Non-deterministic Finite Automata (NFA)

• In a DFA, at every state q, for every symbol a, there is a unique a-transition i.e. there is a unique q' such that $q \xrightarrow{a} q'$.

This is not necessarily so in an NFA. At any state, an NFA may have multiple a-transitions, or none.

- In a DFA, transition arrows are labelled by symbols from Σ ; in an NFA, they are labelled by symbols from $\Sigma \cup \{ \epsilon \}$. I.e. an NFA may have ϵ -transitions.
- We may think of the non-determinism as a kind of parallel computation wherein several processes can be running concurrently.
 When the NFA splits to follow several choices, that corresponds to a process "forking" into several children, each proceeding separately. If at least one of these accepts, then the entire computation accepts.

Example: All strings containing a 1 in third position from the end

Example: All strings containing a 1 in third position from the end

Example: All strings containing a 1 in third position from the end

NFAs are more compact - they generally require fewer states to recognize a language.

Example: $\{0^k : k \text{ is a multiple of 2 or 3}\}$

Using ϵ -transitions and non-determinism, a language defined by an NFA can be easier to understand.

A *nondeterministic finite automaton* (NFA) is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where

- (i) Q is a finite set of states
- (ii) Σ is a finite alphabet
- (iii) $q_0 \in Q$ is the start state

(iv) $\delta: Q \times (\Sigma \cup \{\,\epsilon\,\}) \to \mathcal{P}(Q)$ is the transition function

(v) $F \subseteq Q$ is the set of accepting states.

Note: $\mathcal{P}(Q) \stackrel{\text{def}}{=} \{ X : X \subseteq Q \}$ is the *power set* of Q. Equivalently δ can be presented as a relation, i.e. a subset of $(Q \times (\Sigma \cup \{ \epsilon \})) \times Q$.

For $a \in \Sigma \cup \{\epsilon\}$ we define $q \xrightarrow{a} q' \stackrel{\text{def}}{=} q' \in \delta(q, a)$.

Fix an NFA $N = (Q, \Sigma, \delta, q_0, F)$.

Let $q \stackrel{w}{\Longrightarrow} q'$ be defined by:

- $q \stackrel{\epsilon}{\Longrightarrow} q'$ iff q = q' or there is a sequence $q \stackrel{\epsilon}{\longrightarrow} \cdots \stackrel{\epsilon}{\longrightarrow} q'$ of one or more ϵ -transitions in N from q to q'.
- For $w = a_1 \cdots a_{n+1}$ where each $a_i \in \Sigma$, $q \stackrel{w}{\Longrightarrow} q'$ iff there are $q_1, q'_1, \cdots, q_{n+1}, q'_{n+1}$ (not necessarily all distinct) such that

$$q \stackrel{\epsilon}{\Longrightarrow} q_1 \stackrel{a_1}{\longrightarrow} q'_1 \stackrel{\epsilon}{\Longrightarrow} q_2 \stackrel{a_2}{\longrightarrow} q'_2 \stackrel{\epsilon}{\Longrightarrow} \cdots q'_n \stackrel{\epsilon}{\Longrightarrow} q_{n+1} \stackrel{a_{n+1}}{\longrightarrow} q'_{n+1} \stackrel{\epsilon}{\Longrightarrow} q'$$

Exercise. Writing $w = a_1 \cdots a_{n+1}$, show that $q \stackrel{w}{\Longrightarrow} q'$ is equivalent to: there exist q_1, \cdots, q_n such that $q \stackrel{a_1}{\Longrightarrow} q_1 \stackrel{a_2}{\Longrightarrow} \cdots \stackrel{a_{n+1}}{\Longrightarrow} q'$.

Intuitively, $q \stackrel{w}{\Longrightarrow} q'$ means:

"There is a sequence of transitions from q to q' in N in which the symbols in w occur in the correct order, but with 0 or more ϵ -transitions before or after each one".

L(N), the *language recognised by* N, consists of all strings w over Σ satisfying $q_0 \stackrel{w}{\Longrightarrow} q$, where q is an accepting state.

Equivalence of NFAs and DFAs: The Subset Construction

Observation. Every DFA *is* an NFA!

Say two automata are *equivalent* if they recognise the same language.

Theorem Every NFA has an equivalent DFA.

Proof. Fix an NFA $N = (Q_N, \Sigma_N, \delta_N, q_N, F_N)$, we construct an equivalent DFA $\mathcal{P}N = (Q_{\mathcal{P}N}, \Sigma_{\mathcal{P}N}, \delta_{\mathcal{P}N}, q_{\mathcal{P}N}, F_{\mathcal{P}N})$ such that $L(N) = L(\mathcal{P}N)$:

•
$$Q_{\mathcal{P}N} \stackrel{\text{def}}{=} \{ S : S \subseteq Q_N \}$$

- $\Sigma_{\mathcal{P}N} \stackrel{\text{def}}{=} \Sigma_N$
- $S \xrightarrow{a} S'$ in $\mathcal{P}N$ iff $S' = \{ q' : \exists q \in S. (q \Longrightarrow q' \text{ in } N) \}$

•
$$q_{\mathcal{P}N} \stackrel{\text{def}}{=} \{ q : q_N \stackrel{\epsilon}{\Longrightarrow} q \}$$

• $F_{\mathcal{P}N} \stackrel{\text{def}}{=} \{ S \in Q_{\mathcal{P}N} : F_N \cap S \neq \emptyset \}$

Example. All words that begin with a string of 0's followed by a string of 1's.

Note. State $\{q_0\}$ is redundant.

Proof of " $L(N) \subseteq L(\mathcal{P}N)$ ":

Suppose $\epsilon \in L(N)$. Then $q_N \stackrel{\epsilon}{\Longrightarrow} q'$ for some $q' \in F_N$. Hence $q' \in q_{\mathcal{P}N}$, and so, $q_{\mathcal{P}N} = \{ q'' : q_N \stackrel{\epsilon}{\Longrightarrow} q'' \} \in F_{\mathcal{P}N}$ i.e. $\epsilon \in L(\mathcal{P}N)$.

Now take any non-null $u = a_1 \cdots a_n$. Suppose $u \in L(N)$. Then there is a sequence of N-transitions

$$q_N \xrightarrow{a_1} q_1 \xrightarrow{a_2} \cdots \xrightarrow{a_n} q_n \in F_N$$
 (1)

Since $\mathcal{P}N$ is deterministic, feeding a_1, \dots, a_n to it results in the sequence of $\mathcal{P}N$ -transitions

$$q_{\mathcal{P}N} \xrightarrow{a_1} S_1 \xrightarrow{a_2} \cdots \xrightarrow{a_n} S_n$$
 (2)

where

$$S_1 = \{ q' : \exists q \in q_{\mathcal{P}N}. (q \stackrel{a_1}{\Longrightarrow} q' \text{ in } N) \}$$

$$S_2 = \{ q' : \exists q \in S_1. (q \stackrel{a_2}{\Longrightarrow} q' \text{ in } N) \}$$

By definition of $\delta_{\mathcal{P}N}$, from (1), we have $q_1 \in S_1$, and so $q_2 \in S_2, \cdots$, and so

: :

 $q_n \in S_n$, and hence $S_n \in F_{\mathcal{P}N}$ because $q_n \in F_N$. Thus (2) shows that $u \in L(\mathcal{P}N)$.

Proof of " $L(\mathcal{P}N) \subseteq L(N)$ ":

Suppose $\epsilon \in L(\mathcal{P}N)$. Then $q_{\mathcal{P}N} \in F_{\mathcal{P}N}$ i.e. $F_N \cap \{q : q_N \stackrel{\epsilon}{\Longrightarrow} q\} \neq \emptyset$, or equivalently, for some $q' \in F_N$, $q_N \stackrel{\epsilon}{\Longrightarrow} q'$. Hence $\epsilon \in L(N)$.

Now suppose some non-null $u = a_1 \cdots a_n \in L(\mathcal{P}N)$, i.e., there is a sequence of $\mathcal{P}N$ -transitions of the form

$$q_{\mathcal{P}N} \xrightarrow{a_1} S_1 \xrightarrow{a_2} \cdots \xrightarrow{a_n} S_n,$$

with $S_n \in F_{\mathcal{P}N}$, i.e., with S_n containing some $q_n \in F_N$. Now since $q_n \in S_n$, by definition of $\delta_{\mathcal{P}N}$, there is some $q_{n-1} \in S_{n-1}$ with $q_{n-1} \stackrel{a_n}{\Longrightarrow} q_n$ in N. Working backwards in this way, we can build up a sequence of N-transitions of the form

$$q_N \xrightarrow{a_1} q_1 \xrightarrow{a_2} \cdots \xrightarrow{a_n} q_n \in F_N.$$

Hence $u \in L(N)$.

Closure under regular operations revisited

Using nondeterminism makes *some* proofs much easier.

Theorem. Regular languages are closed under union.

Define N that recognises $L(N_1) \cup L(N_2)$ by adding a new start state q to the disjoint union of (the respective state transition graphs of) N_1 and N_2 , and a ϵ -transition from q to each start state of N_1 and N_2 .

 (\cdot)

 N_1

lacksquare

 N_2

More formally, given NFAs $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, we define $N = (Q, \Sigma, \delta, q, F)$ by

$$Q = Q_1 \times \{1\} \cup Q_2 \times \{2\} \cup \{q\}$$

$$F = F_1 \times \{1\} \cup F_2 \times \{2\}$$

$$\delta(q, \epsilon) = \{(q_1, 1), (q_2, 2)\}$$

$$\delta((r, 1), a) = \{(r', 1) \mid r' \in \delta_1(r, a)\}$$

$$\delta((r, 2), a) = \{(r', 2) \mid r' \in \delta_2(r, a)\}$$

Proof of " $L(N_1) \cup L(N_2) \subseteq L(N)$ ":

Suppose $w = a_1 \cdots a_n \in L(N_1)$ then there exist $r_1, \ldots, r_n \in Q_1$ such that

$$q_1 \xrightarrow{a_1} r_1 \xrightarrow{a_2} \cdots \xrightarrow{a_n} r_n$$

with $r_n \in F_1$. Then in N we have the sequence

$$q \xrightarrow{\epsilon} (q_1, 1) \xrightarrow{a_1} (r_1, 1) \xrightarrow{a_2} \cdots \xrightarrow{a_n} (r_n, 1)$$

with $(r_n, 1) \in F$. Hence $w \in L(N)$. Similarly we can show that $w \in L(N_2)$ implies $w \in L(N)$.

Proof of " $L(N) \subseteq L(N_1) \cup L(N_2)$ ":

Suppose $w = a_1 \cdots a_n \in L(N)$ then there exist $i \in \{1, 2\}$ and $r_1, \ldots, r_n \in Q_i$ such that

$$q \xrightarrow{\epsilon} (q_i, i) \xrightarrow{a_1} (r_1, i) \xrightarrow{a_2} \cdots \xrightarrow{a_n} (r_n, i)$$

with $(r_n, i) \in F$. But then, in N_i , we have the sequence

$$q_i \xrightarrow{a_1} r_1 \xrightarrow{a_2} \cdots \xrightarrow{a_n} r_n$$

with $r_n \in F_i$. Hence $w \in L(N_i)$.

Theorem. Regular languages are closed under concatenation.

Take NFAs N_1 and N_2 .

An NFA N that recognises $L(N_1) \cdot L(N_2)$ can be obtained from the disjoint union of N_1 and N_2 by making the start state of N_1 the start state of N, and by adding an ϵ -transition from each accepting state of N_1 to the start state of N_2 . The accepting states of N are those of N_2 .

 \odot

 \odot

 N_1

 $igodoldsymbol{ imes}$

lacksquare

Regular languages are closed under concatenation (cont'd)

More formally, given NFAs $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$, we define $N = (Q, \Sigma, \delta, (q_1, 1), F)$ by

$$Q = Q_1 \times \{1\} \cup Q_2 \times \{2\}$$

$$F = F_2 \times \{2\}$$

$$\delta((r,1),a) = \{(r',1) \mid r' \in \delta_1(r,a)\} \text{ for } a \neq \epsilon \text{ or } r \notin F_1$$

$$\delta((r,1),\epsilon) = \{(r',1) \mid r' \in \delta_1(r,\epsilon)\} \cup \{(q_2,2)\} \text{ for } r \in F_1$$

$$\delta((r,2),a) = \{(r',2) \mid r' \in \delta_2(r,a)\}$$

Regular languages are closed under concatenation (cont'd)

Proof of " $L(N_1) L(N_2) \subseteq L(N)$ ":

Suppose $w \in L(N_1) L(N_2)$ then there exist $u = a_1 \cdots a_n \in L(N_1)$ and $v = b_1 \cdots b_m \in L(N_2)$ with w = uv.

Therefore there exist $r_1, \ldots, r_n \in Q_1$ with $r_n \in F_1$ such that, in N_1 ,

$$q_1 \stackrel{a_1}{\Longrightarrow} r_1 \stackrel{a_2}{\Longrightarrow} \cdots \stackrel{a_n}{\Longrightarrow} r_n$$

 $s_1,\ldots,s_m\in Q_2$ with $s_m\in F_2$ such that, in N_2 ,

$$q_2 \xrightarrow{b_1} s_1 \xrightarrow{b_2} \cdots \xrightarrow{b_m} s_m$$

Then in N we have the sequence

$$(q_1, 1) \stackrel{a_1}{\Longrightarrow} (r_1, 1) \stackrel{a_2}{\Longrightarrow} \cdots \stackrel{a_n}{\Longrightarrow} (r_n, 1) \stackrel{\epsilon}{\longrightarrow} (q_2, 2) \stackrel{b_1}{\Longrightarrow} (s_1, 2) \stackrel{b_2}{\Longrightarrow} \cdots \stackrel{b_m}{\Longrightarrow} (s_m, 2)$$

with $(s_m, 2) \in F$. Hence $w \in L(N)$.

Regular languages are closed under concatenation (cont'd)

Proof of " $L(N) \subseteq L(N_1) L(N_2)$ ":

Suppose $w = a_1 \cdots a_k \in L(N)$, then there exist $r_1, \ldots, r_k \in Q$ such that,

$$(q_1, 1) \xrightarrow{a_1} r_1 \xrightarrow{a_2} \cdots \xrightarrow{a_k} r_k$$

with $r_k \in F$. By definition of F there is an $s_k \in F_2$ such that $r_k = (s_k, 2)$. The definition of δ implies that there is exactly one ϵ -transition to get from the first to the second component, i.e. there are states $s_1, \ldots, s_n \in Q_1$ and $s_{n+1}, \ldots, s_{k-1} \in Q_2$ such that

$$(q_1,1) \stackrel{a_1}{\Longrightarrow} (s_1,1) \stackrel{a_2}{\Longrightarrow} \cdots \stackrel{a_n}{\Longrightarrow} (s_n,1) \stackrel{\epsilon}{\longrightarrow} (q_2,2) \stackrel{a_{n+1}}{\Longrightarrow} (s_{n+1},2) \stackrel{a_{n+2}}{\Longrightarrow} \cdots \stackrel{a_k}{\Longrightarrow} (s_k,2)$$

Then, in N_1 , we have the sequence $q_1 \stackrel{a_1}{\Longrightarrow} s_1 \stackrel{a_2}{\Longrightarrow} \cdots \stackrel{a_n}{\Longrightarrow} s_n$ with $s_n \in F_1$ and in N_2 we have the sequence $q_2 \stackrel{a_{n+1}}{\Longrightarrow} s_{n+1} \stackrel{a_{n+2}}{\Longrightarrow} \cdots \stackrel{a_k}{\Longrightarrow} s_k$ with $s_k \in F_2$ Hence $u = a_1 \cdots a_n \in L(N_1)$ and $v = a_{n+1} \cdots a_k \in L(N_2)$, and therefore $w = uv \in L(N_1) L(N_2)$.

Theorem. Regular languages are closed under star.

First attempt:

Take an NFA $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ that recognises A_1 . Construct N that recognises $A_1^* = \{\epsilon\} \cup A_1 \cup A_1 A_1 \cup \cdots$.

Obtain N from N_1 by making the start state accepting, and by adding a new ϵ -transition from each accepting state to the start state.

What is wrong with this?

that recognises $\{ 0^i 1 : i \ge 0 \}$:

Consider the two-node two-edge NFA N_1

The above construction gives the NFA N:

But N accepts, e.g., 010 which is not in $L(N_1)^{\ast}. \label{eq:loss_loss}$

The NFA M recognises $L(N_1)^*$:

Proof: Regular languages are closed under star

Second (correct) attempt:

Take an NFA $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ that recognises $A_1.$

Define
$$N = (Q_1 \cup \{q_0\}, \Sigma, \delta, q_0, F_1 \cup \{q_0\})$$

where

$$\delta(q,a) = \begin{cases} \delta_1(q,a) & q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(q,a) & q \in F_1 \text{ and } a \neq \epsilon \\ \delta_1(q,a) \cup \{q_1\} & q \in F_1 \text{ and } a = \epsilon \\ \{q_1\} & q = q_0 \text{ and } a = \epsilon \\ \emptyset & q = q_0 \text{ and } a \neq \epsilon \end{cases}$$

Proof of " $L(N_1)^* \subseteq L(N)$ ":

Obviously $\epsilon \in L(N)$ because $q_0 \in F$. Suppose $w \in L(N_1)^*$ and $w \neq \epsilon$ then there exist $k \ge 1$ and v_1, \ldots, v_k such that $w = v_1 \ldots v_k$ and $v_i = a_{i1} \ldots a_{in_i} \in L(N_1)$ for each i. Then for each i there exist $r_{i1}, \ldots, r_{in_i} \in Q_1$ such that

$$q_1 \stackrel{a_{i1}}{\Longrightarrow} r_{i1} \stackrel{a_{i2}}{\Longrightarrow} \cdots \stackrel{a_{in_i}}{\Longrightarrow} r_{in_i}$$

with $r_{in_i} \in F_1$. Then in N we have the sequence

$$q_0 \xrightarrow{\epsilon} q_1 \xrightarrow{a_{11}} r_{11} \xrightarrow{a_{12}} \cdots \xrightarrow{a_{1n_1}} r_{1n_1} \xrightarrow{\epsilon} q_1 \xrightarrow{a_{21}} \cdots \xrightarrow{a_{kn_k}} r_{kn_k}$$

with $r_{kn_k} \in F$. Hence $w \in L(N)$.

Proof of " $L(N) \subseteq L(N_1)^*$ ":

If $w = \epsilon$, $w \in L(N_1)^*$ by definition of star. Suppose $w = a_1 \cdots a_n \in L(N)$ then there exist $r_1, \ldots, r_n \in Q$ such that

$$q \xrightarrow{\epsilon} q_1 \xrightarrow{a_1} r_1 \xrightarrow{a_2} \cdots \xrightarrow{a_n} r_n$$

with $r_n \in F$.

Let k - 1 be the number of occurrences of the "new" ϵ -transitions $r_j \stackrel{\epsilon}{\longrightarrow} q_1$ with $r_j \in F_1$. If we split the transition sequence at these transitions, we get k transition sequences $q_1 \stackrel{v_i}{\Longrightarrow} r_i$ such that $w = v_1 \dots v_k$ and for each i $v_i \in L(N_1)$.

Hence $w = v_1 \dots v_k \in L(N_1)^*$