On Bitcoin Security in the Presence of Broken Crypto Primitives
August 15, 2016

[lias Giechaskiel
University of Oxford
Oxford, United Kingdom
ilias.giechaskiel @cs.ox.ac.uk

Abstract

Digital currencies like Bitcoin rely on cryptographic prim-
itives to operate. However, past experience shows that
cryptographic primitives do not last forever: increased
computational power and advanced cryptanalysis cause
primitives to break frequently, and motivate the develop-
ment of new ones. It is therefore crucial for maintaining
trust in a crypto currency to anticipate such breakage.

We present the first systematic analysis of the effect of
broken primitives on Bitcoin. We identify the core cryp-
tographic building blocks and analyze the various ways
in which they can break, and the subsequent effect on the
main Bitcoin security guarantees. Our analysis reveals
a wide range of possible effects depending on the prim-
itive and type of breakage, ranging from minor privacy
violations to a complete breakdown of the currency.

Our results lead to several observations on, and sugges-
tions for, the Bitcoin migration plans in case of broken
cryptographic primitives.

1 Introduction

Cryptocurrencies such as Bitcoin rely on cryptographic
primitives for their guarantees and correct operation.
However, cryptographic primitives typically get broken or
weakened over time. This is due to progress in cryptanaly-
sis as well as advances in the computational power of the
attackers. For example, for a timeline overview of break-
ages of hash functions, see [4]. It is therefore prudent to
expect that in time, the cryptographic primitives used by
Bitcoin will be partially, if not completely, broken.

In anticipation of such breakage, the Bitcoin commu-
nity has created a wiki page that contains draft contin-
gency plans (see Appendix C). The focus of these is on
“getting the word out” and “coordination”. The wiki de-
scribes a few scenarios in which these plans will be nec-
essary, including “broken” SHA256 and ECDSA algo-
rithms. However, what exactly is meant by “broken” is

Cas Cremers
University of Oxford
Oxford, United Kingdom
cas.cremers @cs.ox.ac.uk

Kasper B. Rasmussen
University of Oxford
Oxford, United Kingdom
kasper.rasmussen @cs.ox.ac.uk

not fully explained. Moreover, the subsequent steps after
a contingency are hand-wavy and incomplete, e.g., “once
the plans themselves are well-accepted, code implement-
ing the plans can be written and tested in case the code
is ever required” [11]. To the best of our knowledge, no
adequate mechanism has been built into Bitcoin, and no
plans for partial breakage (or weakening of a primitive)
have been considered.

In practice, the situation is not black-and-white. Instead
of abruptly breaking completely, cryptographic primitives
usually break gradually. With hash functions, for example,
it is common that first a single collision is found. This is
then later generalized to multiple collisions, and only later
do arbitrary collisions become feasible to compute. In
parallel, the complexity of attacks (such as collisions) de-
creases to less-than-brute-force, and computational power
increases. Finally, quantum computing will make some
attacks easier, e.g., Grover’s pre-image attack [23], or
Shor’s algorithm for discrete log computation [45].

Even if such attacks are years away from being practi-
cal, it is crucial to anticipate the impact of broken primi-
tives, so that appropriate and effective contingency plans
can be put in place. Our work contributes towards filling
this gap.

Contributions We consider our main contributions
to be the following. First, we provide the first systematic
analysis of the impact of broken primitives on Bitcoin.
While the Bitcoin community has considered some high-
level cases, we perform a fine-grained systematic analysis.
We do this by identifying the core cryptographic building
blocks within Bitcoin and consider the various ways in
which such primitives are broken in practice. We analyze
both the failure of individual primitive properties, and
combinations of broken primitives, and highlight their
impact on the main security properties of Bitcoin.

Second, we describe in detail the range of conse-
quences different breaks have. For example, one inter-
esting and counter-intuitive result is that an adversary
with access to a simple pre-image oracle does not gain

mailto:ilias.giechaskiel@cs.ox.ac.uk
mailto:cas.cremers@cs.ox.ac.uk
mailto:kasper.rasmussen@cs.ox.ac.uk

Blockchain

Block Block Block

Iprev hash| —l>|prev hash| —l—[prev hash|

l Tx hash | l Tx hash | l Tx hash |
I nonce | I nonce | I nonce |
Block

Block header

Iprev hashH Tx hash || nonce |
VAl X
l hash | l hash |
27X AN

Tx a Tx b Tx C Tx d

Scripting language

Hash operations Iransaction

Signature operations
Flow control
Data

Header

ll

Scripts

Figure 1: The blockchain data structure. This forms
the basis of the public, append-only ledger where all
transactions are recorded.

an advantage for mining by just working on the block
header. However, with a few calls, the adversary can use
the flexibility of the coinbase transaction and succeed in
mining the next block with high probability.

Third, our investigations raise concerns about the cur-
rently specified migration plans for Bitcoin. Although the
current plans are a first step in the right direction, we show
that they are both overly conservative in some respects,
as well as inadequate in others. For example, it is not
clear that if someone owns a Bitcoin now, they will still
have access to it in a year, if a primitive has broken in the
meantime.

As a tangential fourth contribution, we introduce an or-
acle model for hash functions that unifies several existing
types of breakage and allows us to specify forms of hash
function breakage that are closer to real-world attacks.

We proceed as follows: after introducing the relevant
background (Section 2), we propose our system and ad-
versary model (Section 3). Then, we analyze the effects
of broken primitives on the design of Bitcoin. In particu-
lar, we consider the hashing building blocks (Section 4)
and signature schemes (Section 5), before considering
combinations of primitive breaks (Section 6). We then
revisit the current implementation of Bitcoin and its con-
tingency plans (Section 7). After discussing related work
(Section 8), we conclude (Section 9).

Sender Miner Receiver

Prepare trans-
action: Ts_,,

Ts—ﬂ'

Verify Ty,

Find PoW that
includes Ts_,,

(hard)

Block;

Verify Block;

Figure 2: A high-level view of a Bitcoin transaction.

2 Background

In this section, we give a description of Bitcoin, the popu-
lar peer-to-peer (P2P) cryptocurrency introduced in 2008
by Satoshi Nakamoto [39]. Figure 1 shows a high-level
view of the main component of Bitcoin—the blockchain—
which will guide this section. The blockchain is a public
log of all Bitcoin transactions that have occurred, com-
bined together in components called blocks. Transactions
use a scripting language that determines the owners of
coins (Section 2.1), and it is up to miners to ensure that
only valid transactions occur. To ensure that nobody can
change or remove past transactions, miners have to solve
a hard computational puzzle, known as a Proof-of-Work
(Section 2.2), so from a user’s perspective, the process of
making a transaction resembles Figure 2. The final com-
ponent of Bitcoin is its underlying P2P network which
enables the distributed communication (Section 2.3). We
do not introduce or analyze components which are outside
of the main protocol, such as wallets.

2.1 Transactions and Scripts

Bitcoin is an electronic cash system [39], so transactions
to transfer coins between different users are central to its
structure. Coins in Bitcoin are essentially unspent trans-
action outputs, whose unit is a “satoshi”, equal to 10°8
Bitcoins or BTCs. A transaction, then, can be thought of
as a list of inputs — unspent transactions in the blockchain
— and a list of outputs — addresses to which to transfer the
coins. In order to ensure that only the owner can spend his
coins, each input and output is accompanied by a script.
For outputs, this “locking” script contains the conditions
under which the output can be redeemed (scriptPubKey),
while for inputs, an “unlocking” script contains proof
in the form of a cryptographic signature (scriptSig) that
these conditions have been met.

Figure 3 contains a high-level example of how a trans-

input :source outputs and destination addresses and values
output : Bitcoin transaction

/* Specify where the Bitcoins of this
transaction are coming from */
foreach source output o, do
pub, priv + Get key pair for 0,
sig < Signyyy (selected fields) /* See [44] */
ScriptSig < sig pub
Add (0, ScriptSig) to list of inputs
end
/* Specify one or more addresses to receive
the Bitcoins x/
foreach destination address addr do
ScriptPubKey <— DUP HASH160 addr EQV CHKSIG
Add (value, ScriptPubKey) to list of outputs
end
Transaction < (version, inputs, outputs, lock-time)

Figure 3: Procedure for creating a Pay-to-Public-Key-
Hash transaction with multiple inputs and outputs.

action is constructed. The public keys of receivers are
converted into Pay-to-Public-Key-Hash output scripts (ex-
plained below), while the input scripts are outputs of
previous transactions and are accompanied by signatures
of the corresponding public keys by senders.

The scripts mentioned above are sequences of instruc-
tions called opcodes that get executed by special nodes
called miners. Bitcoin’s scripting language is stack-based,
and without loops. There are opcodes for string, arith-
metic, and cryptographic operations, as well as for repre-
senting data, controlling the program flow and the stack.
However, many opcodes are disabled to prevent Denial-
of-Service (DoS) attacks which exploit computationally
intensive opcodes. Most nodes thus only accept and relay
a certain set of standard scripts of fixed format, which are
presented below.

e Public-Key The unlocking script must sign the trans-
action under the provided key. The correspond-
ing scriptPubkey is <pubkey> 0P_CHECKSIG, with
scriptSig equal to <signature>.

e Pay-to-Public-Key-Hash (P2PKH) The unlocking
script must provide a public key which hashes
to the given value, and must then sign the trans-
action under this key. The corresponding script-
Pubkey is OP_DUP OP_HASH160 <pubkeyHash>
OP_EQUALVERIFY OP_CHECKSIG, with scriptSig
equal to <signature> <pubkey>.

o Multi-Signature An M-of-N (N < 15) multi-
signature scheme provides N public keys, and re-
quires M signatures in the unlocking script. In this
case, scriptPubkey isM <pubkey 1> ...<pubkey
N> N OP_CHECKMULTISIG, with scriptSig being
OP_O0 <signature 1> ...<signature M>.

input :Bitcoin transaction
output:valid or invalid

/* Verify each input to the transaction */
foreach transaction input do

SrcOut < Get source output

ScriptPubKey < from SrcOut

ScriptSig < from current input

Verify,,, (ScriptSig || ScriptPubKey)
end

Figure 4: Procedure to verify a transaction’s use of crypto-
graphic primitives. The full procedure is in Appendix A.

e Pay-to-Script Hash (P2SH) This script is the hash
of a non-P2SH standard transaction. The unlocking
script then provides the full script (which hashes to
this value) as well as any necessary signatures. This
script is typically used to shorten the length of multi-
signature transactions. The scriptPubkey field in this
case is OP_HASH160 <scriptHash> OP_EQUAL,
while scriptSig is <signatures> <script>.

e Data Output (OP_RETURN) The output cannot be
redeemed, but can be used to store up to 40 arbi-
trary bytes such as human-readable messages in the
blockchain for a fee: scriptPubkey is OP_RETURN
<data> and there is no corresponding scriptSig.

Every transaction needs to be valid: it needs to contain

all the required fields, all signatures must be valid, and the
output scripts must be one of the standard ones. This is a
task that miners undertake for a small fee. Though some
non-standard scripts can be accepted by some miners for a
higher fee, we do not cover these in our analysis. The rele-
vant parts of validating a transaction from a cryptographic
perspective are summarized in Figure 4.

2.2 Mining and Consensus

To ensure that no coin is used more than once, every
transaction is made public, through a global, append-only
ledger called the blockchain, consisting of blocks com-
bining transactions in a Merkle Tree [38]. New blocks
become a part of the blockchain through a process called
mining: miners need to find a value (nonce) such that
the hash of a block’s header is less than a given target
h(hdr||nonce) < T. The idea behind this proof-of-work
scheme is that the probability of creating the next block
is proportional to the miner’s computational power, and
because miners receive transaction fees (as well as a block
creation reward through special “coinbase” transactions)
they are incentivized to do the work, which includes vali-
dating transactions and blocks (Figure 5).

Due to the probabilistic nature of mining, the pres-
ence of adversaries, and networking delays, miners may

input :Bitcoin block
output:valid or invalid

/* Verify block header */
Verify Hash(block header) < target

Verify Merkle hash

Verify Hash(prev block) = prev__hash

/* Verify each transaction input in block */

foreach transaction input in the block do
Check that referenced output transaction exists and hasn’t

already been spent
Verity signatures
end

Figure 5: Procedure to verify a block’s cryptographic
primitives. For the full procedure see Appendix B.

disagree on the current state of the blockchain. This
is known as a fork. To deal with this issue, there are
hardcoded blocks included in the clients, known as check-
points, starting from the first block, called the genesis
block. In addition, honest (non-adversarial) miners work
on the longest blockchain they become aware of, when
other nodes announce new blocks and transactions. This
way, nodes eventually reach consensus [13] [20].

These temporary forks enable double spending: an
adversary can have different transactions in different
branches of the fork using the same inputs but differ-
ent outputs. However, because the probability of “deep”
forks where branches differ in the top N blocks drops
exponentially in N, receivers usually wait for multiple
confirmation blocks (N = 6 is typical).

If a miner or a group of collaborating miners (called
a pool) is in control of a high enough proportion of the
total computational power (51% [34], or even less [19]),
then they can possibly destabilize the system.

2.3 Network

The last key component of Bitcoin is its Peer-to-Peer
(P2P) network that allows it to operate in a distributed
fashion. Transactions and blocks are broadcast by partic-
ipating nodes to their peers, and then relayed further to
flood the network if they meet the relay policies in place to
prevent DoS attacks. Not every node in the P2P network
is a miner, and potentially not every node has access to
the full chain. Though “full” clients download the entire
blockchain through getblocks messages, “lightweight”
clients that use Simple Payment Verification (SPV) only
download headers and the relevant transactions (with the
corresponding Merkle Trees). For receivers, it is impor-
tant to choose one’s networking peers so that senders
must broadcast the transaction to the entire network in-
stead of just to them [50], while connecting to multiple

random nodes is important to ensure that transactions are
not hidden by dishonest nodes [3].

2.4 Upgrading the Protocol

Because of all the verification steps involved, it is impor-
tant for participating nodes to be in agreement as to what
the precise transaction verification algorithm is. However,
to fix bugs or to introduce extensions, the protocol itself
may need to change. Since not all nodes upgrade at the
same time, a protocol change may introduce forks. If the
validation rules in the upgrade become stricter, then the
protocol remains backwards-compatible, so nodes run-
ning the old software will accept transactions of the new
type. This is a softfork. A hardfork, on the other hand, is
not backwards-compatible, and thus requires the entire
network to upgrade, as old software would reject new
transactions and blocks as invalid.

The distinction between the two fork types is important
for Bitcoin’s future (Section 7), since when there is dis-
agreement in the community, a transition becomes much
harder, as happened recently over the size of blocks [24].

3 System and Adversary Model

In this section we describe our model for Bitcoin and
discuss the goals and powers that an adversary might
have in the presence of broken cryptographic primitives.

In our model, we distinguish between 4 entities:
senders, receivers, miners, and networking nodes.
Senders and receivers, collectively referred to as users,
wish to exchange Bitcoins via transactions, but do not
care about the details of the underlying system. They
wish to send payments and receive incoming deposits,
and care about the amount of money under their control.

Transactions are transmitted via the underlying P2P
network. Miners have their own (possibly different) copy
of the blockchain, and have different hashing capacities.
For our model, we consider pools as single miners with a
large hashing capability.

We distinguish between two roles for the adversary:
that of a simple user, and that of a miner. As a user, the ad-
versary takes the role of a sender, and aims to make money,
either by successfully double spending or by spending
from another user’s wallet.

As a miner, the adversary controls a proportion ¢ of the
mining power, that is not normally sufficient to take over
Bitcoin (i.e., o < 0.5). The adversary is also assumed
to be in control of a proportion 3 of the nodes in the
P2P network, so that he can attempt to split the network
temporarily in the presence of a suitable vulnerability, but
cannot be confident that such attempt will succeed.

The economic aspects of Bitcoin are considered out of
scope, and we also do not consider developers as a threat.

Finally, we do not investigate adversarial attacks of an
individual miner against his own pool, thus allowing us
to consider pools as single entities of more mining power.

4 Broken Hashing Primitives

In this section, we look at the cryptographic hash func-
tions in Bitcoin, and analyze the effect of a break in one
of the properties of first and second pre-image and colli-
sion resistance. We generalize these into a single property
called chosen-format bounded pre-image resistance.

4.1 Hashing in Bitcoin

In the original Bitcoin paper [39], the concrete primitives
used are not specified: there were no “addresses” but just
public keys, and the hash used for mining and the Merkle
tree was just referred to as a hash function. The current
Bitcoin implementation, going back to at least version
0.1.0 [40] uses two hash functions.

Main Hash This hash function occurs frequently in
Bitcoin. It has an output of 256 bits and requires applying
SHA256 twice: Hy(x) = SHA256 (SHA256 (x)). It is
the hash used for mining (Proof-of-Work): miners need
to find a nonce such that the double SHA256 hash of a
block header is less than a “target” hash. It is also used
to hash transactions within a block into a Merkle Tree,
a structure which summarizes the transactions present
within a block. Because Merkle Trees allow efficient
verification of whether a given transaction is present in a
given block, they are used extensively in “light-weight"
clients that only perform Simplified Payment Verification
(SPV) and thus do not download full blocks [3]. Finally,
it is the hash used for transactions signed with a user’s
private key (see [44] for details).

Address Hash The second hash function is used
as part of the Pay-to-Public-Key-Hash (P2PKH) and
the Pay-to-Script-Hash (P2SH) scripts. Its output is
160 bits, and it is concretely instantiated as Hy(x) =
RIPEMD160 (SHA256 (x)).

4.2 Modeling Hash Breakage

In this subsection we analyze how hashes break in terms
of their building blocks, and introduce our oracle model
for their breakage.

4.2.1 Identifying Hashing Building Blocks

Though we have introduced the two hashes, H4 and Hyy
as single entities, they are built out of two well-known,
standard hash functions: RIPEMD160 and SHA256. Be-
cause within Bitcoin, neither RIPEMD160 nor SHA256

appear individually, we consider attacks against their com-
binations of H4 and Hy,. That way our arguments can be
extended for any future design, regardless of the concrete
instantiation of Hy and Hy,.

To relate the attacks we discover back to the concrete
primitives in Section 7, we now show that for collisions
and second pre-images, only one of the two nested hashes
needs to be broken, while for pre-images both need to
be broken. For a cryptographic hash function A(x), these
three properties are defined as follows:

1. Pre-image resistance Given y it is hard to find x with

h(x) =y.
2. Second pre-image resistance Given xp, it is hard to
find x, # x1 with h(x;) = h(x2).
3. Collision resistance It is hard to find distinct x| # x;
such that i(x;) = h(xp).
where “hard” refers to computational infeasibility, since
hash functions have a fixed-length output, so collisions
always exist. We investigate each of these properties,
when i = hj o hy is a composition of two hash functions.

Pre-image resistance / is broken only when both £,
and A, are broken. In one direction, assume that we have a
pre-image algorithm for A, that returns x on input y. Then,
to find a pre-image for y under h;, run the algorithm on
hy(y) for output x. If hy(x) =y, then x is a pre-image for
y under h. Else hy(x) # y and (ha(x),y) forms a collision
(or second pre-image) for i;. Conversely, if there is an
algorithm for both 4, and h, pre-images, then to get a
pre-image of y under /4, one finds a pre-image x; of y
under A1, and then a pre-image x; of x| under hy. x; is
then a pre-image of y under 4.

Second pre-image resistance / is only as strong as
the inner function 4,. In one direction, assume that given
x1 one can find x, # x; such that h;(x;) = ha(x2). Then
clearly (x;) = h(x;).! In the other direction, assuming
that given x;, one can find x; # x| such that h(x;) = h(x),
then either 15 (x1) = hy(x,) for a second pre-image attack
on hy or hy(x1) # ha(xz) for a collision (and second pre-
image of /1 (x1)) on h;.

Collision resistance / is again only as strong as h,.
A collision (x1,x;) for hy is clearly a collision for A, and
a collision (x;,x;) for h is either a collision for &, or
(ha(x1),h2(x2)) is a collision for A .

4.2.2 Modeling Hash Breakage Variants

Though the three properties of first and second pre-image
and collision resistance are typically used to describe
hashes, they don’t accurately capture all types of break-
ages that may be beneficial to a malicious miner and other

The same can be said if /1 is vulnerable to second pre-image attacks
and h; is vulnerable to first pre-image attacks.

adversaries. A breakage in the real world typically ex-
ploits the concrete internal structure of the hash function,
and as a result the attacks involved may be more powerful
than a simple collision or pre-image. An adversary might
thus have more control over the structure of the pre-image
or the target value. For example, mining expects the hash
to be smaller than a given target, a property which cannot
be expressed using traditional pre-image oracles, as we
explain in detail in Section 4.3.

For this reason, we introduce a more general oracle
model to enable our analysis. We first describe the format
of the oracle we choose to use, and then go over the
details of why it has the specified format, and how it also
generalizes the traditional types of primitive breakage
using appropriate parameters.

We call the oracle a chosen-format bounded pre-image
oracle P, which on input (a,b,y;,y,,i) returns an x; such
that y; < h(al|x;||b) < y, or L if none exists. In other
words, the oracle returns a value X; = al|x;||b such that
its beginning and end are caller-supplied, and such that
the its hash is within a given target range. Moreover, the
oracle is deterministic such that the same x; is returned
each time and x; # x; for i # j and if given an optional
parameter s, the returned x; has size s bits. That is to say,
the oracle can be called multiple times to get different
pre-images, and the user is also able to specify the length
of the pre-image in bits.

We now explain the motivation behind these parame-
ters. First of all, being able to specify a, b, and the length
of the input allows us to have control over the format
of the pre-image. This is important, because in our dis-
cussion we want to speak of pre-images and collisions
that follow the format of transactions and block headers.
Note that fixing a is not uncommon, as it can be used
to describe chosen-prefix collisions. Hash functions are
typically not symmetric, so fixing b is usually harder than
fixing a, but it is not necessary for most attacks we de-
scribe, and even when it is, we still wish to enable the
adversary to control the format of the hashed value. This
is similar to the Chosen-Target-Forced-Midfix attack by
Andreeva and Mennink [1].

Using bounds on the target range is necessary to de-
scribe some attacks against the proof-of-work (PoW)
scheme. Even though PoW only requires the upper bound
yn, we include y; for symmetry, and because it is used to
implement a traditional collision attack as we see below.

The oracle needs an index parameter for the following
reason. When there is no length restriction on the pre-
image, there are potentially infinitely many pre-images,
even for a well-designed hash function when each output
is equally likely. When the input must have size s bits,
there are 2° possible pre-images, which is exponential.
Thus, the oracle cannot return the entire set of pre-images
to a polynomially-bounded adversary. This is why we

desire x; # x; for i # j: we want to be able to access as
many distinct pre-images as we want. Finally, we desire
the returned values on different indices to be distinct, and
we want there to be no “gaps”, i.e., if the oracle returns L
on { it should also return L on i+ 1, so that the adversary
can stop querying the oracle after receiving a L.

We show that our oracle model is a generalization of the
traditional breakages by showing how an adversary with
access to our oracle can break the three hash properties.

Pre-image Getting a pre-image of y amounts to call-
ing P on (L, L,y,90), so the adversary can break pre-
image resistance with a single call to the oracle.

Second pre-image Getting a second pre-image given
x is almost identical, but potentially requires two oracle
calls: call P on (L, L,h(x),h(x),0), and if that returns x,
call Pon (L, L, A(x),h(x),1).

Collision Getting a collision is not as straightforward.
Let h: {0,1}* — {0, 1}" be the hash function in question.
First of all, it is not always the case that every y € {0,1}"
has a pre-image (let alone two), even though probabilisti-
cally this holds true for a well-designed hash function. For
instance, consider /', where /'(x) = 1 when i(x) = 0, and
I (x) = h(x) otherwise. Then, /' is strong if 4 is strong,
but does not hit 0. However, by exploiting the pigeonhole
principle and binary search, one can make Ig(n) calls to
the oracle to generate a collision.

The idea is to call P on (L, L, y;,yp, vy, —y; +2). If the
oracle returns anything but L, there are more pre-images
than possible hashes within the range [y;,y;]. Then, one
can perform a binary search with initial y; = 0", y, = 1"
to determine a value y that has at least 2 pre-images.

Chosen-prefix collision To get a chosen-prefix col-
lision, i.e. given p find two values x # x’ such that
h(p||x) = h(p||x'), one performs the same procedure as
for getting a normal collision, but with a = p.

For the rest of our analysis, we still use the notions of
pre-images and collisions, unless we need the additional
power of the more powerful oracle. We summarize our
results in Table 1.

4.3 Main Hash

In this section we analyze the main hash Hy;, which is
used for mining, in Merkle Trees, and with signatures.
We discuss all three separately.

4.3.1 Mining

Mining (Pre-Image against Fixed Merkle Root) Min-
ers search for block headers whose hash is below some
target value. We analyze the probability that an adver-
sary with access to a pre-image oracle can break mining.
Because some fields in the header are fixed as explained

Breakage Address Hash (Hy)

Main Hash (Hy,)

Collision Repudiate payment

Second pre-image Repudiate payment
Uncover address

All of the above

Pre-image

Bounded pre-image

Destroy coins

Double spend and steal coins

Complete failure of the blockchain (2n calls)
Complete failure of the blockchain (# calls)

Table 1: Summary of the effects on Bitcoin for different types of breakage in the two hash functions used.

below, we assume that the oracle allows the caller to
specify the pre-image prefix.

To simplify the analysis, we assume that the target hash
of length n needs to start with d zeros. In reality, the target
can be higher by at most a factor of 2, so the assumption
introduces up to 1 bit of extra work.

If the adversary controls » < n bits of the input, there
are 2” possible inputs to the hash function. These need to
map to one of the 2"~ values in the range [0, target), and
will be uniformly distributed across 2" values. This gives
the expected number of b-bit pre-images as

znfd
2n

b — pb—d

E[# pre-images] = 2

The adversary can only query the pre-image oracle for
specific target hashes. Because there are 2°~¢ b-bit pre-
images, distributed across the 2"~¢ values, the probability
that a given hash in [0, target) has a b-bit pre-image is:

Pl[correct pre-image] = —— =

This probability does not depend on d, as one might
expect. This is because by increasing d to reduce the
number of valid hashes, the adversary also reduces the
expected number of b-bit pre-images. Assuming the ad-
versary is allowed 2¢ queries to the oracle, the probability
of breaking mining becomes

P[success] = 24 . 20— = patb=n

To calculate b, we explore all fields in the block header.
The version number (nVersion), as well as the hashes of
the previous block header (hashPrevBlock), and of the
current Merkle root hash (hashMerkleRoot) are fixed.
However, the adversary has partial control over the re-
maining fields in the header. For the timestamp field
(nTime), the value can be within 7200 seconds of the cur-
rent median/average, giving the adversary approximately
13 bits of freedom. Moreover, the adversary has complete
control over the 32 bits of the nonce (nNonce).

The nBits field describing the target difficulty is a bit
more complicated to explain. The 4 bytes OxAABBCCDD
describe the number 0xBBCCDD - 256443 and the pro-
tocol only checks that the produced number is at most the

target value given by the consensus. At the time of writ-
ing, this value is 0x180928 0, meaning that the adversary
can use approximately 28 of the 32 bits.

All the fields combined give b = 73. With n = 256,
and if we allow 280 calls to the oracle, i.e., a = 80, the
probability of success is only 280+73-256 — 2103 'yhjch
is still negligible.

Mining (Pre-Image against Variable Merkle Root)
In the above derivation we fixed the root hash of the cur-
rent transactions, though an adversary has partial control
over them as well. One approach would be to selectively
exclude and/or reorder transactions, but the effect is the
same as fixing a different root hash. The alternative is to
work backwards: start with a fixed hash, and include the
32 bytes of the Merkle hash in b, working backwards to
reconstruct the tree of transactions. However, even with
semantically valid transactions, there is negligible proba-
bility that they correspond to valid and unspent outputs in
the blockchain, or have valid signatures.

However, Bitcoin does not enforce a minimum number
of transactions in a block, and the coinbase transaction
which generates new coins has a variable-length input
that is controlled by miners: coinbase transactions have
the same fields as regular transactions, but they only have
one transaction input whose script is not fixed, but can
contain arbitrary data of up to 100 bytes (see [44]).

As a result, a malicious miner with access to an oracle
that can take as input the prefix and the suffix of the
pre-image can do the following:

1. Pick an arbitrary target T and get a pre-image
for h(a|lx||b) = T where the desired x is the
hashMerkleRoot field, and a,b are the remaining
fields in a block header. Because the root is 256 bits,
there is a pre-image with high-probability, but if not,
repeat with some other random target 7.

2. Pick a length [for the script, and fix all other fields
for the coinbase transaction. Solve h(d||y||0") =T
where @', b’ are the remaining fields for the coinbase
transaction. Because the number of free bytes is up
to 100, the process succeeds with high probability.

Mining (Bounded Pre-Image) An adversary with
access to our chosen-format, bounded pre-image oracle
P can simply call P on (hdr, L,0",y;,0,s), where y, is

the target hash, hdr is the beginning of the block header,
n = 256 is the size of the output, and s = 32 is the size of
the required nonce.

Breaking mining may result in completely breaking the
security of the blockchain since an adversary has a much
higher probability of creating deep forks, thus reversing
transactions or double spending. We note that mining
using a pre-image oracle requires twice as many calls
compared to mining using the bounded pre-image oracle.

Mining (Collisions, Second Pre-Images) Collisions
and second pre-images are only useful for mining if the
pre-images start with d zeros. Assuming the pre-images
contain valid transactions and signatures (negligible prob-
ability), a miner can fork the chain.

4.3.2 Merkle Trees

Altering existing blocks By repeating the argument
given for mining, we see that an adversary cannot find a
valid second pre-image of an entire block except with neg-
ligible probability. Pre-images do not give the adversary
new information, as they already accompany the hash
value. Collisions are also not useful, as both values are
controlled by the attacker, so cannot alter existing blocks.

Attacking new blocks For new blocks, an adversary
with sufficient network control can use a collision or sec-
ond pre-image to split the network, even with an invalid
block. By transmitting a block with the same hash as the
new valid one, the adversary can cause miners to reject
both blocks, and possibly reverse the transactions it con-
tained. This is not a strong assumption: in July 2015,
some miners generated invalid blocks, and some clients
did not detect these blocks as invalid, a situation which
matches the problem identified above [9].

The same attack works for invalidating new transac-
tions. By creating a collision or second pre-image, the
attacker can create and transmit two conflicting transac-
tions to split the network and double-spend. This can
be used to fool a vendor: one transaction — transmitted
to just the vendor — appears to be transferring money to
him, while the other transaction — transmitted to the rest
of the network — contains the collision which transfers
funds elsewhere. Pre-images are again not relevant to an
attacker, as they always accompany the hashed value.

4.3.3 Main Hash Usage in Signatures

In Bitcoin, signatures are over messages hashed with
Hy;. Therefore, a second pre-image attack or a collision
on Hys can be used to destroy and possibly steal coins:
an adversary can ask for a signature on an innocuous
transaction (e.g., pay 1 satoshi to address X), but transmit
a malicious one instead (e.g., pay 100 BTC to address)

since there are enough bytes that the adversary controls
to guarantee success with high probability.

Signatures of the main hash are also used by Bitcoin
developers to transmit alerts. A pre-image attack again
does not give useful information to the adversary, as the
pre-image always accompanies the signature. Collisions
are also not useful, as the adversary cannot sign them.
However, a second pre-image allows the adversary to
reuse an old signature on a new alert.

4.4 Address Hash

The address hash is used in two contexts. First in the Pay-
to-Public-Key-Hash (P2PKH): an address is essentially
y = Hu(p) = RIPEMDI160 (SHA256 (p)) where p is the
public key (together with a checksum not used in scripts
[3]). Payments to addresses only use the hashed value y,
but transactions from an address require the full public
key p and the signature on the transaction.

The second use is in Pay-to-Script-Hash (P2SH) scripts.
A P2SH is y = Hy(s) where s is a standard script, typically
a multi-signature transaction. Payments to a P2SH script
do not reveal the pre-image, but transactions spending the
coins require it and the signatures of the corresponding
parties. Because the only difference between a P2PKH
and a P2SH in this context is the number of signatures
required, we discuss them jointly here.

Pre-image For previously spent outputs, or for ad-
dresses that are being reused, an address hash is already
accompanied by its pre-image. A pre-image thus can only
reveal the public key(s) for unspent outputs. This has
minimal consequences since public keys are not tied to
real identities, and hashes are not used for privacy.

Second pre-image An adversary can either attempt
to change an existing transaction (in the blockchain, or in
the unconfirmed pool), or he can attempt to make his own
transactions. In either case, a second pre-image gives the
adversary access to a different public key with the same
hash. However, because the adversary does not control
the corresponding private key of the second pre-image,
he cannot use this to his advantage. This is because pre-
images are only revealed in combination with signatures.

Collision Collisions are similar, though in this case
both public keys are under the adversary’s control, and
again the adversary does not have access to the private
keys. In both scenarios, there is a question of non-
repudiation external to the protocol itself: by presenting
a second pre-image of a key used to sign a transaction, a
user/adversary can claim that his coins were stolen.

Breakage Effect

Selective forgery Steal coins from public key
Integrity break Claim payment not received
Repudiation -

Table 2: Effects of a break in the signature scheme.

S Broken Signature Primitives

In this section we describe the use of digital signatures
in Bitcoin, and analyze how a break in their unforgeabil-
ity, integrity, or non-repudiation impacts Bitcoin. We
summarize our results in Table 2.

5.1 Digital Signatures in Bitcoin

The digital signature scheme in Bitcoin is the Elliptic
Curve Digital Signature Algorithm (ECDSA) with the
secp256k1 [49] parameters and it is used to sign the
main hash Hy, of transactions. More concretely, a trans-
action with i inputs and o outputs typically requires a
different signature for each of the i inputs. These signa-
tures can be over different parts of the message based
on the hashtype (see [44]). This can lead to transaction
malleability attacks [16], as the same transaction can be
encoded multiple ways without invalidating the signature.

The signature scheme is also used for alerts by core
developers (with hard-coded public keys) to inform
users/clients of critical information, such as a need to
upgrade the software due to bugs. The signature is over
the main hash Hj, of the entire alert structure.

5.2 Modeling Signature Breakage Variants

The security of digital signature schemes is usually dis-
cussed in terms of three properties, which can assume
different interpretations, but which we define as follows:

1. Unforgeability No-one can sign a message m that

validates against a public key p without access to the
secret key s.
2. Integrity A valid signature {m}; does not validate
against any m’ # m.
3. Non-repudiation A valid signature {m}; does not
validate against any public key p’ # p.
where there is an implicit “except with negligible proba-
bility”, since the messages are hashed.

These properties are linked and a breakage in one usu-
ally implies a breakage in the others. In addition, they
are often discussed in a much more abstract way: non-
repudiation refers to the property that the signature proves
to all parties the origin of the signature, but in this case
we introduce it in a way that is more akin to Duplicate
Signature Key Selection (DSKS) attacks [12].

5.3 Broken Signature Scheme Effects

We now analyze a break in each of these properties sep-
arately, starting with the last two, as neither of them can
lead to an attack on their own.

Integrity In order for a break in the integrity of the
signature scheme to be useful in Bitcoin, a signature of
Hys(m) must also be valid for Hys(m'). As a result, an ad-
versary must either be able to produce m,m’ valid within
Bitcoin such that a signature of Hy(m) is also valid for
Hy (m') or given Hys(m), the adversary must produce m’
with the same effect. Though transactions are already
malleable [16], this is not due to ECDSA, but because
of the way Bitcoin uses signatures (see [44]). This mal-
leability has been used to cause the issuer of a transaction
to think that his payment was not confirmed. Otherwise,
both cases involve the main hash in a non-trivial way, so
we discuss this case in Section 6.

Non-repudiation For non-repudiation, we consider
two types of breakages: either given a message m, one
returns two public keys p, p’ such that the signature of
m under p validates under p’ as well, or, given a mes-
sage m and a public key p, one can find p’ to the same
end. For regular transactions, even if this is the case,
the address hashes of the two public keys must match:
Hy(p) = Ha(p') for the scripts to go through, so on its
own this is not sufficient. For the alert mechanism, how-
ever, if given a message m and a public key p, one can
find p’ (with its secret key s') such that {m}¢ validates
against p, then an adversary can send fake alert messages.
Though these do not alter the behavior in the default client
(the “safe mode” that disabled RPC calls is not present
after version 0.3.20), they can have an external impact on
Bitcoin, e.g., with users manually shutting down clients.

Unforgeability When it comes to unforgeability, we
can distinguish between various types of breaks [22]:

1. Total break Recover the private key.

2. Universal forgery Forge signatures for all messages.

3. Selective forgery Forge signature on a message of

the adversary’s choice.
4. Existential forgery Produce a valid signature that is
not already known to the adversary.

Because the message to be signed must be the hash of a
syntactically valid transaction, an existential forgery is not
sufficient, i.e., the probability that it corresponds to a valid
message both syntactically and semantically is negligible.
Selective forgery on the other hand is sufficient, because
it can be used to drain a victim’s wallets. From this
perspective, the effect of selective forgery and a total
break are the same. However, as we discuss later, the type
of breakage influences how to upgrade to a new system.

It is worth mentioning that an adversary does not neces-
sarily have access to a user’s public key, since addresses
that have not been reused are protected by the address

Signature Property

Hash Property Selective forgery Integrity break Repudiation
Address Hash (H,)
Collision Repudiate transaction - Change existing payment"

Second pre-image
Pre-image
Bounded pre-image

Main Hash (Hy,)
Collision
Second pre-image
Pre-image

Bounded pre-image

Steal all coins
Steal all coins
All of the above

Steal coins
Steal coins

Steal coins

- Change existing payment

- Change existing payment

Steal coins’ -
Double spend” -

All of the above -

T Achieving this requires a slight modification of the definitions. See text for details.

Table 3: The effects of a multi-breakage: broken signature scheme in combination with a break in Hy or Hy,.

hash H4. As a result, in the case of a break in the signa-
ture scheme, the public key becomes the secret itself, as
revealing it can be used to forge signatures!

Finally, note that bad randomness can cause a total
break: using the same random number in two different
signatures reveals the private key. This weakness was
present in some early Bitcoin implementations [48].

6 Multi-Breakage

In this section we analyze how combinations of break-
ages in different primitives can impact Bitcoin. As shown
in the preceding sections, the ways in which a single
primitive can break are complementary: having the same
primitive break in two different ways gives the attacker
the sum of the individual breakages but no more. More-
over, because H4 and H), are not used together, we only
consider a break in the signature algorithm in combination
with a break in one of the two hashes. The extra power
of our oracle is not needed, so we discuss breakage in
terms of the three traditional properties. The results are
summarized in Table 3.

6.1 Address Hash and Signature Scheme

Signature Forgery Combining a selective forgery with
a first or second pre-image break of the address hash can
be used to steal all coins that are unspent.

Generating two public keys p, p’ with Hx(p) = Ha(p')
(collision) whose signatures the adversary can forge does
not have a direct impact, since the adversary controls
both addresses. However, it appears as if two different

10

users are attempting to use the same coin, thus raising a
question of repudiation, which we discuss in Section 7.

Signature Integrity As the messages signed for
alerts or transactions do not involve H,, this combina-
tion does not increase the adversary’s power.

Signature Repudiation A pre-image attack on Hy
is not useful as the public key is already known.

For a second pre-image, assume that given a message
m (the hash of a transaction) and a public key p (not
under the adversary’s control), an oracle returns p’ such
that Hy (p) = Ha(p') and the signature of m under p also
validates against p’. Since the same signature validates
for both keys, an adversary can replace p by p’ in the
unlocking script. Though this does not give the adversary
immediate monetary gain, a transaction in the blockchain
has been partially replaced.

For collisions, assume that given a message m, an ora-
cle returns two public keys p, p’ such that Ha (p) = Ha(p')
and the signature of m under p validates under p’. If the
adversary does not have access to the private keys, he can-
not sign the transaction. Otherwise, the effect is identical
to the second pre-image case, where the adversary can
replace part of a transaction in the blockchain.

6.2 Main Hash and Signature Scheme

Signature Forgery As explained in Section 4.3, none
of the potential attacks using the hash Hy, required a break
in the signature scheme. The partial exceptions were min-
ing under a pre-image break, alerts with collisions, and
transactions with second pre-image or collision breaks.
We discuss each possibility below.

For mining, a pre-image attack is useful when working
backwards from a fixed target to get a pre-image for the
Merkle root, and turn it into a tree of transactions. The
problem identified in Section 4.3 was that there is only
negligible probability that the transactions refer to valid,
unspent outputs, so a forgery does not solve this issue.

For alerts, collisions require forgery. Though the effect
of signing and transmitting two different alert messages
with the same hash is unclear, it could potentially be used
to cause external effects to Bitcoin by making the different
messages ask the users to take different actions.

Finally, for transactions, collisions and second pre-
images on their own can be used to destroy coins, or in
appropriate circumstances steal coins. With a forgery, an
adversary is guaranteed that he would be able to steal
coins no matter what address they went to, as long as it is
not protected by the address hash.

Signature Integrity A collision or a second pre-
image attack trivially breaks the integrity of the scheme,
so we modify the definitions slightly to consider a joint
break in the two algorithms.

A collision integrity oracle given a public key p pro-
duces m,m’ such that the signature of Hys(m) is also valid
for Hy(m'). The adversary can ask for a signature on an
innocent transaction, but transmit the malicious one with
the still valid signature. Unlike in the regular collision
case, the two hashes Hy(m) and Hy (m') are different.
Hence, the adversary cannot just replace the transaction
in the block, but he can opt never to transmit the innocent
one instead.

A second pre-image integrity oracle given a public key
p and a message m produces m’ such that the signature of
Hy(m) is also valid for Hy (m'). This case also resembles
the break on just Hy,, but, again, because the hashes are
not equal, the adversary cannot simply replace an existing
transaction, unless it has not yet been confirmed in a block.
This can split the network and destroy coins.

Signature Repudiation The non-repudiation prop-
erty of the signature scheme necessarily involves a break
of Hy, as was explained in Section 5.3. This combination
therefore does not increase the adversary’s power.

7 Current Bitcoin Implementation

Our analysis in the previous sections reveals properties of
the design of the protocol, regardless of which concrete
cryptographic building blocks are used. In this section we
revisit the current Bitcoin implementation, and in particu-
lar its choice of primitives and contingency plans, using
the observations from the previous sections.

11

Breakage Effect
SHA256
Collisions Steal coins
Second pre-image Double spend
Pre-image Complete failure
Bounded pre-image All of the above
RIPEMD160
Any of the above Repudiate payments
ECDSA
Selective forgery Steal coins, Send fake alerts
Integrity break Claim payment not received
Repudiation Send fake alerts

Table 4: Effects of concrete primitive breakage on the
current version of Bitcoin.

7.1 Current Cryptographic Primitives

In the current implementation of Bitcoin, Hy(x) is in-
stantiated as RIPEMD160(SHA256(x)), and Hy(x) is
implemented as SHA256(SHA256(x)). If we translate
our design-level analysis from the previous sections into
observations on the current primitives, we obtain Table 4.

Specifically, because there are no interesting breaks for
Hy, a break in RIPEMD160 is not major cause for con-
cern. Moreover, by our analysis in Section 4.2.1, and be-
cause Hys only uses SHA256, an attack against SHA256
is equivalent to an attack against Hy,.

7.2 Existing Contingency Plans

A breakage of the cryptographic primitives has interested
the community from the early days of Bitcoin. Initial
recommendations by Satoshi in informal forum discus-
sions [42] [41] eventually evolved into a “wiki” page
which describes contingency plans for “catastrophic fail-
ure[s]”, including breaks in SHA256 and ECDSA [11].
In this subsection, we present the current high-level plans
before we highlight potential pitfalls with the proposed
transition mechanisms in Section 7.3. The exact wording
of the plans is in Appendix C.

When it comes to the hash functions, the wiki only
contains details about a “severe, 0-day failure of SHA-
256” [11]. The plan in that case is to switch to a new
hashing algorithm, hardcode known public keys with un-
spent outputs, and hash the old blockchain into a hash
tree (under the new hash function), with at least the root
being hardcoded into the client.

In the case where “an attacker can sign for a public
key that he does not own the private key” [11], the plan
depends on whether the attacker can recover the private

key and whether there is a stronger algorithm that can
use the same key pair. If the attacker cannot recover the
private key, and there is a drop-in replacement, the plan is
to just switch over to a new algorithm. Otherwise, the new
version of Bitcoin “should automatically send old trans-
actions somewhere else using the new algorithm” [11].
There are some commonalities in the two contingency
plans. First, both indicate that alerts may be compromised,
and point out that notifying users is key. Second, break-
age is always defined in terms of an adversary that can
defeat the algorithm with “a few days of work”. Finally,
both plans draw focus on the OP_CHECKSIG operation:
preventing people from stealing coins is crucial.

7.3 Potential Migration Pitfalls

The contingency plans suggest that “code for all of this
should be prepared” [11], but no such mechanism cur-
rently exists. Given that a sudden breakage is unlikely,
this does not cause immediate concern. However, the
size of the codebase suggests that this will not be an easy
task, especially since any changes will not be backwards
compatible, thus necessitating a hard fork.

Broken RIPEMD160 No plans are in place should
RIPEMDI160 be broken. As was shown in Section 4.4,
this also does not pose a problem, since a break on the
address hash does not lead to serious attacks.

Broken SHA256 For a broken SHA256, meaningful
collisions or pre-images suggest that new transactions
should not be accepted. However, as we saw in Sec-
tion 4.3, unless a broken hash results in majority power,
an adversary cannot alter historical blocks or transactions.
The same can be said for hard-coding known public keys
with unspent outputs: even if the adversary gets a differ-
ent key that hashes to the same value, deriving the private
key should be infeasible if the signature scheme is still
strong. The plans for SHA256 thus seem to be more pru-
dent than necessary, but since they necessitate a hard fork,
rehashing the entire blockchain to add new checkpoints
or hardcoding public keys can only increase the security
of the transition period, but perhaps at a cost of efficiency.

Broken ECDSA For a broken ECDSA, a transition is
indeed trivial if the same public key can be kept because
the adversary cannot recover the private key. If this is
not the case, however, “automatically send[ing] all old
transactions somewhere else using the new algorithm” is
too vague, since users will need to manually switch over
to a new key pair. We will discuss two scenarios for an
attacker that can recover private keys: one where the break
has already happened, and one where the break has not
yet happened, so there is some transitional period.

Imminent ECDSA Break If there is some transi-
tion period, developers could force all output scripts to

12

use new-type addresses, so that users could migrate their
funds from insecure addresses to secure ones. After a
certain period of time, transactions with input scripts us-
ing old-style addresses could be rejected, or their security
would not be guaranteed. If this period is not long enough,
coins may be permanently lost, or stolen if the old-type
transactions are still allowed. This is akin to having to a
bank retiring old bank notes or a country switching to a
new currency (e.g., the Euro), but it shatters the expecta-
tion some users might have that their coins will always be
accessible, even if they don’t access them frequently.

Existing ECDSA Break If the vulnerability is sud-
den and it reveals the private key, then addresses that
have been reused will be entirely unprotected. This is
because the public key will have already been revealed
in the blockchain, and there is no internal mechanism ty-
ing addresses to owners. Any mechanism to protect such
addresses would have to be out-of-band, for instance for
well-known addresses that can verify their identity (e.g.,
pools, online wallets, etc.), so that their new keys can be
hard-coded into the new client.

Public keys which are protected by the address hash
are still safe. In the presence of a trusted central authority,
migrating them to a new key would be easy: one needs
simply to reveal the key to the trusted authority in order
to hardcode it in the new client. However, even if the
core developers are trusted, such a solution goes against
Bitcoin’s decentralized philosophy, and also requires that
the public key itself (and by extension the broken private
key) is revealed to a third party. It would be interesting to
see alternative proposals for this problem, perhaps using
commitment schemes or Zero-Knowledge Protocols for
hash functions [27].

Overall concerns The migration plans for both the
hash and the signature scheme do not clearly distinguish
the approaches for a sudden breakage versus a grad-
ual transition, and thus do not fully cover all scenarios.
Specifically, in the SHA256 case, they suggest more than
is necessary, while in the ECDSA case they do not go far
enough: interpreting the plans suggests that either some
degree of centralization is necessary, or that some coins
will inevitably be lost or stolen.

In general, the plans also do not address when to freeze
the blockchain, and whether to roll back transactions in
case of a severe 0-day vulnerability. Moreover, if there is
a transition period, with old-type transactions using the
soon-to-be-broken primitives, and new-type transactions
using the stronger primitives, the upgrade plan and the
potential for misuse is not clear.

Finally, Bitcoin’s defense-in-depth should be improved.
For example, the primitives used for hash functions should
be combined in a way that prevents single points of failure
(see Section 8). In addition, adding a minimum number
of transactions in a block and/or a maximum nonce size

in coinbase transactions will decrease the probability of
an attacker’s success and increase the number of calls
required to the oracle.

8 Related Work

In spite of the existence of the contingency plans [11]
and multiple forum posts pondering the future of Bitcoin
should SHA256 break, no other systematic analysis ex-
ists. We therefore consider papers which have focused on
Bitcoin security in general, and also explore related work
focusing on the security of the primitives themselves.

Bitcoin Despite Bitcoin’s origins [39] in a non-
research environment, Bitcoin’s success has sparked mul-
tiple papers [13] [50] [20] that have identified or formal-
ized properties such as stability and anonymity in Bitcoin
and other cryptocurrencies. Anonymity and privacy issues
have also been explored extensively [47] [2] [46] [8].

Research on adversarial miners is also popular. There
are infinitely many Nash equilibria for mining strate-
gies [34], and some strategies allow miners control-
ling o < 50% of the power to gain disproportionate re-
wards [19] [15] [18]. Other research has demonstrated
that double spending attacks are practical against Bitcoin
fast payment scenarios [29] [30], with some further focus
on causing a network split [21] or isolating victims from
other peers in the P2P nework [25].

[5] focuses on the economics of Bitcoin, including
the effect of a history revision, which is discussed in
the contingency plans [11]. [16] investigated transaction
malleability attacks which were prevalent in 2014.

Cryptographic Primitives For combining
hashes, [28] shows that finding simultaneous colli-
sions for multiple hash functions is not much harder
than for individual functions. [26] shows that even when
the underlying compression functions behave randomly
but collisions are easy to generate, finding collisions in
the concatenated hash £ (x)||h2(x) and the XOR hash
hy (x) @ hy(x) requires 2"/? queries. However, when the
hash functions use the Merkle-Damgard construction,
there is a generic pre-image attack against the XOR hash
with complexity O (25"/°) [35].

[14] showed that Merkle-Damgard hashes do not be-
have as random oracles, and neither does & (h(x)) [17].
Merkle-Damgérd hash functions also behave poorly
against pre-image attacks, with the concrete example of
finding second pre-images of length 20 for RIPEMD160
in 2106 « 2160 time [32]. If an adversary can further find
many collisions on a Merkle-Damgard construction, he
can also find pre-images that start with a given prefix
(Chosen Target Forced Prefix) [31]. This notion was ex-
tended in [1] into Chosen Target Forced Midfix attacks
and it was proven that at least 22n/3 / L'/3 queries to the

13

compression function are needed where L is the maximum
length of the pre-image.

Attacks against RIPEMD160 and SHA256 only work
for a reduced number of rounds. RIPEMD160 pre-images
can be computed for 30/80 steps with a complexity of
2155 [43], while semi-free-start collisions can be found
for 42 steps [37]. For SHA256, collisions exist for 31/64
steps with 2673 operations [36], while pre-images can be
found for 45 steps and 22°5 time [33].

For the digital signature scheme, [12] showed that cer-
tain ECDSA parameters can lead to Duplicate Signature
Key Selection, where an adversary can create a different
key P’ that validates against a correct signature under
a key P, which is what we defined as repudiation. [51]
described a side-channel attack against the OpenSSL im-
plementation of ECDSA that can recover the private key
by snooping on a single signing process, an attack which
was also practically demonstrated against Bitcoin [6]. Fi-
nally, [7] showed how hash collisions break the security
of protocols like TLS, IPSec, and SSH.

9 Conclusions

We have presented the first systematic analysis of the ef-
fect of broken primitives on Bitcoin. Our analysis reveals
that some breakages cause serious problems for Bitcoin,
whereas others seem to be inconsequential.

The main vectors of attack on Bitcoin involve collisions
on the main hash or attacking the signature scheme, which
directly enable coin stealing. In contrast, a break of the
address hash has minimal impact, as addresses do not
meaningfully protect the privacy of a user.

Our analysis have also uncovered more subtle attacks.
For example, the existence of another public key with
the same hash as an address in the blockchain enables
parties to claim that they did not make a payment. Such
attacks show that the consequences of an attack on a
cryptographic primitive can well have social implications
rather than technical ones. We leave the economic impact
of such attacks as future work.

We have uncovered a worrying lack of defense-in-depth
in Bitcoin. In most cases, the failure of a single property
in one cryptographic primitive is as bad as multiple fail-
ures in several primitives at once. For future versions of
Bitcoin, we recommend including various redundancies
such as properly combined hash functions.

Bitcoin’s migration plans are currently under-specified,
and offer at best an incomplete solution if primitives get
broken. We offer some initial guidelines for making the
cryptocurrency more robust, but there is still a substantial
amount of future work to be undertaken.

References

[1]

[2

—

[3

[t}

[7

—

[8

[t}

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

ANDREEVA, E., AND MENNINK, B. Provable chosen-target-
forced-midfix preimage resistance. In International Conference
on Selected Areas in Cryptography (SAC) (2011).

ANDROULAKI, E., KARAME, G. O., ROESCHLIN, M.,
SCHERER, T., AND CAPKUN, S. Evaluating user privacy in Bit-
coin. In Financial Cryptography and Data Security (FC) (2013).

ANTONOPOULOS, A. M. Mastering Bitcoin: Unlocking Digital
Crypto-Currencies, 1st ed. O’Reilly Media, Inc., 2014.

AURORA, V. Lifetimes of cryptographic hash functions. http:
//valerieaurora.org/hash.html, November 17 2012. Ac-
cessed: 2016-02-11.

BARBER, S., BOYEN, X., SHI, E., AND UzUN, E. Bitter to
better — how to make Bitcoin a better currency. In Financial
Cryptography and Data Security (FC) (2012).

BENGER, N., PoL, J., SMART, N. P., AND YAROM, Y. “ooh
aah... just a little bit” : A small amount of side channel can go a
long way. In Cryptographic Hardware and Embedded Systems
(CHES) (2014).

BHARGAVAN, K., AND LEURENT, G. Transcript collision attacks:
Breaking authentication in TLS, IKE, and SSH. In Annual Net-
work and Distributed System Security Symposium (NDSS) (2016).

BIRYUKOV, A., KHOVRATOVICH, D., AND PUSTOGAROV, I.
Deanonymisation of clients in Bitcoin P2P network. In ACM
Conference on Computer and Communications Security (CCS)
(2014).

BITCOIN ALERT. Some miners generating invalid blocks. https:
//bitcoin.org/en/alert/2015-07-04-spv-mining, July
4 2015. Accessed: 2016-02-11.

BITCOIN WIKI. Protocol rules. https://en.bitcoin.it/
wiki/Protocol_rules, March 11, 2014. Accessed: 2016-02-
11.

BITCOIN WIKI. Contingency plans. https://en.bitcoin.it/
wiki/Contingency_plans, May 15, 2015. Accessed: 2016-02-
11.

BLAKE-WILSON, S., AND MENEZES, A. Unknown key-share
attacks on the station-to-station (STS) protocol. In International
Workshop on Practice and Theory in Public Key Cryptography
(PKC) (1999).

BONNEAU, J., MILLER, A., CLARK, J., NARAYANAN, A.,
KROLL, J., AND FELTEN, E. SoK: Research perspectives and
challenges for Bitcoin and cryptocurrencies. In IEEE Symposium
on Security and Privacy (SP) (2015).

CORON, J.-S., DobIs, Y., MALINAUD, C., AND PUNIYA, P.
Merkle-Damgard revisited: How to construct a hash function. In
Annual International Cryptology Conference (CRYPTO) (2005).

Courtols, N. T., AND BAHACK, L. On subversive miner
strategies and block withholding attack in Bitcoin digital cur-
rency. ArXiv e-prints 1402.1718, 2014. http://arxiv.org/
abs/1402.1718.

DECKER, C., AND WATTENHOFER, R. Bitcoin transaction mal-
leability and MtGox. In European Symposium on Research in
Computer Security (ESORICS) (2014).

Dobis, Y., RISTENPART, T., STEINBERGER, J., AND TESSARO,
S. To hash or not to hash again?(in) differentiability results for
H? and HMAC. In Annual International Cryptology Conference
(CRYPTO) (2012).

EYAL, I. The miner’s dilemma. In IEEE Symposium on Security
and Privacy (SP) (2015).

14

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

EYAL, I., AND SIRER, E. G. Majority is not enough: Bitcoin min-
ing is vulnerable. In Financial Cryptography and Data Security
(FC) (2014).

GARAY, J., KIAYIAS, A., AND LEONARDOS, N. The Bitcoin
backbone protocol: Analysis and applications. In Annual Inter-
national Conference on the Theory and Applications of Crypto-
graphic Techniques (EUROCRYPT) (2015).

GERVAIS, A., RITZDORF, H., KARAME, G. O., AND CAPKUN,
S. Tampering with the delivery of blocks and transactions in
Bitcoin. In ACM Conference on Computer and Communications
Security (CCS) (2015).

GOLDWASSER, S., MICALI S., AND RIVEST, R. L. A digital
signature scheme secure against adaptive chosen-message attacks.
SIAM Journal on Computing (SICOMP) (1988).

GROVER, L. K. A fast quantum mechanical algorithm for
database search. In Annual ACM Symposium on Theory of Com-
puting (STOC) (1996).

HEARN, M. Why is Bitcoin forking? A tale of dif-
fering visions. https://medium.com/faith-and-future/
why-is-bitcoin-forking-d647312d22c1, August 15, 2015.
Accessed: 2016-02-11.

HEILMAN, E., KENDLER, A., ZOHAR, A., AND GOLDBERG,
S. Eclipse attacks on Bitcoin’s peer-to-peer network. In USENIX
Security Symposium (USENIX Security) (2015).

HocH, J. J., AND SHAMIR, A. On the strength of the concate-
nated hash combiner when all the hash functions are weak. In
International Colloquium on Automata, Languages and Program-
ming (ICALP) (2008).

JAWUREK, M., KERSCHBAUM, F., AND ORLANDI, C. Zero-
knowledge using garbled circuits: How to prove non-algebraic
statements efficiently. In ACM Conference on Computer and
Communications Security (CCS) (2013).

Joux, A. Multicollisions in iterated hash functions. application
to cascaded constructions. In Annual International Cryptology
Conference (CRYPTO) (2004).

KARAME, G. O., ANDROULAKI, E., AND CAPKUN, S. Double-
spending fast payments in Bitcoin. In ACM Conference on Com-
puter and Communications Security (CCS) (2012).

KARAME, G. O., ANDROULAKI, E., ROESCHLIN, M., GERVAIS,
A., AND CAPKUN, S. Misbehavior in bitcoin: A study of double-
spending and accountability. In ACM Transactions on Information
and System Security (TISSEC) (2015).

KELSEY, J., AND KOHNO, T. Herding hash functions and the
nostradamus attack. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques (EURO-
CRYPT) (2006).

KELSEY, J., AND SCHNEIER, B. Second preimages on n-bit hash
functions for much less than 2" work. In Annual International
Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT) (2005).

KHOVRATOVICH, D., RECHBERGER, C., AND SAVELIEVA, A.
Bicliques for preimages: Attacks on Skein-512 and the SHA-2
family. In International Workshop on Fast Software Encryption
(FSE) (2012).

KROLL, J. A., DAVEY, I. C., AND FELTEN, E. W. The eco-
nomics of Bitcoin mining, or Bitcoin in the presence of adver-
saries. In Workshop on the Economics of Information Security
(WEIS) (2013).

LEURENT, G., AND WANG, L. The sum can be weaker than
each part. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques (EUROCRYPT) (2015).

http://valerieaurora.org/hash.html
http://valerieaurora.org/hash.html
https://bitcoin.org/en/alert/2015-07-04-spv-mining
https://bitcoin.org/en/alert/2015-07-04-spv-mining
https://en.bitcoin.it/wiki/Protocol_rules
https://en.bitcoin.it/wiki/Protocol_rules
https://en.bitcoin.it/wiki/Contingency_plans
https://en.bitcoin.it/wiki/Contingency_plans
http://arxiv.org/abs/1402.1718
http://arxiv.org/abs/1402.1718
https://medium.com/faith-and-future/why-is-bitcoin-forking-d647312d22c1
https://medium.com/faith-and-future/why-is-bitcoin-forking-d647312d22c1

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

A

MENDEL, F., NAD, T., AND SCHLAFFER, M. Improving lo-
cal collisions: New attacks on reduced SHA-256. In Annual
International Conference on the Theory and Applications of Cryp-
tographic Techniques (EUROCRYPT) (2013).

MENDEL, F., PEYRIN, T., SCHLAFFER, M., WANG, L., AND
Wu, S. Improved cryptanalysis of reduced RIPEMD-160. In Inter-
national Conference on the Theory and Application of Cryptology
and Information Security (ASIACRYPT) (2013).

MERKLE, R. C. A digital signature based on a conventional en-
cryption function. In Annual International Cryptology Conference
(CRYPTO) (1987).

NAKAMOTO, S. Bitcoin: A peer-to-peer electronic cash system,
http://bitcoin.org/bitcoin.pdf, 2008.

NAKAMOTO, S. Bitcoin source code v0.1.0: Util.h.
https://github.com/trottier/original-bitcoin/
blob/4184ab26345d19e87045ce7d9291e60e7d36e096/
src/util.h, 2009. Accessed: 2016-02-11.

NAKAMOTO, S. Dealing with SHA-256 collisions (msg
#6). https://bitcointalk.org/index.php?topic=191.
msg1585#msg1585, June 14 2010. Accessed: 2016-02-11.

NAKAMOTO, S. Hash() function not secure (msg #28).
https://bitcointalk.org/index.php?topic=360.
msg3520#msg3520, July 16 2010. Accessed: 2016-02-11.

OHTAHARA, C., SASAKI, Y., AND SHIMOYAMA, T. Preimage
attacks on step-reduced RIPEMD-128 and RIPEMD-160. In In-
ternational Conference on Information Security and Cryptology
(Inscrypt) (2010).

OKUPSKI, K. Bitcoin developer reference working paper. http:
//enetium.com/resources/Bitcoin.pdf, 2015. Accessed:
2016-02-11.

PROOS, J., AND ZALKA, C. Shor’s discrete logarithm quantum al-
gorithm for elliptic curves. Quantum Information & Computation
(2003).

REID, F., AND HARRIGAN, M. An analysis of anonymity in
the Bitcoin system. In Security and Privacy in Social Networks
(2013).

RON, D., AND SHAMIR, A. Quantitative analysis of the full
Bitcoin transaction graph. In Financial Cryptography and Data
Security (FC) (2013).

SCHNEIDER, N. Recovering Bitcoin private keys using weak
signatures from the blockchain. http://www.nilsschneider.
net/2013/01/28/recovering-bitcoin-private-keys.
html, January 28 2013. Accessed: 2016-02-11.

STANDARDS FOR EFFICIENT CRYPTOGRAPHY. Sec 2: Rec-
ommended elliptic curve domain parameters version 2.0. http:
//wwu.secg.org/sec2-v2.pdf, 2010.

TSCHORSCH, F., AND SCHEUERMANN, B. Bitcoin and beyond:
A technical survey on decentralized digital currencies. Cryptology
ePrint Archive, Report 2015/464, 2015. https://eprint.iacr.
org/2015/464.

YAROM, Y., AND BENGER, N. Recovering OpenSSL ECDSA
nonces using the FLUSH+RELOAD cache side-channel attack.
Cryptology ePrint Archive, Report 2014/140, 2014. https://
eprint.iacr.org/2014/140.

Transaction Verification

Bellow is the full procedure for verifying a transaction for
inclusion in the blockchain as of January 2016 [10].

1.

Check syntactic correctness

et

10.

11.

12.

13.

14.

15.

16.

17.
18.
19.
20.

B

Make sure neither in or out lists are empty

Size in bytes < MAX_BLOCK_SIZE

Each output value, as well as the total, must be in
legal money range

. Make sure none of the inputs have hash=0, n=-1

(coinbase transactions)

. Check that nLockTime <= INT_MAX, size in bytes

>= 100, and sig opcount <=2

. Reject “nonstandard” transactions: scriptSig doing

anything other than pushing numbers on the stack,
or scriptPubkey not matching the two usual forms

. Reject if we already have matching tx in the pool, or

in a block in the main branch

For each input, if the referenced output exists in any
other tx in the pool, reject this transaction.

For each input, look in the main branch and the trans-
action pool to find the referenced output transaction.
If the output transaction is missing for any input, this
will be an orphan transaction. Add to the orphan
transactions, if a matching transaction is not in there
already.

For each input, if the referenced output transaction
is coinbase (i.e., only 1 input, with hash=0, n=-1), it
must have at least COINBASE_MATURITY (100)
confirmations; else reject this transaction

For each input, if the referenced output does not exist
(e.g., never existed or has already been spent), reject
this transaction

Using the referenced output transactions to get input
values, check that each input value, as well as the
sum, are in legal money range

Reject if the sum of input values < sum of output
values

Reject if transaction fee (defined as sum of input
values minus sum of output values) would be too
low to get into an empty block

Verify the scriptPubKey accepts for each input; reject
if any are bad

Add to transaction pool

“Add to wallet if mine”

Relay transaction to peers

For each orphan transaction that uses this one as one
of its inputs, run all these steps (including this one)
recursively on that orphan

Block Verification

Bellow is the full procedure for verifying a block in the
blockchain as of January 2016 [10]. The procedure is
split into logical chunks. Verification always starts with
the main procedure.

http://bitcoin.org/bitcoin.pdf
https://github.com/trottier/original-bitcoin/blob/4184ab26345d19e87045ce7d9291e60e7d36e096/src/util.h
https://github.com/trottier/original-bitcoin/blob/4184ab26345d19e87045ce7d9291e60e7d36e096/src/util.h
https://github.com/trottier/original-bitcoin/blob/4184ab26345d19e87045ce7d9291e60e7d36e096/src/util.h
https://bitcointalk.org/index.php?topic=191.msg1585#msg1585
https://bitcointalk.org/index.php?topic=191.msg1585#msg1585
https://bitcointalk.org/index.php?topic=360.msg3520#msg3520
https://bitcointalk.org/index.php?topic=360.msg3520#msg3520
http://enetium.com/resources/Bitcoin.pdf
http://enetium.com/resources/Bitcoin.pdf
http://www.nilsschneider.net/2013/01/28/recovering-bitcoin-private-keys.html
http://www.nilsschneider.net/2013/01/28/recovering-bitcoin-private-keys.html
http://www.nilsschneider.net/2013/01/28/recovering-bitcoin-private-keys.html
http://www.secg.org/sec2-v2.pdf
http://www.secg.org/sec2-v2.pdf
https://eprint.iacr.org/2015/464
https://eprint.iacr.org/2015/464
https://eprint.iacr.org/2014/140
https://eprint.iacr.org/2014/140

B.1 Main procedure

—_—

> w

10.
11.

12.
13.

14.

15.

16.

Check syntactic correctness

Reject if duplicate of block we have in any of the
three categories

Transaction list must be non-empty

Block hash must satisfy claimed nBits proof of work
Block timestamp must not be more than two hours
in the future

First transaction must be coinbase (i.e., only 1 input,
with hash=0, n=-1), the rest must not be

For each transaction, apply “tx” checks 2-4

For the coinbase (first) transaction, scriptSig length
must be 2-100

Reject if sum of transaction sig opcounts >
MAX_BLOCK_SIGOPS

Verify Merkle hash

Check if prev block (matching prev hash) is in main
branch or side branches. If not, add this to orphan
blocks, then query peer we got this from for Ist
missing orphan block in prev chain; done with block
Check that nBits value matches the difficulty rules
Reject if timestamp is the median time of the last 11
blocks or before

For certain old blocks (i.e., on initial block down-
load) check that hash matches known values

Add block into the tree. There are three cases:

(a) block further extends the main branch; (see
Appendix B.2)

(b) block extends a side branch but does not add
enough difficulty to make it become the new
main branch; (see Appendix B.3)

(c) block extends a side branch and makes it the
new main branch. (see Appendix B.4)

For each orphan block for which this block is its prev,
run all these steps (including this one) recursively on
that orphan

B.2 Case 1: Extend main branch

For case 1, adding to main branch:

L.

For all but the coinbase transaction, apply the fol-
lowing:

(a) For each input, look in the main branch to find
the referenced output transaction. Reject if the
output transaction is missing for any input.

(b) For each input, if we are using the nth output
of the earlier transaction, but it has fewer than
n+1 outputs, reject.

(c) For each input, if the referenced output trans-
action is coinbase (i.e., only 1 input, with
hash=0, n=-1), it must have at least COIN-
BASE_MATURITY (100) confirmations; else
reject.

16

bl

2.

3.

(d) Verify crypto signatures for each input; reject
if any are bad
(e) For each input, if the referenced output has
already been spent by a transaction in the main
branch, reject
(f) Using the referenced output transactions to get
input values, check that each input value, as
well as the sum, are in legal money range
(g) Reject if the sum of input values < sum of out-
put values
Reject if coinbase value > sum of block creation fee
and transaction fees
(If we have not rejected):
For each transaction, “Add to wallet if mine”

. For each transaction in the block, delete any match-

ing transaction from the transaction pool

Relay block to our peers

If we rejected, the block is not counted as part of the
main branch

B.3 Case 2: Extend short side branch

For case 2, adding to a side branch, we don’t do anything.

B.4 Case 2: Extend long side branch

For case 3, a side branch becoming the main branch:
1.

Find the fork block on the main branch which this
side branch forks off of
Redefine the main branch to only go up to this fork
block
For each block on the side branch, from the child of
the fork block to the leaf, add to the main branch:
(a) Do “branch” checks 3-11
(b) For all but the coinbase transaction, apply the
following:
i. For each input, look in the main branch
to find the referenced output transaction.
Reject if the output transaction is missing
for any input.

ii. For each input, if we are using the nth
output of the earlier transaction, but it has
fewer than n+1 outputs, reject.

iii. For each input, if the referenced output
transaction is coinbase (i.e., only 1 in-
put, with hash=0, n=-1), it must have at
least COINBASE_MATURITY (100) con-
firmations; else reject.

iv. Verify crypto signatures for each input;
reject if any are bad

v. For each input, if the referenced output
has already been spent by a transaction in
the main branch, reject

vi. Using the referenced output transactions
to get input values, check that each in-
put value, as well as the sum, are in legal
money range
Reject if the sum of input values < sum of
output values

(c) Reject if coinbase value > sum of block cre-

ation fee and transaction fees

(d) (If we have not rejected):

(e) For each transaction, “Add to wallet if mine”
If we reject at any point, leave the main branch as
what it was originally, done with block
5. For each block in the old main branch, from the leaf

down to the child of the fork block:
(a) For each non-coinbase transaction in the block:
i. Apply “tx” checks 2-9, except in step 8,
only look in the transaction pool for dupli-
cates, not the main branch
ii. Add to transaction pool if accepted, else
g0 on to next transaction

vii.

6. For each block in the new main branch, from the
child of the fork node to the leaf:
(a) For each transaction in the block, delete any
matching transaction from the transaction pool
7. Relay block to our peers
C Contingency Plans

Below are the full contingency plans verbatim from the
Bitcoin Wiki [11] as of January 2016 should the two main
primitives be broken:

C.1 SHA-256 is broken

Situation

Severe, 0-day failure of SHA-256. First/second preim-
age resistance or collision resistance can be defeated with
only a few days of work.

Impact

o Attacker may be able to defeat OP_CHECKSIG,
which hashes transactions before signing.

o Attacker may be able to split the network by creating
identical transactions or blocks with the same hashes.

e Attacker may be able to create blocks very quickly.

e The alert system may be compromised.

Response

e Users will be notified to shut down their clients. Note
that the attacker may be able to send valid alerts,
which could disrupt notification efforts.

e OP_CHECKSIG will be changed to use some other
hash outside of old blocks.

e All addresses in the version-1 chain that have a
known public key and at least one unspent output

17

will have their public keys hardcoded into the client.
When a version-2 transaction spends one of these
version-1 outputs, the hardcoded public key will be
used instead of the hash.

e The version-1 chain will be securely hashed into a
hash tree. At least the root of the version-1 tree will
be hardcoded into the client.

o All hashing Bitcoin does will use the new hashing
algorithm.

[Code for all of this should be prepared.]

C.2 ECDSA is broken

Situation
An attacker can sign for a public key that he does not
own the private key for in only a few days of work.

Impact

o Attacker can spend money that is not his in a large
number of cases. Transactions to addresses that have
never been used before may be protected if SHA-256
and RIPEMD-160 are still strong.

e Alert system may be compromised.

Response

If the attacker can’t get the private key from the public
key easily and a stronger algorithm that can use ECDSA
keys is available:

o Switch to the stronger algorithm.

e Get users to update. Alerts will be compromised.

Otherwise:

e OP_CHECKSIG should use some other signing al-
gorithm.

e As soon as the new version of Bitcoin is run, it
should automatically send all old transactions some-
where else using the new algorithm.

e Get users to update immediately. Alerts will be com-
promised.

[Code for all of this should be prepared.]

	Introduction
	Background
	Transactions and Scripts
	Mining and Consensus
	Network
	Upgrading the Protocol

	System and Adversary Model
	Broken Hashing Primitives
	Hashing in Bitcoin
	Modeling Hash Breakage
	Identifying Hashing Building Blocks
	Modeling Hash Breakage Variants

	Main Hash
	Mining
	Merkle Trees
	Main Hash Usage in Signatures

	Address Hash

	Broken Signature Primitives
	Digital Signatures in Bitcoin
	Modeling Signature Breakage Variants
	Broken Signature Scheme Effects

	Multi-Breakage
	Address Hash and Signature Scheme
	Main Hash and Signature Scheme

	Current Bitcoin Implementation
	Current Cryptographic Primitives
	Existing Contingency Plans
	Potential Migration Pitfalls

	Related Work
	Conclusions
	Transaction Verification
	Block Verification
	Main procedure
	Case 1: Extend main branch
	Case 2: Extend short side branch
	Case 2: Extend long side branch

	Contingency Plans
	SHA-256 is broken
	ECDSA is broken

