
Non-deterministic Finite Automata (NFA)

Models of Computation 1



NFA versus DFA

• In a DFA, at every state q, for every symbol a, there is a unique a-transition

i.e. there is a unique q′ such that q
a

−→ q′.

This is not necessarily so in an NFA. At any state, an NFA may have multiple

a-transitions, or none.

• In a DFA, transition arrows are labelled by symbols from Σ; in an NFA, they

are labelled by symbols from Σ ∪ { ǫ }. I.e. an NFA may have ǫ-transitions.

• We may think of the non-determinism as a kind of parallel computation

wherein several processes can be running concurrently.

When the NFA splits to follow several choices, that corresponds to a process

“forking” into several children, each proceeding separately. If at least one of

these accepts, then the entire computation accepts.

Models of Computation 2



Example: All strings containing a 1 in third position from the end

NFA:

1 0, 1 0, 1

0, 1

Models of Computation 3



Example: All strings containing a 1 in third position from the end

NFA:

1 0, 1 0, 1

0, 1

DFA:

q000 q001

q010

q011

q100 q101 q110

q111

0

0

0

0
0

0

0

0

1 1

1

1

1
1

1

1

Models of Computation 3



Example: All strings containing a 1 in third position from the end

NFA:

1 0, 1 0, 1

0, 1

DFA:

q000 q001

q010

q011

q100 q101 q110

q111

0

0

0

0
0

0

0

0

1 1

1

1

1
1

1

1

NFAs are more compact - they generally require fewer states to recognize a

language.

Models of Computation 3



Example: { 0k : k is a multiple of 2 or 3 }

ǫ

ǫ

0

0

0

00

Using ǫ-transitions and non-determinism, a language defined by an NFA can be

easier to understand.

Models of Computation 4



Definition: NFA

A nondeterministic finite automaton (NFA) is a 5-tuple (Q,Σ, δ, q0, F ) where

(i) Q is a finite set of states

(ii) Σ is a finite alphabet

(iii) q0 ∈ Q is the start state

(iv) δ : Q× (Σ ∪ { ǫ }) → P(Q) is the transition function

(v) F ⊆ Q is the set of accepting states.

Note: P(Q)
def

= {X : X ⊆ Q } is the power set of Q. Equivalently δ can be

presented as a relation, i.e. a subset of (Q× (Σ ∪ { ǫ }))×Q.

For a ∈ Σ ∪ { ǫ } we define q
a

−→ q′
def

= q′ ∈ δ(q, a).

Models of Computation 5



Some notation

Fix an NFA N = (Q,Σ, δ, q0, F ).

Let q
w

=⇒ q′ be defined by:

• q
ǫ

=⇒ q′ iff q = q′ or there is a sequence q
ǫ

−→ · · ·
ǫ

−→ q′ of one or more

ǫ-transitions in N from q to q′.

• For w = a1 · · · an+1 where each ai ∈ Σ, q
w

=⇒ q′ iff there are

q1, q
′
1, · · · , qn+1, q

′
n+1 (not necessarily all distinct) such that

q
ǫ

=⇒ q1
a1−→ q′1

ǫ
=⇒ q2

a2−→ q′2
ǫ

=⇒ · · · q′n
ǫ

=⇒ qn+1

an+1

−→ q′n+1

ǫ
=⇒ q′

Exercise. Writing w = a1 · · · an+1, show that q
w

=⇒ q′ is equivalent to: there

exist q1, · · · , qn such that q
a1=⇒ q1

a2=⇒ · · · · · ·
an+1

=⇒ q′.

Models of Computation 6



The language recognised by an NFA

Intuitively, q
w

=⇒ q′ means:

“There is a sequence of transitions from q to q′ in N in which the

symbols in w occur in the correct order, but with 0 or more ǫ-transitions

before or after each one”.

L(N), the language recognised by N , consists of all strings w over Σ satisfying

q0
w

=⇒ q, where q is an accepting state.

Models of Computation 7



Equivalence of NFAs and DFAs: The Subset Construction

Observation. Every DFA is an NFA!

Say two automata are equivalent if they recognise the same language.

Theorem Every NFA has an equivalent DFA.

Proof. Fix an NFA N = (QN ,ΣN , δN , qN , FN ), we construct an equivalent

DFA PN = (QPN ,ΣPN , δPN , qPN , FPN ) such that L(N) = L(PN):

• QPN
def

= {S : S ⊆ QN }

• ΣPN
def

= ΣN

• S
a

−→ S′ in PN iff S′ = { q′ : ∃q ∈ S.(q
a

=⇒ q′ in N ) }

• qPN
def

= { q : qN
ǫ

=⇒ q }

• FPN
def

= {S ∈ QPN : FN ∩ S 6= ∅ }

Models of Computation 8



Example. All words that begin with a string of 0’s followed by a string of 1’s.

NFA N

q0 q1

0

ǫ

1

DFA PN

{q0, q1} {q1}

{q0} ∅

0

1

1

0

0, 1

0

1

Note. State {q0} is redundant.

Models of Computation 9



Proof of “L(N) ⊆ L(PN)”:

Suppose ǫ ∈ L(N). Then qN
ǫ

=⇒ q′ for some q′ ∈ FN . Hence q′ ∈ qPN ,

and so, qPN = { q′′ : qN
ǫ

=⇒ q′′ } ∈ FPN i.e. ǫ ∈ L(PN).

Now take any non-null u = a1 · · · an. Suppose u ∈ L(N). Then there is a

sequence of N -transitions

qN
a1=⇒ q1

a2=⇒ · · · · · ·
an=⇒ qn ∈ FN (1)

Since PN is deterministic, feeding a1, · · · , an to it results in the sequence of

PN -transitions

qPN
a1−→ S1

a2−→ · · · · · ·
an−→ Sn (2)

where

S1 = { q′ : ∃q ∈ qPN .(q
a1=⇒ q′ in N) }

S2 = { q′ : ∃q ∈ S1.(q
a2=⇒ q′ in N) }

.

.

.
.
.
.

By definition of δPN , from (1), we have q1 ∈ S1, and so q2 ∈ S2, · · ·, and so

Models of Computation 10



qn ∈ Sn, and hence Sn ∈ FPN because qn ∈ FN . Thus (2) shows that

u ∈ L(PN).

Proof of “L(PN) ⊆ L(N)”:

Suppose ǫ ∈ L(PN). Then qPN ∈ FPN i.e. FN ∩ { q : qN
ǫ

=⇒ q } 6= ∅, or

equivalently, for some q′ ∈ FN , qN
ǫ

=⇒ q′. Hence ǫ ∈ L(N).

Now suppose some non-null u = a1 · · · an ∈ L(PN), i.e., there is a sequence

of PN -transitions of the form

qPN
a1−→ S1

a2−→ · · · · · ·
an−→ Sn,

with Sn ∈ FPN , i.e., with Sn containing some qn ∈ FN . Now since qn ∈ Sn,

by definition of δPN , there is some qn−1 ∈ Sn−1 with qn−1

an=⇒ qn in N .

Working backwards in this way, we can build up a sequence of N -transitions of

the form

qN
a1=⇒ q1

a2=⇒ · · · · · ·
an=⇒ qn ∈ FN .

Hence u ∈ L(N). �

Models of Computation 11



Closure under regular operations revisited

Using nondeterminism makes some proofs much easier.

Theorem. Regular languages are closed under union.

Take NFAs N1 and N2.

N1 N2

Define N that recognises L(N1) ∪ L(N2)

by adding a new start state q to the dis-

joint union of (the respective state transition

graphs of) N1 and N2, and a ǫ-transition

from q to each start state of N1 and N2.

N1 N2

N

qǫ ǫ

Models of Computation 12



Regular languages are closed under union (cont’d)

More formally, given NFAs N1 = (Q1,Σ, δ1, q1, F1) and

N2 = (Q2,Σ, δ2, q2, F2), we define N = (Q,Σ, δ, q, F ) by

Q = Q1 × {1} ∪Q2 × {2} ∪ {q}

F = F1 × {1} ∪ F2 × {2}

δ(q, ǫ) = {(q1, 1), (q2, 2)}

δ((r, 1), a) = {(r′, 1) | r′ ∈ δ1(r, a)}

δ((r, 2), a) = {(r′, 2) | r′ ∈ δ2(r, a)}

Models of Computation 13



Regular languages are closed under union (cont’d)

Proof of “L(N1) ∪ L(N2) ⊆ L(N)”:

Suppose w = a1 · · · an ∈ L(N1) then there exist r1, . . . , rn ∈ Q1 such that

q1
a1=⇒ r1

a2=⇒ · · ·
an=⇒ rn

with rn ∈ F1. Then in N we have the sequence

q
ǫ

−→ (q1, 1)
a1=⇒ (r1, 1)

a2=⇒ · · ·
an=⇒ (rn, 1)

with (rn, 1) ∈ F . Hence w ∈ L(N).

Similarly we can show that w ∈ L(N2) implies w ∈ L(N).

Models of Computation 14



Regular languages are closed under union (cont’d)

Proof of “L(N) ⊆ L(N1) ∪ L(N2)”:

Suppose w = a1 · · · an ∈ L(N) then there exist i ∈ {1, 2} and

r1, . . . , rn ∈ Qi such that

q
ǫ

−→ (qi, i)
a1=⇒ (r1, i)

a2=⇒ · · ·
an=⇒ (rn, i)

with (rn, i) ∈ F . But then, in Ni, we have the sequence

qi
a1=⇒ r1

a2=⇒ · · ·
an=⇒ rn

with rn ∈ Fi. Hence w ∈ L(Ni).

�

Models of Computation 15



Theorem. Regular languages are closed under concatenation.

Take NFAs N1 and N2.

N1 N2

An NFA N that recognises L(N1) · L(N2)

can be obtained from the disjoint union of N1

and N2 by making the start state of N1 the

start state of N , and by adding an ǫ-transition

from each accepting state of N1 to the start

state of N2. The accepting states of N are

those of N2.

N1 N2

N

ǫ

ǫ

Models of Computation 16



Regular languages are closed under concatenation (cont’d)

More formally, given NFAs N1 = (Q1,Σ, δ1, q1, F1) and

N2 = (Q2,Σ, δ2, q2, F2), we define N = (Q,Σ, δ, (q1, 1), F ) by

Q = Q1 × {1} ∪ Q2 × {2}

F = F2 × {2}

δ((r, 1), a) = {(r′, 1) | r′ ∈ δ1(r, a)} for a 6= ǫ or r /∈ F1

δ((r, 1), ǫ) = {(r′, 1) | r′ ∈ δ1(r, ǫ)} ∪ {(q2, 2)} for r ∈ F1

δ((r, 2), a) = {(r′, 2) | r′ ∈ δ2(r, a)}

Models of Computation 17



Regular languages are closed under concatenation (cont’d)

Proof of “L(N1)L(N2) ⊆ L(N)”:

Suppose w ∈ L(N1)L(N2) then there exist u = a1 · · · an ∈ L(N1) and

v = b1 · · · bm ∈ L(N2) with w = uv.

Therefore there exist r1, . . . , rn ∈ Q1 with rn ∈ F1 such that, in N1,

q1
a1=⇒ r1

a2=⇒ · · ·
an=⇒ rn

s1, . . . , sm ∈ Q2 with sm ∈ F2 such that, in N2,

q2
b1=⇒ s1

b2=⇒ · · ·
bm=⇒ sm

Then in N we have the sequence

(q1, 1)
a1=⇒ (r1, 1)

a2=⇒ · · ·
an=⇒ (rn, 1)

ǫ
−→ (q2, 2)

b1=⇒ (s1, 2)
b2=⇒ · · ·

bm=⇒ (sm, 2)

with (sm, 2) ∈ F . Hence w ∈ L(N).

Models of Computation 18



Regular languages are closed under concatenation (cont’d)

Proof of “L(N) ⊆ L(N1)L(N2)”:

Suppose w = a1 · · · ak ∈ L(N), then there exist r1, . . . , rk ∈ Q such that,

(q1, 1)
a1=⇒ r1

a2=⇒ · · ·
ak=⇒ rk

with rk ∈ F . By definition of F there is an sk ∈ F2 such that rk = (sk, 2).

The definition of δ implies that there is exactly one ǫ-transition to get from the first

to the second component, i.e. there are states s1, . . . , sn ∈ Q1 and

sn+1, . . . , sk−1 ∈ Q2 such that

(q1, 1)
a1=⇒ (s1, 1)

a2=⇒ · · ·
an=⇒ (sn, 1)

ǫ
−→ (q2, 2)

an+1

=⇒ (sn+1, 2)
an+2

=⇒ · · ·
ak=⇒ (sk, 2)

Then, in N1, we have the sequence q1
a1=⇒ s1

a2=⇒ · · ·
an=⇒ sn with sn ∈ F1

and in N2 we have the sequence q2
an+1

=⇒ sn+1

an+2

=⇒ · · ·
ak=⇒ sk with sk ∈ F2

Hence u = a1 · · · an ∈ L(N1) and v = an+1 · · · ak ∈ L(N2), and therefore

w = uv ∈ L(N1)L(N2). �

Models of Computation 19



Theorem. Regular languages are closed under star.

First attempt:

Take an NFA N1 = (Q1,Σ, δ1, q1, F1) that

recognises A1. Construct N that recognises

A∗
1 = {ǫ} ∪A1 ∪A1 A1 ∪ · · ·.

N1

Obtain N from N1 by making the start state

accepting, and by adding a new ǫ-transition

from each accepting state to the start state.
N1

N
ǫ

ǫ
What is wrong with this?

Models of Computation 20



N1

1

0

Consider the two-node two-edge NFA N1

that recognises { 0i1 : i ≥ 0 }:

The above construction gives the NFA N :
N

1

0

ǫ
But N accepts, e.g., 010 which is not in

L(N1)
∗.

M

ǫ 1

0

ǫ

The NFA M recognises L(N1)
∗:

Models of Computation 20



Proof: Regular languages are closed under star

Second (correct) attempt:

Take an NFA N1 = (Q1,Σ, δ1, q1, F1) that recog-

nises A1.

N1

Define N = (Q1 ∪ { q0 },Σ, δ, q0, F1 ∪ { q0 })

where

δ(q, a) =







































δ1(q, a) q ∈ Q1 and q 6∈ F1

δ1(q, a) q ∈ F1 and a 6= ǫ

δ1(q, a) ∪ { q1 } q ∈ F1 and a = ǫ

{ q1 } q = q0 and a = ǫ

∅ q = q0 and a 6= ǫ

N1

ǫ

N ǫ

ǫ

Models of Computation 21



Regular languages are closed under star (cont’d)

Proof of “L(N1)
∗ ⊆ L(N)”:

Obviously ǫ ∈ L(N) because q0 ∈ F .

Suppose w ∈ L(N1)
∗ and w 6= ǫ then there exist k ≥ 1 and v1, . . . , vk such

that w = v1 . . . vk and vi = ai1 . . . aini
∈ L(N1) for each i. Then for each i

there exist ri1, . . . , rini
∈ Q1 such that

q1
ai1=⇒ ri1

ai2=⇒ · · ·
aini=⇒ rini

with rini
∈ F1. Then in N we have the sequence

q0
ǫ

−→ q1
a11=⇒ r11

a12=⇒ · · ·
a1n1=⇒ r1n1

ǫ
−→ q1

a21=⇒ · · ·
aknk=⇒ rknk

with rknk
∈ F . Hence w ∈ L(N).

Models of Computation 22



Regular languages are closed under star (cont’d)

Proof of “L(N) ⊆ L(N1)
∗”:

If w = ǫ, w ∈ L(N1)
∗ by definition of star.

Suppose w = a1 · · · an ∈ L(N) then there exist r1, . . . , rn ∈ Q such that

q
ǫ

−→ q1
a1=⇒ r1

a2=⇒ · · ·
an=⇒ rn

with rn ∈ F .

Let k − 1 be the number of occurences of the “new” ǫ-transitions rj
ǫ

−→ q1 with

rj ∈ F1. If we split the transition sequence at these transitions, we get k

transition sequences q1
vi=⇒ ri such that w = v1 . . . vk and for each i

vi ∈ L(N1).

Hence w = v1 . . . vk ∈ L(N1)
∗

�

Models of Computation 23


