Non-deterministic Finite Automata (NFA)

NFA versus DFA

- In a DFA, at every state q, for every symbol a, there is a unique a-transition i.e. there is a unique q^{\prime} such that $q \xrightarrow{a} q^{\prime}$.

This is not necessarily so in an NFA. At any state, an NFA may have multiple a-transitions, or none.

- In a DFA, transition arrows are labelled by symbols from Σ; in an NFA, they are labelled by symbols from $\Sigma \cup\{\epsilon\}$. I.e. an NFA may have ϵ-transitions.
- We may think of the non-determinism as a kind of parallel computation wherein several processes can be running concurrently.

When the NFA splits to follow several choices, that corresponds to a process "forking" into several children, each proceeding separately. If at least one of these accepts, then the entire computation accepts.

Example: All strings containing a 1 in third position from the end

Example: All strings containing a 1 in third position from the end

Example: All strings containing a 1 in third position from the end

NFAs are more compact - they generally require fewer states to recognize a language.

Example: $\left\{0^{k}: k\right.$ is a multiple of 2 or 3$\}$

Using ϵ-transitions and non-determinism, a language defined by an NFA can be easier to understand.

Definition: NFA

A nondeterministic finite automaton (NFA) is a 5 -tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$ where
(i) Q is a finite set of states
(ii) Σ is a finite alphabet
(iii) $q_{0} \in Q$ is the start state
(iv) $\delta: Q \times(\Sigma \cup\{\epsilon\}) \rightarrow \mathcal{P}(Q)$ is the transition function
(v) $F \subseteq Q$ is the set of accepting states.

Note: $\mathcal{P}(Q) \stackrel{\text { def }}{=}\{X: X \subseteq Q\}$ is the power set of Q. Equivalently δ can be presented as a relation, i.e. a subset of $(Q \times(\Sigma \cup\{\epsilon\})) \times Q$.

For $a \in \Sigma \cup\{\epsilon\}$ we define $q \xrightarrow{a} q^{\prime} \stackrel{\text { def }}{=} q^{\prime} \in \delta(q, a)$.

Some notation

Fix an NFA $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$.
Let $q \stackrel{w}{\Longrightarrow} q^{\prime}$ be defined by:

- $q \stackrel{\epsilon}{\Longrightarrow} q^{\prime}$ iff $q=q^{\prime}$ or there is a sequence $q \xrightarrow{\epsilon} \cdots \xrightarrow{\epsilon} q^{\prime}$ of one or more ϵ-transitions in N from q to q^{\prime}.
- For $w=a_{1} \cdots a_{n+1}$ where each $a_{i} \in \Sigma, q \xrightarrow{w} q^{\prime}$ iff there are $q_{1}, q_{1}^{\prime}, \cdots, q_{n+1}, q_{n+1}^{\prime}$ (not necessarily all distinct) such that

$$
q \xrightarrow{\epsilon} q_{1} \xrightarrow{a_{1}} q_{1}^{\prime} \stackrel{\epsilon}{\Longrightarrow} q_{2} \xrightarrow{a_{2}} q_{2}^{\prime} \xrightarrow{\epsilon} \cdots q_{n}^{\prime} \stackrel{\epsilon}{\Longrightarrow} q_{n+1} \xrightarrow{a_{n+1}} q_{n+1}^{\prime} \xrightarrow{\epsilon} q^{\prime}
$$

Exercise. Writing $w=a_{1} \cdots a_{n+1}$, show that $q \stackrel{w}{\Longrightarrow} q^{\prime}$ is equivalent to: there exist q_{1}, \cdots, q_{n} such that $q \stackrel{a_{1}}{\Longrightarrow} q_{1} \xlongequal{a_{2}} \cdots \cdots \stackrel{a_{n+1}}{\Longrightarrow} q^{\prime}$.

The language recognised by an NFA

Intuitively, $q \xlongequal{w} q^{\prime}$ means:
"There is a sequence of transitions from q to q^{\prime} in N in which the
symbols in w occur in the correct order, but with 0 or more ϵ-transitions before or after each one".
$L(N)$, the language recognised by N, consists of all strings w over Σ satisfying $q_{0} \stackrel{w}{\Longrightarrow} q$, where q is an accepting state.

Observation. Every DFA is an NFA!
Say two automata are equivalent if they recognise the same language.

Theorem Every NFA has an equivalent DFA.

Proof. Fix an NFA $N=\left(Q_{N}, \Sigma_{N}, \delta_{N}, q_{N}, F_{N}\right)$, we construct an equivalent DFA $\mathcal{P} N=\left(Q_{\mathcal{P} N}, \Sigma_{\mathcal{P} N}, \delta_{\mathcal{P} N}, q_{\mathcal{P} N}, F_{\mathcal{P} N}\right)$ such that $L(N)=L(\mathcal{P} N)$:

- $Q_{\mathcal{P} N} \stackrel{\text { def }}{=}\left\{S: S \subseteq Q_{N}\right\}$
- $\Sigma_{\mathcal{P} N} \stackrel{\text { def }}{=} \Sigma_{N}$
- $S \xrightarrow{a} S^{\prime}$ in $\mathcal{P} N$ iff $S^{\prime}=\left\{q^{\prime}: \exists q \in S .\left(q \stackrel{a}{\Longrightarrow} q^{\prime}\right.\right.$ in $\left.\left.N\right)\right\}$
- $q_{\mathcal{P} N} \stackrel{\text { def }}{=}\left\{q: q_{N} \stackrel{\epsilon}{\Longrightarrow} q\right\}$
- $F_{\mathcal{P} N} \stackrel{\text { def }}{=}\left\{S \in Q_{\mathcal{P} N}: F_{N} \cap S \neq \emptyset\right\}$

Example. All words that begin with a string of 0's followed by a string of 1's.

Note. State $\left\{q_{0}\right\}$ is redundant.

Proof of " $L(N) \subseteq L(\mathcal{P} N)$ ":
Suppose $\epsilon \in L(N)$. Then $q_{N} \xlongequal{\epsilon} q^{\prime}$ for some $q^{\prime} \in F_{N}$. Hence $q^{\prime} \in q_{\mathcal{P} N}$, and so, $q_{\mathcal{P} N}=\left\{q^{\prime \prime}: q_{N} \xlongequal{\epsilon} q^{\prime \prime}\right\} \in F_{\mathcal{P} N}$ i.e. $\epsilon \in L(\mathcal{P} N)$.
Now take any non-null $u=a_{1} \cdots a_{n}$. Suppose $u \in L(N)$. Then there is a sequence of N-transitions

$$
\begin{equation*}
q_{N} \stackrel{a_{1}}{\Longrightarrow} q_{1} \stackrel{a_{2}}{\Longrightarrow} \cdots \cdots \stackrel{a_{n}}{\Longrightarrow} q_{n} \in F_{N} \tag{1}
\end{equation*}
$$

Since $\mathcal{P N}$ is deterministic, feeding a_{1}, \cdots, a_{n} to it results in the sequence of $\mathcal{P} N$-transitions

$$
\begin{equation*}
q_{\mathcal{P N}} \xrightarrow{a_{1}} S_{1} \xrightarrow{a_{2}} \cdots \cdots \xrightarrow{a_{n}} S_{n} \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
& S_{1}=\left\{q^{\prime}: \exists q \in q_{\mathcal{P} N} \cdot\left(q \xlongequal{a_{1}} q^{\prime} \text { in } N\right)\right\} \\
& S_{2}=\left\{q^{\prime}: \exists q \in S_{1} \cdot\left(q \xlongequal{a_{2}} q^{\prime} \text { in } N\right)\right\}
\end{aligned}
$$

By definition of $\delta_{\mathcal{P} N}$, from (1), we have $q_{1} \in S_{1}$, and so $q_{2} \in S_{2}, \cdots$, and so
$q_{n} \in S_{n}$, and hence $S_{n} \in F_{\mathcal{P} N}$ because $q_{n} \in F_{N}$. Thus (2) shows that $u \in L(\mathcal{P} N)$.

Proof of " $L(\mathcal{P} N) \subseteq L(N)$ ":
Suppose $\epsilon \in L(\mathcal{P} N)$. Then $q_{\mathcal{P} N} \in F_{\mathcal{P} N}$ i.e. $F_{N} \cap\left\{q: q_{N} \xlongequal{\epsilon} q\right\} \neq \emptyset$, or equivalently, for some $q^{\prime} \in F_{N}, q_{N} \xlongequal{\epsilon} q^{\prime}$. Hence $\epsilon \in L(N)$.

Now suppose some non-null $u=a_{1} \cdots a_{n} \in L(\mathcal{P N})$, i.e., there is a sequence of $\mathcal{P} N$-transitions of the form

$$
q_{\mathcal{P N}} \xrightarrow{a_{1}} S_{1} \xrightarrow{a_{2}} \cdots \cdots \xrightarrow{a_{n}} S_{n},
$$

with $S_{n} \in F_{\mathcal{P} N}$, i.e., with S_{n} containing some $q_{n} \in F_{N}$. Now since $q_{n} \in S_{n}$, by definition of $\delta_{\mathcal{P} N}$, there is some $q_{n-1} \in S_{n-1}$ with $q_{n-1} \xlongequal{a_{n}} q_{n}$ in N.
Working backwards in this way, we can build up a sequence of N-transitions of the form

$$
q_{N} \xlongequal{a_{1}} q_{1} \xlongequal{a_{2}} \cdots \cdots \xlongequal{a_{n}} q_{n} \in F_{N} .
$$

Hence $u \in L(N)$.

Closure under regular operations revisited

Using nondeterminism makes some proofs much easier.
Theorem. Regular languages are closed under union.

Take NFAs N_{1} and N_{2}.

Define N that recognises $L\left(N_{1}\right) \cup L\left(N_{2}\right)$ by adding a new start state q to the disjoint union of (the respective state transition graphs of) N_{1} and N_{2}, and a ϵ-transition from q to each start state of N_{1} and N_{2}.

Regular languages are closed under union (cont'd)

More formally, given NFAs $N_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ and $N_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$, we define $N=(Q, \Sigma, \delta, q, F)$ by

$$
\begin{array}{ll}
Q & =Q_{1} \times\{1\} \cup Q_{2} \times\{2\} \cup\{q\} \\
F & =F_{1} \times\{1\} \cup F_{2} \times\{2\} \\
\delta(q, \epsilon) & =\left\{\left(q_{1}, 1\right),\left(q_{2}, 2\right)\right\} \\
\delta((r, 1), a) & =\left\{\left(r^{\prime}, 1\right) \mid r^{\prime} \in \delta_{1}(r, a)\right\} \\
\delta((r, 2), a) & =\left\{\left(r^{\prime}, 2\right) \mid r^{\prime} \in \delta_{2}(r, a)\right\}
\end{array}
$$

Regular languages are closed under union (cont'd)

Proof of " $L\left(N_{1}\right) \cup L\left(N_{2}\right) \subseteq L(N)$ ":
Suppose $w=a_{1} \cdots a_{n} \in L\left(N_{1}\right)$ then there exist $r_{1}, \ldots, r_{n} \in Q_{1}$ such that

$$
q_{1} \xlongequal{a_{1}} r_{1} \xrightarrow{a_{2}} \cdots \xlongequal{a_{n}} r_{n}
$$

with $r_{n} \in F_{1}$. Then in N we have the sequence

$$
q \xrightarrow{\epsilon}\left(q_{1}, 1\right) \xrightarrow{a_{1}}\left(r_{1}, 1\right) \xrightarrow{a_{2}} \cdots \xrightarrow{a_{n}}\left(r_{n}, 1\right)
$$

with $\left(r_{n}, 1\right) \in F$. Hence $w \in L(N)$.
Similarly we can show that $w \in L\left(N_{2}\right)$ implies $w \in L(N)$.

Regular languages are closed under union (cont'd)

Proof of " $L(N) \subseteq L\left(N_{1}\right) \cup L\left(N_{2}\right)$ ":
Suppose $w=a_{1} \cdots a_{n} \in L(N)$ then there exist $i \in\{1,2\}$ and $r_{1}, \ldots, r_{n} \in Q_{i}$ such that

$$
q \xrightarrow{\epsilon}\left(q_{i}, i\right) \xrightarrow{a_{1}}\left(r_{1}, i\right) \xrightarrow{a_{2}} \cdots \xrightarrow{a_{m}}\left(r_{n}, i\right)
$$

with $\left(r_{n}, i\right) \in F$. But then, in N_{i}, we have the sequence

$$
q_{i} \stackrel{a_{1}}{\Longrightarrow} r_{1} \stackrel{a_{2}}{\Longrightarrow} \cdots \stackrel{a_{n}}{\Longrightarrow} r_{n}
$$

with $r_{n} \in F_{i}$. Hence $w \in L\left(N_{i}\right)$.

Theorem. Regular languages are closed under concatenation.

Take NFAs N_{1} and N_{2}.

An NFA N that recognises $L\left(N_{1}\right) \cdot L\left(N_{2}\right)$ can be obtained from the disjoint union of N_{1} and N_{2} by making the start state of N_{1} the start state of N, and by adding an ϵ-transition from each accepting state of N_{1} to the start state of N_{2}. The accepting states of N are
 those of N_{2}.

Regular languages are closed under concatenation (cont'd)

More formally, given NFAs $N_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ and

$$
N_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right), \text { we define } N=\left(Q, \Sigma, \delta,\left(q_{1}, 1\right), F\right) \text { by }
$$

$$
\begin{array}{lll}
Q & =Q_{1} \times\{1\} \quad \cup \quad Q_{2} \times\{2\} & \\
F & =F_{2} \times\{2\} & \\
\delta((r, 1), a) & =\left\{\left(r^{\prime}, 1\right) \mid r^{\prime} \in \delta_{1}(r, a)\right\} & \text { for } a \neq \epsilon \text { or } r \notin F_{1} \\
\delta((r, 1), \epsilon) & =\left\{\left(r^{\prime}, 1\right) \mid r^{\prime} \in \delta_{1}(r, \epsilon)\right\} \cup\left\{\left(q_{2}, 2\right)\right\} & \text { for } r \in F_{1} \\
\delta((r, 2), a) & =\left\{\left(r^{\prime}, 2\right) \mid r^{\prime} \in \delta_{2}(r, a)\right\} &
\end{array}
$$

Regular languages are closed under concatenation (cont'd)

Proof of " $L\left(N_{1}\right) L\left(N_{2}\right) \subseteq L(N)$ ":
Suppose $w \in L\left(N_{1}\right) L\left(N_{2}\right)$ then there exist $u=a_{1} \cdots a_{n} \in L\left(N_{1}\right)$ and $v=b_{1} \cdots b_{m} \in L\left(N_{2}\right)$ with $w=u v$.

Therefore there exist $r_{1}, \ldots, r_{n} \in Q_{1}$ with $r_{n} \in F_{1}$ such that, in N_{1},

$$
q_{1} \stackrel{a_{1}}{\Longrightarrow} r_{1} \xrightarrow{a_{2}} \cdots \xrightarrow{a_{n}} r_{n}
$$

$s_{1}, \ldots, s_{m} \in Q_{2}$ with $s_{m} \in F_{2}$ such that, in N_{2},

$$
q_{2} \xlongequal{b_{1}} s_{1} \stackrel{b_{2}}{\Longrightarrow} \cdots \stackrel{b_{m}}{\Longrightarrow} s_{m}
$$

Then in N we have the sequence
$\left(q_{1}, 1\right) \xrightarrow{a_{1}}\left(r_{1}, 1\right) \xrightarrow{a_{2}} \cdots \xrightarrow{a_{m}}\left(r_{n}, 1\right) \xrightarrow{\epsilon}\left(q_{2}, 2\right) \xrightarrow{b_{1}}\left(s_{1}, 2\right) \xrightarrow{b_{2}} \cdots \xrightarrow{b_{m}}\left(s_{m}, 2\right)$
with $\left(s_{m}, 2\right) \in F$. Hence $w \in L(N)$.

Regular languages are closed under concatenation (cont'd)

Proof of " $L(N) \subseteq L\left(N_{1}\right) L\left(N_{2}\right)$ ":
Suppose $w=a_{1} \cdots a_{k} \in L(N)$, then there exist $r_{1}, \ldots, r_{k} \in Q$ such that,

$$
\left(q_{1}, 1\right) \stackrel{a_{1}}{\Longrightarrow} r_{1} \xlongequal{a_{2}} \cdots \stackrel{a_{k}}{\Longrightarrow} r_{k}
$$

with $r_{k} \in F$. By definition of F there is an $s_{k} \in F_{2}$ such that $r_{k}=\left(s_{k}, 2\right)$.
The definition of δ implies that there is exactly one ϵ-transition to get from the first to the second component, i.e. there are states $s_{1}, \ldots, s_{n} \in Q_{1}$ and $s_{n+1}, \ldots, s_{k-1} \in Q_{2}$ such that

$$
\left(q_{1}, 1\right) \stackrel{a_{1}}{\Longrightarrow}\left(s_{1}, 1\right) \stackrel{a_{2}}{\Longrightarrow} \cdots \stackrel{a_{n}}{\Longrightarrow}\left(s_{n}, 1\right) \stackrel{\epsilon}{\longrightarrow}\left(q_{2}, 2\right) \stackrel{a_{n+1}}{\Longrightarrow}\left(s_{n+1}, 2\right) \stackrel{a_{n+2}}{\Longrightarrow} \cdots \xlongequal{a_{k}}\left(s_{k}, 2\right)
$$

Then, in N_{1}, we have the sequence $q_{1} \xlongequal{a_{1}} s_{1} \xlongequal{a_{2}} \cdots \xrightarrow{a_{m}} s_{n}$ with $s_{n} \in F_{1}$ and in N_{2} we have the sequence $q_{2} \stackrel{a_{n+1}}{\Longrightarrow} s_{n+1} \stackrel{a_{n+2}}{\Longrightarrow} \cdots \stackrel{a_{k}}{\Longrightarrow} s_{k}$ with $s_{k} \in F_{2}$ Hence $u=a_{1} \cdots a_{n} \in L\left(N_{1}\right)$ and $v=a_{n+1} \cdots a_{k} \in L\left(N_{2}\right)$, and therefore $w=u v \in L\left(N_{1}\right) L\left(N_{2}\right)$.

Theorem. Regular languages are closed under star.

First attempt:

Take an NFA $N_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ that recognises A_{1}. Construct N that recognises $A_{1}^{*}=\{\epsilon\} \cup A_{1} \cup A_{1} A_{1} \cup \cdots$.

Obtain N from N_{1} by making the start state accepting, and by adding a new ϵ-transition from each accepting state to the start state.

What is wrong with this?

Consider the two-node two-edge NFA N_{1} that recognises $\left\{0^{i} 1: i \geq 0\right\}$:

The above construction gives the NFA N :

But N accepts, e.g., 010 which is not in $L\left(N_{1}\right)^{*}$.

The NFA M recognises $L\left(N_{1}\right)^{*}$:

Proof: Regular languages are closed under star

Second (correct) attempt:

Take an NFA $N_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ that recognises A_{1}.

Define $N=\left(Q_{1} \cup\left\{q_{0}\right\}, \Sigma, \delta, q_{0}, F_{1} \cup\left\{q_{0}\right\}\right)$ where
$\delta(q, a)= \begin{cases}\delta_{1}(q, a) & q \in Q_{1} \text { and } q \notin F_{1} \\ \delta_{1}(q, a) & q \in F_{1} \text { and } a \neq \epsilon \\ \delta_{1}(q, a) \cup\left\{q_{1}\right\} & q \in F_{1} \text { and } a=\epsilon \\ \left\{q_{1}\right\} & q=q_{0} \text { and } a=\epsilon \\ \emptyset & q=q_{0} \text { and } a \neq \epsilon\end{cases}$

Regular languages are closed under star (cont'd)

Proof of " $L\left(N_{1}\right)^{*} \subseteq L(N)$ ":
Obviously $\epsilon \in L(N)$ because $q_{0} \in F$.
Suppose $w \in L\left(N_{1}\right)^{*}$ and $w \neq \epsilon$ then there exist $k \geq 1$ and v_{1}, \ldots, v_{k} such that $w=v_{1} \ldots v_{k}$ and $v_{i}=a_{i 1} \ldots a_{i n_{i}} \in L\left(N_{1}\right)$ for each i. Then for each i there exist $r_{i 1}, \ldots, r_{i n_{i}} \in Q_{1}$ such that

$$
q_{1} \stackrel{a_{i 1}}{\Longrightarrow} r_{i 1} \stackrel{a_{i 2}}{\Longrightarrow} \cdots \stackrel{a_{i n_{i}}}{\Longrightarrow} r_{i n_{i}}
$$

with $r_{i n_{i}} \in F_{1}$. Then in N we have the sequence

$$
q_{0} \xrightarrow{\epsilon} q_{1} \xrightarrow{a_{11}} r_{11} \xrightarrow{a_{12}} \cdots \stackrel{a_{1 n_{1}}}{\Longrightarrow} r_{1 n_{1}} \xrightarrow{\epsilon} q_{1} \xrightarrow{a_{21}} \cdots \stackrel{a_{k n_{k}}}{\Longrightarrow} r_{k n_{k}}
$$

with $r_{k n_{k}} \in F$. Hence $w \in L(N)$.

Regular languages are closed under star (cont'd)

Proof of " $L(N) \subseteq L\left(N_{1}\right)^{* "}$:
If $w=\epsilon, w \in L\left(N_{1}\right)^{*}$ by definition of star.
Suppose $w=a_{1} \cdots a_{n} \in L(N)$ then there exist $r_{1}, \ldots, r_{n} \in Q$ such that

$$
q \xrightarrow{\epsilon} q_{1} \xrightarrow{a_{1}} r_{1} \xrightarrow{a_{2}} \cdots \stackrel{a_{n}}{\Longrightarrow} r_{n}
$$

with $r_{n} \in F$.
Let $k-1$ be the number of occurences of the "new" ϵ-transitions $r_{j} \xrightarrow{\epsilon} q_{1}$ with $r_{j} \in F_{1}$. If we split the transition sequence at these transitions, we get k transition sequences $q_{1} \stackrel{v_{i}}{\Longrightarrow} r_{i}$ such that $w=v_{1} \ldots v_{k}$ and for each i $v_{i} \in L\left(N_{1}\right)$.

Hence $w=v_{1} \ldots v_{k} \in L\left(N_{1}\right)^{*}$

