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Abstract. Static analysers search for overapproximating proofs of safety
commonly known as safety invariants. Conversely, static bug finders
(e.g. Bounded Model Checking) give evidence for the failure of an asser-
tion in the form of a counterexample trace. As opposed to safety invari-
ants, the size of a counterexample is dependent on the depth of the bug,
i.e., the length of the execution trace prior to the error state, which also
determines the computational effort required to find them. We propose a
way of expressing danger proofs that is independent of the depth of bugs.
Essentially, such danger proofs constitute a compact representation of a
counterexample trace, which we call a danger invariant. Danger invari-
ants summarise sets of traces that are guaranteed to be able to reach
an error state. Our conjecture is that such danger proofs will enable the
design of bug finding analyses for which the computational effort is in-
dependent of the depth of bugs, and thus find deep bugs more efficiently.
As an exemplar of an analysis that uses danger invariants, we design a
bug finding technique based on a synthesis engine. We implemented this
technique and compute danger invariants for intricate programs taken
from SV-COMP 2016.

1 Introduction

Safety analysers search for proofs of safety commonly known as safety invariants
by overapproximating the set of program states reached during all program exe-
cutions. Fundamentally, they summarise traces into abstract states, thus trading
the ability to distinguish traces for computational tractability [1].

Conversely, static bug finders that use techniques such as Bounded Model
Checking (BMC) search for proofs that safety can be violated. Dually to safety
proofs, we will call these danger proofs. Traditionally, a danger proof is repre-
sented by a concrete counterexample trace leading to an error state [2].

For illustration, we examine the safe and unsafe programs in Fig 1. The
program in Fig 1a is safe as witnessed by the safety invariant Inv(x) = x 6=y,
which holds in the initial state (where x=0 and y=1), is inductive with respect to
the body of the loop (x6=y ⇒ (x+1)6=(y+1)) and, on exit from the loop, makes
the assertion hold. Now, if we replace the guard by x<1000000, the program
remains safe as witnessed by the same safety invariant.

On the other hand, the program in Fig. 1b is unsafe as, depending on a
nondeterministic choice (denoted by “*”), y may not be incremented in each
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x = 0 ; y = 1 ;
// whi le (x<1000000)
while (x<10){

x++;
y++;

}

a s s e r t ( x != y ) ;

(a)

x = 0 ; y = 1 ;
// whi le (x<1000000)
while (x<10){

x++;
i f (∗ ) y++;

}

a s s e r t ( x != y ) ;

(b)

Fig. 1: Safe and unsafe example programs

iteration. A possible danger proof for this example is given by the concrete coun-
terexample trace: (x=0, y=1), (x=1, y=1), (x=2, y=2), (x=3, y=3), (x=4, y=4),
(x=5, y=5), (x=6, y=6), (x=7, y=7), (x=8, y=8), (x=9, y=9), (x=10, y=10).

Similarly to what we did for the program in Fig. 1a, let the guard in Fig. 1b
now be replaced by x<1000000. However, as opposed to the program in Fig. 1a,
now we cannot use the same danger proof we computed for the original pro-
gram (instead a possible danger proof for the modified program is (x=0, y=1),
(x=1, y=1), (x=2, y=2), (x=3, y=3), · · · (x=1000000, y=1000000)). The cause
for this is that, as opposed to safety invariants, the size of a counterexample
trace is dependent on the depth of the bug, i.e., the length of the execution trace
prior to the error state. The bug in the original program in Fig. 1b manifests in
execution traces of length 10, whereas for the modified program we need execu-
tion traces of length 1000000 to expose the bug. We will refer to bugs that only
manifest in long execution traces as deep bugs.

The size of the counterexample also impacts the computational effort re-
quired to find them. For instance, bounded model checkers compute counterex-
ample traces by progressively unwinding the transition relation. Consequently,
the computational effort required to discover an assertion violation typically
grows exponentially with the depth of the bug. Notably, the scalability prob-
lem is not limited to procedures that implement BMC. Approaches based on a
combination of over- and underapproximations such as predicate abstraction [3]
and lazy abstraction with interpolants (LAwI) [4] are not optimised for finding
deep bugs either. The reason for this is that they can only detect counterexam-
ples with deep loops after the repeated refutation of increasingly longer spurious
counterexamples. The analyser first considers a potential error trace with one
loop iteration, only to discover that this trace is infeasible. Consequently, the
analyser increases the search depth, usually by considering one further loop iter-
ation. This repeated search suffers from the same exponential blow-up as BMC.

In this paper we propose a way of expressing danger proofs that is inde-
pendent of the depth of the bug. Essentially, such a danger proof constitutes
a compact representation of a counterexample trace, which we call a danger
invariant. Similarly to safety invariants, danger invariants are based on sum-
marisation. Our conjecture is that such danger proofs will enable the design of
bug finding analyses for which the computational effort is also independent of
the depth of bugs, and thus have the potential to find deep bugs more efficiently.



As an exemplar of an analysis that uses the newly introduced notion of danger
invariants, we design a bug finding technique based on a synthesis engine.

Contributions:
– We introduce the notion of danger invariant, which, similarly to safety invari-

ants, uses summarisation to compactly represent counterexamples. We discuss
danger invariants both in the context of total and partial correctness.
– We present a procedure for inferring such danger invariants based on program
synthesis. Our program synthesiser is specifically tailored for danger invariants,
being able to efficiently synthesise multiple programs.
– We implemented our analysis and applied it to intricate programs taken from
the Competition on Software Verification SV-COMP 2016 [5]. The focus of our
experimental evaluation are danger invariants for code with deep bugs. Our ex-
perimental results show that our technique outperforms other tools when the
bugs require many iterations of a loop in order to manifest. This suggests that
it has strengths complementary to those of other techniques and could be used
in combination with them (e.g., a compositional analysis based on may/must
analysis and danger invariants).

2 Illustration

int i , j , k ;

for ( k = 0 ; k < 100 ; k++) {
i f (∗ ) j++;

}
for ( i = 0 ; i < 1000000; i++) {

i f (∗ ) j++;
}
a s s e r t ( i != j ) ;

(a)

x = 0 ; y = 1 ;
while ( x < 10) {

y++;
}
a s s e r t ( x < 1 0 ) ;

(b)

Fig. 2: Illustrative examples

To illustrate some of the pitfalls involved in proving that a program has a
bug, we direct the reader’s attention to Fig. 2a. This program is unsafe (the
assertion can be violated), but this fact is hard to prove for traditional bug
finders (based on random testing, BMC or concolic execution). We found that
SMACK 1.5.1 [6] and CBMC 5.5 [7] timed out on this example, Seahorn 2.6 [8]
returned “unknown” and CPAChecker 1.4 [9] (incorrectly) says “safe”. This
program is difficult for bug finders to analyse for the following reasons:

– The program is nondeterministic and the vast majority of the paths through
the program do not trigger the bug.

– Many of the initial values of the program variables do not lead to the bug.

– The assertion violation does not occur until a very large number of loop
iterations have executed.



Despite these features and the difficulty that automated tools have with this
program, it is quite easy to convince a human that the program is unsafe using
an argument something like the following:

1. In the second loop, if we ever reach a state with i = j, we can maintain that
i = j by taking the “if” branch and incrementing j.

2. If we are in the second loop with i < j, we can reduce the gap between
i and j by not taking the “if” branch, so i will be incremented but j will
not. If j − i ≤ 1000000 then we can eventually have i “catch up” with j by
repeatedly taking the “else” branch.

3. Therefore, if we begin the second loop with 0 ≤ j ≤ 1000000, we can even-
tually reach a state with i = j and from there eventually exit the loop with
i = j, at which point the assertion will be violated.

4. We can enter the second loop with 0 ≤ j ≤ 1000000 quite easily. For example,
if 0 ≤ j ≤ 999900 then any path through the first loop will land us at the
start of the second loop in such a state.

5. There are several valid initial states with 0 ≤ j ≤ 999900, and so the asser-
tion can certainly be violated.

This argument is quite unlike the argument that an existing automated bug
finder would use. We have not provided a concrete error trace, or even a concrete
initial input, but we have still been able to prove that there is definitely an error
in the program. It is worth noting that this proof is much shorter than a full
error trace (which would be at least 1000100 steps long), it is much easier for
a human to understand than the full, explicit error trace and indeed it is much
easier to find.

The proof outlined above makes use of several techniques usually associated
with safety proving: abstraction (we described sets of states symbolically), in-
duction (e.g., we argued by induction that the state i = j could be maintained
once reached) and compositional reasoning (we proved a lemma about each loop
separately, then combined these lemmas into a proof that the program as a whole
had a bug). At the same time, such a proof does not admit false alarms.

In the remainder of this paper, we will show how this intuitive notion of
symbolically proving the existence of a bug without providing an explicit error
trace can be made precise by introducing the concept of a danger invariant. Our
definition is presented abstractly, so that any method of symbolic reasoning or
invariant generation (including manual annotation by a verification engineer)
can be used to generate and verify danger invariants. We will also show how the
constraints defining a danger invariant can be solved using program synthesis.

3 Danger Invariants

In this section, we formalise the notion of a danger invariant. We represent a
program P as a transition system with state space X and transition relation
T ⊆ X × X. For a state x ∈ X with T (x, x′), x′ is said to be a successor of
x under T . We denote initial states by I and error states by E. We start by
defining some background notions.



Definition 1 (Execution Trace) An execution trace 〈x0 . . . xn〉 is a (poten-
tially infinite) sequence of states such that any two successive states are related
by the program’s transition relation T , i.e. ∀0≤i<n.T (xi, xi+1) .

Definition 2 (Counterexample Trace) A finite execution trace 〈x0 . . . xn〉 is
a counterexample iff x0 is an initial state, x0 ∈ I, and xn is an error state,
xn ∈ E.

A counterexample trace is a proof of the existence of a reachable error state
(i.e., a state where some safety assertion is violated).

The question we try to answer in this paper is whether we can derive a
compact representation of a danger proof that does not require us to explicitly
write down every intermediate state. For a loop L(I,G, T,A) (I denotes the
initial states, G is the guard, T is the transition relation and A is the assertion
immediately after the loop), this is captured by the notion of danger invariant,
defined next.

Definition 3 (Danger Invariant) A predicate D is a danger invariant for the
loop L(I,G, T,A) iff it satisfies the following criteria:

∃x0.I(x0) ∧D(x0) (1)

∀x.D(x) ∧G(x)→ ∃x′.T (x, x′) ∧D(x′) (2)

∀x.D(x) ∧ ¬G(x)→ ¬A(x) (3)

A danger invariant is a dual of a safety invariant that captures the fact
that there is some trace containing an error state starting from an initial state:
(1) captures the fact that D is reachable from an initial state x0, (2) shows that
there exists some transition with respect to which D is inductive and (3) checks
that the assertion is violated on exit from the loop.

The existential quantifier for x′ in (2) is important for nondeterministic pro-
grams, where it is enough for the danger invariant to capture the existence of
some error trace for only one nondeterministic choice. We make this explicit by
introducing a Skolem function S that chooses the successor x′:

∃S.∀x.D(x) ∧G(x)→ T (x, S(x)) ∧D(S(x)) (4)

Our definition of an execution trace (Definition 1) includes infinite traces.
Thus, the trace containing the error may be infinite and the error state will not
be reachable at all. For example, consider Fig. 2b. A danger invariant is ‘true’,
which meets all of the criteria (1), (2) and (3).

However, we can actually prove partial correctness of the program – the pro-
gram contains no terminating traces and so the assertion is never even reached.
To ensure that the error traces are finite, we will introduce a ranking function,
which will serve as a proof of termination. Below we recall the definition of a
ranking function:

Definition 4 (Ranking function) A function R : X → Y is a ranking func-
tion for the transition relation T if Y is a well-founded set with order > and R
is injective and monotonically decreasing with respect to T .



We assume that programs have unbounded but countable nondeterminism, and
so require that our ranking functions’ co-domains are recursive ordinals. In par-
ticular, we will consider ranking functions with co-domain ωn, i.e., n-tuples of
natural numbers ordered lexicographically. This is the final piece we need to
define a partial danger invariant:

Definition 5 (Partial Danger Invariant) A predicate Dp is a danger invari-
ant for the loop L(I,G, T,A) in the context of partial correctness iff it satisfies
the following criteria:

∃x0.I(x0) ∧Dp(x0) (5)

∃R,S.∀x.Dp(x) ∧G(x)→ R(x) > 0 ∧ T (x, S(x))∧
Dp(S(x)) ∧R(S(x)) < R(x) (6)

∀x.Dp(x) ∧ ¬G(x)→ ¬A(x) (7)

Note that the ranking function R does not guarantee the termination of
all possible executions, but only the termination of some erroneous one. It is
also important to notice that Dp is not an underapproximation of the reachable
program states – there may well be Dp-states that are unreachable, and there
may well be Dp-states that do not violate the assertion. However, every (Dp ∧
¬G)-state does violate the assertion, and it is certainly the case that at least one
such state is reachable.

Example 1 With Def. 5, for the example in Fig. 2b there exists no danger
invariant.

For the program in Fig. 1b a danger invariant is Dp(x, y) = y = (x < 1?1 : x)
and ranking function R(x, y) = 10−x. Essentially, this invariant says that y must
not be incremented for the first iteration of the loop (until x reaches the value 1),
and from that point, for the remaining iterations, y gets always incremented
such that x = y. For this case, Dp is a compact and elegant representation
of a feasible counterexample trace. The witness Skolem function that we get is
Sy(x, y) = (x < 1?y : y + 1).

In Sec. 1, we have seen that the counterexample trace for the modified version
of the program in Fig. 1b (the one with a larger guard) was much longer than
that for the original version of the program. However, both the original and
the modified programs have the same danger invariant Dp(x, y) = y = (x <
1?1 : x) and the same Skolem function. This supports our conjecture that danger
invariants are independent on the depth of bugs. A ranking function for the
modified program in Fig. 1b is R(x, y) = 1000000 − x, which is also a valid
ranking function for the original one.

Danger invariants for total correctness. While Def. 5 defines a danger invariant
for partial correctness, we argue that the danger invariant in Def. 3 proves the
existence of an erroneous trace in the context of total correctness. This trace
may either be an error trace leading to an assertion violation, or a recurrence
set denoting an infinite execution trace. We can differentiate between the two



scenarios by checking whether the loop guard G holds for all the states in D,
i.e. ∀x.D(x)⇒ G(x). If this is true, then Formula 3 is always vacuously true and
D is a proof of the existence of a recurrence set. Otherwise, D is a proof of the
existence of an assertion violation.

Example 2 With Def. 3, a possible danger invariant for the example in Fig. 2b
is D(x) = x<10. As the guard of the loop holds for all the D-states, this is a
recurrence set.

4 Generating Second-Order Verification Conditions

In this section, we present an algorithm for generating second-order constraints
describing the existence of a danger proof for a program with potentially nested
loops. We only give the algorithm for partial correctness as it is the more complex
one (the corresponding procedure for total correctness does not have to generate
the constraints for the ranking functions). We define the notion of a danger proof
with respect to two assertions A and B:

Definition 6 A danger proof of a triple (A,P,B) shows the existence of a finite
path through the program P from a state x to a state x′ such that A(x) and
¬B(x′).

The generation of the verifications conditions is performed by Algorithm 1.
This algorithm allows danger invariants for pieces of a program to be composed
together into a danger proof for the whole program. We discuss solving these
constraints in the next section.

Algorithm 1 is split into two procedures. The ExistsDangerPath proce-
dure generates the constraints showing the existence of some erroneous execution
trace that might not be reachable from the initial states (it overapproximates the
initial states). Overapproximating invariants are easier to compose than under-
approximating ones, which enables us to construct a modular constraint genera-
tion technique for arbitrary programs and only add the reachability constraints
at the outer level in the DangerConstraints procedure.

Proposition 1. The constraints generated by a call to the function
ExistsDangerPath(A,P,B) are satisfiable iff there is a finite path through the
program P from a state x to a state x′ such that A(x) and ¬B(x′).

The high-level strategy for the ExistsDangerPath procedure is the fol-
lowing. Given a program P , introduce fresh function symbols denoting Skolem
functions for the n nondeterministic assignments, as well as to the danger in-
variants and ranking functions required by each of the loops.

The most interesting branch of the algorithm is the one for a loop with
guard G and transition relation T . In this case, we need to emit the constraints
necessary for a danger invariant. As previously stated, at this point we do not
check that the danger invariant is reachable from the initial states. Instead, the



first emitted constraint captures the fact that the danger invariant Dp is an over-
approximation of the initial states A. The second constraint captures the fact
that the negation of the post-state B must hold on exit from the loop and the
third constraint captures the fact that the ranking function R is bounded from
below. The inductiveness and the ranking function’s monotonicity are proven
through the recursive call to ExistsDangerPath, where the pre-state denotes
the LHS of the inductiveness proof and the post-state represents the RHS plus
the monotonicity of the ranking function. Note that the negation in the post-
state ensures the fact that the generated verification conditions correspond to
the situation where the inductiveness and monotonicity hold. The additional
fresh variables vf are needed to express the (relational) monotonicity condition
for the ranking function.

Procedure DangerConstraints adds the necessary constraints such that
the danger proof is reachable from an initial state v0.

The end result of Algorithm 1 is a set of second-order constraints, where
the freshly introduced second-order variables (for the Skolem functions, danger
invariants and ranking functions) are existentially quantified. If the resulting
system of second-order constraints is satisfiable, then the solution (i.e., an as-
signment to the uninterpreted function symbols) is a danger proof for the full
program. In other words, the second-order constraints generated are satisfiable
iff the program contains a finite error trace.

Example 3 In Figure 3 we illustrate how Algorithm 1 works by using it to
generate a danger proof for the nondeterministic program at the level 0 call to
DangerConstraints with the generic pre- and post-states being A and B,
respectively. The explicit levels in the figure denote the call stack together with
the constraints generated for each of them. Additionally, when going from level 3
to level 4, we omit the recursive call for the sequential composition and simply
apply the weakest precondition for the whole code, resulting in the following VC:

Dp(i) ∧ i≤10⇒ wp((if=i; if(*)i=i+1), Dp(i) ∧R(if )>R(i))

The overall verification condition is the conjunction of the constraints generated
at each level, where the second-order entities Dp, R, S and C are existentially
quantified. The existential quantifier over i0 ranges over all the emitted VCs.
If we consider A(i) = true and B(i) = (i=10), then a satisfying assignment for
these constraints is:

i0 7→ 0, Dp(i) 7→ i≤11, R(i) 7→ 12−i, S(i) 7→ true, C(i) 7→ i≤11

The recursive constraint generation technique given in Algorithm 1 makes it
easy to generate verification conditions for nested loops in a modular manner.
One example with nested loops is given in Appendix (Example 7).

5 Generating Danger Invariants using Synthesis

Since the programs we are analysing are either safe or unsafe, and assuming that
a proof is expressible in our logic, a program either accepts a safety invariant SI



Initial call to DangerConstraints:
DangerConstraints(

A,

while ( i ≤ 10) {
i f (∗ ) i := i +1;

} ,

B)

(Level 0)

Emitted VCs:

∃i0.A(i0)

Initial call to ExistsDangerPath:
ExistsDangerPath(

〈i〉, true,

i = i 0 ;
while ( i ≤ 10) {

i f (∗ ) i := i +1;
} ,

B)

(Level 1)

Recursive calls:
ExistsDangerPath(

〈i〉, true,

i = i 0 ,

¬C)
ExistsDangerPath(

〈i〉, C,

while ( i ≤ 10) {
i f (∗ ) i := i +1;

} ,

B)

(Level 2)

Emitted VCs:

∀i.true⇒ C(i0) ∧
C(i)⇒ Dp(i) ∧
Dp(i) ∧ i>10⇒ ¬B(i) ∧
Dp(i) ∧ i≤10⇒ R(i)>0

Recursive call:
ExistsDangerPath(

〈i, if 〉, D(i) ∧ i≤10,

i f = i ;
i f (∗ ) i := i +1,

¬(D(i) ∧R(if )>R(i)))

(Level 3)

Emitted VCs:

∀i.Dp(i) ∧ i≤10⇒ (S(i) ∧Dp(i+1) ∧R(i)>R(i+1)) ∨ (¬S(i) ∧Dp(i) ∧R(i)>R(i))

(Level 4)

Fig. 3: Generating verification conditions for a program with nondeterminism



Algorithm 1 Generate VCs for the triple (A,P,B) over program variables v

1: procedure ExistsDangerPath( v, A,P,B))
2: switch P do
3: case while(G) do T end
4: Dp ← Fresh
5: R← Fresh
6: vf ← FreshCopy(v)
7: Emit(∀v.A(v)⇒ Dp(v))
8: Emit(∀v.Dp(v) ∧ ¬G(v)⇒ ¬B(v))
9: Emit(∀v.Dp(v) ∧G(v)⇒ R(v) > 0)

10: ExistsDangerPath(v + vf ,
Dp(v) ∧G(v),
vf := v;T,
¬(Dp(v) ∧R(vf ) > R(v)))

11: case x := ∗
12: S ← Fresh
13: ExistsDangerPath(v, A, x := S(v), B)

14: case P1;P2

15: C ← Fresh
16: ExistsDangerPath(v, A(v), P1,¬C(v))
17: ExistsDangerPath(v, C(v), P2, B(v))

18: case default
19: Emit(∀v.A(v)⇒ wp(¬B,P )(v))

20: procedure DangerConstraints(A,P,B)
21: v← fv(P )
22: v0 ← FreshCopy(v)
23: Emit(∃v0.A(v0))
24: ExistsDangerPath( v, >, v := v0; P, B(v))

or a danger invariant Dp. For a loop L(I,G, T,A), we model this as a disjunction
as stated in Definition 7. The generalised safety formula is a theorem of second-
order logic, and our decision procedure will always be able to find witnesses
SI,Dp, S,R, y0 demonstrating its truth, provided such a witness is expressible
in our logic. The synthesised predicate SI is a purported safety invariant and
the Dp, N,R, y0 constitute a purported danger invariant.

If SI is really a safety invariant, the program is safe, otherwise Dp (with
witnesses to the existence of an error trace with Skolem function S, initial state
y0 and ranking function R) will be a danger invariant and the program is unsafe.
Exactly one of these proofs will be valid, i.e., either SI will satisfy the criteria for
a safety invariant, or Dp, S,R, y0 will satisfy the criteria for a danger invariant.
We can simply check both cases and discard whichever “proof” is incorrect.
We omit the algorithm for generating safety verification conditions for a whole
program as this is well covered in the literature [10].

Synthesis engine We employ Counterexample-Guided Inductive Synthesis
(CEGIS) to synthesise programs for SI,Dp, S,R. The processes is graphically il-
lustrated in Fig. 5. Our synthesis engine conjectures solution programs based on



Definition 7 (Generalised Safety Formula)

∃SI,Dp, S,R, y0.∀x, x′, y.

 I(x)→ SI(x) ∧
SI(x) ∧G(x) ∧ T (x, x′)→ SI(x′) ∧
SI(x) ∧ ¬G(x)→ A(x)

 ∨


I(y0) ∧Dp(y0) ∧
Dp(y) ∧G(y)→ R(y) > 0 ∧ T (y, S(y)) ∧D(S(y))

∧R(y) > R(S(y))∧
Dp(y) ∧ ¬G(y)→ ¬A(y)



Fig. 4: General second-order safety formula
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Fig. 5: Synthesis loop with multiple backends

a limited set of counterexamples C. These solutions are guaranteed to satisfy all
known counterexamples ci ∈ C and are refined with each new ci. Each conjecture
is verified by a verifier component, which terminates the process if the constraint
holds (Success). Otherwise the resulting cj is added to C and provided to the
synthesiser for further refinement. As mentioned earlier, for our particular use
case the synthesiser must always find a solution (although in practice this might
take a very long time as discussed in the experimental section).

In order to efficiently synthesise SI,Dp, S,R simultaneously, our algorithm
implements concurrent backends in both the synthesis and verification stage. In
the synthesis stage, a symbolic execution (SymEx) as well as a genetic algo-
rithm (GA) backend concurrently search for new candidates satisfying C. GA is
an alternative way to traverse the space of possible solutions, simulating an
evolutionary process using selection, mutation and crossover operators. It main-
tains a large population of programs which are paired using crossover operation,
combining successful program features into new solutions. In order to avoid lo-
cal minima, the mutation operator replaces instructions by random values at
a comparatively low probability. The backends share information about synthe-
sised candidates and pass a complying solution on to the verification component.
Synthesis components use different instruction sets for SI,Dp, S,R optimised for
their clause in the full danger constraint.

To facilitate concurrent synthesis of multiple programs, the verification com-
ponent searches for different counterexamples in the same iteration. It restricts



the full danger constraint to either find a ci witnessing an inconsistent ranking
(Ranking) or a violation of the user property for which we are proving dan-
ger (Property). Furthermore, the engine provides one counterexample over the
full, unrestricted danger constraint (Full). This ensures that the synthesis com-
ponent receives sufficient information at each iteration to refine all synthesised
programs SI,Dp, S,R. The GA synthesis backend considers these counterexam-
ples in its selection and crossover operators. Candidates that solve distinct sets
of counterexamples have a higher probability of selection as crossover partners
in order to produce solutions that satisfy all types of counterexamples and hence
implement SI,Dp, S,R correctly. This is preferable over fitness values based on
solved counterexamples only, since it avoids local minima where candidates may
solve a multitude of counterexamples of one particular kind.

6 Experimental Results

6.1 Experimental setup

To evaluate our algorithm, we have implemented the Dangerzone module for
the bounded model checker CBMC 5.5.1 It generates a danger specification from
a given C program and implements a second-order SAT solver as discussed in [11]
to obtain a proof. We ran the resulting prover on 50 programs from the loop
acceleration category in SV-COMP 2016 [5]. We picked this specific category
as it has benchmarks with deep bugs and we were interested in challenging our
hypothesis that danger invariants are well-suited to expose deep bugs and can
complement the capabilities of existing approaches such as BMC. Unfortunately
we had to exclude programs that make use of arrays, since these are not yet
supported by the synthesiser. In addition to this, we also introduced altered
versions of the selected SV-COMP 2016 benchmarks with extended loop guards
to create deeper bugs, challenging our hypothesis even further.

For each benchmark we provide under the “Partial” column the time re-
quired to infer a danger invariant, a ranking function, an initial state and Skolem
functions witnessing the nondeterminism corresponding to partial correctness
(i.e. Def. 5) and under the “Total” column the time required to infer a danger
invariant, an initial state and Skolem functions corresponding to total correct-
ness (i.e. Def. 3). To provide a comparison point, we also ran two state-of-the-art
bounded model checking (BMC) tools, CBMC 5.5 [7] and SMACK+CORRAL
1.5.1 [6] on the same benchmarks. In addition to this, we ran the benchmarks
against CPAchecker 1.4 [9], the overall winner of SV-COMP 2015, and Sea-
horn 2.6 [8], the second-placed tool in the loops category after CPAchecker.
We reproduced each tool’s SV-COMP 2015 configuration, with small alterations
to account for the benchmarks where we increased loop guards. Finally, we man-
ually translated the benchmarks to be compatible with Microsoft’s Static Driver
Verifier Research Platform (SDVRP [12]) with the Yogi 2.0 [13] back end. Yogi’s
main algorithms are Synergy, Dash, Smash and Bolt.

1
https://github.com/diffblue/cbmc/archive/bbae05d8faecfec18a42724e72336d8f8c4e3d8d.zip



We say that a benchmark contains a deep bug if it is only reachable after at
least 1’000’000 unwindings. Each tool was given a time limit of 300 s, and was
run on a 12-core 2.40 GHz Intel Xeon E5-2440 with 96 GB of RAM. The full
result table of these experiments is given in App. B.

6.2 Discussion of results

The results demonstrate that the Dangerzone module outperforms all other
tools on programs with deep bugs. It solves 37 (partial) and 38 (total) out of the
50 benchmarks in standalone mode, and 46 when used with CBMC. By itself,
CBMC only finds 27, SMACK+CORRAL 24, CPAchecker 26 and Seahorn 31
bugs. This result can be explained by the fact that the complexity of finding a
danger invariant is orthogonal to the number of unwindings necessary to reach it.
Dangerzone’s success is not determined by how deep the bug is, but by the
complexity of the invariant describing it. As a result, we perform comparably on
both deep and shallow bugs and are able to expose 18 out of the 20 deep bugs
in the benchmark set. This supports our hypothesis that danger invariants are
well-suited for this category of errors.

On the other hand, the results in App. B also indicate that Dangerzone
performs slower on shallow bugs than well-engineered BMC tools such as CBMC
or SMACK+CORRAL. Danger invariants and BMC complement each other
perfectly in our experiments and together solve 46 out of the 50 problems. We
consider this further evidence for our hypothesis that danger invariants extend
existing model checkers’ capabilities to expose deep bugs.

6.3 Manually solving a danger constraint

As a case study we also tried using danger invariants to analyse a bug in Sendmail
that has been proposed as a challenge for verification tools [14]. This program
makes use of arrays, which our program synthesiser does not support. We de-
cided that it would be interesting to see whether danger invariants could be used
to semi-automatically prove the existence of such a difficult bug, and so wrote
the danger invariant by hand. We then used CBMC to verify that the danger
invariant we had written did indeed satisfy all of the criteria for a danger invari-
ant as given in Def. 5, thereby proving the existence of the bug. This process
was successful, with the verification step taking 0.23 s. We therefore believe that
danger invariants could be used in semi-automatic tools to aid humans in finding
complex bugs without the need for full blown automatic tools.

7 Related Work

Compositional may/must analysis. Compositional approaches to property check-
ing such as [15] involve decomposing the whole-program analysis into several
sub-analyses and summarising the results of these sub-analyses for later uses.
The summaries are either may or must summaries.



The must summaries used in [15] (denoted φ1
must−−−→ φ2) are proofs that for

every state y ∈ φ2, there exists a state x ∈ φ1 such that there is an execution
trace from x to y. In the terminology of [16], this is a must− summary. The
underapproximating nature of such summaries allows checking for bugs by in-
specting the intersection between the must− set (the states reachable from the
initial states via must− transitions) and the error states. Any state in this in-
tersection must be reachable from an initial state, and therefore is a true bug.
By contrast, Danger Invariants can be seen as a form of must+ analysis, where

we prove facts of the form φ1
must+−−−−→ φ2, which means that every x ∈ φ1 can

reach a state y ∈ φ2. The two styles of must analysis are compared in Figure 6:
to prove that an assertion A can be violated starting from initial states I, you
can either use a must− analysis to find an underapproximation of the reachable
states and show that these intersect with the error states, or you can use a must+

analysis to find a non-empty underapproximation of the initial states that can
reach an error state.

In [15], the authors use automated random testing techniques (DART) [17] to
compute the must− summaries (required to show the existence of bugs). DART
is based on single-path execution, which means that deep loops will cause the
exploration of a large number of paths (corresponding to executing the loop
once, twice, etc.), which may cause an exponential blow-up. As opposed to this
approach, danger invariants are must+ summaries which may encompass multi-
ple paths through a loop, which can avoid exponential blow-up in many cases.
Thus, the two approaches could be complementary.

I
must−−−−−→ φ2

Check that φ2 ∩ ¬A is non-empty.

φ1
must+−−−−→ ¬A

Check that φ1 ∩ I is non-empty.

Fig. 6: Danger proofs using must− and must+ analyses.

Temporal logic. With respect to the verification of temporal properties, a dan-
ger invariant for a loop with an assertion A essentially proves the CTL property
|= EF¬A over the loop. While there exist CTL verifiers based on a reduction to
exist-forall quantified Horn clauses [18,19], we specialise the concept for finding
deep bugs and describe a modular constraint generation technique over arbitrary
programs, rather than for transition systems.

Underapproximate acceleration. Another successful technique for finding deep
bugs without false alarms is loop acceleration [20, 21]. This approach works by
taking a single path at a time through a loop, computing a symbolic represen-
tation of the exact transitive closure of the path (an accelerator) and adding it
back into the program before using an off-the-shelf bug finder such as a bounded
model checker. Loop acceleration requires that each accelerated path can be rep-
resented in closed-form by a polynomial over the program variables, which is not
always possible. In contrast, danger invariants are complete – a program has a
corresponding danger invariant iff it has a bug.

Constraint Solving. There is a lot of work on the generation of linear in-
variants of the form c1x1 + . . . + cndn + d ≤ 0 [22, 23]. The main idea behind



these techniques is to treat the coefficients c1, . . . , cn, d as unknowns and gener-
ate constraints on them such that any solution corresponds to a safety invariant.
In [23], Colon et al. present a method based on Farkas’ Lemma, which synthe-
sises linear invariants by extracting non-linear constraints on the coefficients of a
target invariant from a program. In a different work, Sharma and Aiken use ran-
domised search to find the coefficients [23]. It would be interesting to investigate
how these methods can be adapted for generating constraints on the coefficients
c1, . . . , cn, d such that solutions correspond to linear danger invariants.

Doomed Program Locations. The term “doomed program point” was intro-
duced in [24] and denotes a program location that will inevitably lead to an error
regardless of the state in which it is reached. The notion is more restrictive than
a danger invariant D. The experiments in Fig. 8 outline multiple unsafe bench-
marks for which we synthesise a danger proof, but no doomed program location
exists (programs with doomed loop heads are marked with a “*” in Fig. 8).

Error Invariants. The concept of error invariant [25] was introduced in order
to localize the cause of an error in an error trace. An error invariant is an invariant
for a position in an error trace that only captures states that will still produce
the error. As opposed to an error invariant, a danger invariant is inductive and
may describe multiple traces through the program.

Program Synthesis. Counterexample-Guided Inductive Synthesis (CEGIS)
relies on inductive conjectures and refinement through counterexample infor-
mation. This learning pattern is used in a multitude of learning applications,
including Angluin’s classic DFA learning algorithm L∗ [26]. Syntax-Guided Syn-
thesis (SyGuS) by Alur et al. is based on the same principle [27]. They employ
a CEGIS loop with a grammar to restrict the space of possible programs. Our
implementation focuses on concurrent synthesis of multiple danger constraint
programs.

8 Conclusions

In this paper, we introduced the concept of danger invariants – the dual to
safety invariants. Danger invariants summarise sets of traces that are guaranteed
to reach an error state. As the size of a danger invariant is independent of the
depth of its corresponding bug, it can enable bug finding techniques for which the
computational effort is also independent of the depth of bugs, and thus have the
potential to find deep bugs more efficiently. As an exemplar of an analysis using
danger invariants, we presented a bug finding technique based on a synthesis
engine.
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Appendix

A Generating Second-Order Verification Conditions
(revisited)

Example 1. For illustration, consider the example in Fig 7, where we use the “o”
subscript for all the second order entities referring to the outer loop, and the
“i” subscript for the inner loop. Ci and Co denote the program state just before
the inner and outer loops, respectively. For readability, we have also explicitly
added the fresh variables (if and jf ) and statements introduced by Algorithm 1.
The call to ExistsDangerPath in the second column can reuse the constraints
generated for the same call at level 2 in Fig 3 and only substitute the current
pre- and post-states.



DangerConstraints(
Ao,

while ( j ≤ i ) {
i f = i ; j f = j ;
j ++;
i = 0 ;
while ( i ≤ 10) {

i f (∗ ) i := i +1;
}

} ,

Bo)

Emitted VCs:

∃i0, j0.∀i, j.
Ao(i0, j0) ∧
Do(i, j) ∧ j≤i⇒ Co(0, j + 1, i, j)∧
Do(i, j) ∧ j>i⇒ ¬Bo(i, j) ∧
Do(i, j) ∧ j≤i⇒ Ro(i, j)>0

Call to ExistsDangerPath:
ExistsDangerPath(
〈i, j, if , jf 〉, Co,

while ( i ≤ 10) {
i f (∗ ) i := i +1;

} ,

Do(i, j) ∧Ro(if , jf ) > Ro(i, j))

The VCs for the inner loop are as
shown in Fig 3.

One solution for Ao(i, j) = true and B(i, j) = (j = 11):

i0 = 11

j0 = 0

Do(i, j) = j≤12 ∧ i=11

Ro(i, j) = i− j + 1

Co(i, j) = jf = j − 1 ∧ if = 11∧

i = 0 ∧ jf ≤ if ∧

Ri(i, j, i
f , jf ) = 12− i

Di(i, j, i
f , jf ) = jf = j ∧ i ≤ 11∧

if = 11 ∧ jf ≤ if∧

Si(i, j, i
f , jf ) = true

Fig. 7: Generating verification conditions for a program with nested loops.



B Table of Experimental Results

SV-COMP’15 Dangerzone 5.5 2

Benchmark Deep CBMC SMACK+ CPA- Sea- Yogi Standalone with CBMC
Bugs 5.5 CORRAL checker horn 2.0 Partial Total Partial Total

1.5.1 1.4 2.6-svn

const1∗ – 1.15 s 7 7 33.21 s 7 9.09 s 0.55 s 1.15 s 0.55 s
const1t∗ – 1.80 s 7 4.01 s 0.55 s 10.09 s 5.45 s 0.64 s 1.80 s 0.64 s
const2∗ – 0.36 s 3.40 s 3.54 s 0.43 s 7 4.26 s 0.66 s 0.36 s 0.36 s

const3∗† X 252.42 s 7 7 7 7 0.62 s 1.07 s 0.62 s 1.07 s
diamond1 – 1.13 s 22.58 s 28.25 s 0.90 s 7 12.94 s 39.20 s 1.13 s 1.13 s
diamond1t – 7 7 4.36 s 7 9.19 s 7 7 7 7
diamond2 – 0.21 s 6.18 s 7 0.90 s 14.46 s 7 65.14 s 0.21 s 0.21 s
diamond2t – 7 7 56.71 s 7 7 7 7 7 7
for1 X 7 7 7 7 14.24 s 7 7 7 7
functions1∗ X 7 7 7 7 7 1.36 s 1.08 s 1.36 s 1.08 s
functions1t∗ X 7 7 56.70 s 0.29 s 136.48 s 0.76 s 0.83 s 0.76 s 0.83 s
multivar1∗ – 0.15 s 1.18 s 2.12 s 0.43 s 7 1.23 s 0.60 s 0.15 s 0.15 s
multivar1t – 7 7 1.45 s 0.30 s 10.58 s 1.53 s 1.30 s 1.53 s 1.30 s
multivar2∗ – 0.18 s 1.15 s 2.11 s 0.52 s 7 1.12 s 0.66 s 0.18 s 0.18 s
overflow1∗ X 7 7 7 7 7 4.07 s 5.32 s 4.07 s 5.32 s
overflow1t X 7 7 58.22 s 0.27 s 7 1.43 s 1.45 s 1.43 s 1.45 s
phases1∗ X 7 7 7 7 7 79.41 s 3.81 s 79.41 s 3.81 s
phases1t X 7 7 58.29 s 7 12.27 s 2.01 s 1.88 s 2.01 s 1.88 s
phases2 – 0.16 s 1.20 s 2.15 s 1.15 s 12.87 s 7 3.67 s 0.16 s 0.16 s
phases2t – 7 7 56.39 s 7 7 0.75 s 0.70 s 0.75 s 0.70 s
simple1∗ X 7 7 7 7 7 7.56 s 4.36 s 7.56 s 4.36 s
simple1t X 7 7 58.31 s 0.21 s 28.12 s 1.56 s 1.52 s 1.56 s 1.52 s
simple2 – 0.15 s 1.15 s 2.13 s 1.11 s 12.52 s 8.12 s 0.88 s 0.15 s 0.15 s
simple2t – 7 11.55 s 1.45 s 0.21 s 11.51 s 0.51 s 0.41 s 0.51 s 0.41 s
simple3 – 0.15 s 1.12 s 2.21 s 1.03 s 7 13.6 s 2.59 s 0.15 s 0.15 s
simple3t – 7 7 57.32 s 0.22 s 7 1.10 s 1.15 s 1.10 s 1.15 s
simple4∗ X 7 7 7 7 11.77 s 1.56 s 0.63 s 1.56 s 0.63 s
simple4t X 7 7 58.24 s 0.21 s 7 0.50 s 0.48 s 0.50 s 0.48 s
terminator – 0.18 s 3.02 s 7 1.13 s 12.52 s 3.93 s 0.85 s 0.18 s 0.18 s

terminator† X 0.18 s 0.97 s 7 12.48 s 1.49 s 0.98 s 0.98 s 0.18 s 0.18 s
underapprox1∗ – 0.38 s 3.27 s 2.83 s 1.07 s 7 7 7 0.38 s 0.38 s
underapprox1t – 1.41 s 11.98 1.46 s 0.16 s 14.02 s 7 7 1.41 s 1.41 s
underapprox2∗ – 0.37 s 3.08 s 2.59 s 0.84 s 7 1.63 s 0.76 s 0.37 s 0.37 s
underapprox2t – 1.36 s 12.39 s 1.44 s 0.16 s 12.32 s 0.76 s 0.73 s 0.76 s 0.73 s
loop1∗ X 46.59 s 7 7 7 12.05 s 1.62 s 0.91 s 1.62 s 0.91 s

loop2∗† X 7 7 7 7 7 88.83 s 8.36 s 88.83 s 8.36 s

loop3† X 7 7 7 7 7 7 7 7 7
loop4 – 0.54 s 0.15 s 7 7 7 7 7 0.54 s 0.54 s

loop5† X 292.64 s 7 7 7 7 170.94 s 3.05 s 170.94 s 3.05 s
loop6 – 0.16 s 1.16 s 2.23 s 0.42 s 13.25 s 15.87 s 1.22 s 0.16 s 0.16 s
loop7 – 0.97 s 1.33 s 12.92 s 0.89 s 13.26 s 0.59 s 0.52 s 0.59 s 0.52 s

loop8† X 7 7 7 7 7 2.67 s 0.83 s 1.92 s 0.96 s

loop9† X 7 7 7 7 7 5.41 s 1.69 s 5.41 s 1.69 s

loop10† X 7 7 7 7 7 3.86 s 1.14 s 3.86 s 1.14 s
loop11 – 0.18 s 1.15 s 2.18 s 0.42 s 12.39 s 0.48 s 0.68 s 0.48 s 0.58 s
sum01 – 0.40 s 1.23 s 7 0.30 s 7 7 7 0.40 s 0.40 s
sum01b – 0.29 s 1.13 s 7 0.27 s 7 7 7 0.29 s 0.29 s
sum04 – 0.43 s 3.19 s 7 0.31 s 7 7 7 0.43 s 0.43 s
trex02 – 0.16 s 1.15 s 7 0.23 s 7 37.17 s 19.59 s 0.16 s 0.16 s
trex03 – 0.17 s 1.19 s 7 0.27 s 10.30 s 7 2.47 s 0.17 s 0.17 s

Solved 28 24 26 31 21 37 40 46 46
Avg. Time 21.57 s 4.04 s 20.75 s 2.02 s 12.89 s 13.52 s 4.60 s 8.46 s 1.11 s

Key: 7= no result/time-out, * = contains doomed loop head, †= extended loop guard

Fig. 8: Experimental results

2
https://github.com/diffblue/cbmc/archive/bbae05d8faecfec18a42724e72336d8f8c4e3d8d.zip


