
Under consideration for publication in Formal Aspects of Computing

Computing Maximal Weak and Other
Bisimulations
Alexandre Boulgakov, Thomas Gibson-Robinson, and A.W. Roscoe
Department of Computer Science, University of Oxford, UK

Abstract. We present and compare several algorithms for computing the maximal strong bisimulation, the
maximal divergence-respecting delay bisimulation, and the maximal divergence-respecting weak bisimulation
of a generalised labelled transition system. These bisimulation relations preserve CSP semantics, as well as
the operational semantics of programs in other languages with operational semantics described by such
GLTSs and relying only on observational equivalence. They can therefore be used to combat the space
explosion problem faced in explicit model checking for such languages. We concentrate on algorithms which
work efficiently when implemented rather than on ones which have low asymptotic growth.

Keywords: CSP; FDR; Bisimulation; Strong bisimulation; Delay bisimulation; Weak bisimulation; Labelled
transition systems; Model-checking

1. Introduction

Many different variations on bisimulation have been described in the literature on process algebra, for exam-
ple [Par81,Mil81,vGW96,PU96,San96]. They are typically used to characterise equivalences between nodes
of a labelled transition system (LTS), but they can also be used to calculate state-reduced LTSs that repre-
sent equivalent processes. They have the latter function in the CSP-based [Hoa85,Ros98,Ros10] refinement
checker FDR [Ros94], of which the third major version FDR3 has recently been released [GRABR15]. The
present paper sets out the approaches to bisimulation reduction taken in FDR and especially FDR3.

FDR typically views a large process as the parallel composition of a number of component processes, which
are often sequential. The resulting LTS is closely related to the Cartesian product of the components’ LTSs.
One of the approaches it takes to combat the state explosion problem is to supply a number of compression
functions that attempt to reduce the state spaces of these components1. The set of compressions described
in [RGG+95], which included strong bisimulation, has been extended by several other versions of bisimulation
in the most recent versions of FDR.

Correspondence and offprint requests to: Alexandre Boulgakov, Department of Computer Science, University of Oxford, Wolfson
Building, Parks Road, Oxford, OX1 3QD, UK. e-mail: alexandre.boulgakov@cs.ox.ac.uk
1 Necessarily, any technique for reducing the number of states will lose some information about the inputs, making presentation
of counterexamples in terms of the input non-trivial. As discussed in [RGG+95], FDR’s debugger gets around this with the
help of additional refinement checks.



2 A. Boulgakov, T. Gibson-Robinson, and A.W. Roscoe

The main purpose of this paper is to introduce novel algorithms for computing maximal divergence-
respecting delay bisimulations (DRDB) and divergence-respecting weak bisimulations (DRWB) based on
dynamic programming and incorporating the idea of change tracking introduced in the context of strong
bisimulation in [BO05]. These algorithms are the first efficient algorithms for directly computing the maximal
weak and delay bisimulation relations, without constructing an expensive intermediate form. For obvious
reasons the choice of algorithms for FDR is primarily influenced by practical efficiency, and we include
comprehensive benchmark results. These show that our new algorithms are much more efficient than existing
algorithms used by other tools on many examples. We also compare the performance of a number of strong
bisimulation algorithms.

Model checkers frequently use branching bisimulation [vGW96] for compression due to the existence of
an efficient O(nt) algorithm [GV90] and the absence, prior to our own work reported here, of a sufficiently
efficient algorithm to compute the even coarser weak bisimulation directly. Even though DRDB and DRWB
compress better than branching bisimulation they typically give less compression than FDR’s pre-existing
compressions. However the latter are not sound for some functionality of FDR32 whereas these bisimulations
are, when strengthened so as not to identify any divergent process with a non-divergent one. In Section 4.5
we compare these two classes of compressions. The new algorithms are highly effective in practice. Change
tracking can significantly reduce wasted effort. Their use of dynamic programming to compute afters on the
fly for the divergence-respecting delay and weak bisimulations typically gives a vast reduction on memory
usage and time for transition systems with many τs: this can be as much as several orders of magnitude.

This paper updates and extends the conference paper [BGRR14]. Since we believe that the most inter-
esting contributions of our work relate to delay and weak bisimulation, the emphasis of the present paper
has shifted in that direction. New algorithms are presented for DRDB and DRWB combining the change
tracking and dynamic programming techniques. For all of the presented algorithms, the descriptions have
been updated to include pseudo-code. The performance is investigated more thoroughly, with a comparison
to CADP’s BCG MIN [GLMS13] and with the addition of benchmarks from the VLTS Benchmark Suite
provided alongside the CADP Toolbox. For completeness, we adapt the Paige-Tarjan algorithm to compute
DRDB and DRWB.

Section 2 first defines terms used throughout the rest of the paper. The rest of the section summarises
iterative refinement, which is discussed in its näıve form in [BO02] and in an optimised form using change
tracking in [BO05], and the Paige-Tarjan algorithm [PT87,Fer90] as implemented by FDR. Since our DRDB
and DRWB algorithms build on these foundations, the reader is recommended to study this section before
reading the subsequent sections. Divergence-respecting delay and weak bisimulations are closely related, and
we present them together in Section 3. Finally, we compare the time and compression characteristics of each
of our algorithms and a number of alternatives on various benchmarks in Section 4.

2. Background

FDR uses LTSs in which nodes sometimes have additional behaviours represented by labellings such as
divergences or minimal acceptances.

Definition 2.1. A generalised labelled transition system (GLTS) is a tuple (N ,Σ,−→,Λ, λ) where N is a
set of nodes, Σ is a set of events, τ is a designated invisible event not in Σ, Στ = Σ∪{τ}, −→⊆ N ×Στ ×N

is a labelled transition relation (with p
a−→ q indicating a transition from p to q with action a), Λ is a set

of node labels, and λ : N → Λ is a total function labelling each node. The following shorthand is used:

• initials(m) = {e | ∃n ·m e−→ n} denotes m’s initial events;

• afters(m) = {(e,n) | m e−→ n} denotes m’s directly enabled transitions;

• m⇑ ⇔ ∃m0,m1, ... · m0 = m ∧ ∀ i · mi
τ−→ mi+1 denotes divergence, i.e. an infinite series of internal τ

actions corresponding to livelock.

The algorithms presented in this paper input and output GLTSs, and the definitions of the various
bisimulations are modified to only identify states with identical node labels. However, regular LTSs are

2 Use inside the prioritise operator and with semantic models richer than failures. This includes virtually all Timed CSP
examples and most other real-time CSP models.



Computing Maximal Weak and Other Bisimulations 3

1: function IterativeRefinement(InitialApproximation,ComputeAfters,Refine)(G)
2: ρ← InitialApproximation(G)
3: repeat
4: ρ′ ← ρ
5: cafters ← ComputeAfters(G , ρ′)
6: ρ← Refine(G , ρ′, cafters)
7: until ρ = ρ′

8: ConstructMachine(G , ρ)
9: end function

Fig. 1. The iterative refinement skeleton used by most of our bisimulation algorithms. We present it as a curried higher-order
function so that implementers can pass the functions specifying a certain algorithm and users would pass the GLTS it is to be
run against.

supported as a special case. As input, an LTS (N ,Σ,−→) is equivalent to the GLTS (N ,Σ,−→, {∅}, λ),
where λ(n) = ∅ for all n ∈ N . The output GLTSs have the same node labellings as the input, and possibly
divergence markings. If the input is an LTS, rather than a GLTS, and an output LTS is to be created then
τ self-loops could be used in place of divergence markings.

2.1. Strong Bisimulation

Definition 2.2. Given a GLTS G = (N ,Σ,−→,Λ, λ), a relation R ⊆ N × N is a strong bisimulation of G
if and only if it satisfies all of the following:

∀n1,n2,m1 ∈ N · ∀ x ∈ Στ · n1 R n2 ∧ n1
x−→ m1 ⇒ ∃m2 ∈ N · n2

x−→ m2 ∧ m1 R m2

∀n1,n2,m2 ∈ N · ∀ x ∈ Στ · n1 R n2 ∧ n2
x−→ m2 ⇒ ∃m1 ∈ N · n1

x−→ m1 ∧ m1 R m2

∀n1,n2 ∈ N · n1 R n2 ⇒ λ(n1) = λ(n2)

Two nodes are strongly bisimilar if and only if there exists a strong bisimulation that relates them. The
maximal strong bisimulation on a GLTS S is the relation that relates two nodes if and only if they are
strongly bisimilar. The FDR function sbisim computes the maximal strong bisimulation on its input GLTS
and returns a GLTS with a single node bisimilar to each equivalence class in the input. FDR has included the
sbisim compression function since the release of FDR2. Other bisimulation relations are defined similarly,
differing in their use of a derived transition relation in place of −→ and potentially additional constraints
on related nodes beyond equivalence of their node labels.

2.2. Näıve Iterative Refinement

The FDR2 implementation of sbisim first computes the desired equivalence relation as a two-directional
one-to-many map between equivalence class and node identifiers. (This map allows us to quickly determine
the index of any node’s equivalence class, and the set of nodes denoted by any such index.) It then generates
a new GLTS based on the input and the computed equivalence relation. This final step is straightforward
to implement and dependent more on the internal GLTS format than the bisimulation algorithms and so
will not be discussed here in much detail. Furthermore, it is not specific to strong bisimulation and can be
used to factor a GLTS by an arbitrary equivalence relation. Computing the desired equivalence relation is
the more interesting problem and the topic of this paper.

We will use the term coloured afters to refer to the afters of a node under the last iteration’s equivalence

relation ρ, that is, {(e, ρ(n)) | m
e−→ n}. This is similar to the signatures introduced by Blom and Orzan

in [BO02]. Wimmer et al. present a list of signatures for a number of variants of bisimulation in [WHH+06];
we supplement them with node labels to support GLTSs and divergence-sensitive models.

A very high level overview of iterative refinement is illustrated in Figure 1. A coarse approximation of
the equivalence relation is first computed by InitialApproximation, usually using the first-step behaviour of
each node, and each class in this relation is repeatedly refined using the first-step behaviours of the nodes
under the current approximation. This is related to the formulation of strong bisimulation given in [Mil81]



4 A. Boulgakov, T. Gibson-Robinson, and A.W. Roscoe

1: function NullApproximation((N ,Σ,−→,Λ, λ))
2: return {(n, 0) | n ∈ N } . Put all the nodes in one class.
3: end function

(a) NullApproximation puts all nodes into the same equivalence class.

1: function FirstStepApproximation((N ,Σ,−→,Λ, λ))
2: Φ← 〈(n, initials(n), λ(n)) | n ∈ N 〉
3: Sort Φ by (n, a, l) 7→ (a, l) . We use this notation to mean sorting a sequence of (n, a, l)s by (a, l).

. After the sort, nodes with equivalent initials and node labels are adjacent.
4: a ′, l ′ ← INVALID , INVALID
5: c ← 0
6: for each (n, a, l)← Φ do
7: if a 6= a ′ ∨ l 6= l ′ then . Different initials or node label; start a new partition.
8: a ′, l ′ ← a, l
9: c ← c + 1

10: end if
11: ρ← ρ ∪ {(n, c)}
12: end for
13: return ρ . ρ partitions N into the following equivalence classes:
14: . {{n ′ | (n ′, a, l) ∈ Φ ∧ a ′ = a ∧ l ′ = l} | a ∈ Σ, l ∈ Λ . ∃n . (n, a, l) ∈ Φ}
15: end function

(b) The more involved FirstStepApproximation instead classifies nodes based on their first-step behaviour: their node labels
and initial events.

Fig. 2. Two initial approximation functions, each returning a partition function ρ : N → N+.

as a series of experiments of increasing depth and is the näıve method mentioned by Kanellakis and Smolka
in [KS83].

2.2.1. Algorithm

Initial approximation. The initial approximation can most simply be computed by identifying all nodes,
as does NullApproximation in Figure 2(a). Instead, FDR uses the finer FirstStepApproximation in
Figure 2(b) to compute an initial approximation ρ0 = {{n ∈ N | λ(n) = λ(m) ∧ initials(n) = initials(m)} |
m ∈ N } based on the nodes’ labels and initials. This is equivalent to identifying all nodes and then performing
one refinement using the nodes’ labels and their coloured afters. Unlike the afters of a node, whose colour
and therefore equivalence depends on the current equivalence relation, these node labels are fixed and we
can save time by only comparing them once. The time savings can be significant depending on the size of the
node labels; in particular some GLTSs in FDR have nodes labelled with minimal acceptances drawn from
the set Λ = P(P(Σ)). In addition to the time savings, a side effect of this finer initial approximation is that
an algorithm that is not aware of node labellings, such as that given in [Fer90], can be used for the iteration
phase.

Iteration. Assume that we have already separated the nodes into equivalence classes, whether from the
initial approximation or from a previous refinement step. We will now attempt to refine these classes further.
We first compute the afters of each node coloured per the latest equivalence relation, as shown in Compute-
AllAfters in Figure 3. Then, we use these coloured afters to produce a more refined equivalence relation
as illustrated in RefineAll. This sorts the coloured afters for the nodes in each class (line 9), and a single
in-order traversal through the sorted lists (lines 10-18) then allows us to reclassify the nodes in each class.

If any nodes have changed class during this pass, we must proceed to refine the classes again. Otherwise,
we are done. We can determine whether any nodes have changed class during the final reclassification traversal
with very little additional work.

Construction. The final step is to construct the output GLTS as outlined in Figure 4. To do this, we first
create a node for each equivalence class (line 3). Any node labels can be copied from an arbitrary represen-



Computing Maximal Weak and Other Bisimulations 5

1: function ComputeAllAfters((N ,Σ,−→,Λ, λ), ρ)

2: cafters ← 〈(n, {(a, ∅) | ∃m.n
a−→ m}) | n ∈ N 〉

3: for each n
a−→ m do

4: cafters(n)(a)← cafters(n)(a) ∪ {ρ(m)}
5: end for
6: return cafters
7: end function

8: function RefineAll((N ,Σ,−→,Λ, λ), ρ, cafters)
9: Sort cafters by (n,A) 7→ A.

10: A′ ← INVALID
11: c ← max(ρ) . Instead of computing max(ρ), we could persist c across iterations.
12: for each (n,A)← cafters do
13: if A 6= A′ then . Different coloured afters; start a new partition.
14: A′ ← A
15: c ← c + 1
16: end if
17: ρ(n)← c
18: end for
19: return ρ
20: end function

21: function SBisimNäıve := IterativeRefinement(
FirstStepApproximation,ComputeAllAfters,RefineAll)

Fig. 3. Näıve Iterative Refinement for strong bisimulation.

1: function ConstructMachine((N ,Σ,−→,Λ, λ), ρ)
2: cafters ← ComputeAllAfters((N ,Σ,−→,Λ, λ),ρ)
3: N ′ ← range(ρ) . Create a node for each equivalence class.
4: λ

′ ← ∅
5: T ′ ← ∅
6: for each n ∈ N ′ do
7: n ′ = pick(ρ−1(n)) . Compute a representative node for the class.
8: λ

′ ← λ
′ ∪(n, λ(n ′))

9: for each (a,M ) ∈ cafters(n ′) do
10: for each m ∈ M do
11: T ′ ← T ′ ∪ (n, a,m) . Compute transitions.
12: end for
13: end for
14: end for
15: end function

Fig. 4. The ConstructMachine function for strong bisimulation. The pick function chooses an arbitrary member of its
nonempty set argument. Note that instead of recomputing cafters, we could use the cafters already computed by RefineAll.

tative in each class (the n ′ in line 7), as they are guaranteed to be equivalent by the initial approximation
(line 8). Next, we output a transition corresponding to each input transition. This can generate duplicates,
and we must take care to only output one copy of each. Instead of using the input transitions directly, we also
have the option of using the already computed coloured afters to create the transitions (lines 9-13), using
an arbitrary representative from each class since the coloured afters for each of the nodes in an equivalence
class are guaranteed to be equivalent (since the refinement phase has terminated).



6 A. Boulgakov, T. Gibson-Robinson, and A.W. Roscoe

2.2.2. Representation of coloured afters

Blom and Orzan [BO02] state a worst-case complexity in O(nt), where the input has n nodes and t transition.
They are able to achieve this by assuming a bounded fanout, which allows the representation of coloured
afters to be ignored. Since our primary objective is developing algorithms that perform well on practical
examples as typified by our extensive benchmarks on real machines, rather than seeking the best asymptotic
behaviour on notional ones, we must choose a data structure that works well in practice.

Asymptotically a tree representation of coloured afters sets seems most efficient, with O(log c) time for
each insertion, where c is the number of equivalence classes in the output GLTS. However, in practice, we
have observed in nearly all cases a significant speedup from using sorted arrays instead, with O(c) time for
each insertion. This is likely due to the coloured afters sets often being much smaller than c, and due to the
x86 architecture being optimised for operations on contiguous blocks of memory. For this reason, most of
the performance results in Section 4 refer only to implementations using sorted arrays.

2.3. Change-Tracking Iterative Refinement

We will now present the strong bisimulation algorithm FDR3 uses, an improvement on Näıve Iterative
Refinement. With some bookkeeping, we can determine which states’ coloured afters could not possibly
have changed after the previous iteration. The algorithm shown in Figure 5 uses this information to avoid
recomputing and sorting the coloured afters for these states, in a similar fashion to the optimisation used by
Blom and Orzan in [BO05]. As FDR represents states as consecutive integers and the transitions are stored
in an array, we can easily construct a constant-time accessible map from nodes to their predecessors. A node
then might change class at the n + 1th iteration only when it is one step back from a node that has changed
class on the nth .

We will maintain the following items as running state: a bit vector changed containing the nodes whose
equivalence class changed on the previous iteration and a bit vector affected containing the nodes that might
be affected by those changes. Before the first iteration, changed should be initialised with all nodes marked
since the initial approximation classified all the nodes.

Following this initialisation, on each iteration we will perform the following sequence of actions. First,
we need to compute affected by iterating through changed and adding each of their predecessors (lines 6-9).
We then clear (lines 12-14) and recompute (lines 15-17) the coloured afters for each of the nodes in affected.
All nodes that are not marked for update get to keep their coloured afters from the previous iteration.

Next, we compute the equivalence classes that contained the affected nodes in the previous iteration
(line 24); these are the equivalence classes that might need to be refined, and this can be computed in linear
time in the number of nodes by iterating over affected . We must also clear changed for the next step.

For each of the classes that we consider for refinement, we first separate the nodes that have not changed
class from those that have, the latter being in affected (line 26). Next, we sort the nodes that are in affected
and in this class in order to partition this class (line 27). Once we have sorted the coloured afters of all of
the affected nodes in a given class, we choose the largest sequence of nodes with the same coloured afters to
keep the original class index (line 28). We assign new indices to the rest (lines 29-37), rather than picking
the first such sequence. We must also record the nodes that had new indices assigned in changed (line 36).

If changed is empty, we can conclude that we have reached a fixed point, and we can terminate the
algorithm, returning the bisimulation relation we have computed implicitly in the equivalence class indices
of the nodes.

2.4. Paige-Tarjan Algorithm

We have also implemented the algorithm outlined in [Fer90]. This is an adaptation of Paige and Tarjan’s
solution (described in Section 3 of [PT87]) to the relational coarsest partition problem (which is equivalent
to single-action strong bisimulation) that works with LTSs by splitting with respect to each element of
the alphabet in sequence whenever the original algorithm would split a class. In summary, each time a
class is split, the resulting subclasses are recorded. Refinement is then performed with respect to the initial
classes (separating nodes with edges into each class from those without) and with respect to each split class



Computing Maximal Weak and Other Bisimulations 7

1: global changed . Output from RefineChanged to ComputeChangedAfters.
2: global affected . Output from ComputeChangedAfters to RefineChanged.
3: global cafters . Read and written by ComputeChangedAfters; persisted for optimisation.
4: global T−1 . Read by ComputeChangedAfters; persisted for optimisation.

5: function ComputeChangedAfters((N ,Σ,−→,Λ, λ), ρ)
6: affected ← ∅
7: for each n ∈ changed do
8: affected ← affected ∪ T−1(n)
9: end for

10:

11: for each n ∈ affected do
12: for each (a,M ) ∈ cafters(n) do
13: cafters(n)(a)← ∅
14: end for
15: for each (a,m) ∈ {n a−→ m} do
16: cafters(n)(a)← cafters(n)(a) ∪ {ρ(m)}
17: end for
18: end for
19: return cafters
20: end function

21: function RefineChanged((N ,Σ,−→,Λ, λ), ρ, cafters)
22: changed ← ∅
23: c ← max(ρ) . As in RefineAll , we could persist c across iterations.
24: for each class ∈ {ρ(n) | n ∈ affected} do
25: nodes ← ρ−1(class)
26: Reorder nodes by moving those in affected to the front.
27: Sort remaining nodes (those not in affected) by n 7→ cafters(n).
28: Find largest run with equivalent cafters and remove it from nodes.
29: A′ ← INVALID
30: for each n ∈ nodes do
31: if A 6= A′ then . Different coloured afters; start a new partition.
32: A′ ← A
33: c ← c + 1
34: end if
35: ρ(n)← c
36: changed ← changed ∪ {n}
37: end for
38: end for
39: return ρ
40: end function

41: function SBisimCT((N ,Σ,−→,Λ, λ))
42: changed ← N
43: affected ← ∅
44: cafters ← 〈(n, {(a, ∅) | ∃m.n

a−→ m}) | n ∈ N 〉
45: T−1 ← {(n, {m | ∃a.n a−→ m}) | n ∈ N }
46: return IterativeRefinement(

FirstStepApproximation,ComputeChangedAfters,RefineChanged)
((N ,Σ,−→,Λ, λ))

47: end function

Fig. 5. Change-Tracking Iterative Refinement for strong bisimulation. Note that the functions rely on a number of global
variables.



8 A. Boulgakov, T. Gibson-Robinson, and A.W. Roscoe

(separating nodes with edges into one subclass, the other, or both) using the inverse labelled transition
relation.

We have produced two implementations of this algorithm for performance comparison. The first im-
plementation stays true to the original formulation, which makes heavy use of linked lists. An alternative
implementation uses arrays like our other algorithms.

2.4.1. Complexity

The worst-case time complexity for a GLTS with n nodes and t transitions is in O(t log(n)). However, the
cached in-counts (the info maps of [Fer90]) necessary to achieve this bound can be unwieldy to manipulate,
raising the implementation and runtime costs. In addition, as the algorithm requires frequent construction
and traversal of sets, there is a time or space penalty depending on the set representation used. In fact, in
our performance tests (Section 4.2 and Table 2), change-tracking iterative refinement outperforms the Paige-
Tarjan algorithm despite the latter’s superior asymptotic time complexity. This is consistent with Blom and
Orzan’s observations in [BO05].

3. Divergence-Respecting Delay and Weak Bisimulations

While FDR has long supported strong bisimulation, it has only recently added support for variants of weak
bisimulation. This was because the weak bisimulation of [Mil81] is not compositional for most CSP models
and because FDR already had compressions that successfully eliminated τ actions, the most notable of which
are normal and diamond. normal was originally provided as an important component of refinement checking
in FDR, but has since also proven to be a useful compression function in its own right. However, it does
sometimes create an exponential increase in the size of a LTS. diamond [RGG+95] is a compression that
was designed to remove redundant diamonds of transitions in LTSs, but is not semantics-preserving when
combined with prioritisation, Timed CSP, and stronger semantic models such as refusal testing. Due to the
problems with both diamond and normal, FDR 2.94 [AGL+12] implemented a new dbisim compression
(originally called wbisim), which returns the maximal divergence-respecting delay bisimulation (DRDB) of
its input.

Definition 3.1. Given the transition relation −→ of a GLTS S , let us define a binary relation =⇒ such
that p =⇒ q if and only if there is a sequence p0, ..., pn (with n possibly 0) such that p = p0, q = pn ,

and ∀ i < n · pi
τ−→ pi+1. Let us further define a ternary relation ↪→ with p

a
↪→ q for a ∈ Σ if and only if

∃p′ · p =⇒ p′ ∧ p′
a−→ q , and p

τ
↪→ q if and only if p =⇒ q . This is the delayed transition relation, since the

visible events are delayed by 0 or more τs.

Definition 3.2. A relation R ⊆ N × N is a divergence-respecting delay bisimulation of a GLTS S if and
only if it satisfies all of the following requirements:

∀n1,n2,m1 ∈ N · ∀ x ∈ Στ · n1 R n2 ∧ n1
x
↪→ m1 ⇒ ∃m2 ∈ N · n2

x
↪→ m2 ∧ m1 R m2

∀n1,n2,m2 ∈ N · ∀ x ∈ Στ · n1 R n2 ∧ n2
x
↪→ m2 ⇒ ∃m1 ∈ N · n1

x
↪→ m1 ∧ m1 R m2

∀n1,n2 ∈ N · n1 R n2 ⇒ λ(n1) = λ(n2)

∀n1,n2 ∈ N · n1 R n2 ⇒ n1⇑ ⇔ n2⇑

Note that the definition is very similar to that of strong bisimulation. The differences are the use of the
delayed transition relation and the added clause about divergence, which is necessary to make the compression
compositional for CSP3. However, if we precompute divergence information and record it in each node’s label,
the requirement that n1 ⇑ ⇔ n2 ⇑ will be absorbed into the requirement that λ(n1) = λ(n2).

FDR3 adds support for compression by an even coarser equivalence relation, divergence-respecting weak
bisimulation (DRWB).

3 Of all the semantic models of CSP, only the simple traces model T identifies an LTS node with no action and one whose only
action is τ to itself. These two nodes are both weakly and delay bisimilar under the usual definitions.



Computing Maximal Weak and Other Bisimulations 9

1: function DRDBisimulationReduction((N ,Σ,−→,Λ, λ))
2: λ′ = ∅
3: for each n ∈ N do
4: λ′(n)← (λ(n),CheckDivergence(n))
5: end for
6: Compute ↪→ from −→.
7: return SBisimCT((N ,Σ, ↪→,Λ× {Divergent ,NotDivergent}, λ′)) . Or SBisimNäıve.
8: end function

Fig. 6. An implementation of DRD-bisimulation by reduction to strong bisimulation. The DRW-bisimulation is similar, but
uses =⇒ instead of ↪→.

Definition 3.3. Given the transition relation −→ of a GLTS S and the binary relation =⇒≡ τ−→
∗
, let us

define a ternary relation =⇒ with p
a

=⇒ q for a ∈ Σ if and only if ∃p′, q ′ · p =⇒ p′ ∧ p′
a−→ q ′ ∧ q ′ =⇒ q ,

and p
τ

=⇒ q if and only if p =⇒ q . This is the observed transition relation.

Definition 3.4. A relation R ⊆ N × N is a divergence-respecting weak bisimulation of a GLTS S if and
only if it satisfies all of the following requirements:

∀n1,n2,m1 ∈ N · ∀ x ∈ Στ · n1 R n2 ∧ n1
x

=⇒ m1 ⇒ ∃m2 ∈ N · n2
x

=⇒ m2 ∧ m1 R m2

∀n1,n2,m2 ∈ N · ∀ x ∈ Στ · n1 R n2 ∧ n2
x

=⇒ m2 ⇒ ∃m1 ∈ N · n1
x

=⇒ m1 ∧ m1 R m2

∀n1,n2 ∈ N · n1 R n2 ⇒ λ(n1) = λ(n2)

∀n1,n2 ∈ N · n1 R n2 ⇒ n1⇑ ⇔ n2⇑

Note that the definition is very similar to that of divergence-respecting delay bisimulation. The only
difference is the use of the observed transition relation in place of the delayed transition relation.

The FDR3 compression function wbisim computes the maximal DRWB on its input GLTS and returns a
GLTS with a single node DRW-bisimilar to each equivalence class in the input. It is an important compression
because, like sbisim and dbisim it preserves semantics in all CSP models, while potentially offering a higher
amount of compression than dbisim. Weak bisimulation is also important because (at least in its non
divergence-respecting form) it and strong bisimulation are the best known and most studied bisimulations
in the literature. This compression is new to FDR3 and is the strongest implemented compression for CSP
models richer than the failures model and the other cases where diamond is not semantically valid.

3.1. Reduction to Strong Bisimulation for DRDB and DRWB

The definition of DRDB suggests a reduction to strong bisimulation. For an input GLTS S , we can compute

a GLTS Ŝ with a transition for each delayed transition of the input and mark each node with divergence
information computed from S . Care is required not to introduce divergences not present in S due to the τ

self-loops introduced in Ŝ because the original node can take an empty sequence of τs to itself. The maximal

strong bisimulation of Ŝ is the maximal DRDB (respectively, DRWB) of S by construction, and this can
be computed by any of the algorithms described in Section 2.1, as shown in Figure 6. FDR2 employs such
a reduction to compute a maximal DRDB, and uses näıve iterative refinement for the strong bisimulation
step.

Complexity. A significant problem with this approach is the high worst-case space complexity. Ŝ can have
up to An2 transitions if the input has n nodes and an alphabet of size A, even if S has o(An2) transitions. For
example, a process that performs N τs before recursing exhibits this worst-case behaviour. Since all nodes
are mutually τ -reachable, a transition system with N 2 transitions is constructed. Figure 7 demonstrates this
quadratic explosion for N = 4.

Construction of Ŝ can take a correspondingly significant amount of time. For example, using an adapta-
tion of the Floyd-Warshall algorithm [Flo62] requires O(n3) operations. The strong bisimulation step after
this transformation will take a correspondingly large amount of time (O(An3 log n), for näıve iterative refine-
ment). Regardless of the strong bisimulation algorithm used, the memory usage is likely to be prohibitive.



10 A. Boulgakov, T. Gibson-Robinson, and A.W. Roscoe

τ τ

ττ

(a) The input, P(4), has only four transitions and four
nodes.

(b) The output has sixteen transitions for the same four
nodes. Labels have been omitted for clarity.

Fig. 7. The constructed LTS can be quadratically larger than the input.

Divergence-Respecting Weak Bisimulation. It is possible to compute a maximal DRWB with a similar

reduction, creating Ŝ with the observed transitions of S instead of its delayed transitions. Given our results
from testing with DRDB, we do not believe that such an implementation would be useful, and we have
therefore not created one.

3.2. Dynamic Programming Approach for DRDB

Rather than constructing Ŝ and keeping it in memory (which is often the limiting factor for such compu-
tations, since main memory is limited and the hard disk is prohibitively slow given the random nature of
the accesses required by parts of the strong bisimulation algorithm), FDR3 instead recomputes the relevant
information using the original transition system on each refinement iteration. To the authors’ knowledge,

ours is the first algorithm that avoids calculating Ŝ explicitly.

3.2.1. Algorithm

First, noting that two nodes on a τ loop are both DRD-bisimilar and divergent, we factor the input GLTS
S by the relation that identifies nodes on a τ loop4 (line 18). FDR has a function built in that does this,
tau loop factor. We will not discuss it in detail here, but it uses Tarjan’s algorithm for finding strongly
connected components [Tar72] via a single depth-first search and runs in O(n + t) time for a system with n
nodes and t transitions. In addition to eliminating τ loops, it marks each node as divergent or stable. Now
that we have ensured there are no τ loops, the τ -transition relation can be used to topologically sort the
nodes with another depth-first search [Tar76], so that there are no upstream τ -transitions (line 19).

The topological sort allows us to obtain the transitions of the Ŝ described in Section 3.1 using a dynamic
programming approach. The most downstream node in this topological sort has no outgoing τ transitions,
so its new initials and coloured afters are precisely those in S (lines 6-8) with the addition of itself after τ
(line 5). We then proceed upstream and for each node compute the union of its own coloured afters (with
the inclusion of a self-transition under τ) and the coloured afters of each of the nodes it can reach under a

4 Even if the nodes on a τ loop have different different labels, their mutual reachability means that it is impossible to distinguish
them in any of the CSP models, so the compression is sound as long as the resulting node’s label captures all the possible
behaviours (e.g., if the node labels are minimal acceptances, tau loop factor would output their minimised union).



Computing Maximal Weak and Other Bisimulations 11

1: global toponodes . Read by ComputeAllDelayedAfters; persisted for optimisation.

2: function ComputeAllDelayedAfters((N ,Σ,−→,Λ, λ), ρ)

3: cafters ← 〈(n, {(a, ∅) | ∃m.n
a
↪→ m}) | n ∈ N 〉 . Can be cached across iterations.

4: for each n ← toponodes do
5: cafters(n)(τ)← {ρ(n)} . Implicit self-loop.

6: for each (a,m) ∈ {(a,m) | n a−→ m} do . Visible afters.
7: cafters(n)(a)← cafters(n)(a) ∪ {ρ(m)}
8: end for
9: for each m ∈ {m | n τ−→ m} do . Delayed afters.

10: for each (a,M ) ∈ cafters(m) do
11: cafters(n)(a)← cafters(n)(a) ∪M
12: end for
13: end for
14: end for
15: return cafters
16: end function

17: function DBisimDP(G)
18: (N ,Σ,−→,Λ, λ)← TauLoopFactor(G)

19: toponodes ← N sorted topologically according to
τ−→

20: return IterativeRefinement(
DBisimApproximation,ComputeAllDelayedAfters,RefineAll)

((N ,Σ,−→,Λ, λ))
21: end function

Fig. 8. The dynamic programming algorithm for DRDB, with the straightforward DBisimApproximation omitted due to space
constraints.

single τ transition (lines 9-13). Of course, since we are doing this in a topological order, these nodes have
been processed already, so we have computed the union of the coloured afters of all τ -reachable nodes from
the given node.

We can apply a modified Näıve Iterative Refinement (Section 2.2) to compute the maximal strong bisim-

ulation of Ŝ , which is itself never constructed (line 20). We compute the initials and node labels for the
initial approximation using dynamic programming on the topologically sorted nodes. For each refinement,
we compute the coloured afters using the dynamic programming approach described above. For the con-
struction step, we compute the equivalence classes of the coloured afters as above, but without inserting the
τ self-transition.

3.2.2. Complexity

The space complexity for this algorithm is never significantly higher than that of the explicit reduction,
and can be significantly lower. The only additional information we have is the transient DFS stack and
bookkeeping information, and the sorted node list. The coloured afters we compute for each node, which
are sets of equivalence class identifiers, take no more space than the exploded transition system, and will
take less if any nodes are identified – and if the user is running the algorithm there is reason to believe that
they will be. In addition, since the coloured afters are recomputed at each iteration, the working set for each
refinement iteration can be smaller than the peak working set required by the final one. For example, for the
process P(N ) portrayed in Figure 7, the initial classification will identify all nodes, and the first coloured
afters computation will have a single after for each node: equivalence class 0 under τ .

We still traverse the entire transition set a single time (split across nodes). But now, for each node, we
have to take the union of its coloured afters and the ones preceding it. Provided we keep these sorted, and
use a merge sort for union, we will have in the worst case O(Acn) operations for each node, where A is the
size of the alphabet, c is the number of classes in this iteration, and n is the number of nodes, since Ac is
the maximal number of coloured afters a node could have and we could have O(n) nodes following this one.
This means an upper bound on the overall worst-case runtime is O(An3c).



12 A. Boulgakov, T. Gibson-Robinson, and A.W. Roscoe

1: global toponodes . Read by ComputeAllObservedAfters; persisted for optimisation.

2: function ComputeAllObservedAfters((N ,Σ,−→,Λ, λ), ρ)

3: cafters ← 〈(n, {(a, ∅) | ∃m.n
a
↪→ m}) | n ∈ N 〉 . Can be cached across iterations.

4: for each n ← toponodes do . Compute nodes reachable in 0 or more τs:
5: cafters(n)(τ)← {ρ(n)}
6: for each m ∈ {m | n τ−→ m} do
7: cafters(n)(τ)← cafters(n)(τ) ∪ cafters(m)(τ)
8: end for
9: end for

10: . Compute nodes reachable in 0 or more τs, 1 visible event, 0 or more τs:
11: for each n ← toponodes do

12: for each (a,m) ∈ {(a,m) | n a−→ m ∧ a 6= τ} do
13: cafters(n)(a)← cafters(n)(a) ∪ cafters(m)(τ)
14: end for
15: for each m ∈ {m | n τ−→ m} do
16: for each (a,M ) ∈ cafters(m), a 6= τ do
17: cafters(n)(a)← cafters(n)(a) ∪M
18: end for
19: end for
20: end for
21: return cafters
22: end function

Fig. 9. The dynamic programming algorithm for DRWB, with the straightforward WBisimApproximation and entry-point
WBisimDP omitted due to space constraints.

However, in practice the time complexity is much lower. Removing τ loops ensures that the graph is not
fully connected and reduces the number of unions for each node significantly in systems with divergence,
which eliminates many worst cases. The number of classes c is often much less than n. In addition, there
are further optimisations that could be made to reduce the runtime, the union operation can be made faster
by keeping metadata that allows us to avoid computing the unions of duplicate coloured afters sets (though
we do not currently employ such optimisations). Section 4.3 demonstrates that the dynamic programming
approach is faster on many examples with a large number of τs than the explicit reduction approach.

3.3. Dynamic Programming Approach for DRWB

We proceed in a manner similar to that described in Section 3.2. Noting that two nodes on a τ loop are both
DRW-bisimilar and divergent, we factor the input GLTS by the relation that identifies nodes on a τ loop
using tau loop factor. We then topologically sort the nodes by the τ -transition relation.

The topological sort allows us to obtain the observed transitions (recall Definition 3) using the two-pass
dynamic programming approach in Figure 9. One pass, as in delay bisimulation, is not sufficient since we
need to determine the coloured τ∗ afters of the visible afters of each node, and these visible coloured afters
might not have been previously explored. In the first pass, we compute the coloured τ∗ afters of each node
(lines 4-9). The last node in this topological sort has no outgoing τ transitions, so its only τ∗ after is itself.
We then proceed upstream and for each node compute the union of its own coloured τ afters (with the
inclusion of its own equivalence class) and the previously computed coloured τ∗ afters of each of the nodes
it can reach under a single τ transition. The second pass computes the visible observed transitions. For each
node, these are the union of the coloured τ∗ afters of its visible afters (lines 12-14) and the visible observed
transitions of its τ afters (lines 15-19). If we proceed in topological order, the visible observed transitions of
each node’s τ afters will have already been computed by the time they are needed.

We can apply a modified Näıve Iterative Refinement to compute the maximal strong bisimulation of the
induced GLTS as described in Section 3.2, removing the τ self-transition from each node in the construction
step.



Computing Maximal Weak and Other Bisimulations 13

3.3.1. Complexity

In the typical case this algorithm will require more space to store the coloured afters than the DRD-
bisimulation algorithm since it must follow the τ transitions after a visible event in addition to the ones
tracked by the DRD-bisimulation algorithm. However, the worst-case space complexity for this algorithm
is the same, since in the worst case all the nodes are mutually reachable under both the delayed transition
relation and the observed transition relation. The time complexity is a constant factor greater since at each
iteration two passes through the topologically sorted nodes must be performed.

In practice we have found that wbisim is nearly as fast as dbisim, and produces identical results on
nearly all inputs.

3.4. Change-Tracking with Dynamic Programming for DRDB and DRWB

FDR3 improves this dynamic programming approach to computing coloured afters with an adaptation of
the change tracking introduced in [BO05] and discussed here in Section 2.3.

3.4.1. Two-Pass Change-Tracking DRDB

The idea behind the two-pass approach is to separate the change-tracking and the dynamic programming
aspects into two separate passes at each iteration.

As is necessary for the dynamic programming component, we factor the input by the relation that
identifies nodes on a τ loop using tau loop factor and topologically sort the nodes by the τ -transition
relation, recording a bidirectional map from nodes to their indices in the sort. As in change-tracking iterative
refinement for strong bisimulation, we will maintain changed and affected bit vectors, the former initialised
to contain all the nodes in the input. So that we can efficiently traverse affected in topological order, we will
also maintain an affected topo bit vector containing the indices of affected nodes under the topological sort.
We do not want to create a map from nodes to their predecessors under the delayed transition relation due to

space considerations: such a map could be as large as the transition set of the derived GLTS Ŝ , which could
be significantly larger than the input GLTS. Instead, we will create a map from nodes to their predecessors
under a single visible event and another map from nodes to their predecessors under a single τ . We will then
use these two maps to compute the affected nodes.

Initial Approximation. The initial approximation can be computed by dynamic programming as in Sec-
tion 3.2. To start, we record that the label for the most downstream node in the topological sort according

to Ŝ is as per S and its initials are as per S with the addition of τ . We then proceed upstream and for

each node record its initials under Ŝ as the union of {τ}, its initials in S , and the initials of each of its

τ -successors in Ŝ (which have already been computed owing to the topological order of our computation);
its label is computed similarly.

Iteration. As outlined in Figure 10, we first need to determine which nodes need their coloured afters
recomputed, that is, the set of nodes potentially affected by the reclassification of nodes in changed , {n |
m ∈ changed ∧ x ∈ Στ ∧ n

x
↪→ m} (lines 8-12). From the definition of ↪→, we can decompose this into

P ∪ {n | m ∈ P ∧ n =⇒ m} where P contains the reclassified nodes and their visible predecessors,

changed ∪ {n | m ∈ changed ∧ x ∈ Σ ∧ n
x−→ m}. P is a subset of the nodes affected in the strong

bisimulation sense, and can be computed using the map from nodes to their visible predecessors with the
worst case run time in O(t). We then compute affected (simultaneously updating affected topo) using the
map from nodes to their τ predecessors and any of the well-known graph exploration algorithms. Our
implementation uses a depth-first search; to facilitate this, P is computed directly into a stack. The search
takes O(t) time at worst.

Next, we need to recompute the coloured afters for each of the nodes indexed by affected topo (lines 14-
27). To do this, we will use dynamic programming as described in Section 3.2. Finally, we proceed to sort
and reclassify the nodes as in Section 2.3, recording which nodes have been reclassified in changed . We must
also clear affected and affected topo for the next iteration.

Figure 11 illustrates the important points of this algorithm on a small example.



14 A. Boulgakov, T. Gibson-Robinson, and A.W. Roscoe

1: global toponodes . Read by ComputeChangedDelayedAfters; persisted for optimisation.
2: global changed . Output from RefineChanged to ComputeChangedDelayedAfters.
3: global affected . Output from ComputeChangedDelayedAfters to RefineChanged.
4: global cafters . Read, written by ComputeChangedDelayedAfters; persisted for optimisation.
5: global T−1 . Read by ComputeChangedDelayedAfters; persisted for optimisation.
6: global T−1τ . Read by ComputeChangedDelayedAfters; persisted for optimisation.

7: function ComputeChangedDelayedAfters((N ,Σ,−→,Λ, λ), ρ)
8: affected ← ∅
9: for each n ∈ changed do

10: affected ← affected ∪ T−1(n) ∪ {n}
11: end for
12: Add all nodes reachable from affected via T−1τ to affected using, e.g., a DFS.
13:

14: for each n ∈ affected topo do
15: for each (a,M ) ∈ cafters(n) do
16: cafters(n)(a)← ∅
17: end for
18: cafters(n)(τ)← {ρ(n)} . Implicit self-loop.

19: for each (a,m) ∈ {(a,m) | n a−→ m} do . Visible afters.
20: cafters(n)(a)← cafters(n)(a) ∪ {ρ(m)}
21: end for
22: for each m ∈ {m | n τ−→ m} do . Delayed afters.
23: for each (a,M ) ∈ cafters(m) do
24: cafters(n)(a)← cafters(n)(a) ∪M
25: end for
26: end for
27: end for
28: return cafters
29: end function

30: function DBisimCTDP((N ,Σ,−→,Λ, λ))
31: (N ,Σ,−→,Λ, λ)← TauLoopFactor(G)

32: toponodes ← N sorted topologically according to
τ−→

33: changed ← N
34: affected ← ∅
35: cafters ← 〈(n, {(a, ∅) | ∃m.n

a
↪→ m}) | n ∈ N 〉

36: T−1 ← {(n, {m | ∃a ∈ Σ.n
a−→ m}) | n ∈ N }

37: T−1τ ← {(n, {m | n τ−→ m}) | n ∈ N }
38: return IterativeRefinement(

DBisimApproximation,ComputeChangedDelayedAfters,RefineChanged)
((N ,Σ,−→,Λ, λ))

39: end function

Fig. 10. The dynamic programming algorithm for DRDB with change tracking. We do not explicitly mention affected topo
for brevity, since it is always updated together with affected .

Construction. The output GLTS is constructed as usual.

Complexity. Factoring the cost of change tracking into the analysis for the version without change tracking,
we note that the performance is still dominated by the iterated coloured afters computation, and is in the
worst case O(An3c). In practice, change tracking should reduce the number of nodes that need their coloured
afters recomputed at each iteration and improve the typical case.

The additional data structures required do not take up a significant amount of space. The topological



Computing Maximal Weak and Other Bisimulations 15

1 :{τ, a}

0 :{τ}τ

τ τ

a

a τ

1.

{(τ, 1 ), (a, 0 )}

{(τ, 0 )}

{(τ, 0 )}

τ

τ τ

a

a τ

2.

{(τ, 1 ), (a, 0 )} {(τ, 0 )}

{(τ, 0 )}

{(τ, 0 )}

τ

τ τ

a

a τ

3.

{(τ, 0 1 ), (a, 0 )}

{(τ, 1 ), (a, 0 )} {(τ, 0 )}

{(τ, 0 )}

{(τ, 0 )}

τ

τ τ

a

a τ

4. {(τ, 0 1 ), (a, 0 )}

{(τ, 0 1 ), (a, 0 )}

{(τ, 1 ), (a, 0 )} {(τ, 0 )}

{(τ, 0 )}

{(τ, 0 )}

τ

τ τ

a

a τ

5.

{(τ, 0 1 ), (a, 0 )}

{(τ, 0 1 ), (a, 0 )}

{(τ, 1 ), (a, 0 )}

2

{(τ, 0 )}

{(τ, 0 )}

{(τ, 0 )}

τ

τ τ

a

a τ

6.

{(τ, 2 ), (a, 0 )} {(τ, 0 )}

{(τ, 0 )}

{(τ, 0 )}

τ

τ τ

a

a τ

7.

{(τ, 0 1 2 ), (a, 0 )}

{(τ, 2 ), (a, 0 )} {(τ, 0 )}

{(τ, 0 )}

{(τ, 0 )}

τ

τ τ

a

a τ

8. {(τ, 0 1 2 ), (a, 0 )}

{(τ, 0 1 2 ), (a, 0 )}

{(τ, 2 ), (a, 0 )} {(τ, 0 )}

{(τ, 0 )}

{(τ, 0 )}

τ

τ τ

a

a τ

9.

Fig. 11. An illustration of CTIR for delay bisimulation with dynamic programming. The coloured regions indicate equivalence
classes. Bold face and brighter colours emphasise newly computed coloured afters and equivalence classes. First, an initial
partition is made based on the initials (step 1). Then, the coloured afters are computed in topological order (steps 2-5). A

reclassification splits class 2 from 1 , invalidating some coloured afters (step 6); these are struck through. The invalidated
coloured afters are recomputed in steps 7-9. The resulting partition is stable.



16 A. Boulgakov, T. Gibson-Robinson, and A.W. Roscoe

1: global toponodes, changed , affected , cafters,T−1,T−1τ
2:

3: function ComputeChangedObservedAfters((N ,Σ,−→,Λ, λ), ρ)
4: affected ← ∅
5: Add all nodes reachable from changed via T−1τ to affected using, e.g., a DFS.
6: P2 ← ∅
7: for each n ∈ affected do
8: P2 ← P2 ∪ T−1(n)
9: end for

10: Add all nodes reachable from P2 via T−1τ to affected using, e.g., a DFS.
11:

12: for each n ∈ affected topo do . Compute nodes reachable in 0 or more τs:
13: for each (a,M ) ∈ cafters(n) do
14: cafters(n)(a)← ∅
15: end for
16: cafters(n)(τ)← {ρ(n)}
17: for each m ∈ {m | n τ−→ m} do
18: cafters(n)(τ)← cafters(n)(τ) ∪ cafters(m)(τ)
19: end for
20: end for
21: . Compute nodes reachable in 0 or more τs, 1 visible event, 0 or more τs:
22: for each n ∈ affected topo do

23: for each (a,m) ∈ {(a,m) | n a−→ m ∧ a 6= τ} do
24: cafters(n)(a)← cafters(n)(a) ∪ cafters(m)(τ)
25: end for
26: for each m ∈ {m | n τ−→ m} do
27: for each (a,M ) ∈ cafters(m), a 6= τ do
28: cafters(n)(a)← cafters(n)(a) ∪M
29: end for
30: end for
31: end for
32: return cafters
33: end function

Fig. 12. The dynamic programming algorithm for DRWB with change tracking. The WBisimCTDP function itself is not listed
here due to space limitations; DBisimCTDP from Figure 10 can be used with the obvious modifications.

sort and the bit vectors take Θ(n) space. The predecessor maps combined have no more than t entries, and
will often have fewer since transitions differing only in their visible events only require one entry.

3.4.2. Change-Tracking DRWB

The above algorithm can be adapted to compute the maximal DRWB instead of the maximal DRDB, as
shown in Figure 12. The iterations are adapted as follows, while everything else remains unchanged.

Iteration. We first compute the set {n | m ∈ changed ∧ x ∈ Στ ∧ n
x

=⇒ m} of nodes whose coloured afters
need to be recomputed. This can be decomposed into P1 ∪ P2 ∪ P3, where

P1 = {n | m ∈ changed ∧ n =⇒ m}
P2 = {n | m ∈ P1 ∧ x ∈ Σ ∧ n

x−→ m}
P3 = {n | m ∈ P2 ∧ n =⇒ m}.

P1 can be computed using the map from nodes to their τ predecessors and any of the well-known graph
exploration algorithms, such as a depth-first search (line 5). P2 can be computed by iterating through P1

and using the map from nodes to their visible predecessors (lines 6-9). Alternatively, computation of P1

and P2 can be interleaved by adding the visible predecessors of each node visited during the exploration



Computing Maximal Weak and Other Bisimulations 17

1: global toponodes, changed , affected , cafters,T−1,T−1τ

2: function ComputeChangedDelayedAfters’((N ,Σ,−→,Λ, λ), ρ)
3: affected queue ← empty min-priority queue
4: for each n ∈ changed do
5: affected ← affected ∪ T−1(n) ∪ {n}
6: end for
7: affected queue ← min-priority queue from affected
8:

9: while affected queue is not empty do
10: n ← pull(affected queue)
11: for each (a,M ) ∈ cafters(n) do
12: cafters(n)(a)← ∅
13: end for
14: cafters(n)(τ)← {ρ(n)} . Implicit self-loop.

15: for each (a,m) ∈ {(a,m) | n a−→ m} do . Visible afters.
16: cafters(n)(a)← cafters(n)(a) ∪ {ρ(m)}
17: end for
18: for each m ∈ {m | n τ−→ m} do . Delayed afters.
19: for each (a,M ) ∈ cafters(m) do
20: cafters(n)(a)← cafters(n)(a) ∪M
21: end for
22: end for
23:

24: insert all(affected queue,T−1τ (n) \ affected)
25: affected ← affected ∪ T−1τ (n)
26: end while
27: return cafters
28: end function

Fig. 13. The single-pass dynamic programming algorithm for DRDB with change tracking. The DBisimCTDP’ function itself
is not listed here due to space limitations; DBisimCTDP from Figure 10 can be used with the obvious modifications.

of P1 to P2 immediately. P3 can be computed with another depth-first search starting from P2 (line 10).
While computing these sets, affected topo and affected should be kept up to date. We can recompute the
coloured afters for each of the affected nodes by iterating through affected topo and using the dynamic
programming approach outlined in Section 3.3 (lines 12-31). Finally, we proceed to sort and reclassify the
nodes as in Section 2.3, recording which nodes have been reclassified in changed . We must also clear affected
and affected topo for the next iteration.

Performance. Each of the Pi can be computed in O(t) time, so the worst-case time complexity remains
in O(An3c).

3.4.3. Single-Pass Change-Tracking DRDB

Instead of separating change tracking and the dynamic coloured afters computation into two passes, they
can be performed in the same pass, as shown in Figure 13. Since the coloured afters need to be computed
in topological order, but the affected nodes will in general not be discovered in this order, we will store the
affected nodes in a min-priority queue, affected queue, with each node’s priority being its position in the
topological order (so more downstream nodes will be pulled first). All insertions into (but not pulls from)
affected queue will be mirrored to the affected bit vector, so that the latter can be used for checking whether
a node has already been seen and during the reclassification phase for determining which nodes’ coloured
afters might have changed. We do not use a changed bit vector in this algorithm, we will still use it in the
analysis to represent the set of nodes that changed class in the previous iteration. For change tracking, we
will need a map from nodes to their predecessors under a single visible event and another map from nodes to



18 A. Boulgakov, T. Gibson-Robinson, and A.W. Roscoe

their predecessors under a single τ . We also need to topologically sort the nodes and record a bidirectional
map from nodes to their indices in the sort.

Initial Approximation. The initial approximation is computed as in Section 3.2. All nodes are marked
changed by inserting them into affected queue (and correspondingly affected).

Iteration. As a precondition to each iteration, we expect affected queue to contain all the reclassified nodes

and their visible predecessors, P = changed ∪ {n | m ∈ changed ∧ x ∈ Σ ∧ n
x−→ m} (lines 3-7) We then

repeat the following steps until affected queue is empty:
Pull a node n from affected queue (line 10). We will only update coloured afters for nodes pulled

from affected queue and we will only insert nodes with higher topological indices during this iteration
of affected queue, so we know all the nodes downstream from n have had their coloured afters computed for

this iteration. Therefore, compute and record n’s coloured afters according to Ŝ as the union of itself after τ

(line 14) its coloured afters according to S (lines 15-17) and the coloured afters according to Ŝ of all nodes
reachable from n in exactly one τ (lines 18-22). Finally, insert each of the predecessors of n under τ that is
not already in affected into affected queue and affected (lines 24-25); this is the step that ensures that all

nodes in {n | m ∈ P ∧ n =⇒ m} = {n | m ∈ changed ∧ x ∈ Στ ∧ n
x
↪→ m} eventually get inserted into

affected queue.
By this point, affected queue is empty, so all the affected nodes have had their coloured afters updated

and have been marked in affected . We can therefore proceed with the reclassification stage described in
Section 2.3. However, instead of inserting changed nodes into changed , we will insert them and their visible
predecessors into affected queue, to satisfy the precondition of the next iteration.

Construction. The output GLTS is constructed as usual.

Complexity. The coloured afters computation and reclassification are the same as in our other dynamic
programming approaches. It is only the change tracking that is different, now that in addition to the graph
traversal we have O(n) pulls from and insertions into affected queue, which can be done in O(n log n) time.
This does not increase the overall asymptotic time complexity from O(An3c), but can in practice impact
performance (see Section 4.3). Because of this and the existence of the simpler two-pass algorithm, we have
not developed a similarly interleaved version for DRWB.

3.5. DRDB with the Paige-Tarjan Algorithm

We can adapt the multilabel version of the Paige-Tarjan algorithm presented in [Fer90] to compute a maximal
DRDB. This will use a similar form of change tracking as that described in Section 3.4.1.

If the input GLTS does not have node labels, we initially assign all the nodes to the same class. Otherwise,

we topologically sort the nodes and compute their node labels according to Ŝ using dynamic programming.
We then create an initial partition based on the node labels.

We leave the core of the algorithm unmodified, but instead of using the inverted transition relation of

Ŝ (which would suffer from the potentially quadratic explosion discussed in Section 3.1), we compute it
dynamically each time it is requested. To facilitate this, we pre-compute the inverted transition relation of

S (this can be done in Θ(t) time). When we need to visit the nodes in {m | m a
↪→ n}, we compute a starting

set P such that {m | m a
↪→ n} = {m | p ∈ P ∧ m =⇒ p}. If a = τ , P = {n}; otherwise, P = {m | m a−→ n}.

We then visit all nodes reachable from P in the inverted transition relation of S under τ using any of the
known algorithms, such a depth-first search. This exploration can take time in O(t).

Complexity. The added computation can increase the cost of exploring the predecessors of a node from

O(|{m | m a−→ n}|) as shown in [PT87] to O(t). The cost of a single refinement by block B therefore takes
O(At |B |) time. Recalling from [PT87] that each node can be in at most log2 n + 1 blocks used for refinement
and summing over all such blocks, we get a total run time in O(Atn log n).



Computing Maximal Weak and Other Bisimulations 19

3.6. DRWB with the Paige-Tarjan Algorithm

We can similarly adapt the multilabel version of the Paige-Tarjan algorithm presented in [Fer90] to compute
a maximal DRWB. This will use a similar form of change tracking to that described in Section 3.4.2. We can

create the initial partition by dynamically computing the labels of each node according to Ŝ as described in
Section 3.5.

To dynamically compute the inverted transition relation of Ŝ , we pre-compute the inverted transition

relation of S . When we need to visit the nodes in {m | m
a

=⇒ n}, we note that this is equivalent to P3,
where

P1 = {m | m =⇒ n}
P2 = {m | p ∈ P1 ∧ m

a−→ p}
P3 = {m | p ∈ P2 ∧ m =⇒ p}.

So, we compute P1 using the precomputed inverted transition relation and any of the known algorithms, such
a depth-first search. P2 can be computed by iterating through P1 and again using the inverted transition
relation. Finally, P3 can be explored using another depth-first search. The entire process can take time in
O(t).

Complexity Applying the same logic as in Section 3.5, we get a total run time in O(Atn log n).

4. Performance

4.1. Benchmark Descriptions

In the following performance tests we will compare the performances of the algorithms described throughout
the paper to each other, as well as to implementations provided by the BCG MIN tool included in the
CADP Toolbox [GLMS13].

Our primary source for example LTSs is the Very Large Transition Systems (VLTS) Benchmark Suite5

that is provided alongside the CADP Toolbox; some information about the LTSs it contains is given in
Table 1. Note that some of the included LTSs do not contain any τ transitions, meaning that dbisim
and wbisim cannot offer more compression than sbisim. We will still include them in all the tests for
completeness. We have excluded those examples where the run time for all of the tested algorithms did not
exceed 1 second.

To ensure proper operation of FDR3, we have developed a suite of regression and feature tests containing
tests generated randomly at runtime, examples from [Ros98] and [Ros10], and assorted test files. CSP
processes are frequently written as compositions of smaller component processes, which in turn can be
such compositions. To help mitigate the state explosion that can result from such combinations, FDR3
can automatically apply compressions to leaf processes (those components that are not composed of other
processes, and will be represented as explicit GLTSs). By default, this compression is sbisim, so many of
the tests exercise sbisim. There are about 90,000 invocations of sbisim over the test suite, and they are a
good comparison of the algorithms’ performance on small leaf components typical in a system that does not
use sbisim explicitly. Due to the nature of these tests, results are not available for CADP.

4.2. Strong Bisimulation Performance

We will now compare the performance of the sbisim algorithms on several examples. The test system used
contains a server-grade CPU6 and 256 GiB of RAM, running 64-bit Debian GNU/Linux 7.8. We will use the

5 At the time of writing, the VLTS Benchmark Suite is available from http://cadp.inria.fr/resources/vlts/.
6 The system has two 8-core 2 GHz Intel R© Xeon R© E5-2650 CPUs with 20 MB of cache each. Our bisimulation algorithms are
single-threaded, so the number of CPUs and cores is not significant.



20 A. Boulgakov, T. Gibson-Robinson, and A.W. Roscoe

Table 1. Parameters of the VLTS Benchmark Suite [GLMS13] used in our performance tests.

Name States Transitions τ -transitions Alphabet size Branching avg [min-max]

cwi 3 14 3996 14552 14551 2 3.64 [0 - 6]
vasy 18 73 18746 73043 39217 17 3.90 [1 - 6]
vasy 25 25 25217 25216 0 25216 1.00 [0 - 1]
vasy 40 60 40006 60007 20003 3 1.50 [1 - 2]
vasy 52 318 52268 318126 130752 17 6.09 [1 - 17]
vasy 65 2621 65537 2621480 0 72 40.00 [40 - 40]
vasy 66 1302 66929 1302664 117866 81 19.46 [2 - 42]
vasy 69 520 69754 520633 1 135 7.46 [0 - 35]
vasy 83 325 83436 325584 45696 211 3.90 [0 - 96]
vasy 116 368 116456 368569 263296 21 3.16 [1 - 8]
cwi 142 925 142472 925429 862298 7 6.50 [0 - 9]
vasy 157 297 157604 297000 31798 235 1.88 [0 - 48]
vasy 164 1619 164865 1619204 109910 37 9.82 [1 - 16]
vasy 166 651 166464 651168 91392 211 3.91 [0 - 96]
cwi 214 684 214202 684419 550611 5 3.20 [0 - 7]
cwi 371 641 371804 641565 445600 61 1.73 [1 - 25]
vasy 386 1171 386496 1171872 122976 73 3.03 [1 - 38]
cwi 566 3984 566640 3984157 3666614 11 7.03 [0 - 10]
vasy 574 13561 574057 13561040 0 141 23.62 [1 - 64]
vasy 720 390 720247 390999 1 49 0.54 [0 - 39]
vasy 1112 5290 1112490 5290860 0 23 4.76 [3 - 6]
cwi 2165 8723 2165446 8723465 3830225 26 4.03 [1 - 14]
cwi 2416 17605 2416632 17605592 17490904 15 7.29 [0 - 14]
vasy 2581 11442 2581374 11442382 2508518 223 4.43 [0 - 97]
vasy 4220 13944 4220790 13944372 2546649 223 3.30 [0 - 97]
vasy 4338 15666 4338672 15666588 3127116 223 3.61 [0 - 97]
vasy 6020 19353 6020550 19353474 17526144 511 3.21 [2 - 260]
vasy 6120 11031 6120718 11031292 3152976 125 1.80 [0 - 16]
cwi 7838 59101 7838608 59101007 22842122 20 7.54 [3 - 13]
vasy 8082 42933 8082905 42933110 2535944 211 5.31 [0 - 48]
vasy 11026 24660 11026932 24660513 2748559 119 2.24 [0 - 13]
vasy 12323 27667 12323703 27667803 3153502 119 2.25 [0 - 13]
cwi 33949 165318 33949609 165318222 74133306 31 4.87 [1 - 17]

following abbreviations to refer to the algorithms in column headings:

Shorthand Description

NIRa Näıve Iterative Refinement using a tree-based set representation
CTIRa Change-Tracking Iterative Refinement using a tree-based set representation
NIRb Näıve Iterative Refinement using a sorted array set representation
CTIRb Change-Tracking Iterative Refinement using a sorted array set representation (FDR3)
PT(LL) Multilabel Paige-Tarjan algorithm using linked lists
PT(A) Multilabel Paige-Tarjan algorithm using arrays
CADP BCG MIN -strong from the CADP Toolbox [GLMS13]

We can see from Table 2 that for most of our experiments, change-tracking iterative refinement outper-
forms näıve iterative refinement and the Paige-Tarjan algorithm: this is particularly noticeable for larger
checks. For smaller inputs, näıve iterative refinement is sometimes slightly faster due to a smaller bookkeep-
ing overhead, but not significantly so. The Paige-Tarjan algorithm was particularly slow on vasy 25 25 due
to its large alphabet; our iterative refinement algorithms were designed for labelled transition systems and
do not suffer from the large alphabet. CADP’s implementation of strong bisimulation was comparable to our
change-tracking iterative refinement with sorted vectors, performing better on some examples and worse on
others. We have omitted NIRa and CTIRa from the table in order to avoid cluttering it with implementation
details. On average, NIRa took 2.3 times as long as NIRb and CTIRa took 1.6 times as long as CTIRb on
these VLTS examples.

In the FDR3 test suite, the move from näıve to change-tracking iterative refinement affords a noticeable
speedup, as evidenced by Table 3. Much of this speedup can be attributed to a number of outliers that take a



Computing Maximal Weak and Other Bisimulations 21

Table 2. Run times of various implementations of strong bisimulation on the VLTS benchmarks in seconds.

Name NIRb CTIRb PT(LL) PT(A) CADP

cwi 3 14 0.051 0.013 0.010 0.011 0.256
vasy 18 73 0.118 0.062 0.191 0.197 0.283
vasy 25 25 0.022 0.029 59.035 54.115 1.533
vasy 40 60 203.763 35.430 2.284 7.031 70.081
vasy 52 318 0.500 0.392 1.210 0.919 0.569
vasy 65 2621 1.177 1.436 21.275 26.563 2.642
vasy 66 1302 0.640 0.728 8.130 9.598 1.360
vasy 69 520 0.475 0.410 3.815 4.814 0.791
vasy 83 325 0.331 0.387 4.068 5.163 0.695
vasy 116 368 0.811 0.752 2.422 3.298 0.955
cwi 142 925 1.134 0.817 1.785 1.583 1.355
vasy 157 297 1.527 0.307 3.157 1.817 0.496
vasy 164 1619 1.762 1.369 5.515 3.987 1.280
vasy 166 651 0.894 0.815 7.907 11.389 0.974
cwi 214 684 6.290 1.636 2.915 3.529 2.440
cwi 371 641 9.112 1.342 4.178 4.162 2.642
vasy 386 1171 2.159 1.376 4.458 3.256 1.193
cwi 566 3984 6.491 4.217 10.234 7.834 5.588
vasy 574 13561 9.327 9.469 51.622 32.324 8.171
vasy 720 390 0.993 0.413 1.766 1.039 0.653
vasy 1112 5290 6.925 6.046 26.715 20.254 4.093
cwi 2165 8723 100.482 14.547 37.711 37.682 16.606
cwi 2416 17605 57.061 15.115 42.796 35.995 28.379
vasy 2581 11442 29.123 20.982 234.762 2438.673 28.410
vasy 4220 13944 85.000 21.910 267.716 734.701 26.866
vasy 4338 15666 51.796 28.358 332.553 1948.656 32.280
vasy 6020 19353 70.039 36.194 897.281 438.441 22.998
vasy 6120 11031 119.617 23.526 196.442 205.547 15.888
cwi 7838 59101 749.059 115.385 490.897 1063.371 135.400
vasy 8082 42933 130.746 73.546 416.726 280.090 39.251
vasy 11026 24660 361.281 50.874 444.343 847.334 41.733
vasy 12323 27667 303.017 56.320 509.774 1010.133 49.498
cwi 33949 165318 3256.559 334.751 962.506 1151.239 364.443

Geometric Mean 7.353 3.236 17.785 21.275 4.993

Table 3. sbisim timings for the FDR test suite. Total runtime and the 5 longest invocations for each algorithm (not necessarily
corresponding to the same inputs).

NIRa CTIRa NIRb CTIRb PT(LL) PT(A)

Total 62.044 29.159 30.184 20.313 45.326 51.961
1 5.068 0.529 2.004 0.32 0.289 0.405
2 4.984 0.443 1.989 0.297 0.287 0.341
3 4.773 0.397 1.964 0.285 0.267 0.321
4 4.581 0.388 1.934 0.262 0.256 0.32
5 4.316 0.378 1.901 0.235 0.254 0.312

particularly long time with näıve iterative refinement. The Paige-Tarjan algorithm is noticeably slower than
both näıve and change-tracking iterative refinement, but part of this might be due to the heavy optimisation
that our implementation of iterative refinement has gone through over the years. It should be noted, however,
that the worst-case run times for the Paige-Tarjan algorithm are similar to those for change-tracking iterative
refinement.



22 A. Boulgakov, T. Gibson-Robinson, and A.W. Roscoe

Table 4. Run times of various implementations of delay bisimulation on the VLTS benchmarks in seconds. A — indicates that
the test failed to complete within 4 hours.

Name FDR2 DYN CT-DYN1 CT-DYN PT

cwi 3 14 4.640 0.010 0.011 0.011 0.347
vasy 18 73 1.018 0.334 0.222 0.204 1.470
vasy 25 25 0.061 0.107 0.096 0.096 663.200
vasy 40 60 169.843 160.661 15.689 15.620 7.097
vasy 52 318 6.722 0.378 0.383 0.353 3.517
vasy 65 2621 2.960 1.585 1.723 1.732 63.035
vasy 66 1302 2.720 1.283 1.517 1.154 31.171
vasy 69 520 1.589 0.643 0.567 0.530 17.922
vasy 83 325 1.030 0.433 0.479 0.443 23.468
vasy 116 368 70.398 4.993 2.631 2.391 74.627
cwi 142 925 525.796 0.840 0.771 0.717 101.659
vasy 157 297 3.214 2.238 0.630 0.564 18.707
vasy 164 1619 4.060 2.903 2.197 2.018 14.724
vasy 166 651 3.302 0.985 1.038 0.938 50.885
cwi 214 684 113.378 5.116 1.956 1.779 28.247
cwi 371 641 96.592 2.608 2.251 1.985 95.357
vasy 386 1171 14.717 2.336 2.060 1.963 25.967
cwi 566 3984 — 4.714 4.486 4.133 826.634
vasy 574 13561 52.534 13.522 14.301 13.921 178.554
vasy 720 390 44.242 2.464 1.520 1.412 13.268
vasy 1112 5290 132.888 9.715 9.261 8.667 192.439
cwi 2165 8723 — 45.885 28.791 26.823 7262.560
cwi 2416 17605 — 18.461 20.858 19.548 —
vasy 2581 11442 730.577 29.734 23.908 19.694 6695.113
vasy 4220 13944 2128.400 83.883 34.915 29.632 4359.442
vasy 4338 15666 2257.923 51.196 35.149 29.612 6638.925
vasy 6020 19353 7448.062 8.199 9.143 8.739 811.669
vasy 6120 11031 6305.384 131.807 34.635 30.236 6980.648
cwi 7838 59101 — 9905.934 5214.302 5017.498 —
vasy 8082 42933 — 117.119 96.233 89.629 6268.539
vasy 11026 24660 — 442.642 94.820 80.174 —
vasy 12323 27667 — 434.968 108.348 89.650 —
cwi 33949 165318 — 1198.680 663.610 592.355 —

Geometric Mean — 7.937 5.211 4.759 —

4.3. Divergence-Respecting Delay Bisimulation Performance

We will use the following abbreviations to refer to the various DRDB algorithms compared in column
headings, with all variants of iterative refinement using sorted arrays to represent the coloured afters:

Shorthand Description

FDR2 Reduction to strong bisimulation
DYN Näıve IR with dynamic computation of afters
CT-DYN Two-pass Change-Tracking IR with dynamic computation of afters (FDR3)
CT-DYN1 Single-pass Change-Tracking IR with dynamic computation of afters
PT Paige-Tarjan algorithm using arrays

From Table 4 we can see that two-pass change-tracking iterative refinement with dynamic computation
of coloured afters is significantly faster than the alternatives on nearly all of the examples. We also note that
as for strong bisimulation, the Paige-Tarjan algorithm is particularly ineffective when dealing with large
alphabets, as in vasy 25 25 since it must repeat each refinement for every event in the alphabet.

4.4. Divergence-Respecting Weak Bisimulation Performance

We will use the following abbreviations to refer to the various DRWB algorithms compared in column
headings, with both variants of iterative refinement using sorted arrays to represent the coloured afters:



Computing Maximal Weak and Other Bisimulations 23

Table 5. Run times of various implementations of weak bisimulation on the VLTS benchmarks in seconds. A — indicates that
the test failed to complete within 4 hours.

Name DYN CT-DYN PT CADP-nobr CADP-br

cwi 3 14 0.010 0.011 0.542 2.632 0.244
vasy 18 73 0.448 0.279 5.125 3.615 0.742
vasy 25 25 0.092 0.094 1558.280 1.134 1.468
vasy 40 60 170.634 15.734 7.222 109.133 115.415
vasy 52 318 0.424 0.383 9.032 7.152 0.806
vasy 65 2621 1.605 2.069 64.023 2.543 5.196
vasy 66 1302 1.442 1.364 65.053 9.512 8.370
vasy 69 520 0.783 0.597 21.125 6.573 2.001
vasy 83 325 0.492 0.471 69.043 12.762 0.997
vasy 116 368 5.990 3.070 410.344 221.241 48.121
cwi 142 925 0.736 0.767 306.684 290.736 1.098
vasy 157 297 2.513 0.649 37.907 45.589 0.694
vasy 164 1619 3.309 2.265 40.964 11.796 1.947
vasy 166 651 1.131 1.041 202.888 47.152 1.369
cwi 214 684 5.119 2.177 120.182 500.183 2.715
cwi 371 641 3.448 2.731 1913.489 413.884 1.602
vasy 386 1171 2.503 2.049 125.959 85.951 1.452
cwi 566 3984 5.358 4.531 3914.916 — 4.085
vasy 574 13561 14.624 14.749 210.813 8.404 8.618
vasy 720 390 2.541 1.458 14.330 195.721 1.468
vasy 1112 5290 10.895 9.523 238.637 4.240 4.375
cwi 2165 8723 80.916 41.494 — 7424.895 13.869
cwi 2416 17605 18.730 20.600 — — 16.691
vasy 2581 11442 39.954 23.773 — — 31.457
vasy 4220 13944 111.596 37.217 — — 4148.586
vasy 4338 15666 64.766 34.958 — — 38.171
vasy 6020 19353 8.588 9.167 — — 12.011
vasy 6120 11031 149.394 33.287 — — 21.602
cwi 7838 59101 12422.744 6499.632 — — 9164.557
vasy 8082 42933 126.767 98.128 — — 42.469
vasy 11026 24660 538.958 91.665 — — 607.453
vasy 12323 27667 533.449 103.169 — — 778.553
cwi 33949 165318 2665.535 1099.680 — — 259.913

Geometric Mean 9.232 5.518 — — 10.451

Shorthand Description

DYN Näıve IR with dynamic computation of coloured afters
CT-DYN Two-pass Change-Tracking IR with dynamic computation of afters (FDR3)
PT Paige-Tarjan algorithm using arrays
CADP-nobr BCG MIN -observational -class from the CADP Toolbox [GLMS13]
CADP-br BCG MIN -observational from the CADP Toolbox [GLMS13]

BCG MIN -observational by default applies branching bisimulation before applying weak bisimulation; this
is what CADP-br measures. This behaviour can be disabled with the -class option, allowing us to measure
the performance of the weak bisimulation directly; we denote this CADP-nobr.

From Table 5 we can see that change-tracking iterative refinement with dynamic computation of coloured
afters is significantly faster than the alternatives that rely solely on weak bisimulation on nearly all of the
examples. CADP’s branching bisimulation followed by weak bisimulation was found to be slower or faster
depending on the example.

4.5. Other Compressions

It is interesting to compare dbisim and wbisim with alternative compressions. Prior to their introduction
in FDR, the most widely used compression was sbisim(diamond(P)), which we will call sbdia. In all the



24 A. Boulgakov, T. Gibson-Robinson, and A.W. Roscoe

Table 6. Timings with no compression, dbisim, and sbdia.

Problem
Compilation Time (s) Exploration Time (s)

Raw dbisim sbdia Raw dbisim sbdia

bully 0.06 28.12 25.17 1.76 0.36 0.88
bakery.3 0.37 0.38 0.36 137.52 0.93 1.07
bakery.4 — 12.28 9.54 — 3.63 1.64

Table 7. State and transition counts with no compression, dbisim, and sbdia. ”Raw” indicates the size before compression.

Problem
States Transitions

Raw dbisim sbdia Raw dbisim sbdia

bully 492,548 140,776 105,701 3,690,716 1,280,729 3,872,483
bakery.3 9,164,958 29,752 17,787 27,445,171 85,217 64,283
bakery.4 — 1,439,283 716,097 — 5,327,436 3,408,420

following examples sbdia is valid. Other tools also use divergence-respecting branching bisimulation due to
the existence of a fast algorithm for computing it.

We examined the performance and effectiveness of dbisim and sbdia on the bully algorithm (the FDR
implementation is outlined in Section 14.4 of [Ros10]) with 5 processors and an implementation of Lamport’s
bakery algorithm (Section 18.5 of [Ros10]) with either 3 or 4 threads and integers drawn from the fixed range
0 to 7.7 These are typical examples composed of a variable number of parallel processes, with many τs and
symmetry that can be reduced by either dbisim or sbdia. We compressed these processes inductively8 (as
described in Section 8.8 of [Ros10]); that is, we added them to the composition one at a time, compressing
at every step. This is a common technique that allows a large portion of the system to be compressed
while keeping each compression’s inputs manageable. Table 6 shows that sbdia runs faster than dbisim and
Table 7 shows that it is more effective at reducing state counts, but can add transitions, whereas dbisim
cannot by design.

Table 8 compares the effectiveness of wbisim, dbisim, branching bisimulation, and sbdia on the VLTS
benchmarks. Table 9 compares their run times, as well as sbisim’s. We have found that sbisim is frequently
slower than the other compressions despite being less effective.

5. Conclusions

We have presented a number of GLTS compression algorithms, including novel algorithms for computing
the maximal delay and weak bisimulation. We have shown that explicitly constructing a τ -closed transition
relation for weak bisimulations, the current state of the art, is prohibitively memory-intensive and provided
an efficient alternative based on dynamic programming that is particularly effective when used in conjunction
with change-tracking iterative refinement.

CADP’s attempt to reduce this potential explosion by applying branching bisimulation reduction first,
thus reducing the size of the input to weak bisimulation, was effective in some cases, but not others. Since
our approach is able to cope with large transition systems without requiring them to be pre-compressed by
a more time-efficient compression we believe it to be a useful contribution.

Change-tracking iterative refinement algorithm for sbisim offered a significant improvement over the
näıve iterative refinement used by previous versions of FDR, supporting the conclusions of [BO05]. It out-
performed the Paige-Tarjan algorithm as well; in particular, we found the multilabel Paige-Tarjan algorithm
of [Fer90] to not be tractable for systems with large alphabets.

Comparing dbisim and wbisim, we have noticed that they produce identical output on nearly all of the
examples we have tested and differ by only a few states when they differ. They also tend to exhibit similar
run times. Divergence-respecting branching bisimulation frequently produced identical output to dbisim,

7 The example files are available from the authors website.
8 We used inductive compression to increase the time spent on the compressions. This is not necessarily the most efficient
approach to checking these systems in FDR.



Computing Maximal Weak and Other Bisimulations 25

Table 8. A comparison of the efficiencies of different compressions.

Problem
States Transitions

Raw w/dbisim branch sbdia Raw wbisim sbdia

cwi 3 14 3996 2 2 2 14552 1 1
vasy 18 73 18746 2326 2326 954 73043 9751 5727
vasy 25 25 25217 25217 25217 25217 25216 25216 25216
vasy 40 60 40006 20003 20003 20003 60007 40004 40004
vasy 52 318 52268 66 4593 28 318126 333 120
vasy 65 2621 65537 65536 65536 65536 2621480 2621440 2621440
vasy 66 1302 66929 51128 51128 51128 1302664 1018692 1505446
vasy 69 520 69754 69753 69753 69753 520633 520632 520632
vasy 83 325 83436 42195 42195 42195 325584 197200 197200
vasy 116 368 116456 17641 22398 616 368569 72955 1987
cwi 142 925 142472 19 23 10 925429 37 16
vasy 157 297 157604 3038 3038 3038 297000 12095 12095
vasy 164 1619 164865 992 992 512 1619204 3456 1408
vasy 166 651 166464 42195 42195 42195 651168 197200 197200
cwi 214 684 214202 450 603 222 684419 1546 1372
cwi 371 641 371804 2134 6033 1496 641565 5634 5100
vasy 386 1171 386496 71 71 71 1171872 108 108
cwi 566 3984 566640 128 198 21 3984157 523 50
vasy 574 13561 574057 3577 3577 3577 13561040 16168 16168
vasy 720 390 720247 3292 3292 3277 390999 116910 116498
vasy 1112 5290 1112490 265 265 265 5290860 1300 1300
cwi 2165 8723 2165446 4256 4256 4701 8723465 20880 87575
cwi 2416 17605 2416632 730 730 2 17605592 2899 14
vasy 2581 11442 2581374 704737 704737 704737 11442382 3972600 3972600
vasy 4220 13944 4220790 1185975 1186266 483404 13944372 6862722 3420840
vasy 4338 15666 4338672 704737 704737 704737 15666588 3972600 3972600
vasy 6020 19353 6020550 256 256 256 19353474 510 510
vasy 6120 11031 6120718 2505 2505 2505 11031292 5358 5358
cwi 7838 59101 7838608 61233 62031 36972 59101007 464102 1369417
vasy 8082 42933 8082905 290 290 290 42933110 680 680
vasy 11026 24660 11026932 775578/775618 775618 637639 24660513 2454736 1993745
vasy 12323 27667 12323703 876944 876944 719324 27667803 2780022 2251773
cwi 33949 165318 33949609 12463 12463 15121 165318222 71466 500580

but was on some examples much less effective (for instance, compressing vasy 52 318 from 52268 to 4593
states versus 66 states for dbisim). While branching bisimulation was usually faster than dbisim, with the
exception of one VLTS example, the difference was not as striking as we had expected – roughly a factor
of 2. The comparison between dbisim and sbdia was rather more varied: while the difference is not nearly
as large as in previous versions of FDR and there are a number of examples where dbisim is significantly
faster than sbdia (most notably, 10 minutes against 150 on the largest VLTS example we tried), there are
still many examples where sbdia is the better choice.

We were most surprised to find that dbisim was occasionally faster than sbisim, despite offering more
compression. In fact, the surprising speed is because of the higher compression, since the number of classes
affects both the amount of work that needs to be done on each iteration and the number of iterations.

Related and Future Work

We plan to explore implementing DRD-bisimulation by reduction to strong bisimulation for FDR3 for those
cases where this approach is more efficient. We can provide the alternatives to the user, but we would like
to find and implement a heuristic that would allow FDR3 to automatically select of the two algorithms the
one that is likely to be faster for the given problem. We would also like to find heuristics for deciding which
compression to use, in particular for inductively compressing large parallel compositions.

On-the-fly τ -closure reduction [Mat05] is related to our coloured afters computation for DRDB. Ma-
teescu’s approach initiates a depth-first search from each of the nodes under consideration. Our method is
able to avoid much of the overlapping work these DFSs might do by topologically sorting all the nodes and
using dynamic programming. This is not possible for on-the-fly verification since the nodes are discovered



26 A. Boulgakov, T. Gibson-Robinson, and A.W. Roscoe

Table 9. A comparison of the run times of different compressions.

Name wbisim dbisim sbdia branch sbisim

cwi 3 14 0.011 0.011 0.003 0.069 0.013
vasy 18 73 0.279 0.204 0.180 0.167 0.062
vasy 25 25 0.094 0.096 0.050 1.136 0.029
vasy 40 60 15.734 15.620 11.723 70.846 35.430
vasy 52 318 0.383 0.353 0.546 0.492 0.392
vasy 65 2621 2.069 1.732 2.271 2.541 1.436
vasy 66 1302 1.364 1.154 1.588 1.355 0.728
vasy 69 520 0.597 0.530 0.588 0.881 0.410
vasy 83 325 0.471 0.443 0.308 0.544 0.387
vasy 116 368 3.070 2.391 0.233 0.819 0.752
cwi 142 925 0.767 0.717 0.332 0.729 0.817
vasy 157 297 0.649 0.564 0.445 0.472 0.307
vasy 164 1619 2.265 2.018 0.847 1.443 1.369
vasy 166 651 1.041 0.938 0.682 0.922 0.815
cwi 214 684 2.177 1.779 0.353 1.566 1.636
cwi 371 641 2.731 1.985 6.465 1.336 1.342
vasy 386 1171 2.049 1.963 1.605 1.258 1.376
cwi 566 3984 4.531 4.133 2.529 3.665 4.217
vasy 574 13561 14.749 13.921 14.484 8.325 9.469
vasy 720 390 1.458 1.412 0.417 0.850 0.413
vasy 1112 5290 9.523 8.667 8.346 4.163 6.046
cwi 2165 8723 41.494 26.823 116.233 12.907 14.547
cwi 2416 17605 20.600 19.548 3.480 14.604 15.115
vasy 2581 11442 23.773 19.694 10.129 23.388 20.982
vasy 4220 13944 37.217 29.632 16.541 28.392 21.910
vasy 4338 15666 34.958 29.612 18.876 30.091 28.358
vasy 6020 19353 9.167 8.739 7.892 12.107 36.194
vasy 6120 11031 33.287 30.236 16.981 20.673 23.526
cwi 7838 59101 6499.632 5017.498 1801.493 145.481 115.385
vasy 8082 42933 98.128 89.629 78.149 42.434 73.546
vasy 11026 24660 91.665 80.174 54.986 48.827 50.874
vasy 12323 27667 103.169 89.650 60.724 55.878 56.320
cwi 33949 165318 1099.680 592.355 9102.699 254.545 334.751

Geometric Mean 5.518 4.759 3.483 4.183 3.236

as the algorithm is running, and in particular the most downstream nodes (which we need process first) are
the last to be discovered. However, it would be interesting to consider whether either of the algorithms could
incorporate some ideas from the other.

The strong bisimulation algorithm in [DPP04] is an improvement of the Paige-Tarjan algorithm that
uses set-theoretic rank functions to select splitters more intelligently. By doing so they are able to achieve
a two-fold speedup over the Paige-Tarjan algorithm, but more interestingly, their algorithm uses an initial
partition that does not require the entire graph to be in memory at the same time. This enables scaling to
larger systems, as well as opening up some potential for distributing the work, and it would be interesting
to see if some of their ideas could be incorporated into Change-Tracking Iterative Refinement.

In [BvdP09], Blom and van de Pol introduce the concept of inductive signatures which allow the afters
under certain events to be coloured with respect to the current partition instead of the previous one. This
allows for faster convergence, but requires a well-founded subset of the alphabet (such that the transition set
restricted to these events has no cycles); they achieve this for branching bisimulation by removing τ loops
and using {τ} as the subset. Since this is also possible for DRDB and DRWB, it would be interesting to
investigate, though it would require a data structure that allows states to be reclassified before their entire
block’s coloured afters have been recomputed (for example, a hash table).

Despite the multi-threaded core of FDR3, compressions are still single threaded, though independent
compressions can be run in parallel. Iterative refinement consists of massively parallel coloured afters com-
putations and parallel sorts of a number of coloured afters lists of arbitrary size. The sort phases can be
sped up by sorting partitions in parallel or using multi-threaded sorting algorithms, and in the case of strong
bisimulation the coloured afters computation phase can be parallelised as well. We have already developed
parallel extensions of some of the algorithms detailed in this paper, though our implementations are still



Computing Maximal Weak and Other Bisimulations 27

in the preliminary stages. The parallelisation of the coloured afters computation has the nice property that
the transition set can be partitioned across workers and only the node to equivalence class map needs to be
shared. This could allow for an efficient GPU implementation.

Acknowledgements. We would like to thank Michael Goldsmith, James Worrell, and the anonymous
reviewers for their useful comments. Research into FDR3 has been partially sponsored by DARPA under
agreement number FA8750-12-2-0247.

References

[AGL+12] Philip Armstrong, Michael Goldsmith, Gavin Lowe, Joël Ouaknine, Hristina Palikareva, A.W. Roscoe, and James
Worrell. Recent developments in FDR. In Computer Aided Verification, pages 699–704. Springer, 2012.

[BGRR14] Alexandre Boulgakov, Thomas Gibson-Robinson, and AW Roscoe. Computing maximal bisimulations. In Formal
Methods and Software Engineering, pages 11–26. Springer, 2014.

[BO02] Stefan Blom and Simona Orzan. A distributed algorithm for strong bisimulation reduction of state spaces. Elec-
tronic Notes in Theoretical Computer Science, 68(4):523–538, 2002.

[BO05] Stefan Blom and Simona Orzan. Distributed state space minimization. International Journal on Software Tools
for Technology Transfer, 7(3):280–291, 2005.

[BvdP09] Stefan Blom and Jaco van de Pol. Distributed branching bisimulation minimization by inductive signatures. arXiv
preprint arXiv:0912.2550, 2009.

[DPP04] Agostino Dovier, Carla Piazza, and Alberto Policriti. An efficient algorithm for computing bisimulation equivalence.
Theoretical Computer Science, 311(1):221–256, 2004.

[Fer90] Jean-Claude Fernandez. An implementation of an efficient algorithm for bisimulation equivalence. Science of
Computer Programming, 13(2):219–236, 1990.

[Flo62] Robert W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):345–, June 1962.
[GLMS13] Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe. CADP 2011: A toolbox for the construction

and analysis of distributed processes. International Journal on Software Tools for Technology Transfer, 15(2):89–
107, 2013.

[GRABR15] Thomas Gibson-Robinson, Philip Armstrong, Alexandre Boulgakov, and A.W. Roscoe. FDR3: A parallel refinement
checker for CSP. International Journal on Software Tools for Technology Transfer, pages 1–19, 2015.

[GV90] Jan Friso Groote and Frits Vaandrager. An efficient algorithm for branching bisimulation and stuttering equivalence.
In Michael S. Paterson, editor, Automata, Languages and Programming, volume 443 of Lecture Notes in Computer
Science, pages 626–638. Springer Berlin Heidelberg, 1990.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1985.
[KS83] Paris C. Kanellakis and Scott A. Smolka. CCS expressions, finite state processes, and three problems of equivalence.

In Proceedings of the Second Annual ACM Symposium on Principles of Distributed Computing, PODC ’83, pages
228–240, New York, NY, USA, 1983. ACM.

[Mat05] Radu Mateescu. On-the-fly state space reductions for weak equivalences. In Proceedings of the 10th international
workshop on Formal methods for industrial critical systems, pages 80–89. ACM, 2005.

[Mil81] Robin Milner. A modal characterisation of observable machine-behaviour. In CAAP’81, pages 25–34. Springer,
1981.

[Par81] David Park. Concurrency and automata on infinite sequences. Springer, 1981.
[PT87] Robert Paige and Robert E. Tarjan. Three partition refinement algorithms. SIAM Journal on Computing,

16(6):973–989, 1987.
[PU96] ICC Phillips and Irek Ulidowski. Ordered SOS rules and weak bisimulation. Theory and Formal Methods, 1996.
[RGG+95] A. W. Roscoe, P.H.B. Gardiner, M.H. Goldsmith, J.R. Hulance, D.M.Jackson, and J.B. Scattergood. Hierarchical

compression for model-checking CSP, or How to check 1020 dining philosophers for deadlock. In Proceedings of
TACAS 1995. BRICS, 1995.

[Ros94] A. W. Roscoe. Model-Checking CSP. A Classical Mind: Essays in Honour of CAR Hoare, 1994.
[Ros98] A. W. Roscoe. The Theory and Practice of Concurrency. 1998.
[Ros10] A. W. Roscoe. Understanding Concurrent Systems. Springer, 2010.
[San96] Davide Sangiorgi. A theory of bisimulation for the π-calculus. Acta informatica, 33(1):69–97, 1996.
[Tar72] Robert E. Tarjan. Depth-first search and linear graph algorithms. SIAM journal on computing, 1(2):146–160,

1972.
[Tar76] Robert E. Tarjan. Edge-disjoint spanning trees and depth-first search. Acta Informatica, 6(2):171–185, 1976.
[vGW96] Rob J. van Glabbeek and W. Peter Weijland. Branching time and abstraction in bisimulation semantics. J. ACM,

43(3):555–600, May 1996.
[WHH+06] Ralf Wimmer, Marc Herbstritt, Holger Hermanns, Kelley Strampp, and Bernd Becker. Sigref–a symbolic bisimu-

lation tool box. In Automated Technology for Verification and Analysis, pages 477–492. Springer, 2006.


