 2,814 5,533 20,654 2,077 423 8,591
�
wq

1,056 32,474 1,153 51,342 2,670 5,170 15,390 2,010 390 1,591
�
f

1,058 179,759 1,122 54,854 2,785 5,477 20,822 2,067 417 8,358
�
i

1,078 34,866 1,144 54,068 2,765 5,368 15,063 2,108 427 8,376

00463 00471 00477 00512 00545 00774 00775 00778 00786
? 138 549 1,172 23 342 5 10 841 698
�
c

5,441 13,291 51,707 20,712 31,616 768 1,064 34,980 44,463
>?⇤ 192 793 1,768 37 576 10 20 1,210 1,070
�
m

1,615 3,202 6,073 2,188 2,504 640 967 20,409 41,283
�
q

1,431 2,669 3,191 2,939 591 750 1,046 34,330 43,785
�
wq

1,332 2,638 3,157 2,756 567 715 1,028 20,293 43,007
�
f

1,391 2,640 3,157 2,964 569 748 1,047 33,565 44,604
�
i

1,382 2,664 3,223 2,891 562 767 1,048 34,774 44,168

Table 7: Average extraction times in milliseconds for random signatures.

we also envision potential applications to incremental and stream reasoning, where
data is frequently changing but queries and ontologies can be seen as fixed.

• Our conjecture that optimal module setting families for fact and query inseparability
incur an exponential blowup w.r.t. the ones that we have chosen remains open.

550

Module Extraction in Expressive Ontology Languages via Datalog Reasoning

• The use of ?-modules to exploit debugging and explanation systems for DL ontologies
has proved rather successful (Suntisrivaraporn et al., 2008). Given that our modules
are also justification-preserving, it would be interesting to evaluate the e↵ectiveness
of our modules for implication inseparability in this setting.

• Finally, the use of module extraction techniques has so far been largely restricted
to description logics. Our techniques are, however, widely applicable and could be
exploited in a number of reasoning tasks for ontology languages such as datalog± and
datalog±,_, which are currently gaining momentum.

Acknowledgments

This paper is an extended version of our conference publication (Armas Romero, Kaminski,
Cuenca Grau, & Horrocks, 2015). This work has been supported by the Royal Society under
a University Research Fellowship, by the EPSRC projects Score!, MaSI3, and DBOnto, and
by the EU FP7 project Optique. We would like to thank the anonymous referees for their
valuable comments and suggestions.

Appendix A. Proofs for Section 11

Theorem 73. The family S is S-optimal for S 2 {m, i, c,wq}.

We prove the result for each S 2 {m, i, c,wq} separately.

Theorem 75. m is m-optimal.

Proof. Suppose m is not m-optimal. Then there must be some m-admissible, uniform
family and some O and ⌃ such thatM

m

(O,⌃) 6✓ M (O,⌃). Let m(O,⌃) = h✓m,Dm

0

,Dm

r i
and (O,⌃) = h✓,D

0

,Dri. By Theorem 55, we have m(O,⌃) 6,! (O,⌃), hence for each
mapping µ : Ct(m(O,⌃)) ! Ct((O,⌃)) it must be either ✓mµ 6= ✓ or Dm

0

µ 6✓ D
0

or
Dm

r µ 6✓ Dr.
Suppose ✓ is such that there are two existentially quantified variables y

1

and y
2

in O
such that y

1

✓ 6= y
2

✓. Consider the ontology O0 consisting of the following rules:

p
1

: A(x) ! S(x, b)
p
2

: A(x) ! 9y
1

[R(x, y
1

) ^B(y
1

)]
p
3

: A(x) ! 9y
2

[R(x, y
2

) ^ C(y
2

)]
p
4

: S(x, b) ^R(x, z) ^B(z) ^ C(z) ! D(x)

and the signature ⌃0 = {A,D,R} and let (O0,⌃0) = h✓0,D0
0

,D0
ri. By the second property

of uniformity, ✓0 is the same as the substitution in (O0, ;) and (O0,⌃), and therefore,
by the first property of uniformity, y

1

✓0 6= y
2

✓0. It follows that p
4

can never be applied on
P (O0,⌃0

)(D0
0

) and hence it is not in the support of (O0,⌃0) and M (O0,⌃0
) ✓ {p

1

, p
2

, p
3

}.
The interpretation I such that �I = {i}, AI = BI = CI = {i}, DI = ;, aI = i and
RI = SI = {(i, i)} is a model of M (O0,⌃0

), but it cannot be extended to a model of
O0 without changing the interpretation of A, D or R. It follows that M (O0,⌃0

) is not

551

Armas Romero, Kaminski, Cuenca Grau, & Horrocks

a ⌘m

⌃

0-module of O0, contradicting our hypothesis that is m-admissible. The origin of
this contradiction is in the assumption that ✓ does not map all existentially quantified
variables to the same constant, therefore there must be some constant c such that y✓ = c
for each variable y universally quantified in O. Suppose now that ✓ is such that there exists
a constant b0 in O such that b0✓ 6= c. By the first property of uniformity ✓0 must also
not map b to the same constant as y

1

and y
2

. But then again p
4

can never be applied
on P (O0,⌃0

)(D0
0

) and M (O0,⌃0
) ✓ {p

1

, p
2

, p
3

}, which, as we have already shown, is a
contradiction. Consequently, ✓ must map all constants in O to c as well.

This means that there exists some substitution µ : Ct(m(O,⌃)) ! Ct((O,⌃)) such
that ✓mµ = ✓. In particular it must be ⇤µ = c. By hypothesis, it must be the case that
either Dm

0

µ 6✓ D
0

or Dm

r µ 6✓ Dr.
Suppose Dm

0

µ 6✓ D
0

. There must be some predicate X 2 ⌃ such that X(c, . . . , c) /2 D
0

.
Consider the ontology O00 consisting of the following rules:

p
5

: X(x, . . . , x) ! 9yR(x, y)
p
6

: R(x, x) ! A(x)

and the signature ⌃00 = {X,A}, and let (O00,⌃00) = h✓00,D00
0

,D00
r i. By uniformity of , ✓00

maps y to c, and the fact X(c, . . . , c) is not in the initial dataset of (O, {X}), or in that
of (O,⌃00), or in D00

0

. Consider the dataset

D̂ = {A(a), A(c)} [{X(t) | t 2 {a, c}arity(X), t 6= (c, . . . , c) }

with a a fresh constant. The substitution µ̂ that maps c to itself and all other constants in
 (O00,⌃00) to a is a homomorphism from (O00,⌃00) to �̂ = h✓00, D̂,�µ̂(D00

r)i. By Theorem 55,

this implies M (O00,⌃00
) ✓ M�̂. Clearly, the only R-fact in P �̂(D̂) is R(a, c), so p

5

is not
in the support of �̂ and therefore M (O00,⌃00

) ✓ M�̂ ✓ {p
5

}. The interpretation J such
that �J = {i}, XJ = (i, . . . , i), AJ = ; and RJ = {(i, i)} is a model of M (O0,⌃00

), but
it cannot be extended to a model of O00 without changing the interpretation of X or A. It
follows that M (O00,⌃00

) is not a ⌘m

⌃

00-module of O00, which contradicts our hypothesis that
 is m-admissible. This contradiction stems from the assumption that Dm

0

µ 6✓ D
0

, therefore
it must be Dm

0

µ ✓ D
0

.
By hypothesis, this implies Dm

r µ 6✓ Dr, so there must be some predicate Y 2 ⌃ such
that Y (c, . . . , c) /2 Dr. Consider the ontology O000 consisting of the following rules:

p
7

: A(x) ! 9yR(x, y)
p
8

: R(x, x) ! Y (x, . . . , x)

and the signature ⌃000 = {A, Y }, and let (O000,⌃000) = h✓000,D000
0

,D000
r i. By uniformity of

 , ✓000 maps y to c. Consider the dataset Ď = {A(c), Y (c, . . . , c), A(b), Y (b, . . . , b)}, with
a again a fresh constant. The mapping µ̌ that maps c to itself and all other constants in
 (O000,⌃000) to b is a homomorphism from (O000,⌃000) to �̌ = h✓000, Ď,D000

r µ̌i. By Theorem 55,
this implies M (O000,⌃00

) ✓ M�̌. It is easy to see that the only R-facts in the materialisation
of P �̌ [Ď are R(a, c) and R(c, c), so the only proof in P �̌ [Ď supported by p

8

is a proof
of Y (c, . . . , c). However, by uniformity of , Y (c, . . . , c) is not in the relevant facts of
 (O, {Y }), or in those of (O, {A, Y }), or in D000

r . It follows that p
8

is not in the support
of �̌ and M (O000,⌃000

) ✓ M�̌ ✓ {p
7

}. The interpretation K such that �K = {i}, AK = {i},

552

Module Extraction in Expressive Ontology Languages via Datalog Reasoning

RK = {(i, i)} and Y K = ; is a model of M (O0,⌃00
), but it cannot be extended to a model

of O000 without changing the interpretation of A or Y . It follows that M (O000,⌃000
) is not

a ⌘m

⌃

000-module of O000, which again contradicts our hypothesis that is m-admissible.
The origin of this contradiction is in the assumption that Dm

r µ 6✓ Dr, therefore it must
be Dm

r µ ✓ Dr. The mapping µ is thus a witness that m(O,⌃) ,! (O,⌃), ultimately
contradicting the assumption that m is not m-optimal.

Theorem 76. i is i-optimal.

Proof. Consider the module setting family i

0

such that for each pair of ontology O and
signature ⌃, i

0

(O,⌃) = h✓i0 ,Di0
0

,Di0
r i is as follows:

• ✓i0 = { y 7! cy | y existentially quantified in O} [{ c 7! c | c 2 Sig(O) a constant }

• Di0
0

= {A(cA,B) | A 6= B predicates in ⌃ of the same arity }

• Di0
r = {B(cA,B) | A 6= B predicates in ⌃ of the same arity } [Di0

r?

where each cy is a fresh constant, cA,B = c1A,B, . . . , c
n
A,B, is an array of fresh constants for

each pair A,B 2 ⌃ of distinct n-ary predicates, and Di0
r? = {?} if ⌃ contains two distinct

predicates of the same arity and Di0
r? = ; otherwise.

First, we show that i is i-optimal i↵ i

0

is i-optimal by proving that M

i

(O,⌃) =

M

i

0(O,⌃) for each O and ⌃. Let us fix arbitrary O and ⌃, and let i(O,⌃) = h✓i,Di

0

,Di

ri
and i

0

(O,⌃) = h✓i0 ,Di0
0

,Di0
r i. It is easy to see that i

0

(O,⌃) ,! i(O,⌃), therefore

by Theorem 55 we have that M

i

0(O,⌃) ✓ M

i

(O,⌃). For M

i

(O,⌃) ✓ M

i

0(O,⌃), first
note that P i

(O,⌃) = P i

0(O,⌃). We can assume w.l.o.g. that ⌃ contains at least two
predicates A,B of the same arity—otherwise there are no non-trivial ⌃-implications. Given
a proof ⇢ = (T,�) in P i

(O,⌃) [Di

0

of B(cA) (resp. of ?) the proof ⇢
0

= (T,�
0

) such that
�
0

(v) = �(v)⌫ for each node v in T , with ⌫ a substitution such that cA⌫ = cA,B, is a proof

of B(cA,B) (resp. of ?) in P i0
(O,⌃) [Di0

0

satisfying supp(⇢
0

) = supp(⇢). Consequently,

supp(i(O,⌃)) ✓ supp(i

0

(O,⌃)) and hence M

i

(O,⌃) ✓ M

i

0(O,⌃).
Now, suppose i

0

is not i-optimal. Then, there must be a uniform, i-admissible family

 and some O and ⌃ such that M

i

0(O,⌃) 6✓ M (O,⌃). Let (O,⌃) = h✓,D
0

,Dri. Since
✓i0 is injective, there exists a mapping µ : Ct(i

0

(O,⌃)) ! Ct((O,⌃)) such that ✓i0µ = ✓.
This condition only determines the e↵ect of µ on dom(✓i0), and since dom(✓i0) is disjoint
with the set { cA,B | A 6= B predicates in ⌃ of the same arity }, we can asume that either

µ is such that Di0
0

µ ✓ D
0

, or there are two distinct predicates A,B 2 ⌃ of the same arity
such that D

0

contains no A-facts. Suppose the latter is the case, and consider the ontology
O0 = {A(x) ! B(x)}. By uniformity of , the initial dataset of (O0,⌃) also contains no
A-facts and therefore the support of (O0,⌃) is empty and M (O0,⌃) = ; 6|= A(x) ! B(x).
This contradicts the i-admissibility of , hence it must be Di0

0

µ ✓ D
0

. Finally, suppose
Di0

r µ 6✓ Dr; then in particular ⌃ must contain two distinct n-ary predicates, since otherwise
it is Di0

r = ; and thus trivially Di0
r µ 6✓ Dr. In this case there are two possible situations:

• ? /2 Dr.
Let A,B 2 ⌃ be distinct predicates of the same arity and consider the ontology

553

Armas Romero, Kaminski, Cuenca Grau, & Horrocks

O00 = {A(x) ! C(x) _D(x), C(x) ! B(x), D(x) ! ?} with C and D fresh predi-
cates. Clearly, O00 |= A(x) ! B(x) By uniformity of , ? is not in the set of
relevant facts of (O00,⌃), and therefore D(x) ! ? /2 M (O00,⌃). Consequently we
have M (O00,⌃) 6|= A(x) ! B(x), contradicting the assumption that is i-admissible.

• B(cA,B)µ /2 Dr for some pair of distinct A,B 2 ⌃ of the same arity.
Consider O000 = {A(x) ! B(x)}. By uniformity of , there are no B-facts in the set
of relevant facts of (O000, {A,B}), and therefore M (O00,{A,B}) = ; 6|= A(x) ! B(x),
contradicting the assumption that is i-admissible.

It follows that Di0
r µ ✓ Dr, so µ is a homomorphism from (O,⌃) to i

0

(O,⌃), and thus

M

i

0(O,⌃) ✓ M (O,⌃), which ultimately contradicts the assumption that i

0

(resp. i) is
not i-optimal.

Theorem 77. c is c-optimal.

Proof. Analogous to Theorem 76

Theorem 78. wq is wq-optimal.

Proof. Suppose wq is not wq-optimal. Then there must be some uniform and wq-admissible
family and some O and ⌃ s.t. M

wq

(O,⌃) 6✓ M (O,⌃). Let (O,⌃) = h✓,D
0

,Dri and
 wq(O,⌃) = h✓wq,D

0

wq,Dwq

r i. By Theorem 55, given a mapping µ : Ct(wq) ! Ct() it
must be either ✓wqµ 6= ✓ or Dwq

0

µ 6✓ D
0

or Dwq

r µ 6✓ Dr.
Since ✓wq is injective and Dwq = ;, we can assume that µ is such that ✓wqµ = ✓,

Dwq

0

µ ✓ D
0

and Dwq

r µ 6✓ Dr. But then there must be some predicate X 2 ⌃ and an array c
of size arity(X) of constants from Ct(O)[{ cy | y exist. quant. in O} such that X(c)µ /2 Dr.
Consider the ontology O0 = {(! X(c))}; clearly, O0 |= X(c). By uniformity, X(c) is also
not in the relevant facts of (O0,⌃), which implies M (O0,⌃) = ; 6|= X(c). This contradicts
the wq-admissibility of , hence it must be Dwq

r µ ✓ Dr, which makes µ a homomorphism.
It follows that wq is wq-optimal.

Theorem 74. The family S is not S-optimal for S 2 {f, q}.

Again, we prove the result for each S 2 {f, q} separately.

Proposition 79. The family f is not f-optimal.

Proof. Consider an arbitrary but fixed pair of O and ⌃. Let Ct(O) = {c
1

, . . . , cn}. Further-
more, for each predicate B 2 ⌃ and each array v 2 {1, . . . , arity(B) + n}arity(B) consider a
set of constants { ⇤iB,v | 0 i arity(B) + n } such that

1. ⇤0B,v, . . . , ⇤
arity

B,v (B) are fresh constants and

2. ⇤arityB,v (B), . . . , ⇤arity(B)+n
B,v are such that ⇤arity(B)+i

B,v = ci 2 Ct(O) for each 1 i n.

Let ⇤wB,v denote the array (⇤w1
B,v, . . . , ⇤

w
n

B,v) whenever w = (w
1

, . . . , wn), and consider the

uniform module setting family f

0

such that f

0

(O,⌃) = h✓f0 ,Df0
0

,Df0
r i is as follows:

• ✓f0 = { y 7! cy | y existentially quantified in O} [{ c 7! c | c 2 Ct(O) }

554

Module Extraction in Expressive Ontology Languages via Datalog Reasoning

• Df0
0

= {A(⇤wB,v) | A,B 2 ⌃,v 2 {1, . . . , arity(B) + n}arity(B),

w 2 {0, . . . , arity(B) + n}arity(A), A(⇤wB,v) 6= B(⇤vB,v)}

• Df0
r = {B(⇤vB,v) | B 2 ⌃,v 2 {1, . . . , arity(B)}arity(B) } [{?}

We now show that the family f

0

is f-admissible. Consider a datalog rule r = ' ! � 2
rel

f(O,⌃). W.l.o.g. we can assume that � /2 '—otherwise r would be tautological and hence
entailed by any ontology. Let � be a substitution mapping all variables in r to distinct
fresh constants. Since � /2 ' and � is injective, we also have �� /2 '�. The fact ��
must be of the form B(c) with B 2 ⌃ (if B = ? then it would be c = ;) and consider
an injective substitution mapping all constants in c [Ct(O) to {1, . . . , arity(B) + n} and
satisfying c⌘ = arity(B) + i i↵ c = ci 2 Ct(O). Let ⌧ be another substitution defined on all
constants in Sig('� [��) and such that

c⌧ =

⇢ ⇤c⌘B,c⌘ if c 2 c [Ct(O)
⇤0B,c⌘ otherwise

Note that ⌧ is compatible with ✓f0 .
It is easy to see that (��)⌧ = B(⇤c⌘B,c⌘) 2 Df0

r since c⌘ 2 {1, . . . , arity(B) + n}arity(B).
On the other hand, each fact in ('�)⌧ must be of the form A(⇤wB,⌘(c)) with A 2 ⌃ and

w 2 {0, . . . , arity(B) + n}arity(A). Because �� /2 '� and ⌘ is injective, it is easy to see that
A(⇤wB,c⌘) 6= B(⇤c⌘B,c⌘). Consequently, ('�)⌫ ✓ Df0

r . By Theorem 23, it follows that O |= r

i↵ M

f

0(O,⌃) |= r, hence f

0

is f-admissible.
Finally, consider O = {A(x) ! B(x), B(x) ! A(x)} and ⌃ = {A}. It is easy to see

that M

f

(O,⌃) = O 6✓ ; = M

f

0(O,⌃), and thus f is not f-optimal.

Proposition 80. The family q is not q-optimal.

Proof. Consider an arbitrary but fixed pair of O and ⌃. Let Ct(O) = {c
1

, . . . , cn} and let
{y

1

, . . . , ym} be the existentially quantified variables mentioned in O, and {cy1 , . . . , cym}
a corresponding set of fresh constants. Furthermore, for each predicate B 2 ⌃ and each
array v 2 {1, . . . , arity(B) + n+m}arity(B) consider a set { ⇤iB,v | 0 i arity(B) + n+m }
of constants such that

1. ⇤0B,v, . . . , ⇤
arity

B,v (B) are fresh constants,

2. ⇤arityB,v (B), . . . , ⇤arity(B)+n
B,v are such that ⇤arity(B)+i

B,v = ci 2 Ct(O) for each 1 i n, and

3. ⇤arity(B)+n+1

B,v , . . . , ⇤arity(B)+n+m
B,v are such that ⇤arity(B)+n+i

B,v = cy
i

for each 1 i m

Let ⇤wB,v denote the array (⇤w1
B,v, . . . , ⇤

w
n

B,v) whenever w = (w
1

, . . . , wn), and consider the

uniform module setting family q

0

such that q

0

(O,⌃) = h✓q0 ,Dq0
0

,Dq0
r i is as follows:

• ✓q0 = { y 7! cy | y existentially quantified in O} [{ c 7! c | c 2 Ct(O) }

• Dq0
0

= {A(⇤wB,v) | A,B 2 ⌃,v 2 {1, . . . , arity(B) + n+m}arity(B),

w 2 {0, 1, . . . , arity(B) + n}arity(A), A(⇤wB,v) 6= B(⇤vB,v)}

555

Armas Romero, Kaminski, Cuenca Grau, & Horrocks

• Dq0
r = {B(⇤vB,v) | B 2 ⌃,v 2 {1, . . . , arity(B) + n+m}arity(B) } [{?}

We now show that the family q

0

is q-admissible.
Consider a rule r = '(x) ! 9y (x,y) 2 rel

q

(O,⌃), a justification O0 of r in O and a

rule s 2 O0. To show that q

0

(O,⌃) is q-admissible it su�ces to show that s ✓ M

q

0(O,⌃).
We can assume w.l.o.g. that ? /2 ' (otherwise r would be tautological) and =

Wn
i=1

 i

with m > 0 and each i a conjunction of atoms. Similarly to the proof of Theorem 23,
consider a fresh predicate Q and the ontology

OQ = { i(x,y) ! Q(x) | 1 i n }

as well as a module setting �Q = h✓q0 ,DQ
0

,DQ
r i for O [OQ and ⌃, satisfying in particular

P�
Q = P q

0(O,⌃)[OQ. As argued in the proof of Theorem 23, given s 2 O0 and a substitution
� mapping variables in x to fresh distinct constants, there must be a proof ⇢ = (T,�) of
Q(x)� in (O [OQ) ['� such that (s) \ supp(⇢) 6= ;. Furthermore, thanks to O0 being
a justification, we can assume that ⇢ is laconic, and in particular for each leaf node v 2 T
and each ancestor w of v in T it must be �(v) 6✓ �(w).

By Lemma 21, either s = ? ! ⇤ or there exists a proof ⇢0 = (T 0,�0) in P q

0(O,⌃) [
('�)✓q0 of either Q(x)� or ? that is embeddable into ⇢ modulo ✓q0 and such that supp(⇢0)\
⌅

q

0(O,⌃)(s) 6= ;.
If s = ? ! ⇤ then there must be some rule s0 in O0 such that ? 2 Sig(O0). As we show

next, when considering the case s 6= ? ! ⇤, it must be s0 2 M�. Therefore ? 2 Sig(M�),
and consequently s = ? ! ⇤ 2 M�.

Otherwise, if ⇢0 = (T,�) is a proof of Q(x)�, as discussed in the proof of Theorem 23, a
rule from ⌅

q

0(O,⌃)(r) must be used in some subproof ⇢00 = (T 00,�00) of ⇢0 that is a proof of
(��0)✓q0 for some � 2

S
i i and some extension �0 of � to y. Let v be the root of T 00 and

w
1

, . . . , wn its leaves, by definition it must be �00(v) = (��0)✓q0 .
If v is also a leaf in T 00 then there must be a rule of the form (! (��0)✓q0) in ⌅

q

0(O,⌃)(s),
and all the terms in (��0)✓q0 must be constants from the domain of ✓q0 . This implies
(��0)✓q0 2 Dq0

r , and consequently (! (��0)✓q0) 2 supp(q

0

(O,⌃)) and s 2 M

q

0(O,⌃).
Suppose v is not a leaf of T 00. First of all, note that ('�)✓q0 = '� due to ✓q

0

not
modifying constants and '� not using functional terms, and therefore �00(wi) 2 '� for each
i. If there are functional terms in ��0 then (��0)✓q0 /2 '�, since both the constants cy and
the constants in the range of � were fresh by hypothesis, and therefore �00(wi) 6= �00(v) for
each i. Suppose now that there are no functional terms in ��0. Then ��0✓q0 = ��0. We know
that ⇢0, and hence ⇢00, is embeddable into ⇢ modulo ✓q0 . It follows that there must exist
some node v0 2 T that is not a leaf of T and such that �(v) ✓ �(v0)✓q0 , and also a collection
of leaves w0

1

, . . . , w0
n of T such that �00(wi) = �(w0

i)✓
q0 2 '�✓q0 . Since neither ��0 nor '�0

use functional terms, and ✓q
0

does not modify constants, it must in fact be �(v) ✓ �(v0) and
�00(wi) = �(w0

i) for each i. Furthermore, we had that �(wi) 6✓ �(v0) for each i, which implies
that, also in this case �00(wi) 6= �00(v) for each i. Therefore, regardless of ��0 mentioning
functional terms, we have �00(wi) 6= �00(v) for each i. Now, the fact ��0 must be of the form
B(c) with B 2 ⌃ since � 2

S
i i and by hypothesis r 2 rel

q

(O,⌃). Let ⌘ be an injective
substitution mapping all constants in c [range(✓) to {1, . . . , arity(B) + n + m} satisfying
(i) c⌘ = arity(B) + i i↵ c = ci 2 Ct(O) and (ii) c⌘ = arity(B) + n+ i i↵ c = cy

i

. Let ⌧ be

556

Module Extraction in Expressive Ontology Languages via Datalog Reasoning

another substitution defined on all constants mentioned by ⇢00 and such that

c⌧ =

⇢ ⇤c⌘B,c⌘ if c 2 c [range(✓)
⇤0B,c⌘ otherwise

Note that ⌧ is compatible with ✓. Since c⌘ 2 {1, . . . , arity(B) + n + m}arity(B), it is easy
to see that �00(v)⌧ = B(⇤c⌘B,c⌘) 2 Df0

r . On the other hand, as we have previously observed,
no �00(wi) mentions constants from the set {cy1 , . . . , cym}, hence �00(wi)⌧ must be of the
form A(⇤wB,⌘(c)) with A 2 ⌃ and w 2 {0, . . . , arity(B) + n}arity(A). Furthermore, because

�00(wi) 6= �00(v) for each i, it follows that also �00(wi)⌧ 6= �00(v)⌧ and thus �00(wi)⌧ 2 Df0
0

for each i. The proof ⇢00⌧ = (T 00,�00⌧) such that �00⌧ (v) = (�00(v))⌧ is clearly a proof in
P q

0(O,⌃) [Dq0
0

of �00(v)⌧ that has the same support as ⇢00, therefore s 2 M

q

0(O,⌃).

Finally, if ⇢0 is a proof of ? then it must be a proof in P q

0(O,⌃). Since by assumption it
is ? /2 ', the labels of all the leaves in ⇢0 must also be di↵erent from ?. To check that also
in this case s 2 M

q

0(O,⌃), it su�ces to follow a similar argument to the one above with a
mapping ⌧ 0 defined on all constants mentioned in ⇢0 and such that

c⌧ =

⇢
c if c 2 Ct(O) [{cy1 , . . . , cym}
⇤0B,c⌘ otherwise

We have proved that the family q

0

is q-admissible. Now we will use it to show
that q is not q-optimal. As in the proof for Theorem 79, if we consider the ontol-
ogy O = {A(x) ! B(x), B(x) ! A(x)} and the signature ⌃ = {A}, we can observe that
M

q

(O,⌃) = O 6✓ ; = M

q

0(O,⌃), and thus q is not q-optimal.

References

Abiteboul, S., Hull, R., & Vianu, V. (1995). Foundations of Databases. Addison-Wesley.

Alviano, M., Faber, W., Leone, N., & Manna, M. (2012). Disjunctive datalog with existential
quantifiers: Semantics, decidability, and complexity issues. Theory and Practice of
Logic Programming, 12 (4-5), 701–718.

Amir, E., & McIlraith, S. A. (2005). Partition-based logical reasoning for first-order and
propositional theories. Artificial Intelligence, 162 (1-2), 49–88.

Antoniou, G., & Kehagias, A. (2000). A note on the refinement of ontologies. International
Journal of Intelligent Systems, 15 (7), 623–632.

Armas Romero, A., Cuenca Grau, B., & Horrocks, I. (2012). MORe: Modular combination of
OWL reasoners for ontology classification. In Cudré-Mauroux, P., Heflin, J., Sirin, E.,
Tudorache, T., Euzenat, J., Hauswirth, M., Parreira, J. X., Hendler, J., Schreiber, G.,
Bernstein, A., & Blomqvist, E. (Eds.), Proceedings of the 11th International Semantic
Web Conference, Part I, Vol. 7649 of Lecture Notes in Computer Science, pp. 1–16.
Springer.

Armas Romero, A., Kaminski, M., Cuenca Grau, B., & Horrocks, I. (2015). Ontology module
extraction via datalog reasoning. In Bonet, B., & Koenig, S. (Eds.), Proceedings of
the 29th AAAI Conference on Artificial Intelligence, pp. 1410–1416. AAAI Press.

557

Armas Romero, Kaminski, Cuenca Grau, & Horrocks

Baader, F., Bienvenu, M., Lutz, C., & Wolter, F. (2010). Query and predicate emptiness
in description logics. In Lin, F., Sattler, U., & Truszczynski, M. (Eds.), Proceedings
of the 12th International Conference on Principles of Knowledge Representation and
Reasoning. AAAI Press.

Baader, F., Brandt, S., & Lutz, C. (2005). Pushing the EL envelope. In Kaelbling, L. P.,
& Sa�otti, A. (Eds.), Proceedings of the 19th International Joint Conference on Ar-
tificial Intelligence, pp. 364–369. Professional Book Center.

Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., & Patel-Schneider, P. F. (Eds.).
(2003). The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press.

Bachmair, L., & Ganzinger, H. (2001). Resolution theorem proving. In Robinson, J. A.,
& Voronkov, A. (Eds.), Handbook of Automated Reasoning, pp. 19–99. Elsevier and
MIT Press.

Botoeva, E., Kontchakov, R., Ryzhikov, V., Wolter, F., & Zakharyaschev, M. (2014). Query
inseparability for description logic knowledge bases. In Baral, C., Giacomo, G. D.,
& Eiter, T. (Eds.), Proceedings of the 14th International Conference on Principles of
Knowledge Representation and Reasoning. AAAI Press.

Bourhis, P., Morak, M., & Pieris, A. (2013). The impact of disjunction on query answering
under guarded-based existential rules. In Rossi, F. (Ed.), Proceedings of the 23rd
International Joint Conference on Artificial Intelligence. IJCAI/AAAI.

Bry, F., Eisinger, N., Eiter, T., Furche, T., Gottlob, G., Ley, C., Linse, B., Pichler, R., &Wei,
F. (2007). Foundations of rule-based query answering. In Antoniou, G., Aßmann, U.,
Baroglio, C., Decker, S., Henze, N., Patranjan, P., & Tolksdorf, R. (Eds.), Proceedings
of the 3rd International Reasoning Web Summer School, Tutorial Lectures, Vol. 4636
of Lecture Notes in Computer Science, pp. 1–153. Springer.

Cal̀ı, A., Gottlob, G., Lukasiewicz, T., Marnette, B., & Pieris, A. (2010). Datalog+/-: A
family of logical knowledge representation and query languages for new applications.
In Proceedings of the 25th Annual ACM/IEEE Symposium on Logic in Computer
Science, pp. 228–242. IEEE Computer Society.

Chekuri, C., & Rajaraman, A. (2000). Conjunctive query containment revisited. Theoretical
Computer Science, 239 (2), 211–229.

Cuenca Grau, B., Halaschek-Wiener, C., Kazakov, Y., & Suntisrivaraporn, B. (2010). Incre-
mental classification of description logics ontologies. Journal of Automated Reasoning,
44 (4), 337–369.

Cuenca Grau, B., Horrocks, I., Kazakov, Y., & Sattler, U. (2007a). Just the right amount:
Extracting modules from ontologies. In Williamson, C. L., Zurko, M. E., Patel-
Schneider, P. F., & Shenoy, P. J. (Eds.), Proceedings of the 16th International World
Wide Web Conference, pp. 717–726. ACM.

Cuenca Grau, B., Horrocks, I., Kazakov, Y., & Sattler, U. (2007b). A logical framework for
modularity of ontologies. In Veloso, M. M. (Ed.), Proceedings of the 20th International
Joint Conference on Artificial Intelligence, pp. 298–303.

558

Module Extraction in Expressive Ontology Languages via Datalog Reasoning

Cuenca Grau, B., Horrocks, I., Kazakov, Y., & Sattler, U. (2008). Modular reuse of ontolo-
gies: Theory and practice. Journal of Artificial Intelligence Research, 31, 273–318.

Cuenca Grau, B., Horrocks, I., Krötzsch, M., Kupke, C., Magka, D., Motik, B., & Wang, Z.
(2013). Acyclicity notions for existential rules and their application to query answering
in ontologies. Journal of Artificial Intelligence Research, 47, 741–808.

Cuenca Grau, B., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P. F., & Sattler, U.
(2008). OWL 2: The next step for OWL. Journal of Web Semantics, 6 (4), 309–322.

Dantsin, E., Eiter, T., Gottlob, G., & Voronkov, A. (2001). Complexity and expressive
power of logic programming. ACM Computing Surveys, 33 (3), 374–425.

Del Vescovo, C., Klinov, P., Parsia, B., Sattler, U., Schneider, T., & Tsarkov, D. (2013).
Empirical study of logic-based modules: Cheap is cheerful. In Alani, H., Kagal, L.,
Fokoue, A., Groth, P. T., Biemann, C., Parreira, J. X., Aroyo, L., Noy, N. F., Welty,
C., & Janowicz, K. (Eds.), Proceedings of the 12th International Semantic Web Con-
ference, Part I, Vol. 8218 of Lecture Notes in Computer Science, pp. 84–100. Springer.

Del Vescovo, C., Parsia, B., Sattler, U., & Schneider, T. (2011). The modular structure of
an ontology: Atomic decomposition. In Walsh, T. (Ed.), Proceedings of the 22nd In-
ternational Joint Conference on Artificial Intelligence, pp. 2232–2237. IJCAI/AAAI.

Eiter, T., Ianni, G., Schindlauer, R., Tompits, H., & Wang, K. (2006). Forgetting in manag-
ing rules and ontologies. In Proceedings of the 2006 IEEE / WIC / ACM International
Conference on Web Intelligence, pp. 411–419. IEEE Computer Society.

Gatens, W., Konev, B., & Wolter, F. (2014). Lower and upper approximations for depleting
modules of description logic ontologies. In Schaub, T., Friedrich, G., & O’Sullivan,
B. (Eds.), Proceedings of the 21st European Conference on Artificial Intelligence, Vol.
263 of Frontiers in Artificial Intelligence and Applications, pp. 345–350. IOS Press.

Ghilardi, S., Lutz, C., & Wolter, F. (2006a). Did I damage my ontology? A case for conser-
vative extensions in description logics. In Doherty, P., Mylopoulos, J., & Welty, C. A.
(Eds.), Proceedings of the 10th International Conference on Principles of Knowledge
Representation and Reasoning, pp. 187–197. AAAI Press.

Ghilardi, S., Lutz, C., Wolter, F., & Zakharyaschev, M. (2006b). Conservative extensions in
modal logic. In Governatori, G., Hodkinson, I. M., & Venema, Y. (Eds.), Proceedings
of the 6th Advances in Modal Logic Conference, pp. 187–207. College Publications.

Glimm, B., Horrocks, I., Motik, B., Stoilos, G., & Wang, Z. (2014). HermiT: An OWL 2
reasoner. Journal of Automated Reasoning, 53 (3), 245–269.

Grohe, M., Schwentick, T., & Segoufin, L. (2001). When is the evaluation of conjunctive
queries tractable?. In Vitter, J. S., Spirakis, P. G., & Yannakakis, M. (Eds.), Pro-
ceedings of the 33rd Annual ACM Symposium on Theory of Computing, pp. 657–666.
ACM.

Horridge, M., & Bechhofer, S. (2011). The OWL API: A java API for OWL ontologies.
Semantic Web, 2 (1), 11–21.

Horridge, M., Parsia, B., & Sattler, U. (2008). Laconic and precise justifications in OWL.
In Sheth, A. P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T. W., &

559

Armas Romero, Kaminski, Cuenca Grau, & Horrocks

Thirunarayan, K. (Eds.), Proceedings of the 7th International Semantic Web Confer-
ence, Vol. 5318 of Lecture Notes in Computer Science, pp. 323–338. Springer.

Horrocks, I., Kutz, O., & Sattler, U. (2006). The even more irresistible SROIQ. In Doherty,
P., Mylopoulos, J., & Welty, C. A. (Eds.), Proceedings of the 10th International Con-
ference on Principles of Knowledge Representation and Reasoning, pp. 57–67. AAAI
Press.

Horrocks, I., Patel-Schneider, P. F., & van Harmelen, F. (2003). From SHIQ and RDF to
OWL: the making of a web ontology language. Journal of Web Semantics, 1 (1), 7–26.

Jiménez-Ruiz, E., & Cuenca Grau, B. (2011). LogMap: Logic-based and scalable ontology
matching. In Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy,
N. F., & Blomqvist, E. (Eds.), Proceedings of the 10th International Semantic Web
Conference, Part I, Vol. 7031 of Lecture Notes in Computer Science, pp. 273–288.
Springer.

Jiménez-Ruiz, E., Cuenca Grau, B., Horrocks, I., & Berlanga Llavori, R. (2011). Supporting
concurrent ontology development: Framework, algorithms and tool. Data & Knowledge
Engineering, 70 (1), 146–164.

Jiménez-Ruiz, E., Cuenca Grau, B., Sattler, U., Schneider, T., & Berlanga Llavori, R.
(2008). Safe and economic re-use of ontologies: A logic-based methodology and tool
support. In Bechhofer, S., Hauswirth, M., Ho↵mann, J., & Koubarakis, M. (Eds.),
Proceedings of the 5th European Semantic Web Conference, Vol. 5021 of Lecture Notes
in Computer Science, pp. 185–199. Springer.

Kalyanpur, A., Parsia, B., Horridge, M., & Sirin, E. (2007). Finding all justifications of OWL
DL entailments. In Aberer, K., Choi, K., Noy, N. F., Allemang, D., Lee, K., Nixon,
L. J. B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., & Cudré-
Mauroux, P. (Eds.), Proceedings of the 6th International Semantic Web Conference
and 2nd Asian Semantic Web Conference, Vol. 4825 of Lecture Notes in Computer
Science, pp. 267–280. Springer.

Kalyanpur, A., Parsia, B., Sirin, E., & Cuenca Grau, B. (2006). Repairing unsatisfiable
concepts in OWL ontologies. In Sure, Y., & Domingue, J. (Eds.), Proceedings of
the 3rd European Semantic Web Conference, Vol. 4011 of Lecture Notes in Computer
Science, pp. 170–184. Springer.

Kalyanpur, A., Parsia, B., Sirin, E., & Hendler, J. A. (2005). Debugging unsatisfiable classes
in OWL ontologies. Journal of Web Semantics, 3 (4), 268–293.

Konev, B., Kontchakov, R., Ludwig, M., Schneider, T., Wolter, F., & Zakharyaschev, M.
(2011). Conjunctive query inseparability of OWL 2 QL tboxes. In Burgard, W., &
Roth, D. (Eds.), Proceedings of the 25th AAAI Conference on Artificial Intelligence.
AAAI Press.

Konev, B., Ludwig, M., Walther, D., & Wolter, F. (2012). The logical di↵erence for the
lightweight description logic EL. Journal of Artificial Intelligence Research, 44, 633–
708.

Konev, B., Lutz, C., Ponomaryov, D. K., & Wolter, F. (2010). Decomposing description
logic ontologies. In Lin, F., Sattler, U., & Truszczynski, M. (Eds.), Proceedings of

560

Module Extraction in Expressive Ontology Languages via Datalog Reasoning

the 12th International Conference on Principles of Knowledge Representation and
Reasoning. AAAI Press.

Konev, B., Lutz, C., Walther, D., & Wolter, F. (2009). Formal properties of modularisation.
In Stuckenschmidt, H., Parent, C., & Spaccapietra, S. (Eds.), Modular Ontologies:
Concepts, Theories and Techniques for Knowledge Modularization, Vol. 5445 of Lecture
Notes in Computer Science, pp. 25–66. Springer.

Konev, B., Lutz, C., Walther, D., & Wolter, F. (2013). Model-theoretic inseparability and
modularity of description logic ontologies. Artificial Intelligence, 203, 66–103.

Konev, B., Walther, D., & Wolter, F. (2009). Forgetting and uniform interpolation in large-
scale description logic terminologies. In Boutilier, C. (Ed.), Proceedings of the 21st
International Joint Conference on Artificial Intelligence, pp. 830–835.

Kontchakov, R., Lutz, C., Toman, D., Wolter, F., & Zakharyaschev, M. (2011). The com-
bined approach to ontology-based data access. In Walsh, T. (Ed.), Proceedings of
the 22nd International Joint Conference on Artificial Intelligence, pp. 2656–2661. IJ-
CAI/AAAI.

Kontchakov, R., Wolter, F., & Zakharyaschev, M. (2010). Logic-based ontology comparison
and module extraction, with an application to DL-Lite. Artificial Intelligence, 174 (15),
1093–1141.

Koopmann, P., & Schmidt, R. A. (2014). Count and forget: Uniform interpolation of SHQ-
ontologies. In Demri, S., Kapur, D., & Weidenbach, C. (Eds.), Proceedings of the 7th
International Joint Conference on Automated Reasoning, Vol. 8562 of Lecture Notes
in Computer Science, pp. 434–448. Springer.

Krötzsch, M., Rudolph, S., & Hitzler, P. (2008a). Description logic rules. In Ghallab,
M., Spyropoulos, C. D., Fakotakis, N., & Avouris, N. M. (Eds.), Proceedings of the
18th European Conference on Artificial Intelligence, Vol. 178 of Frontiers in Artificial
Intelligence and Applications, pp. 80–84. IOS Press.

Krötzsch, M., Rudolph, S., & Hitzler, P. (2008b). ELP: Tractable rules for OWL 2. In Sheth,
A. P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T. W., & Thirunarayan,
K. (Eds.), Proceedings of the 7th International Semantic Web Conference, Vol. 5318
of Lecture Notes in Computer Science, pp. 649–664. Springer.

Ludwig, M. (2014). Just: A tool for computing justifications w.r.t. ELH ontologies. In
Bail, S., Glimm, B., Jiménez-Ruiz, E., Matentzoglu, N., Parsia, B., & Steigmiller, A.
(Eds.), Proceedings of the 3rd International Workshop on OWL Reasoner Evaluation,
Vol. 1207 of CEUR Workshop Proceedings, pp. 1–7. CEUR-WS.org.

Ludwig, M., & Konev, B. (2014). Practical uniform interpolation and forgetting for ALC
tboxes with applications to logical di↵erence. In Baral, C., Giacomo, G. D., & Eiter, T.
(Eds.), Proceedings of the 14th International Conference on Principles of Knowledge
Representation and Reasoning. AAAI Press.

Lutz, C., & Wolter, F. (2010). Deciding inseparability and conservative extensions in the
description logic EL. Journal of Symbolic Computation, 45 (2), 194–228.

561

Armas Romero, Kaminski, Cuenca Grau, & Horrocks

Lutz, C., & Wolter, F. (2011). Foundations for uniform interpolation and forgetting in
expressive description logics. In Walsh, T. (Ed.), Proceedings of the 22nd International
Joint Conference on Artificial Intelligence, pp. 989–995. IJCAI/AAAI.

Marnette, B. (2009). Generalized schema-mappings: From termination to tractability. In
Paredaens, J., & Su, J. (Eds.), Proceedings of the 28th ACM SIGMOD Symposium on
Principles of Database Systems, pp. 13–22. ACM.

Motik, B. (2006). Reasoning in Description Logics Using Resolution and Deductive
Databases. Ph.D. thesis, Univesität Karlsruhe (TH), Karlsruhe, Germany.

Motik, B., Nenov, Y., Piro, R., Horrocks, I., & Olteanu, D. (2014). Parallel materialisation
of datalog programs in centralised, main-memory RDF systems. In Brodley, C. E., &
Stone, P. (Eds.), Proceedings of the 28th AAAI Conference on Artificial Intelligence,
pp. 129–137. AAAI Press.

Motik, B., Patel-Schneider, P. F., & Parsia, B. (2012). OWL 2 web ontology language
structural specification and functional-style syntax..

Nikitina, N., & Rudolph, S. (2014). (Non-)succinctness of uniform interpolants of general
terminologies in the description logic EL. Artificial Intelligence, 215, 120–140.

Nonnengart, A., & Weidenbach, C. (2001). Computing small clause normal forms. In
Robinson, J. A., & Voronkov, A. (Eds.), Handbook of Automated Reasoning, pp. 335–
367. Elsevier and MIT Press.

Nortje, R., Britz, K., & Meyer, T. (2012). A normal form for hypergraph-based module
extraction for SROIQ. In Gerber, A., Taylor, K., Meyer, T., & Orgun, M. (Eds.),
Proceedings of the 8th Australasian Ontology Workshop, Vol. 969 of CEUR Workshop
Proceedings, pp. 40–51. CEUR-WS.org.

Nortje, R., Britz, K., & Meyer, T. (2013). Reachability modules for the description logic
SRIQ. In McMillan, K. L., Middeldorp, A., & Voronkov, A. (Eds.), Proceedings of the
19th International Conference on Logic for Programming, Artificial Intelligence and
Reasoning, Vol. 8312 of Lecture Notes in Computer Science, pp. 636–652. Springer.

Robinson, J. A. (1965). Automatic deduction with hyper-resolution. International Journal
of Computer Mathematics, 1 (3), 227–234.

Rousset, M.-C., & Ulliana, F. (2015). Extracting bounded-level modules from deductive
RDF triplestores. In Bonet, B., & Koenig, S. (Eds.), Proceedings of the 29th AAAI
Conference on Artificial Intelligence, pp. 268–274. AAAI Press.

Sattler, U., Schneider, T., & Zakharyaschev, M. (2009). Which kind of module should I
extract?. In Grau, B. C., Horrocks, I., Motik, B., & Sattler, U. (Eds.), Proceedings of
the 22nd International Workshop on Description Logics, Vol. 477 of CEUR Workshop
Proceedings. CEUR-WS.org.

Schlicht, A., & Stuckenschmidt, H. (2009). Distributed resolution for expressive ontology
networks. In Polleres, A., & Swift, T. (Eds.), Proceedings of the 3rd International
Conference on Web Reasoning and Rule Systems, Vol. 5837, pp. 87–101. Springer.

Schlobach, S., & Cornet, R. (2003). Non-standard reasoning services for the debugging of
description logic terminologies. In Gottlob, G., & Walsh, T. (Eds.), Proceedings of the

562

Module Extraction in Expressive Ontology Languages via Datalog Reasoning

18th International Joint Conference on Artificial Intelligence, pp. 355–362. Morgan
Kaufmann.

Seidenberg, J., & Rector, A. L. (2006). Web ontology segmentation: Analysis, classification
and use. In Carr, L., Roure, D. D., Iyengar, A., Goble, C. A., & Dahlin, M. (Eds.),
Proceedings of the 15th International World Wide Web Conference, pp. 13–22. ACM.

Stefanoni, G., Motik, B., & Horrocks, I. (2013). Introducing nominals to the combined
query answering approaches for EL. In desJardins, M., & Littman, M. L. (Eds.),
Proceedings of the 27th AAAI Conference on Artificial Intelligence. AAAI Press.

Stuckenschmidt, H., Parent, C., & Spaccapietra, S. (Eds.). (2009). Modular Ontologies:
Concepts, Theories and Techniques for Knowledge Modularization, Vol. 5445 of Lecture
Notes in Computer Science. Springer.

Suntisrivaraporn, B. (2008). Module extraction and incremental classification: A pragmatic
approach for EL+ ontologies. In Bechhofer, S., Hauswirth, M., Ho↵mann, J., &
Koubarakis, M. (Eds.), Proceedings of the 5th European Semantic Web Conference,
Vol. 5021 of Lecture Notes in Computer Science, pp. 230–244. Springer.

Suntisrivaraporn, B., Qi, G., Ji, Q., & Haase, P. (2008). A modularization-based approach
to finding all justifications for OWL DL entailments. In Domingue, J., & Anutariya,
C. (Eds.), Proceedings of the 3rd Asian Semantic Web Conference, Vol. 5367 of Lecture
Notes in Computer Science, pp. 1–15. Springer.

Tsarkov, D., & Palmisano, I. (2012). Chainsaw: A metareasoner for large ontologies. In
Horrocks, I., Yatskevich, M., & Jiménez-Ruiz, E. (Eds.), Proceedings of the 1st In-
ternational Workshop on OWL Reasoner Evaluation, Vol. 858 of CEUR Workshop
Proceedings. CEUR-WS.org.

W3C OWL Working Group (2012). OWL 2 web ontology language document overview
(second edition). W3C recommendation, World Wide Web Consortium.

Wang, K., Wang, Z., Topor, R. W., Pan, J. Z., & Antoniou, G. (2014). Eliminating concepts
and roles from ontologies in expressive descriptive logics. Computational Intelligence,
30 (2), 205–232.

Wang, Z., Wang, K., Topor, R. W., & Pan, J. Z. (2010). Forgetting for knowledge bases in
DL-Lite. Annals of Mathematics and Artificial Intelligence, 58 (1-2), 117–151.

Zhou, Y., Cuenca Grau, B., Horrocks, I., Wu, Z., & Banerjee, J. (2013). Making the most of
your triple store: Query answering in OWL 2 using an RL reasoner. In Schwabe, D.,
Almeida, V. A. F., Glaser, H., Baeza-Yates, R. A., & Moon, S. B. (Eds.), Proceedings
of the 22nd International World Wide Web Conference, pp. 1569–1580. International
World Wide Web Conferences Steering Committee / ACM.

Zhou, Y., Cuenca Grau, B., Nenov, Y., Kaminski, M., & Horrocks, I. (2015). PAGOdA:
Pay-as-you-go ontology query answering using a datalog reasoner. Journal of Artificial
Intelligence Research, 54, 309–367.

Zhou, Y., Nenov, Y., Cuenca Grau, B., & Horrocks, I. (2013). Complete query answering
over horn ontologies using a triple store. In Alani, H., Kagal, L., Fokoue, A., Groth,
P. T., Biemann, C., Parreira, J. X., Aroyo, L., Noy, N. F., Welty, C., & Janowicz, K.

563

Armas Romero, Kaminski, Cuenca Grau, & Horrocks

(Eds.), Proceedings of the 12th International Semantic Web Conference, Part I, Vol.
8218 of Lecture Notes in Computer Science, pp. 720–736. Springer.

Zhou, Y., Nenov, Y., Cuenca Grau, B., & Horrocks, I. (2014). Pay-as-you-go OWL query
answering using a triple store. In Brodley, C. E., & Stone, P. (Eds.), Proceedings of
the 28th AAAI Conference on Artificial Intelligence, pp. 1142–1148. AAAI Press.

564

