Non-deterministic Finite Automata (NFA)
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NFA versus DFA

e In a DFA, at every state g, for every symbol a, there is a unique a-transition

i.e. there is a unique ¢’ such that ¢ — ¢’

This is not necessarily so in an NFA. At any state, an NFA may have multiple

a-transitions, or none.

e In a DFA, transition arrows are labelled by symbols from 2_; in an NFA, they
are labelled by symbols from 3 U { € }. l.e. an NFA may have e-transitions.

e We may think of the non-determinism as a kind of parallel computation

wherein several processes can be running concurrently.

When the NFA splits to follow several choices, that corresponds to a process
“forking” into several children, each proceeding separately. If at least one of

these accepts, then the entire computation accepts.
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Example: All strings containing a 1 in third position from the end

0,1

NFA:
O 1 0,1 0,1
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DFA: O

0
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Example: All strings containing a 1 in third position from the end

0,1

NFA:
O 1 0,1 0,1

DFA: O 1 1 1 m
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NFAs are more compact - they generally require fewer states to recognize a
language.
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Example: { 0% : k is a multiple of 2 or 3 }

. G\_/
\@7

NA

Using e-transitions and non-determinism, a language defined by an NFA can be

easier to understand.
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Definition: NFA

A nondeterministic finite automaton (NFA) is a 5-tuple (Q, >.,0,q0, F ) where
(i) @ is a finite set of states

(i) X is a finite alphabet

(iiiy go € @ is the start state

(iv) 0 : Q x (XU {e}) — P(Q) is the transition function

(v) F' C (@ is the set of accepting states.

def

Note: P(Q) = { X : X C Q } is the power set of (). Equivalently § can be
presented as a relation, i.e. a subset of () x (XU {€})) x Q.

def

Fora € XU {e}wedefineq — ¢ = ¢ € d(q,a).
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Some notation

FixanNFA N = (Q, X, 6, qo, F).
Let ¢ = ¢ be defined by:

€ ! / : € € /
e ¢ — q iff ¢ = q orthereis a sequence ¢ —> --- —> ¢ of one or more

e-transitions in N from ¢ to ¢'.

e Forw = aj -+ -an,41 Whereeach a; € X, q — g’ iff there are

q1, q’l, Cy Qn41, qfflﬂ (not necessarily all distinct) such that

An+1

€ aq / € as / € / € / € /
q=—q1 —q1 =——=>q2 —7qs = "4y, == qn+1 — 7 G171 —> @

Exercise. Writing w = aj - - - @541, Sshow that q — ¢’ is equivalent to: there
An41 /

. aq a2
existqi,---,qy, suchthatg —q¢q1 — ------ — q .
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The language recognised by an NFA

- w /
Intuitively, ¢ =— ¢' means:

“There is a sequence of transitions from ¢ to ¢’ in IV in which the
symbols in w occur in the correct order, but with 0 or more e-transitions

before or after each one”.

L(N ) the language recognised by IN, consists of all strings w over . satisfying

qo — q, where q is an accepting state.
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Equivalence of NFAs and DFAs: The Subset Construction

Observation. Every DFA is an NFA!

Say two automata are equivalent if they recognise the same language.

Theorem Every NFA has an equivalent DFA. I

Proof. Fixan NFA N = (Qn, XN, 0N, qN, F'N), we construct an equivalent
DFA PN = (QPN; PN, OPN s ¢PN FPN) such that L(N) = L(PN)

¢ Qpv = {5:S5CQn}

* Ypy = By
e S-S inPNiftS ={q :3g€ S.(¢==¢ nN)}

def

e gpn = {q:qv =q}

def

OFPN:{SEQPN:FNQS#@}
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Example. All words that begin with a string of O’s followed by a string of 1’s.

0 1
NFA N
() .
—@ O
DFA PN 0 L

() ()
S
1 :)0, 1

Note. State {qq } is redundant.
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Proof of “L(N') C L(PN):

Suppose € € L(N). Then gy = ¢’ for some ¢ € Fy. Hence ¢’ € gpn,
andso, gpy = {¢" 1 gy = ¢} € Fpy ie.e € L(PN).

Now take any non-null & = ay - - - a,,. Suppose u € L(N). Then there is a

sequence of /V-transitions

QN%Q:[% ...... £>QTLEFN (1)
Since PN is deterministic, feeding a1, - - -, a,, to it results in the sequence of
PN -transitions
qPN I S A2 Any S, (2)
where
S1 = {q’:ﬂqEqPN.(q%q’inN)}
So = {¢:3q€S.(¢=¢inN)}
By definition of dpp, from (1), we have g1 € S1,andso go € So, - - -, and so
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gn € S,,and hence S,, € Fpy because ¢,, € Fy. Thus (2) shows that

u € L(PN).

Proof of “L(PN) C L(N)”:

Suppose € € L(PN). Then gpy € Fpyie. FNnN{q:qn = q} # 0, or
equivalently, for some ¢’ € Fiy, gy = ¢’. Hence ¢ € L(N).

Now suppose some non-null . = a1 - - - a, € L(PN), i.e., there is a sequence
of PN -transitions of the form

with S,, € F'py, i.e., with .S, containing some ¢,, € F. Now since ¢,, € S,,,
by definition of I, there is some ¢, —1 € Sy—1 With ¢, 1 —= ¢, in N.
Working backwards in this way, we can build up a sequence of [V -transitions of
the form

Hence u € L(N). ]
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Closure under regular operations revisited

Using nondeterminism makes some proofs much easier.

Theorem. Regular languages are closed under union. I

Take NFAs /Ny and Ns.

Define N that recognises L(N1) U L(N>)
by adding a new start state ¢ to the dis-
joint union of (the respective state transition
graphs of) /N1 and N, and a e-transition

from q to each start state of /N1 and [Vs.
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Regular languages are closed under union (cont'd)

More formally, given NFAs N1 = (Q1, X, 01, g1, F1) and
No = (Q2, 3, 02, q2, F5), we define N = (Q, 3,9, q, F) by

Models of Computation

Q1 x {1} UQ2 x {2} U {q}
F1 X {1}UF2 X {2}

{(q1,1),(q2,2)}

{(r",1) | " € 01(r,a)}
{(r",2) | " € d3(r,a)}
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Regular languages are closed under union (cont'd)

Proof of “L(Ny1) U L(N3) C L(N)”:

Suppose w = ay - - - a,, € L(N7) then there exist r1, ..., 7, € Q1 such that
al as an,
g —> 7171 = "——>Tp
with r,, € Fy. Thenin N we have the sequence
€ a a an
qg— (q1,1) = (r1,1) = - = (1, 1)

with (r,,1) € F. Hence w € L(N).
Similarly we can show that w € L(N2) implies w € L(N).
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Regular languages are closed under union (cont'd)

Proof of “LL(N) C L(N7) U L(N3)”:

Suppose w = ay - - - a,, € L(IN) then there exist ¢ € {1, 2} and
T1,...,7n € @Q; such that

qé(q’ivi)é(rla ): :>(rn> )
with (r,,4) € F. But then, in N;, we have the sequence
al as an
q; —> 71—+ =——>1Tp

with r,, € F;. Hence w € L(IV;).
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Theorem. Regular languages are closed under concatenation.

Take NFAs /N1 and V5.

An NFA N that recognises L(N7) - L(N3)
can be obtained from the disjoint union of [V
and N9 by making the start state of [V the
start state of IV, and by adding an e-transition
from each accepting state of /N7 to the start

state of [No. The accepting states of [V are
those of V5.
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Regular languages are closed under concatenation (cont'd)

More formally, given NFAs N1 = (Q1, X, 01, g1, F1) and
No = (Q2, 3, 2, qo, F), we define N = (@, 3,9, (q1,1), F') by

Q = Qi1 x{l} U Q2x{2}

F = F2 X {2}

0((r,1),a) = {@, 1) |7 €di(r,a)} fora # eorr & Fy
o((r,1),e) = {0, 1) |r €d1(r,e)} U{(q2,2)} forr e Fy
0((r,2),a) = {0',2)| 1" €da(r,a)}
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Regular languages are closed under concatenation (cont'd)

Proof of “L(Ny1) L(N3) C L(N)”:

Suppose w € L(N7) L(N>) then there existu = a1 - - - a,, € L(IN7) and
v ="by by € L(N2) with w = uv.

Therefore there exist r1, ..., r, € Q1 withr,, € I} such that, in Ny,
al as an,
g —> 71— " ——>Tp
S1y...,S8m € (2 with s,,, € F5 such that, in No,
b b b
o = 5y 22 2 g

Then in N we have the sequence

a

(q1,1) =2 (r1, 1) =2 22 (10, 1) =5 (g2, 2) =2 (51,2) =2 - =

c = (S, 2)

with (8,,,,2) € F. Hencew € L(N).
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Regular languages are closed under concatenation (cont'd)

Proof of “L(N) C L(Ny) L(N3)”:
Suppose w = aq - - - ay € L(N), then there exist r1, ..., 7, € @ such that,
(ql,l)%rl%o--%rk

with 7, € F'. By definition of F there is an s € F5 such that r, = (sg, 2).
The definition of 0 implies that there is exactly one e-transition to get from the first
to the second component, i.e. there are states s1,..., s, € ()1 and
Spna1,---,8k—1 € (Q2 such that

Qi1 At o

(q1,1) =2 (s1,1) == - =2 (80, 1) — (¢2,2) = (8p41,2) = -+ =2 (s, 2)

Then, in N7, we have the sequence ¢ —> 51 —= - - - == g,, with s,, € F}
An+2

an ]
and in /N5 we have the sequence ¢» =5 Sp41 — * ¢ 2N Sk with s € Fo

Henceu =aj---a, € L(N1)andv = ap11 - ar € L(N2), and therefore
w = uv € L(N71) L(N3). []
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Theorem. Regular languages are closed under star. I

First attempt:
Take an NFA N7 = (Q1, X, 01, q1, F1) that

recognises A;. Construct IV that recognises

T={eJUATUAL A U---

Obtain N from /N7 by making the start state
accepting, and by adding a new e-transition

from each accepting state to the start state.

What is wrong with this?
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Consider the two-node two-edge NFA [NV
that recognises { 0°1 : ¢ > 0 }:

The above construction gives the NFA [V

But /V accepts, e.g., 010 which is not in
L(Ny)*.

The NFA M recognises L(N7)*:

Models of Computation
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Proof: Regular languages are closed under star

Second (correct) attempt:

Take an NFA N7 = (Q1, X, 61, q1, F1) that recog-
nises Aj.

Define N = (Q1 U{qo },%,8,q0, F1 U {q})

where
[ 01(q,a) q € Qrandq ¢ F
01(q, a) g€ Fianda # €
0(g,a) = § 6i1(qg,a)U{q1} g€ Fianda=c¢
{aq1} q =qoanda = €
0 g=gqgoanda # €
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Regular languages are closed under star (cont’d)

Proof of “L.(IN1)* C L(N)”:

Obviously € € L(N) because qg € F'.
Suppose w € L(N71)* and w # € then there exist k > 1 and vy, .. ., vg such
thatw = vy ... v andv; = a1 ... Gip,; € L(Nl) for each 2. Then for each 7

there exist 11, . . ., Tin, € (J1 such that
e I S
with 75, € F7. Then in N we have the sequence
G — (1 %7“11&:1%"'6%7"17@1 491%“'%:%7%%

with 1, € F. Hence w € L(N).
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Regular languages are closed under star (contd)

Proof of “LL(IN) C L(Np)*”:
Ifw =€, w € L(N1)* by definition of star.
Suppose w = ay - - - a,, € L(N) then there exist 1, ..., 7, € () such that

ai az Qn

€
q—q1 > T > =Ty

withr,, € F.

Let £ — 1 be the number of occurences of the “new” e-transitions 7 < q1 with
T € F' . If we split the transition sequence at these transitions, we get k

- (o .
transition sequences g — r; such that w = v1 ... v, and for each 7
V; € L(Nl)

Hence w = vy ...V, € L(Nl)*
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