' DEVELOPMENT METHODS FOR

COMPUTER PROGRAMS
INCLUDING A

~ NOTION OF INTERFERENCE

by

C.B. JONES

Oxford University Computing Laboratory

- Programming Research Group

DEVELOPMENT METHODS FOR COMPUTER PROGRAMS
INCLUDING A NOTION OF INTERFERENCE

by

C.B. JONES

Technical Monograph PRG-25
June 1981

Oxford University Computing Laboratory,
Programming Research Group,

- 45, Banbury Road,

OXFORD. 0X2 6PE

Abstr@g&

i relational basis is used for the systematic development

of programs, Abstract data types are defined by models and a

proof method of data refinement is given. Proof rules for various
sequential control constructs (eefe if, while) are given and proved

2 with respect to a denotatiohal semantics for the non~deterministic

tanguage. Monotonicity in the semantics is linked to. the needs of a

stepwise development procedure. Interference from parallel tasks

which can change shared variables is also covered in the development

process, The appropriate proof rule is related to an operational

To Professor A. van Wijngaarden

on his retirement

- Acknowledgements ”

Introduction o o .
0.1 Development Methods .. .
0.2 Rigorous Methods . .o
0.3 Sequential Programs .. .-
0.4 Interference ‘e .o .
0.5 Organisation oo oo .
Chapter 1. Specification os .o .
1.1 HRelations and Operations
1.2 Realisation of Specification
1.3 Data Types .o . ‘e
1.4 Qpecifications via Predicates
1.5 Specifying Order o e
1.6 Alternatives ‘e .o ..
Chapter 2, Data Refinement . .o .o
2,1 Objects and their Properties
2.2 Data Refinement Proofs o
2.3 General Refinement‘ o
2.4 Alternatives oe .o -
Chapter 3. Decomposition for Isolated Programs

341
3e2
3.3
3.4
3¢5

CONTENTS

Sequential Programming Language

Proof Rules . .w on
Justification of Proof Rules
Examples .o 0o .o

Alternatives .o ‘e oo

.y

e

Page

Qwd}
07
0~9
0-10
0-11

25

2-19
230
232

314
329
335
347

Chapter 4. Development of Interfering Programs N
4.1 Extensions to Specification Format o 4=4
4Q2 Realiﬁation (R} .. L ve L) o 4”15

4.3 Operational Semantics for Parallelism .. 4«16
4.4 Proof Rules ® e . . L e LK 4”21

4.5 Justification of Proof Rule . .. ve 431

Chapter ‘5. E}Camples v e e e . e - » , .- o L e s 5"1
5.1 Sorting and Searching .. o . P
5.2 Locating an Array Element .o . ee =9
5.3 Recording Equivalence Relations . e 526

Chapter 6. Alternatives 6 e e s e es C ew .0 6*1

6¢1 Shared Variable P&rallelism o *h e 6”3

6.2 Communication Based Parallelism .e e 6=12

Chapter 7. CQnCIUSiODS o Y o “e .o e 7“1

7.1 Achievements .. ve - .o e N
7.2 Limitations o0 ve X x) . .s 7”4
7.3 Further Work) .. .w e LR LY 7“5

7.4 Bringing into Practice .. e .o ce J=b

References L . L] L2 ¢ .. e L LR L REF“1

Introduction

The development of computer systems faces three major problemss:

i) so~called "tested" systems invariably have residual design
errors
| ii) the cost ofvpfoducing such systems is enormously high,
largely because of the rework necessitated by the late detection of
errors made early in the development process

iii) even when delivered and functioning "according to specifi=-
caibnt" the architecture of computer systems is such that they are

unusable other than by "“professionals".

It is argued in Jones /80b/ that the root cause of these
problems is the way in which the complexity of tasks being tackled

has outgrown the methods being used in their design.

The aim of the current dissertation is to make a contribution
té systematic or rigorous methods of program development. The so=
called '"Vienna Development Method" (VDM) has been applied to the
construction of many‘speoifications of diverse systems (see Bjgrner
/82a/). (The notation used has become known as "Meta-IV'.) The
systematic development of programs fromrsuch specifications is

described in Jones /80a/.

The earlier work has largely ignored the problems of parallelism
and the main incentive to pursue the research reported here was to

tackle this shortcoming. The outcome is the identification and

" definition of a notion of "interference".

The importance of parallelism comes both from the desire to
perform some algorithms at very high speed and from the economic

issues givihg rise to the growth of "distributed computing",

0=3

.,

Owed}

0,1 Development Methods

Michael Jackson has pointed out that the virtue of a develop-
ment.methdd (as.alsdbwith a programming language) lies in what it
inhibits, The interest here is in development methods which make
it vexry unlikely that design errors are undetected. That is, a
development method should provide criteria which are applied at
each stage of development; the consequent error detection should

be such that the next stage can be undertaken with confidence.

A specification must define WHAT a system should do without
making commitments as to how the objectives are to be achieved,
Just one of the reasons for this emphasis is that a specification

must be reviewed by the would-be users of a system, This le

-_neceésitates that a specification be based on an input/output

relations this is the user's only concern. VWhere it is necessary
to discuss an internal state, this must be done in terms of abstract

data types in order to avoid overspecification.

Since the specification is to be the basis of the design, it
must be written in a language which is formal enough to support
an argument of correctness, For large projects the design is likely
to be made in several steps and it is an essential feature of a
useful development method that correctness arguments are possible
in the early stages of design. The importance of this criterion
is that late detection of errors made in the early stages of‘design

decreases the productivity of the development process dramatically.

Any aspect of correctness which is postponed makes all subsequent

work based on the decision a hostage to fortune.

<

0-5

(In addition to the widely accepted observatio: ... the cost
of,correcting»errors»increases logarithmically over p=sjsct stages,
it has'recehtly beenbnoficed that errors tend to have been made in
stéges.which are in inverse order to the stages where they are

detected.)

The sense in which the term "development method" is o hrove
is a basis of understanding and notation for recording a design.
It is not envisaged (as in Jackson /75a/) that a development method
must be normative on selected designs. it'is, of course, true that
a systematic design notation creates a framework in which it is

easier to review design possibilities.

A systematic development method should, then, contribute to the

solution of all three major problems listed at the beginning of this

introduction., To understand that the contribution to the architeoturé

of systems is more than wishful thinking, one need only consider the
role of abstract, manipulatable, models in other disciplines (cf.

Zemanek /80a/).

In order for a design document to be comprehensible, it must
have an explicit structure. The most widely exalted, but by no means
the only possibls. structure is top-down. It is frequently convenient
when writing %o use a form of wordg which implies that the top-down
structure of the degign documentation results from taking decisions
in a top=-down order. - Such a design rule wquld be hopelessly unrealistic

as is shcwn when a true record of a design history (cf. Naur /72a/)

is studied., Whatever is said below, the intent is to achieve

0-6

structured design descriptions but not to impose some specific order

of ’thinking.

0,1

0.2

0.2 Rigorous Methods

Logic is the study of valid d@duqtions. One goal is to reduce
the notion of proof to precise rules of symbol manipulation., Most
mathematics texts are not written at this level of formality.
Essentially a proof of a theorem is an outline:. The steps of a

proof do three things:

i) they reduce the comprehension problem

ii) they make theorems far less vulnerable to counter-example
than unsupported conjectures

iii) they make it clear how a greater level of formality could

be provided}

The.aim of a rigorous method for developing programs is to achieve
.the level of rigour of mathematical texts. In pafticular, a formal
basis for ﬁethods is sought so that it is clear where and how
greater formality can be applied in cases of doubt., This is true
both for specifications themselves and for justifications based

thereon,

(In several places below, verbal arguments are provided as an
introduction to a more formal proof. If reading these does not
convince the reader of the advantages of using formulae, writing

them certainly would have done s0.)

The motivation for the work reported here is to provide methods

which are usable by practitioners of software development, As such,

‘a careful evaluation must be made of any notation or concepts which

0.2

will burden the software engineer. It is, of course, permissible

to use rather more difficult notions in justifying methods than

_afe actually required in their employment. But each problem put

in the way of general understanding of a development method must

have a clear pay off,

One rather unsatisfactory aspect of the state of software
engineering is the paucity of texts which record the accumulated
kndwledge of the subject in an accessible style. It is one of
the objectives of a systematic method to provide a notation and
sfyle in which familiar programming concepts can be defined and their

alternative solutions documented.

043

0.3 Sequential Programs

_ It isiuseful to review the history of attempts to bring
sequential programs under intellectual control. The first proofs
about programs (schema) were proofs of equivalence; the next
stage provided proofs of given, or extant, programs against
specifications; the third stage applied the earlier ideas to the
systematic development of programs. The study of data types and

data refinement came later than the concern with flow of control,

The work in Jones /80a/ is cohcerned with the systematic
development of programs., It differs from the sfandard literature
in a number of ways. Section 3.5 below discusses the use of post-
conditions of state pairs. (The current extensions to tackle the
problems of pérallelism add support to this choice.) Based on
early Qork on data refinement (Jones /72&/) a highly practical

approach to this problem is also presented.

In the current dissertation some of the techniques necessary

to cope with pafallelism have been employed on sequential programs

, (e.g. identification of global variables). A firmer basis has also

been provided for the treatment of non-deterministic programs,

0-9

v

0.4

0s4 Interference

A sequential progrém, or its proof, can rely on the fact that
a variable will have the value last assigned to it., Parallelism
brings with it a notion of interference which invalidates this
assumption., (Communication based parallelism is discussed in

section 6,2,)

The history of the work on sequential programs is being
repeated with parallelism. It is the claim of this dissertation
that little published work on parallel programs satisfies the

criteria of development methods given above.

The basic proposal here is to face the notion of interference
and to provide a place for it in both specifications and justifi-
cation of dévelopment Stepsu Thus it is claimed that a true

development method is provided bys:

i) recognising the basic r0le of interference
ii) recording interference considerations in rely- and
guarantee-conditions

iii) providing proof rules for parallel programming constructs.

In some senses, this dissertation is part of a larger, on-
going, project to refine and disseminate more sysfematic program
development methods. Some of the limitations of the current state

are reviewed in chapter 7.

A\J1

0.5 Organisation

Chapter 1 deals with basic notation and the concept of
specifications chaptér 2 provides proof rules for data refinement;
chapter 3 performs the same service for sequential programming
constructé; chapters 4 to 6 are concerned with parallelism. Some
of the examples are carried right through the text (occasionally
using notation prior to its definition). Many more examples would

have to be given to establish the scope of the methods: for

sequential programs these could be reworked from Jones /80a/.

Sections 1.6,2.4, 3.5 and chapter 6 contain comparisons with
other methods for tackling the relevant problems., No attempt
is made to provide a full exposition where published work is readily

available,
The following numbering scheme is used:

Ti=m page numbers

Os1y veey T chapters, with sections and sub-sections
given appropriate Dewey-decimal numbers

(eege 3.1.1)

Arabic numerals formulae and cross-references thereto
within a section

n.m(p) cross reference to a formula in another
section
Roman numerals proof steps

Where the code of a program is given, the syntax of the Ada
language is used. This is in no way an essential part of the work
presented here and all of the programs could equally well be written

in, say, Pascal Plus (Welsh /80a/).

0-12

Chapter 1

Specification

1=1

12

A specification must constrain WHAT is to be done rather than
HOW the specified behaviour is to be achieved, The external behaviour
of a system is normally easier to define than the internal realisation
details; +the definition of the behaviour should also be more stable
than the internal mechanism - this point is of particular importance
where a number of alternative realisations of the same spec;fication
is to be produced, It is also essential to remember that correctness

can only be discussed in relation to a specification.

One aspect of the freedom from implementation details of a
specification which is exploited below is the use of designs which
introduce parallelism. In chapters 2 and 3, however, specifications
which permit a range of results can be interpreted as defining a range
of valid deterministic implementations. The simple example of a
square root function can be used to illustrate this point. A specifi
cation of square root would presumably allow some tolerance for the
result: this can be taken to define a set of valid deterministic

functions., The consideration of under-determined results has an

influence on much of this work, Furthermore, the fact that partial
functions and operations are to be specified also permeates all that
follows. The technical definition of what is meant by satisfying

such a specification is given in section 1.2,

The natural model of specifications which cater for partial,

under—determined objects is relations: the necessary notation is

‘presented in section 1.1. In spite of the enthusiasm expressed by

some authors (e.g. Burge /75a/, Backus /78a/, Henderson /80a/), most

,L

programming is done using languages in which a state is a thin
disguise for the von Neumann architecture of the computer on which
the programs must run. The term '"operation" is used to distinguish,

from functions, those things which change or use a state.

The concept of specifying by means of an input/output relation
can be readily extended to cover operations., With larger problems,
however, the description of the state itself becomes of interest.
The view proposed in section 1.3 is that the state is an abstract
data type which is characterised by the behaviour of the operations.
Much recent work on abstract data types has concentrated on
"property oriented" specifications (cf. section 1.6 for references);

here the specifications are given via a "model".
P

Although the foundations of the current work are expresséd in
terms of relations, it is more convenient to present and reason
about particulaﬁ specifications using logical expressions: the
connection between these styles is discussed in section 1.4. Section
1.5 links the work presented here to those parts of VDM which are

concerned with combinators.

1.1 Relations and Operations

This section fixes both the basic notation required and the
concept of an operation. The logic and set notation used is
introduced here informally. For a more careful treatment see

Abrial /82a/.

1.1.1 Notation (Logic, Sets and Relations)

The truth values are written:

TRUE, FALSE

The conventional propositional operators are denoted by (in

decreasing order of priority):

~N AN VY = &S

These operators are defined (only) for the given truth values.
One way of reducing the problems with UNDEFINED is to use bounded

quantifiers:

(VieT st n(i); q(1))
(Jier st p(i); a(i))

The semicolon with the universal quantifier can be pronounced "it

follows" and with the existential quantifier as "for which",

Another form of logical expression which is useful in avoiding

UNDEFINED values is the conditional expression. Thus the "&" of

Jones /72a/ (cf. cand in Dijkstra /76a/) is defined:

(p & q) is the same as (if p then g else FALSE)

...;‘[-:, .

1‘1’1

10

i
12

13

14

15

In spite of these very strict methods of dealing with UNDEFINED, a
more relaxed usage is permitted when there is little danger of

confusion,

vstandard get operators are used:

Uﬂ“Céi_éqﬁx?p

The operator yielding the cardinality of a finite set is written:

card S

Distributed union and intersection (the latfer only for non--

empty sets of sets) are written:

union S8, int SS

Explicitly given sets (the empty set) are written:

{e1,.e2, veey en}} ({})
Implicitly defined Sets are denoted by:
{ie1 ot o(0))

The following basic sets are used:

Bool =" {_’._I_.‘I_i_UE, FALSE}
Nat => {1, 2y see }
NatQ = {O, 1, ...}

Int = {eeey =1, 0, +1, +u.]

Relations are viewed as sets of pairs:
VeV A weW » pair(v,w) ¢ VX W

The explicit constructor (pair) is omitted where there is no danger

of confusion.

16

16

17

- 18

19
20
21
22

23

24

25
26

Projection functions exist: -

firsts VxW -V, second: Vx W - W

The "pair" function is normally avoided by using:
R:v ¢ w for vpair(v,w)eR

Ve w for pair(v,w)

In the remainder of this sub-section relations are assumed to

be over V (i.es RgV x V) and S is assumed to be a subset of V,

Thent
a =1}
U =VxV

ES= [sesﬁses}
R'“1 = {w«»vﬂR:v«»w}

R1; R2 = {ue—vw_s_j;_ (HveV; Rliuer v A R2zv<->w)}

Notice that, although the same symbol is used for relational
composition as the programming language connective, their semantics
do not match., In fact, the resolution of this problem with non-

deterministic programs costs some time in chapter 3.

When a set appears in a context where a relation is required,

the appropriate identity or diagonal relation is to be used. Thus:

» {first(pr) st preR}

g
8
o
it

T
B |
j=+]
i}

{second(pr) st preR]

1ol

1141

27

28

29

30

31

32

33

34

35

36

37

A relation, R, is a partial order if:

E,cR, RNR ' =E, R; RcR

A strict (irreflexive) partial order R is a relation such that:

from which it follows:
EVnR=_(L

A relation R is a partial function provided:

and the pairing assertion as:

Revir w

A relation (function) is total when:
dom R =V

from which it follows:

=1

Evglu R

The type of a total function is written:

R: Vo>V

A relation (function) is a surjection ("onto") provided:

rng R=1V
from which it follows:

-l
EVQR s R

1-8

38

39

40

41

42

43

44

45

1.1

The type of a total relation which is "onto" is written:

R: VeV

A one-one function (bijection) is shown bys

R V2V

A relation, R, is an equivalence relation providing:

¢R, R: RgR‘1

Well-founded relations play an important part in program
termination arguments. Given some (partial) relation >, the
conventional definition éf well~foundedness requires that there
are no intinite aescending chainss

~(dfeNat = v; (MieNat; £(i) > £(i + 1)))

It is sometimes easier to see that a set is well-founded by stating
that for any non-empty subset of V, there must be some stopping

value:

(Vscv st s#1]; (Isles; ~(Js2es; Dist e s2)))

Tt is an immediate consequence of 42 that " > " must be
irreflexives
E,ND= 0
and furthermore:

>ﬂ'>" =N

(Although a well-founded relation is not necessarily transitive,

its non~reflexive transitive closure is well-founded.)

Section 2,1 shows some interesting examples of well-founded

relations.

Te1.2 Operations

An operation is viewed here as a relation on states. Various
ways of defining sets of objects, including the use of data type
invariants, are introduced in section 2. In this sub-gection, a

set of states (St) is assumed to be known. Thus, operations are:
OPC St x St

The specification of an operation is also viewed as a relation:
SPS St x St

This clearly cofresponds to fhe proposed input/output view of a
specification. The intuitive meaning of such a specification is

that any acceptable realisation must be defined over the entire
domain of the relation (i.e. a realisation must terminate and deliver
an answer over the prescribed set) and that, qhen restricted to the
domain of the specification, all of the answers created by a
realisation must be consisteni with the specification. Consider

the following examples:

MULTP = {<‘x!y!r> > <X',y',1"> st Y >/ 0 AI" = X % y}

Here, the state is shown as a list of three values. The clause

"y > 0" can be thought of as a pre-condition, and a satisfactory

1-10

1.1,

implementation might remove this restriction, thus a realisation

which satisfies this specification is:

{<x$y,r>“> <x'yy'yr'> gtr' =xw y}

The specification in 3 does not determine the values of all of the

variables after execution, thus another satisfactory implementation

would bes
E Cre¥yxd ¢ <x'yy'yr') st (Af y 2O thenr' =sx ¥y ax' =xay' =y
) else ' =X -y AX'=yAy'= x)}

The examples above show that the notion of satisfaction is a
partial order on specifications., The aim of chapter 3 is to provide
the rules by which realisations can be shown to satisfy specifications.

One satisfactory decomposition of 3 isg:

R:=0; while Y # 0 loop MULTB endloop;

MULTB = {(x,y,r) o xYy',r') st T x # y =t xtayla O\<y'<y}'

Notice how MULTB, which can be thought of as a specification, is written
in the program: this usage is justified in chapter 3. Realisations of

7 which give rise to linear and logarithmic performance are:
Re=R + X; Y=Y - 1;
if EVEN(Y) then X:=X%2; Y:=Y-*2; endif;

Ri=R + X; Y=Y = 1;

These examples should have indicated how the use of relations

as specifications leavesuseful freedom to the realisation.

In Jones /80a/, operations were extended to allow a type clause,

Such "general operations” can be used to specify procedures or funcfions

but the extensions are straightforward and are considered in section 1.4.

1.2

10

11

111

1.2 Realisation of Specifications

This section makes precise the notion of satisfying a
gpecification, The property concerned with a specification being

defined over some set iss
R defover S & Scdom R

(In this section P,Q,R will denote relations over V; S,T,V sets).

Some obvious properties ares

SCT A R defover T = R defover S

R defover S A T&V<«>V = R; T defover S

Q defover (dom R) =T; @ defover dom (T; R)

!

The relation concerned with partial correctness is simplys
Q psat R € Q¢cR
Some obvious properties ares

P psat R = 8; P psat R
Qpsat R = P; Q psat P; R
P psat S; R; T = P psat R

S; Ppsat R A T; P psat Q = (suT); P psatr(RuQ)

For a realisation, or another specification, to satisfy a given
specification it must be both defined over an adequate domain and,

over that domain, be consistent with the specification:
R sat SP & R defover dom SP A (dom SP); R psat SP

The converse relation iss

@ satby R <« R sat @

1-12

ii

iii

12

13

14

15-
16

1.2

The relation sat is a partial order (») on relations

(ef. 1.1.1(27)k

R defover dom R, (dom R); R psat R

Qsat R AR sat Q = dom R = dom Q
= R =@Q
P defover dom @ A Q defover dom R = P defover dom R

(dom Q); P psat Q A (dom R); Q psat R => (dom R); P psat R

. Pgsat Q A Qsat R = P sat R

It is shown in chapter 3 that the non-deterministic language
is monotone with respect to the sat order: it is this fact which
justifies the use of the language constructs with imbedded

specifications.

An alternative way of thinking about relations of the form of
1.1.2(2) is to regard them as functions:
fest —>f(st)

where the | element corresponds to undefined:

st; = stull]
A given relation, R, corresponds to:
fR = AseSt.if scdom R then {s' st Ris v s'} else {1}

If the constructs of the programming language were defined on this
basis, range elements would arise which contain both 1 and
elements of St. It is then possible to show that the satby order is

the same as the Smyth order (Smyth /78a/):

P satby R & fpl.: fR
fL g © (Vaest; Lef(s) v £(s) 2 a(s))

1.3

1.3 Data Types

Tn section 1,2 it is assumed that the effect on the state is
exactly the aspect of an operation which is to be specified., The
term “abstract data type" has achieved wide use in gpite of the
fact that it is not always precisely defined. The view taken here
is that an abstract data type is characterised by a set of operatiohs;
the operations are defined as above, but the state is considered to
be hidden. Thus, it is only the behaviour in terms of certain given

types which is constrained by the specification.

Farly papers on program proofs almost invariably used factorial
as an example. The "factorial" of the abstract data type papers is
certainly the LIFO stack. Consider a simple stack of integers.
Operations might be EMPTY to initialise an empty stadk; PUSH to
add an integer onfo thebstack; POP to yield the most recently inserfed
integer and to simultaneously vemove it; ISEMPTY to determine whether

or not the stack contains any integers. The required behaviour must

be expressed in terms of the "given" data types Int and Bool. The
state itself is important because of the effect that the operations
have on each other. Section 1.6 discusses the "properiy oriented”
approach in which the semantics of the operations are given by‘
equations which relate the operations, Here; data types will be
gpecified in terms of a model for the state. This'model, however,
serves only to link the operationé together and its detailed structure

is not part of the specification. It must be confessed that there are

dangers of over-specification in such "model oriented" specifications

and section 1.3.4 addresses this problem and others concerned with

chooging appropriate models. 1In large specifications the structure

of the state plays a vital rble in achieving a concise specification.

An abstract data type is, then, specified by a "type scheme"
(cf. sub-section 1.3.1) and a "model" (cf. sub-section 1.3.2).
Here again, this very formal framework is relaxed somewhat in
subsequent chapters, Given two models for the séme type scheme, it
is possible to determine whether the behaviour of one of them satis-
fies the behaviour of the other with respect to tbe given typess

the notion of "model satisfaction" is defined in sub-section 1.3.3.

It is perhaps worth observing that singlé operations like
MULTP in 1,1.2(3) can be thought of in the abstract data type frame-

work by including read and write operations for the variables,

1.3+1 Type Schemes

A type scheme for an abstract data type provides its name, the
names of any given types and a list of types for the operations

(signature). Thus:

name StackoflInt
given Int, Bool
gignature
EMPTY: - StackofInt
| PUSH: StackofInt x Int — StackofInt
POP: StackofInt 2 StackofInt x Int
- ISEMPTY: StackofInt — Bool

Notice that POP yields both a changed stack and a result. Fﬁrther—

more, POP is marked as partial.

143.1

1.3.2 1=15

It is often expedient to allow for the "given" sets to be
chosen differently for different instances of the abstract data
type; This brings in the idea of parameterised data types and more
is said aboutvconstraining arguments to such a data type in chapter

2. A more general stack might have the type scheme:

T2 name Stack(El)

given Bool, El (no properties required of E1)
signature

EMPTY: —> Stack(El)

PUSH: Stack(El) x E1 — Stack(®l)

POP: Stack(El) = Stack(El) x El

ISEMPTY: Stack(El) — Bool

A readable way of presenting signatures is to use "ADJ diagrams"

(ef. Goguen /75a/), thus:

Stack(El)

1.3.2 Models

A model provides a carrier and an association of appropriate

relations to the operations. The carrier is a set of known objects.

1.3.2

The relations associated with each operation must respect the
signature, The relations may in general be partial but in specific
cases may be total functions. Thus (using the notation of

section 2,1 for lists) a model for 1.3.1(2) is:

Stack(El) = El-list

EMPTY = { <> |

PUSH = {(s,e)=%>"s st ecEl A scEl-list]
POP = {s,-a(_i_‘:ﬁ s,end s} st seBl-list A s 7‘,<>}

ISEMPTY = {s +3(s = <>) st s eEl-list |

Notice that the relations denoting the operations here are all

functional and that only POP is partial.

Lockwood Morris provided a useful, but simple, example of a

non-deterministic specification in proposing a symbol table (the mapping
notation used here is defined in sub~section 2.1.4):

name Symtab
given Id, Addr

si gg'ature
EMPTY: - Symtab

LOOKUP: Id«Symtab —> Addr«Symtab
carrier

Symtab = Id 53 Addr

EMpry = { {} }
LOOKUP = { (id,m)e(r,n') st (if idedom m then m' = mar = m (id)

else (Jacaddr gt a¢ rng m;
r=aan'=mn Tlidwm a} N}
Different models of Symtab can be considered. On the one hand it
might be possible to find a one~one function between Id and Addr.

On the other hand, a realisation might build up a list of Ids and use

1'5!3 1-17

their index as an Addr, Either of these realisations can be shown to
be models of 3 -~5, However, neither of them is acceptable as a

specification because they preempt the non-deterministic choice,

An interesting example of the use of parameterised data types
is a formulation of the "compiler dictionary® problem of Guttag /77a/.

It is straightforward to define a Localdict on a carrier:
Localdict = Id £> Attrs

A dictionary can then be defined in terms of the stack of 1.3.1(2),

1, 2 as:
Cdict = Stack (Localdict)

In such a definition there is clearly a naming problem which is not
addressed in the current work. For a more language oriented

view of this, the reader is referred to Burstall /80a/.

' 1.3.3 Satisfaction of Models

Given two models of the same type scheme, it may be true that the
behaviour of one of them, with respect to the given types, satisfies
‘the behaviour of the other., This sub-section makes the notion of
model satisfaction more precise but avoids being completely formal
because some techniqal problems would cause such a definition to be
rather heavy. A basic technique for proving model satisfaction is
also explained, but this is developed further in sub-gsection 1.3.4 and

chapter 2,

For any particular signature, it is possible to define the set

of "valid.terms".v(One of the technical difficulties alluded to above

118

is that operations which deliver muliiple results complicate this
definition.) Furthermore, it is possible to determine the type of

any such expression. TFor example, using the signature in 1.3.1(2)

(let s1,r1 = POP(PUSH(PUSH(EMPTY(),e1),e2))

let s2,r2 = POP(s1)

i

§2,71,1r2)

<€ (El x B1) x (Stack(El) x El x E1)

The treatment here follows, to some extent, that in Bothe /79a/.
It is tempting to seek a simplification of the set of valid terms and
their types by employing Bothe's technique of using the distinction
between constructor and selector operations. Such a dichotomy would
avoid the problem of results which are mixed states and "given

values" and reduce the set of terms to be considered to arbitrary

 sequences of constructors to which one selector is applied, Unfort-

unately there are difficulties in this plan. It is clear that POP in
1.341(2) is both a constructor in that it creates objects of type
Stack(El) and a selector in that it yields an object of the given
type (E1). 1In this case it is straightforwaid to split the operation

intos

INSPECT: Stack(El) <5 E1

REMOVE: Stack(El) > Stack(El)

This division is, however, only acceptable because the POP operation

is deterministic. Consider an alternative data type:

1e3.3

Notice thatiall valid terms will be built up using a zero argument con-
structor. Thus several objects of the defined data type can occur as
"results" but not as "inputs®.

name Set37

given Nat

signature
INIT: —» Set37

ACCESS ¢ 8et37 x Set37 x Nat
model
Set37 = Natwset

T = § 3,71 1
accEss = {s (s~ {e} ,e) st s # (] Aees

The two possible results of performing two ACCESSes after INIT
yield the values 3% and 7 in either order. If, hpwevér, ACCESS is

‘split into its constructor and selector part:

REMOVE € Set37 x Set37

INSPECT ¢ Set37 x Nat

two INSPECT/REMOVE pairs may result in the value 7 appearing twice.
Nor does it seem to be acceptable to rely on a choice function:
the specification in 3 defines a non-determinism which, in a larger

example, may be resolved by things other than the content of the set.

After this digression; the reader is hopefully prepared to

accept the notion of valid terms and their types as exemplified in 1.

For any madei, each valid term will be associated with a relation
of the appropriate type. This relation will be empity in the case
that an operation is used outside its domain. The notion of model
satisfaction depends only on the given (or external) types and a
function which simply drops those positions in a relation corres-

ponding to the carrier can be defined. For 1:

giventypess (Bl x E1) x (Stack(El) x E1 x E1) = (E1 x E1) x (El x El1)

1-20

A model M2 is said to satisfy another (M1) if:
(Vtevalidterms; giventypes (t in M2) sat giventypes (& in M1))

Thus model satisfaction inherits from the notion of satisfaction
the fact that a valid implementation may be more often defined or

more clogsely defined than a specification.

It would be unfortunate if the only way to establish model
satisfaction were by reasoning about"all valid terms™. A highly
workable approach to data refinement proofs is presented in chapter

23 the first step towards this is to consider a model satisfaction

proof.

Given two models M1 and M2 with carriers St1 and St2

respectively, a relation between the carriers is sought:
REL € St2 <> gt1

This felation is the’cornerstone of a model satisfaction proof. In
essence, it links the elements of one carrier with those in the
other whiéh will exhibit the same behaviour with respect to the
givén types. To see that this relation can indeed be many-many,
consider two rather strange models for fhe signature in 1.3.1(2):
one retains, in addition to the essentialrinformation, the first
value which was ever placed in the stack;r with equal perversity;
the other model redundantly preserves the last value removed from
the stacks. If one of these models were to be shown tovsatisfy the

other, the relation 7 would have to be many-many. Sub=section 1.3.4

discusses how this problem can be avoided.

1.5.4

Given a relation of the form 7, it is possible to extend it
to a relation on the signatures of each operation: equality being
the requirement on the given types. Thus:

REL™'; POP2; (REL xBy) sat POP

A model satisfaction proof then involves showing that the
appropriate extended relations establish such an equation for each
operation., The fact that such a proof is adequate to ensure the
earlier notion of model satisfaction is not surprising: it is only
a generalisation to relations of standard algebraic ideas.
Speéifically, to show that the proof juStifies the conclusion that
the psat relation holds for "all valid terms" involves an induction
on the length of valid terms, The key to the proof is to note
thats

REL; gEr!

contains the identity relation since REL is total (cf. 1.1.1(34)).
A lemma on defover is similar and the overall result relies on the
fact that the function giventypes drops all but the given values

and it is here that the extended relation gives equality.

Examples of" such proofs are given in sub-section 1.3%.4 after

a simplification in the proof method has been discussed,

1.3.4 Implementation Bias

‘Even with simple examples like Stack, model satisfaction proofs

as introduced in sub-section 1.3.3 are unnecessarily difficult., In

121

=22

cases where the operations themselves are defined by relations, the
use of a relation on the carriers (cf 1.3.3(7)) is very cumbersome.
The reason for already reviewing the material on proofs in this first
chapter now becomes clear: in this sub-section, a criterion is

proposed for gpecifications which will simplify subsequent refinement

proofs, In particular, necessary conditions are given which engure
that the carrier relation becomes a "retrieve function" (homomorphism)

- see chapter 2.

The first observation, then, is that a good sPecification'should
have the property that, for any chosen modél, the satisfaction proof
can be performed with a functional relation between the carriers.

How is this to be achieved? Clearly, it is not desirable to have a
test based on all models., Fortunately, a more convenient test has

been suggested (Jones /77b/).

Supposé a model is such that two different elementé of its
carrier cannot be distinguished by any of the operations of the data
type. Such a model has, in some sense, a redundancy; it will be
said to be biagsed. That is, with such a specification some represent—

ations will be easier to prové correct than others.

A good gpecification is one without bias,

The first test, then, is whether all distinct elements of the
carrier can be distinguished by terms of the operations. An even
simpler test is offered below, but first it is worth reviewing an

example., Consider the following type scheme:

14344 : ' 1-23

name Set

given El, Bool

~signature
INITs -» Set
ENTER: Set x El = Set
ISPRESENT: Set x E1 —> Bool

(The example is presented as a "students in classroom problem" in

Jones /80a/.) An obvious carrier for this problem is El-set, but

suppose that instead El-list is chosen, as followss

Set = El-list

INIT = { <> |

ENTER = {(1,e) «»17<e> st edelems 1]
ISPRESENT = {(1,e)¢>(e€ elems 1)}

There are then many (n factorial) representations of a set (of

cardinality n). For example:
<el,e2> and <e2,el)

both represent the same set. More interestingly, there is no term
in the operations which can distinguish these two elements of the

carrier, The model in 2 is therefore said to be biased.

In many cases, the test for bias cénrbe extended to become a
positive rule, If a function can be defined, solely in terms of the
operations of the signature, which decides equality of the carrier,
then the model is without bias, Consider, for example, the type

scheme of 1.3.1(2) and model 1.3.2(1,2) - an equality function is:

124 , 1v3.4

3 eq: El-listxEl-list —» Bool
eq(11,12) 2
if ISEMPTY(11) A ISEMPTY(12) then TRUE
else if ISEMPTY(11) v ISEMPTY(12) then FALSE
(let 11',e1 = POP(11)
let 12',e2 = POP(12)
el = e2 Aeq(11',12'))

els

©

If, however, a model had been based on a carrier with a list plusg a
counter, a danger of bias would exist. PFor example, if the POP

operation were to reduce the counter by one but remove nothing from
the list then the following two elements of the carrier could not he

digtinguished by the operations:
La, b, ’ Layc>,l

Notice that there is nothing wrong with such a definition in terms

of its external behaviour -« it is identical with the oriéinal model,

It is only tﬁaf proving some representations correct with respect to

it would be more difficult than with 1.3.2(1,2). 1In fact, it is

exactly when trying to prove that two differently biased specifications
model each other that a many-many relation between carriers is

required (cf., example in sub-section 1.3.3).

It is interesting to consider the relationship between the
operations and the (unbiased) models. If the POP operation is split
as in 1.3.3(2), it is possible to consider dropping some of the
operations. Without INSPECT the model of 1.3.2(1,2) is biased in
that any two stacks of the same size cannot be distinguished., An
unbiaéed model fér a data type with the reduced set of operations is

simply a counter (NatO). If, in addition, the REMOVE operation were

1.3.4 | 1=25

deleted, even this simple céunter would be biased aﬁd a single
Boolean value to record whether anything had ever been put on the
stack would be the carrier for the appropriate unbiased model,
Reverting to the full signature (1.3.1(2)/1.3.3(2)) other cases
can be considered, If the REMOVE operation is absent, only the
last value on the stack can ever be accessed and the appfopriate

model is & single element.

In each of the cases considered so far, it i§ obvious how to
establish the lack of bilas by defining the equality test. If,
however, the ISEMPTY operation were deleted, it would no longer be
possible to give a decidable equality test: either partially
decidable predicates or the more general argument given above about

nall valid terms" must be used.

The next point to address is the sufficiency of a function
(from representation to specification) in a model satisfaction
proof, Although the full rules about such "retrieve" functions are
discugsed more fully in chapter 2, an informal argument is given
here. Suppose the relation between the carriers (cf. 1.3.3(7))
related one representation element(tg two differént abstract elements.
If the functions based on the representation were correct, then there
could be no way of distinguishing between fhe two abstract elements,
Therefore the model which does distinguish them would be biased and

should not have been used as a specification.

In fact a biased model can still be used as a specification for

some implementations. Consider, for example, the biased stack

1=26

1.5.4

model which preserves elements internally after they have been POPed
off the stack. A representation which preserves the complete
history of the operations can easily be proven correct. The
objecfion is that the model is biased towards implementations which

pregerve at least as much information.

After the discovery of the fest for bias, it has been applied
to many existing specifications. The‘fact that very few biased
models were uncovered is a comment on the relative ease of using
the model oriented approach to specifications., One exception is in
common enough use to warrant comment., In many papers (e.g. Owicki
/75a/) a buffer is modelled by a list of fixed length and two
counters, There is then a problem of distinguishing the empty and
full buffers. One way in which this difficulty is circumvented is

by making the counters record the total numbers of inserted and

'removed elements, Apart from bringing gratuitous overflow problenms,

this is obviously biased because none of the buffer operations can
distinguish between queues which only differ by their "age". Another
example which arises in section 2.1 is the definition of a bag (i.e.
multiset): a model based on lists is biaséd 80 the specification

given is based on mappings.

Clearly, it is possible that more than one unbiased model exists
for a data type. In this case the relation between the carriers
becomes a one-one function (isomorphism). There may, however, be
other criteria which prompt a preference for one of a family of iso-
morphic models. Reverting to'the example of 1,2, a model could be

given based on ordered lists (the order would be fixed by a data type

1.3.4

invariant - cf, chapter 2): such a model would be unbiased!
Although surprising, this corresponds to the role of (unbiased)
specifications in théﬁ a retrieve function can always be written
to this carrier éimply by arranging far a sort. The model is,
however, intuitively lessvsatisfactory than one based on sets and
an additional specification rule can be derived which giﬁes
preference to carriefs with simpler data type invariants. Another
ekample of this rule is provided by the example in 2.2.1(9). A
model based on two sets requires a data type invariant asserting
that the two sets are to be disjoint; an'isbmorphic, but simpler

model, can be based on a mapping to Boolean values,

The notion of (lack of) bias for abstract data types can be

compared with that of "full abstraction" in denotational semantics.

1=27

128

1.4 Specification via Predicates

Relations are used as the underpinning of the notions of
specification and satisfaction but it is easier to reason about

particular programs if the specifications are given by predicates.

For a simple, non-deterministic, function the specification might

be given by a type clause, pre-condition and post-condition:

arbs: El-set & El
pre-arbs(S) 2 § # {}
post-arbs(S,r) 2 reS

The pre~condition is in general a predicate of all inputs and the

post-condition is an input-output relation constraining the relation

between all inputs and all outputs. The purpose of this section is
to propose extensions to this format to cover operations without

making the specification too cumbersome,

"Operations" will be specified by defining a set of states; a
pre-condition which is a predicate of one state; and a post-condition

which is a predicate of two states, thus:

St= o &
pre: St - Bool
post: St x St — Bool

The pre-condition can be interpreted as defining a subset of the
universe of states over which the operation must terminate; about
states which do not satisfy the pre-condition, the specification has

nothing to say. The post-condition can be interpreted as defining

" which final states are acceptable for any valid initial state.

Notice that operations are again specified to be partial and may be

under-determined.,

1-4

1.4‘

WKNPRE/
STRPOST

Tt will not be permissible to further congtrain the initial
states in a post-condition, thus:

(Vs est; pre(s) = (Jorest; post(s,s"))

A specification in the form of 2 also requires that the final
astates are in the defined set. (The alternative to using data type
invariants, as in Chapter 2, to limit sets is to put the onus on
the post-condition, This is more cumbersome.) Strictly, it is
always necessary to prove the existence of a result satisfying the
post-condition. However, since the design of a program is a con-
structive proof, a formal existence proof is only justified in very

rare cases.

The meaning of a specification via predicates (of. 2) is given

by fixing the relation it denotes:

R = {s@s'ast ¥ St st pre(s) /\post(s,s')}

Mo emphasise the point about termination, the notation of
chapter 3 can be used to state that for a program P to be valid

with respect to 2, it must be true that:

(Vsest st pre(s); sel [P])

From the definition of sat (cf. 1.2(10)) it is immediately
obvious that a given specification (preg/postg) will be satisfied
by pren/postn if the new pre-condition is weaker and the new post-

condition is stronger:

(st,pren,postn) sat (St,preg,postg) if
(Vs est st preg(s); pren(s)) A
(Vs,s'e st st preg(s); postn(s,s') => poste(s,s'))

1-30

In Jones /80a/ the reference, within predicates, to components
of the state was either by positional parameter or selector. An
alternative is used here which results in a clearer and more compact
specification, The idea is to list for each operation the global
variables to which it has access, their types and whether read or

write access is allowed (ef. glocon/glovar in Dijkstra /76a/). The

values of variable names (upper case) are referred to by the correse
ponding lower case identifiers; primed identifiers denote final

values. Thus the example of 1.1.2(3) might be written:

6 MULTP
globals Xsrd Int, Ys:rd Int, R:wr Int
pre vy »0

post r'' =x %y

But notice that this prevents any overwriting of the variables X and
Y. The original specification is regained if "rd" is changed to "wr"

for both variables in the list of globals.

One advantage of this form of specification is that it can be
interpreted in a "larger state". Given a list of globals and a
state with at least its variables, the post-condition can be completed
by adding clauses which require that read only or unreferenced

variables are unchanged. Thus with:

7 FACT
globals N:rd Int, FN:wr Int
pre n 20

post fn' = n!
in a state with variables N, FN and X, the completed post~condition

ise

1.4

10

"

postFACT fn' =n! An' =n Ax' =x

(Notice how the names of pre- and postw-conditions are generated when

they are used outside the specification.) If, however, N had been a
wr global then no constraint would have been generated: neither the
post-condition nor the access constraints inhibit a realisation from
overwriting this variable. An instance of how this specification
style saves writing unnecessary "frame predicates" can be given by

specifying the initialisation:

INIT
globals FNs;wr Int
post fn' =1

This post-condition completes, in a state with N and FN to:
fnt=1An'=n
(Notice that pre-conditions are omitted when TRUE - i.e. for total

operations.)

A further advantage of the use of specifications using globals

is apparent if parallelism is considered: it is then not enough to

know that a value is the same in the final as in the initial state =~

it is ofteh necegsary to know that a process cannot possibly change

the value.

The general operations of Jones /80a/ include input parameters

and results. The specification style adopted here is to fit these
into the syntax of a programming language. For example, in Adas

function F (X:in T1) return RES:T2;
globals AsvrT3, Bswr T4

spec
pre
post

end

1=31

1.5

1.5 B8pecifying Order

Although it is clear that a specification should state WHAT a
system should do (rather than HOW it is to work), not all systems
fit the input/output picture naturally. For example a database
system with update and query transactions must define the order in
which transactions are to be processed. One approach (used in "2Z" -
cf, Abrial /79a/) is to assume that the entire sequence of trans-
actions is available ag a state component, But even thén it is

necessary to define state transitions so that the transactions are

processed in sequence.,

The approach adopted in VDM is to include, when necessary,
features for defining order in the meta-language. (Individual
components can still be specified by post-conditions.) The capability
to define order is anyway mandatory because of the wish to use the
meta~language in the design of a systems a design is often defined
by decomposing a task into a number of sub-operations which are to

be used in some particular order,

It is necessary to choose between using the sequencing constructs
of a particular programming language or defining a set of combinators
for the meta-language. '"Meta~IV" adopted the latter course (cf,

Jones /78a/). The combinators are chosen forlook familiar to
programmers but their semantics is defined denotationally.

Relatively little concern was given to the problems of non-determinism

and the definition of arbitrary order of sub-expression evaluation in

BekiG /74a/ is not entirely satisfactory.

In this dissertation, chapter 3 defines a non-deterministic
programming language fragment which is used to record design
decomposition, The semantics is given denotationally in terms of

relations.

For further discussion of the overall structure of a system

specification see Bjgrner /78a/ (see also Jackson /80a/).

1.6 Alternatives

This section considers some of the -alternative approaches to
recording (formal) specifications. The work on abstract data
types has created an extensive literature., For a fairly recent

bibliography see Dungan /79a/.

1.6,1 Specification of Single Qperations

The standard literature on program correctness proofs (e.g.
Floyd /67a/, Hoare /69a/, Dijkstra /76a/) uses post-conditions which
are predicates of single states. Since a program is normally

required to realise some input/output relation, this is not in

itself adequate., One way of relating the final values to the starting

values is to use free variables for the latter. (Manna /69a/ does

try to avoid these free variables but makes a division of the state
components into input/internal/output variables.) It is clear that
relations between an input and an output state provide a more natural
model of a specification., The cost, however, of using posteconditions
which are predicates of two states ig that thé proof rules associated
with justifying program decomposition become more cumbersome (cf.
chapter 3). This aspect of the comparison is discussed in section

3¢5

In Dijkstra /76a/ use is made of variables whose value is 'held
constant": an approach based on a systematic treatment of this idea

is the "specification logic" of Reynolds /81a/.

- —

NN

1.642 Abstract Data Types = Model Oriented Specification

The approach taken in this chapter to the specification of
abstract data types is '"constructive" or '"model" oriented. The
"zt gpproach in Abrial /79b/ is also based on specifying via a
model (more is said about "Z" in connection with parallelism in

chapter 6).

"7" objects are viewed as mappings froﬁ'selectors to values.
Based on this denotation it is straightforward to'combine operations
("&") on two different, but overlapping, states into new (atomic)
operations. This is certainly an advantage over the view of
constructed objects taken here (cf, sub-section 2,1.10). The wish
to be able to distinguish classes with identifical components is

the reason for the constructor function approach of '"Meta~IV".

‘The "CLEAR" language (Burstall /80a/) permits both model and
property oriented specificafions. This is obviously a way to offer
the best of both worlds. The semantics of "CLEAR", including
parameterised types, have also been preciseljdefined (Burstall /80b/).
The denotational semantics is based on Category theory (see also

Lehmann /78a/).

Both "Z" and "CLEAR" attempt to provide rigid syntaxes for
specification languages like those of programming languages. There
are obviously advantages in doing this if mechanical processing is
envisaged (seebsectioh 7.4). bThere are, however, many issues in the

design of specifications which have yet to be resolved: a concern

1—.36 ‘ : . 1.6:3

with syntax would appear to violate Christopher Strachey's first

law of language design (cf. Stoy /77a/):

vDecide what you want to say before you worry about how to say it".

1.6.3 Abstract Data Types - Property Oriented Specificatiohs

Most of the literature on abstract data types makes a virtue
of avoiding the model oriented approach which is discussed above
(e.g. Lucas /[69a/, zilles /80a/ and referénces therein, Guttag /77a/).
The general idea is to provide a signature of the types of the
operationsvand to define the semantics by equations which relate the
operations to each other. Since there is no model provided, the

danger of bias discussed in sub-gection 1.3.4 is avoided.

This overall approach is referred to in several different ways.
The term "axiomatic'" comes from viewing the equations as axioms for
the operéfors. The term "“algebraic" is slightly confusing since a
text book like Maclane /79a/ which uses Peano's axioms to characterise
the natural numbers, gives a construction for the rational numbers.

Here, the term "property oriented" is used.

Several authors have taken advantage of both model and property
oriented specifications to characterise data types - Burstall /77a/,
Bothe /79a/, Ehrig /80a/. It is interesting to quote from Burstall
/80a/s

"The abstract /property oriente§7 method is more elegant but

more prone to mistakes",

1.643 IR 7f f,“?'.f 137

There are a number of recognised problems with the property
oriented approach. Certain fairly Simple'dafa types require either
"hidden functions" or infinite collections of properties (cf.
Veloso /79a/). Fﬁrtﬁermore, as the abové gquote suggests, it is not
easy to be sure that a property oriented specification is correct:
the titles of Veloso /79a/ and Veloso /79b/ make this point quite
wéll - a model oriented specification of the data type in question

is a simple classroom exercise.

Another difficulty with property o?ignted specifications is
the digsimilarity of specificationé:for basically similar data
types. For example, to change thg modél of the LIFO stack in
1¢341(2), 1.3.2(1,2) into one for a FIFO~qﬁgue it is only necessary
to change the order of the concatenatibn.éand, presumably, rename
the operators). The property oriehted.specifications for these two
conéepts are very different and a finite stack requires a "hidden

function',

The beguiling simplicity of an axiom like:
1 REMOVE(PUSH(st,e)) = st

is slightly confusing, The equality must be interpreted (for some
implementations) as a link between equivaleﬁcerclasses. Thus proving
that (biased) stack implementations satisfy property 1 still requires
something like retrieve functions, . fhere‘are also a number of
technical details like the use Of total operétions and the need to
have aeté?ministic results which aré consequences of the normal

mathematical view of algebras. (Bill Rounds is studying ways of

1~38

1.6.3

avoiding these restrictions and Bothe /80a/ tackles non-determinism

- see also Ehrig /80a/.)

Thevabove’cémments should not be interpreted as an attempt to
denigrate the property oriented approach, It is argued in Jones
/81a/ that distinct roles can be found for the different approaches
(in the same way that constructive and axiomatic semantics of
programming languages are useful for differént purposes): property
oriented specifications are required forrthose objects which are to
be used in other programs; model oriented specifications are more

useful where the task is to construct the object,

It is clear that some formal connectioh‘between the approaches
would be valuable., It is interesting that Guttag /80a/ moves quite
a long way towards uSing parts of both property and model oriented
spedificafions: the paper actually "axiomatises" what a model would

makes

8D = Ln nd Line

The firmest theoretical basis for propefﬁy.oriented specifications
is provided by the ADJ group (e.g. Goguen /75a/). The general idea
is to define the initial algebra by ﬁsing the equétions (properties)
to divide the free algebra of the siénature; ‘The requirement, that
implementations are proved by finding a hombmorphism from the initial
algebra to the representation, is the reverse of the retrieve functions
congidered here (cf. Bothe /79a/). The problem of proving implement- |

ations correct has prompted work on "final algebras" (Kamin /80a/,

‘Wand /77a/) and "functional specifications" (Ehrig /80a/).

Chapter 2

Data Refinement

2

2=2

Historically the work on data refinement (e.g. Milner /71a/)
followed that on program decomposition proofs (e.g. Naur /66a/,
Floyd /67&/, Hoare /69a/). This remains true even if one looks
further than the standard refereﬁces: Rod Burstall recalls Christopher
Strachey describing data refinement ideas in the mid-1960's - but
program flow proof ideas occur in Turing /49a/ and Goldstine /47a/.
However, it is now widely accepted that data refinement proofs are
of greater importance than those of program decomposition. Further-
more, experience in teaching the two subjects in the Oxford M.Sc. in
Computation suggests that it is better to tackle data refinement
first., One reason for this emphasis is that specifications of large
systems (e.g. Bjgrner /78a/, Bjgrner /80a/, Bjgrner /81a/) are built
around a state. In fact, it is often possible to document mosf of
the important aspects of a system solely by recording the state (cf.

Pascal in Tennent /81a/).

Another argument for giving priority to data refinement proofs
is that they are used in the earlier design phases of large projects.
Since errors which are introduced early are likely to fe very
expensive to correct, it is more important to employ formal methods

here rather than later in the design process.

This chapter presents the basic objects which are used through-
out the current work. Section 2,1 does this less formally than is
suggested by section 1,3. The idea of developi;g "theories" of data
types (cf. Dahl /78a/, Reynolds /79a/, Jones /79a/, Abrial /80b/,
Burstall /77a/) is emphasised. The collection of such bodies of

knowledge is one of the crucial steps necessary to begin to make

2-3

program development into an engineering discipline: only in this

way can the necessity to start each proof "from scratch' be avoided.
The choice of appropriate concepts and lemmas can also make sube
sequent proofs far shorter and more intelligible, The material

from section 2.1 ig used freely below, In fact, not all of the
material is required below, this being one of the areas where the

work presented here is part of a larger plan. The reader is there{ore
recommended to pass over section 2,1 and consult it as necessary

below,

Refinement proofs are covered in section 2.2. An attempt is
made in section 2.3 to achieve the same sort of generalisation with
refinement proofs which can be obtained by the use of theories of
objects. That is, results about classes of refinement proofs are

considered,

In defining the types of infix or prefix operators, Burstall

/80a/ is followed, e.g.:

< ¢ Int x Int — Bool

~ __% Bool — Bool

A number of operators are distinguished below by underlining (e.ga
gggg). The choice of which functions enjoy the privilege of no
parentheses around their arguments is mainly governed by frequency

of use. When considering several data types it appears difficult to
follow Reynolds /793/ in using specific graphic symbols for predicates

and operators,

Data type invariants are predicates which restrict a set of

objects, For example:

Name ¢ 0:0bj |

They can play a very useful role in recording information about a
specification., Chapter 10 of Jones /80a/ argues that such
restrictions are useful both to implementors and for subsequent

revision of a specification. The set of objects denoted by 3 is:
Name = o e Obj gt ...0...}

Because of the way in which specifications of the form of 1.4(2)
are interpreted, a data type invariant is an extra constraint on an

operation,

The same notation is used when agsumptions are to be recorded

about the parameters of parameterised data types. For example:

Poset(E1)

with £..% El xEl - Bool

—

inv (Mo, y, 2 €Bl; s ga A

2-5

2.1 Objects and their Properties

The objects, operators and their properties used in the current
work are presented in this section. In each subw-section, a set of
basic operators is presented first followed by others which are
defined, in terms of the basic operators, directly (by recursion) or

pre-/post- conditions.

2.1.1 Auxiliary Arithmetic Operators

min: I¢Int x J:Int «» R:Int
post (r=4i v r=j3) A rgianrrgi

max similar

mod ¢ I:Int x JsInt <5 R:Int

pre j #0

post (0€r<j v §<r<0)aA
(dmeNato; m * j+ r=1)
isdivisor: I:Int x J:Int %% B:Bool
pre Jj#£0
isdivisor(i,j) £ imod j =0
iscommonfactors I:Int x JsInt x K:Int £5 B:Bool
pre k £ 0
iscommonfactor(i,j,k) € isdivisor(i,k) A isdivisor(j,k)
ishef: I:Int x JeInt x K:Int £ B:Bool

pre k#0
ishef(i,j,k) & iscommonfactor(i,j,k) A
~» (k' € Int st k < k'; iscommonfactor(i,j,k'))

2=6 ' 2162

2.1.2 BSets

The basic operators are introduced in section 1.1. The

signature can be represented hy:

In writing specifications it will normally be sufficient to consider
finite sets of elements. Thus El-set is a subset of the power set

of El containing only the finite sets.

Properties of the set operators are ﬁsed in proofs without
comment (identity, associativity, commutativity, distributivity and
absorption). The subset order (&) provides a well-founded order on

El"-‘set ¢

2.1.3

Further notation for sets is useds

-—

fi..x] 2 {jemt st i€ j <k}

2 isdisj: El-set x El-set —» Bool
isdisj (81,52) 2 s1N 82 =1}

3 isdisjs: (El-set)-set -+ Bool

isdisjs (SS) 2 (Vs1,52e58 gt s1 # 5235 isdisj (s1,52))

4 maxs: S:Poset(El) & m:El

pre §# 1
post e€S5 A (Vdes; a4 ¢e)

5 mins similar

6 applys: El=set x (E1 — Elp),—é Elp-set
applys (S,f) 2 if(e)’_s__i;_ ees}

Notice that, strictly, this should be defined ass:

7 »treElp_S_z(geeS i r=f(e))]

24143 Relations

The operators are as introduced in section 1.1.

Thus:

2-7

2.1+4 Mappings

Pinite functions are often sufficient to write a specification,

Such maggings will be defined by

D

53

R

D

%

R
The domain operator is used freely on‘mappings. Other operators are:

(0% R)x (D% R) —» (D& R)
={d © (if dedom M2 then M2(d) else M1(d)) st
de (dom M U dom M2)} |

T
mT

—U__. +M: (D@ R)xM: (D% R) % (D& R)
pre isdisj (dom M1, dom M2)
MYUM =M T M

— M sz R)xD—set—a(D R)
M g= {d.'-* M(d) st de (dom M s)}

— \ _ (D R) x D-set = (D ,w,,an)
M\ s fd = M(d) st de(dom N -)]

Notice map union is commutative ~ this is, in fact, the only reason

for introducing another symbol., The ADJ diagram for the mapping

operators is:

20104

2.1.5

2.,1.5 Bags (Multisets)

Multisets are a convenient halfway house between sets and lists
in that the multiplicity of an .element is significant while order is
not. As such, they are useful in many specifications. Once again,

finiteness will be assumed, Thus:

Bag(El) = E1 5 Nat

The operators on bags are:

2=9

2_10 o 2.1.6

1 emptybag() = {1
2 mpcbagel(b,e) £ if eedom b then b(e) else O
3 dombag(b) & dom b

4 unionbag: B1: Bag(El) x B2: Bag(Bl) —> R:Bag (E1)
post dombag(r) = dombag(bl) U dombag (12) A
(Ve edombag(r); mpchagel(r,e) =
mpcbagel(bl,e) + mpchbagel(b2,e))

Notice that identity, associativity and commutativity properties do

hold for bag union whereas absorption does not.

5 subbag(b1,b2) £ dombag(bl) & dombag(b2) A
(Ve e dombag(b1); S
mpcbagel(bl,e) < mpchagel(b2,e))

6 The irreflexive version of subbag is a well=founded relation on
(finite) bags. This result follows from the fact that the sum of

the multiplicities of elements must be finite.

A weaker ordering is given in Dershowitz /793./.

7 addelbag: B:Bag(El) x E:El ~> R:Bag(El)
post dombag(r) = dombag(b) U {e a
mpcbagel(r,e) = mpcbagel(b,e) + 1 A
(V£ edombag(r) st £ # e; 7
mpebagel(r,f) = mpebagel(b,f))

201.6 Lists

Lists (otherwise called sequences or tuples) are again restricted
to being finite. A carrier on which the basic 6perators are defined

iss

1 El-list € M:Nat 2 El ,
inv. (JneNat0; domm={1. nl)

2 El-list! = El-list - {[<>)

2.1.6

The operators and their types are shown by:

- Only two basic operators need be defined directly in terms of

the model:

3 len 1 = c¢ard dom 1

4 for 1<1i ¢ lenl,

1{(i) = 1(i)

Note the left-hand expression denotes list indexing while the right-

hand expression denotes application of a mapping.

Explicit lists will be written by listing the (not necessarily

distinct) elementss

5'_ <e1,82, seeyen> = {1 > 81,2 > 2,000 ynl en}

2=11

2-12

10

11

12

13

14

Other operators are defined:

inds 1 = {1..len 1}
elems 1 = { 1(i) st ie inds 1}

L1sEl~list x L2:El~list - RL:El-list

post len rl = len 11 + len 12 A
(Vieinds 113 ri(i) = 11(i)) A
(Vie inds 12; r1(i + len 11) = 12(i))
Notice that the empty list is an identity for concatenation and that

the operator is associative but is neither commutative nor

absorptive.

(The idea to use the names "first"/"last" for elements and
"beginning"/"ending"for lists was suggested by 1Ib Sorensen.

The shorter abbreviations yield the elements.)

ft: El-listl — El
f81 2 1(1)

1t: El-list1l — El
1t1 2 1(len 1)

beg: L:El-list! —> RL:El-list
post rl " <1t 1> =1

ends L:El=list1 — RL:El-list
post <ft 1> " rl1=1

conc: (El=list)=-list - El-list

cone 11 2 if 11 = <> then <> else (£t 11) " conc end 11

Given a well~-founded order on El (<), the lexiéal order of

(finite) lists is well-founded:

2.1.6

2'1.6

15

16

17

18

19

20

21

22

23

24

2-13

lexord: L1:El-listl x L2:El-listl > Bool

lexord (11,12) &
(ImeNat; (YneNat st n <m; 11(n) = 12(n)) A
(m = len 1141 v 11(m) < 12(m)))

List operators have been defined and used in many papers (e.g.

Reynolds /79a/, Dahl /78a/, Jones /80a/, Abrial /80b/). A

distillation of the operators found in the literature is given.

subl: L:El-list x M:NatO x N:NatO0 *> RL:El-list

pre m<n+ 1< lenl+ 1 '

post len rl =n-m+ 1 A ;
(Vieinds rl; r1(i) = 1(i + m = 1))

isprefix; El-~list x El~list -» Bool
isprefix (11,12) £ len 11 ¢ len 12 A v
(dne inds 12; 11 = subl(12,1,n))

igsuffix similar

issubstring: El-list x El-list —> Bool
issubstring (11,12) 2 (Jm,ne inds 12 gt m& n+ 15
11 = subl(12,m,n))

del: L:El=list1 x N:Nat > BEl-list
pre n < lenl
del (1,n) 2 subl(1l,1,n~1) " subl(1l,n+1 ,len 1)

modl: L:El-list! x NsNat x E:El %5 El-list1
pre ng<lenl 1
modl(1l,n,e) 2 subl(l,1,n=1) " <e> ~ subl(l,n+1 slen 1)

indexmods Nat x Nat - Nat

indexmod(myn) 2 ((m=1)mod n) + 1

rotate: L:El-list x N;Nat —> RL:El-list
post len rl = len 1 A
(Vme inds 1; rl(m) = 1(indexmod(min~1, len 1)))

rev: LiEl~list — RL: El-list
post len rl =lenl A
(Vmeinds 1; rl(m) = 1(len 1+ 1-m))

2-14 _ 2.1.6

25 maskl: L:El-list x BL:Bool~list % El-list
~ pre len bl = lenl
maskl (1,b1) ¢ if 1 = <> then <> .
elge if ftbl then <ft 1> ” maskl (endl, endbl)
else maskl (endl, endbl)

26 issubseq: El=-list x El-list — Bool
issubseq (11,12) = (I bl € Bool~list st len bl = len 12;
11 = maskl (12,b1))

Implicit list definition was not allowed in Jones /80a/ because
of the danger of giving a "definition®" which failed to determine the

order, Here, implicit lists of the forms
27 <e(i) st ie {1..n}>

- are considered to defines
28 [im e(1) stie {1..n}]

Thuss

29 <£(1(i)) st i€ inds 1>
30 < f£(i) st ie f1ml>

31 < 1(il(i)) st i€ inds i1 >

with obvious constraints, are all allowed.

For sorting problems the following'functions are \isei‘ul:

32 isascending: Poset(El)~list —> Bool
isascending (1) & (Vnefl..len 1-1}; 1(i) < 1(i+1))

33 isuniquel(1) ¢ (Vmne inds 1 st m £ n; 1(m) # 1(n))v

34 bagol: L:El-list —> B:Bag(El)
post bagdom(b) = elems 1 A
. (Veeelems 13
mpcbagel(b,e) = card fzm€i£g§ 1 st 1(n) = e})

. &
P

 ®

[ACERAC Y]

2«15

o o~

ispermutation(11,12) £ bagol(11) = bagol(l2)

Clearly, ispermutation is an equivalence relation on lists,

2.1.7 Covers

As a preliminary to the more specialised concept of a partition,

a cover is defined as:

Cover(El) € ss:(El-set)-set

inv union ss = El
Properties ares .

ftel stee El} € Cover(®l)

C ¢ Cover(El) =
(isec st p(s)] v {union {sec st va(S)U) e Cover(El)

¢ € Cover(EL) A S&C A SP € Cover(S) =
({s'e cgt8'#8) U SP) ¢ Cover(El)

2.71.8 Partitions

Partition(El) ¢ C:Cover(El)
inv (VS§1,82 ¢ ¢ st S1 # 825 isdisj(s1,52)) Ao 8 & ¢

{ fel st e ¢ El1} € Partition(El)

P € Partition(El) = ,
({sePstq(s)}U {union f s€ P st ~q(8)}]) ¢ Partition(®l)

2.1.9 Torests

The only "theory" of real interest presented here is that of

forests (see Rings in Jones /80a/). The impetus for recording these

ii

results came from a dissatisfaction with various proofs of the
Fischer/Galler algorithm (cf. section 5.3): the proofs seemed to
become clouded by results about the data structure which had nothing

to do with the algorithm per se.

The idea of a "forest'" is that a collection of trees over some
set of objects (D) can be represented by a mapping in which '"no

loops" are allowed:

Forest(D) € M: D £ D

inv iswellfounded(m)

(Notice that this representation, and the choice of results which

follow, differ from those of Jones /80a/.)

Some useful functions ares

root:; Forest(D) x D -» D
root(f,d) £ if d ¢ dom f then d else root (f,f(d))

reach: Forest(D) x D = Dmget
reach(f,d) £ if d ¢ dom f then {a] elge {a}l V reach(f,f(d))

The root and reach functions are total because of the ‘constraint'

that the mapping is well-founded.

coll: Torest(D) x D —> D=-set
coll (£,d)2 {e e D st déreach(f,e)] '

Useful properties of forests and their functions can be stated
(use f,f' € Forest(D), c,d,e ¢ D):
reach(f,d) € coll(f,root(f,d))
follows froms ’

coll(f,root(f,d)) = {eedom £ st root(f,d) € reach(f,e) }
root(f,d) € reach(f,d)

2.1.9

2.1,10 ‘ ' 2=17

for r1,r2 € (rng £ -dom £):
r1 = r2 v isdisj(coll(f,r1),coll(f,r2))

d ¢ coll(f,e) = (f T {fer a}) € Forest(Dd)
£* | reacn(f,e) = f [reach(f,e) ® root(f',e) = root(f,e)

(Ve € coll(f,d); root(f T {awc) ,e) = root(f,c))

2,1.10 Constructed Objects

In addition to collections like lists and sets, there is a need
for inhomogeneous aggregates., In programming languages this need is
met with records or structures; here a means of defining "constructed
objects" is introduced. Such sets of objects are defined by an
abstract syntax rule with a "::" as definition symbol. In terms of
~ sets, this can be interpreted as implying a constructor function:

A:#B c ’
A= [mk-a(byc) st b€ Bacec)

mk=A:B x C = A

The only properties required of constructor functions is that they are

uniques

mk=A(x) = mk=-B(y) 4> A=B A x=y

The refusal to give a more concrete interfretation to constructor
functions makes them rather like pointers in a‘capability architecture
(Needham /72a/): objects can only be created by the appropriate
cpnstructqr. Such constructors will also be used in an obviousvway as

the clauses of a case construct (e.g. 2.2.4(9,10,12)).

2-18

2.1.10

Also, analogous to records in a programming language, selectors
can be introduced as a waybof accessing components of a constructed

object: thus for:

t3S1:B 852:C

]
c

51(mk=a(b,c))

|
Q

g2(mk=aA(byc)) =

Notice that the selectors are considered to be functions, for examples

S1: A = B

The approach taken in "Z" (Abrial /80a/) is to view the objects
themgelves as mappings from the selector names to the values of their
components. Although this view has some advantages in combining

objects, such a denotation is not sufficiently unique for some

purposes. There have, in fact, been many attempts to resolve the

problem of making classes of objects distinct in spite of similar

content, 1In the "ULD" (using what became known as "VDL" - Walk /69a/)

explicit flag components had to be inserted in the “abstract" syntax;

ECMA /T76a/ abstract syntax trees had the names of all rules present
in the tree = this made some tree operations very clumsy; the normal
technique in denotational semantics (cf. Stoy /77a/) is to make the

union operator responsible for introducing disjointness.

Chapter 14 of Joﬁes /80a/ defines an obvioﬁs ébstract syntax
notation for building up sets of objecﬁs. Although recursive rules
are permitted, any objéct satisfying such a definition is assumed to
be finite. It is, therefore, permissible to use structurallinduction

(ef. Burstall /69a/) on such objects.

2.2 Data Refinement Proofs

As well as introducing and justifying the proof rules to be
used for data refinement (subesection 2.2.1), a number of practical

points are discussed in the remaining sub-sections,

2.2+.1 Proof Rules

Much of the material on proofs of data refinement is covered
in chapter 1 in developing the notion of "bias" which is used ag a

criterion for a “specification",

It is shown in sub-section 1.3.3 that, for total RELOP, model
satisfaction can be justified by showing that
RIEZL“1 s OP2; REL gat OP1 holds for each pair of representation

and abstract operations. Furthermore, section 1.,3.4 shows the
advantage of using a representation relation:

retr: Rep —» Abs

which is a total surjection.+'3uch functions are referred to,
following Jones /80a/, as "retrieve functions". (Hoare /72b/ might
have called the /& functions "abstraction funcfions" but in fact
used the term "“representation functions"; “Reynolds /81a/ uses the

term "invariants"; Milner /71a/, rather drily, uses "hémomorphism".)
The relational form of the proof rule used below is:

retr '3 Ry retr sat A

if the following conditions hold:

+

cf. sub~section 2.2,3,

2=19

2-20 ‘ 2.2.1

(DOMAIN) R defover dom (retr; A)

-]
(RESULT) dom (retr; A); R psat retr; Aj retr

To justify this proof rule:

i R defover dom (retr; A) DOMAIN
ii retru1; R defover dom (retr_1; retr; A)
i,retr‘1 total, 1.2(4)
1

iii retr '; retr = B ‘ 1

iv retr-1; retr; A defover dom A iii

v retr"1; R defover ggg A ' iv,ii,defover
vi retr‘1; R; retr defover dom A v,1,1.2(3)
vii (dom retr);A ; R psat retr; A; retr) RESULT

viii (dom A); retr"1; R; retr psat retr"1; retr; A; retr-1; retr

vii,1.2(7)
ix retr-1; retr = E » iii,retr is onto
x | (ggg A); retrq; R; retr psat A viii,ix,psat
.*. retrl; By retr sat A Vi,x

In actual proofs, it is more convenient to use a predicate
version of 2, This rule is named for future reference, as are its
conditions., The condition that the retrieve function be a surjection
is stated explicitly (ADEQUACY) because pragmatiéally it is a very
useful check to apply to a representation and even becomes a guide

to desgign.

REFINE retrs Rep -» Abs
(aDEQUACY) (VYaeabs; (dreRep; a = retr(r))
(poMAIN) (VYreRep; pre A(retr(r)) = pre R(r))

. (RESULT) (Yr,r*eR ep; preA(retr(r)) A postR(r,r') = postA(retr(r),retr(r)))

2.2.1 2=21

Notice that the inverse of the retrieve function no longer appears
in the conditions, This makes the rule significantly easier to use.

This rule can be seen as a consequence of 1.4 (WKNPRE/STRPOST).

As an example of a refinement proof, consider the problem of
keeping track of two disjoint sets (this is motivated in Jones /80a/

as the "students who do exercises" problem),

4 St = Id %2 Bool

5 INIT
globals S: wr St
post s' = {]

6 ENTER (N:Id)

globals S: wr St
pre n¢ dom s
post s'=s U [n v PALSE]

7 MOVE (N:Id) |

globals S: wr St
pre s:n v~ FALSE

post s' =8 t In HTRUE}
8 QUERY () return RES:Id-set
globals S: rd St
post res' = {nedon s st s(n)}
A representation might be chosen which uses two separate lists

to record the Ids:

9 St2 3 NL: Id=list YL: Id-list

inv isdisj (elems nl, elems yl)

The retrieve function would link these two representations:

10 retrs St2 -» St
retr(mk-St2 (nl,y1)) 2 {id = PALSE st id € elems n1f U
{ia »» TRUE st idé€ elems y1]

2-22

"

12

13

14

15

Notice that 10 is only total because of the invariant on 9, other-
wise the use of map union (cf, 2.1.4(4)) might be undefined. The
ADEQDACY of the representation is obvious and can be proved formally
by induction on the domain of dom s. The adequacy property
establishes that there is at least one representation for any
abgtract state. It is clear that, since order is not constrained,
there are many representations for each element of St. However, the
retrieve function can bée seen as.inducing an équivalence relation on
the répresentation, and the purpose of the RESULTrrule is to show
that operations on the representation respect.these equiyalences.

The operations on the representation (9) are:

INIT2
globals NL: wr Id-list YL: wr Id-list
post nl' = yl!' = <>

ENTER2 (N: Id)

globals NL: wr Id-list YL: rd Id-list
pre n¢ (elems nl U elenms yl)

post mnl' =nl"<nd>

MOVE2 (N: Id)

globals NL: wr Id-list YL: wr Id-list

pre n€ elems nl ,

post (Jie€ inds nl; nl(i) =n A nl' = del(nl,i) A yl' =y1"<n>)

QUERY2() return RES: Id-set
globals YL: rd Id-list

post res' = elemsg yl

The most interesting of these operations to prove correct is
MOVE2. The DOMAIN condition of REFINE becomess
(V st2€ St2; preMOVE(retr(st2),n) = pre-MOVE2(st2,n))

which simplifies to:

16

2.2
245
isdisj(nl,yl) A neelems nl = neelemg nl
The RESULT rule for this instance is:
(\fstz,stz'e 5t2; preMOVE(retr(st2),n) A PostMOVE2(st2,n,st2') =
post-MOVE (retr(st2),n,st2'))
which simplifies tos
ne€elems n1 A (Jieinds nl; nl(i) = n A nl' = del(nl,i)a yl' =yl%m> 3

retr(mk-st2(nl',y1*)) =
retr(mkwstﬂh],yl))T fnr TRUF}

2e242 Na.ming

The first of the practical points concerning data refinement
proofs is the naming of stages of development. The usage of the
previous sub-section is the basis of a general scheme which covers

‘the possibility of alternative designs for a single specification.

Given a'specifi¢5tion (SPEC), its alternative refinements are
named SPEC.1, SPEC.2, etc. In the desigh of larger systems, it will
be necessary to use more than one level of data refinement. This
will give rise, in an obvious way, to stages named SPEC.2.1.2 etc.

The name of the state will be suffixed in a similar way.

Notice that when an operation is decomposed (cf. chapter 3), the
sub-operations will have new names which do not have to carry the

entire numbering scheme with them.

2.2.3 On Adequacy

The condition concerning adequacy in 2.2,1(REFINE) has been

found to be very useful in design. In particular, it is a check

2=2%

224 2.2.4

which can be applied (once) to the representation rather than a
property of each operation. It has, however, been pointed out by
Lockwood Morris that the condition is not necessary. Consider an

implementation of the example in sub-section 2.2.1 based on:
1 St1ss NS: Idwset VYS: Id-set

and assume that no data type invariant is recorded. Two problems

would arise. Firstly the retrieve function:

2 retr: St1 —» St

would not be total. Secondly, if a subsequent design stage were

to use a representation:

3 St11:: Ms Id.gaNat BL: Bool-list

(or, indeed, if St were used as a representation!) it could not be
shown to be adequate. These two problemg are similar and discussion
is focussed on the second., The "difficulty" is that the objects in

1 in which the sets are not disjoint cannot be>represented by 3 (or
2.2.,1(4)): such objects would, however, never arise if the operations
were defined in the obvious way. The disadvantage of fhis form of
reasoning is that it is forced to rely on the whole set of operations.
Where practical, it appears to be worthwhile to restrict the class of
objects with a data type invariant and to téckle adequacy as a

separate issue.

2.2.4 Inheriting Invariants

A related point to that in the previous sub-section is the

observation that an invariant on one level is likely to reappear in a

2.204 2"’25

more detailed representation. Thus, if 2.2.3(1) is completed with

the invariant:

1 St1se NS: Id-~set YS: Id-set

inv isdisj(ns,ys)
and 2.2.1(9) is presented as a representation of 13

2 St11:: NL: Id-list YL: Id=-list

inv isdisj (elems nl, elems yl)a

jsuniquel(nl) A isuniquel(yl)

then the disjointness part of the invariant has been stated at both

levels. It might be desirable to state the invariant of 2 as:

3 invst1(retr(sti1)) A ...

The preservation of the inherited part of the invariant then follows

from the 2.2,1(REFINE(RESULT)) conditions.

The incentive to factor an invariant into inherited and new
parts is much greater on an example like that of Fielding /80a/,
Modifying the representations slightly, the development of B-trees

(of order m) can be explained in terms of:

4 Btree = Key < Data

5 Btreel & N:Node

inv rti(n)
6 Node = Inode l Tnode 3

T Inode:: NL: Node-~list

inv keysetsord(nl) A balanced(nl) » lennlg 2%m + 1

8 Tnode::DM: Key £> Data

inv card domdm £ 2 £ m

226

10

I

12

13
14
15

16

17
178

18

19

rti (n) £ cases n:
mk-Inode(nl) = 2 € len nl A
(V sne elems nl; szi(sn))
mk-Tnode(mn) - TRUE

szi(n) £ cases ns ,
mk-Inode(nl) -» m + 1 £ len nl A
(Y sne elemg nl; szi(sn))

mk-Tnode(nm) < m £ card dom nm

keysetsord (nl) £
(Vief1..len nl-1}; collkeys(nl(i)) & collkeys(nl(i+1)))

collkeys(n) £ cases n:
mk~Inode(nl)-> union {collkeys(nl(i))st i€ inds ni}
mk~Tnode(nm) - dom nm

ks<< ks' & (Vkeks; (Vk'eks'y k < k'))
balanced(nl) 2 card {depth(nl(i)) st i€ inds n1} =1

depth(n) 2 cases n:

mk-Inode(nl) - union { depth(nl(i)) st i ¢inds nl} ++ 1

mk-Tnode(nm) - {1}

retr: Btreel -> Btree
retr(n) 2 cases n
mk~Inode(nl) = munion {retr(nl(i)) st ie¢ inds nl ¢

" mk~Tnode(nm) » nm

munion: (Key & Data)-set 5 (Key = Data)
++: Int-set x Int — Int-set ‘

As is shown in the referenced monograph, many of the design
issues of insertion and deletion can be addressed with the
representation of 5, Eventually, however, the keys which steer the

search at an intermediate node must be brought in. Thus

Btree2 & Node 2

Node 2 = Tnode 2 , Tnode

2.244

2.2e5

20

21

22

Inode2:s KEYL: Key-list TREEL: Node 2-list
inv len keyl = len treel-l A isascending (keyl) A
(Vieinds keyl; collkeys(treel(i)) « {keyl(i)] «
collkeys(treel(i+ 1)))

Phis part of the invariant can only be stated on this
representation because it only has meaning once the KEYL is present.
The remaining part of the invariant is, however, most easily stated
bys
invBtreel(retr 1(t2))
wheres

retrls Btree2 -> Bireel

is an obvious function which discards the key list.

In practice, the aims of a development method may only bhe met
by éxpanding the invariant at each stage of refinement: the
designer of level n+ 1 has enough to cope with in considering the
specification at level n without being asked to search back through

earlier levels.

2.2,5 On Design

Sub-section 1.3;4 offers some éritetia for judging specifi=-
cations. What can usefully be said about_design steps? It must be
appreciated that the current work offefslé notation for recording
and justifying a chosen design butldoes not claim to be in any way
normative on design decisions (as, for example, does Jackson /75a/

and Jackson /80a[l

2=27

228

2.2¢5

The B~tree example of the last sub-section shows how it is
precisely in design that bias and complex data type invariants
are introduced. This is quite acceptable. The abstract (external)
ﬁehaviour is being met on a more intricate representation. Bias
is introduced where iﬁ is too expensive to ensure that a set of
alternative representations are always reduced t0 a canonical |
element. Data type invariants arise precisely becéuse of the move

away from the "ideal abstraction" to a (too) general data structure.

There must be a balance in choosing stéps'of design between
their number and complexity. Normally, it pays to only bring in
one design decision in a step. Thus, in fhe B-tree example, the
concept of trees is brought in before the problem of how to choose
a path is resolved, vThis leads to an odd description, in the first
step, of the choice of path: collecting all of the keys in each
sub-tree is not a good implementation but is quite acceptable as a
gpecification. Not only does this remove some of the technical
details from what is already a major design step, but it also opens
up a range of choices for choosing paths (1lengths of key, key com=

pression etc.).

Another problem which has been encountered in using data
refinement on large examples_is how‘to handle the intrdduction of a
redundant representation., There may be gopd reasons in a design for
having two entirely equivalent representations of the same inform-
ation. This may be for efficiency or recovery purposes; It appears

to be clearer if this redundancy is brought in at separate steps of

“the design.

2.246 ‘ , 2-29

2.2.6 A (Potential) Problem

The picture created in this section is of data refinement proofs
being conducted on a component basis. Sub-section 1.3.3 has shown
thaf if modelling works on a component basis, then any composition
will also model the composition on the abstract level, Unfortunately,

this attractive picture could faill

| Suppose OPA and OPB are specified in terms of sets and their
sequential composition has been shown to satisfy some overall specifi-
cation, If a representation is chosen in terms of lists it is
possible for OPB1 to have a pre-condition requiring that some list
be ordered; providing the post-conditioh‘of OPA1 ensures this order,
the compositiqn of OPA1 and OPB1 is valid., The problem is that,.
’aSSuming order is not an invariant of the representation, the correct-
- ‘ness no longer follows entirely from a local argument on the components.
Té reprove the validity of the éomposition is not too arduous and,‘in
fact, this problem hardly ever occurs with sequential prdofs; An

exactly analogous problem is, however, encountered in a design

involving parallelism in sub-gection 5.2.8.

2-30 o 2.3

2.3 General Refinement

’Ohe ofithe reasons for developing theories of data types is
td énsure1that a body of (engineering) documentation is developed
aé a result of the use of rigorous methods on individual projects.
It would also be highly desiréble fo collect regults about steps of
data refinement in a way which made'themAuéable by other projects.
No fully worked out pr§posa1 is offered here but a number of criteria

are identified,

A véry simple example of a "general refinement” could be

based on a specification with two lists:
1 St:s Ll1: Bl=list L2: El-list

This can be represented in an obvious way by a single list structure

with pointerss:
2 8t1s: CL: Pr-list Pl; [Nat] P2s [Nat]

5 Prs; COND: EL PTR: |Nat)

with a data type invafianf about loops etc. and an obvious retrieve
function., A parameter concépt like that in "Z" should bé able to
document such a refinement in a way which mékesrit reusable, A
gimilar problem is the refinement‘of stacks (of eléments of dissimilar
size) onto linear storage. The situation, ﬁowever, alreédy becomes
notationally more diffioultvif an arbitrary number of stfuctures

(e.g. lists) are to be represented,

243

A good test example for the ability to rely only on the

essential parts of a representation is the problem of refinement

for‘genefal trees. In Fielding /80a/, both very simple binary trees

f(with'data in the intermediate nodes) and full B-trees (with all

data in terminal nodes - cf. 2.2.4(4-22)) have to be represented in
linear sforage. The same basic problems must be addressed in both
refinements but the differences in node structure make this general

refinement difficult to separate out.

An extreme case of the general problem/of splitting up a

‘develbpment can be found in the work on compilers. The objective

of handling compiler proofs by tackling one '"language concept" at

a time was stated clearly by the Vienna group in the late 1960's.

~ Such division has, however, never been fully formalised. Some work

in this direction is described in Nosses /11a/y Yorris /73a/ and an

inspiring éarly,reCognition of similar problems is given in Cooper
/66&/0

See also Ehrig /81a/.

2=31

232

2.4

2.4 Alternatives

The issues surrouhding the specification of abstract data types
éie-coféred in sectién 1.6« In order‘to reifly model 6riented
specificatiéhs, the concept of using, what is called here, a "retrieve
function" is generally accepted (Milner /71a/, Hoare /72b/, Jones
/72a/). If a "biaéed" representation has been given és,a model then
one possible proof method is to use the rule oqtlined.in sub-section
1+3%.3 where the retrieve function beéomes a rélatidn. .Reynolds
/81a/ brings the specification and'representafioh tqgether with an -
“invariant"., Another approach to this'situation_is to use "ghost

variables", The idea (cf. Lucas /68a/) is to reconstruct the (biased)

specification objects in the representation and thus to make it possible

to define a retrieve function. After a normal refinement proof has
been given, the "ghost variables" can be discarded subject to certain

obvious rules.

In some sense, the need to use ghost variablesiis a symptom of
a pooriy chosen specification., Looking ahead to.the problems of
parallelism, this prompts the question of whether the use of "ghost
variables"’cannot also‘be avoided fhere bylfinding an appropriate

abstraction,

- One other point of cbmparison with alternative approaches is
worth making. When a specification of an operation is given by post-
condition, it is often non-constructive and is in no way intended to

be translatable into an implementation, In spite of the fact that

-they are still dubbed "specifications", there is a tendency to regard

2.4

abstract data types as providing implementations in some very

 high level language (e,g. Schonberg /81a/). This would appear
 to.be,a very dangerous interpretation of model oriented specifi~

cations: no clever selection of set representations would make

the (set based) specification of sub-section 5.3.1 an efficient

implementation,

2-33

2=34

Chapter 3

Decompogition for Isolated Programsg

3?2

The view of specifications as relations is introduced in sub-
gsection 1,1.2. This provides a natural way of treating under-
determined, partial operations. The concept of state is taken to be

central to that of operation because of the ubiquity of the assign-

- ment statement., In this chapter the combinators which are used to

construct useful programs from simpler statements are studied.

Parts of this chapter follow Jones /80a/ very closely. The
proof rules of sub-section 3.,2,2 include, with some revisions, those

in the earlier book. There are; in addition, some new rules (e.g.

IWHILEFIX, FORARB) which have been prompted by the work on

,paralleiism. Because of the basic similarity, only small examples

of the use of these rules are given here (section 3.4), It is, of

course, only on more taxing problems that the decision to use post-

 conditions of two states can really be justified (see discussion in

section.3.5).

A much larger'departure from Jones /80a/ has been made in the
semantic definition (section 3.1) usea for justification of the
proof rules. A denotational semantics based on relations (ecf,
Hitchcock /72a/, Hitchdock /14a/, Park /80a/) is used to cope with
thg problem of nonndeterminacy. The relational form of the proof
rules (cf, sub-section 3.2.1) is proved valid with respect to

denotational semantics in section 3.3 (cf, Lauer /71a/ and Donahue

J153/).

Section 3.2 presents the rules about programming language

constructs as proof rules; in section 3.4 and in larger applications

the same rules are used as an integral part of a development method.

In this mode the combinators appear with specifications as their
sub~components. This»usége is justified in theorem 3.1.2(12) by
showing fhat %he combinators are monotone with respect to the

'vggi ordering. Decompqsition bfoofsvare used later than data refine-
ment in the development oycle.v For this reason the proof rules

tend to be used as check-lists rather than for formal symbol

manipulation.

%3+«1 Sequential Programming Language

’ The language whose Semantics is given bvelow does not include

;any‘notion of parallelism but does permit non-determinism.,

3.17«1 Relational Semantics

Relations have been used because of the desire to incompletely
specify operations. Similarly relations are chosen here as the
denotations for non-deterministic programs. The basic non-
determinism is inherited from the specificationsrbut a "guarded if™
(cf. Dijkstra /75a/) is included to illustrate how non-determinism
in the language itself can be handléd. The guarded conditionél is
defined because it can be used as a basis for the more conventional
conditional statements; these latter are also provided with proof
ruleé in gection 3.é. Although there is no difficﬁlty in defining

the semantics of a guarded while statement, this is not done

because the incentive is weaker.

As observed in Jones /73a/, some care is required in using
relations as denotations, Suppose two non-deterministic operations

are denoted by:

R {aﬂm,bam,ban}

R2

i

i}

{nleaz} | -

Then using the definition of relational composition (1.1(23)):

R1; R2 = la Zy b &> z}

If this were to be defined as the meaning of sequential operation

composition, the language would be impossible to implement. It is .

3701

therefore necessary to avoid the need for look-ahead and to define

the semantics such that the denotation for the compogition of the

. . operations in 1 is:

{a &2

Another facet of the same problem is the nged to distinguish
betweens:

{a «r 2, a +4J~} and {a > z}

Here, Park /80a/ is followed in giving two denofatioﬁ fgnctions -
one which yields the relation (M) and one whiéh yields the set

over which termination is assured (T).

In other places (Bekié /74a/, Bjgrner /78a/), it has been

proposed that a denotational semantics should be defined over the

.absfract syntax of a language. Because the language to be defined

here is s6 small, the definition will use the concrete syntax,

Stmt ::= Composition lGuardedif‘ While‘ Basic
Composition ::= Stmt; Stmt y

Guardedif s:= if Expr —7 Stmt u ces BExpr ~» Stmt fi
While :3= while Expr loop Stmt endloop '

Basic, Fxpr not further defined.

The semantic domains to be considered are:

Tref(St x St)

Trv: St ®Val

The types of the semantic functions are:

-M[.ﬂ. H Stmt ~» Tr

Ml[] s Expr —» Trv

36

10

11

12

13
14

15

pI1 5 stmt -» ¥(st)
[l . Expr - p(St)

Notice that the semantic functions can be applied to either
statements or expressions. Expressions may be partial but their
evaluation is assumed to produce a deterministic result, The
possibility of an expression being undefined is very important
in the presence of arrays etc. (It is likely that indexing
outside the range of an array occﬁrs more often in the condition

than in the body of a while statement.)
The sets of states for which expressions evaluate to true
are defined ass

= f{serlel st Mlel: SH‘_I‘_B_U__F;}

&= nlel -8

>

Cleatly%
isdisj(8, <8)

The denotations of the various statements in 5 are now defined.

For simple compogition:

el w[e2]

{seT[P1]§3(Vs'§gMﬂ?1]: se»s';s'eT[PQﬂ)}

#

Mp1; p2]

o p1; p2]

i

3.1

The problem displayed in 1 to 3 being solved by the use of 7. Notice that

"s" is associative,
~N

For the guarded cénditional:
IF = if et ~pifl...en -»Pn fi

the semantics are:

16

7

18

19
20

21

22

.23v

M [1rl = union { &%; mfpil st 1 €ig n}
plpl= {s ete st (Vi st secﬁi; ser [pill }}

where te = int {17 [eid gt 1<i¢n}N

wioast

\‘J‘.\
. /5 . ‘
union §éi st 1€i<n}

. . . - c s
Non=determinism is introduced whenever the ei are non-disjoint.
Termination can only be guaranteed for states in which there is
no ei whose evaluation can abort and for which some ei evaluates
to TRUE.

For the iterative construct:

WH = while e loop B endloop

the semantics are:

i

M [wa]

7 []

fix(XR,EN/E v & ulsl; »

fix (Ag. Ubfsé(@ﬂTﬂ.B]{) st

ooy

(\7/5:?.}_ MHBE ¢ 8 €28'; s'e S)})

i

The fixed point definition of M is straightforward enough. The
set over which iteration is guaranteed to terminate must, however,
ensure that states are admitted only in the case that all of their
successor states (under M HBiH) will terminate, This universal
quantification makes 20 non~ @ continuous. For & simple.(nonm

deterministic) cage, it is easy to see {hat:
?[[while X # 0 loop X: € {0 .. X1} endloop]| = Nato

But, so far, nothing has been done to prohibit "unbounded non=-

determinism" (cf. Dijkstra /76a/). Withs

WH = while X # 0 loop IF endloop
IF = if X< 0 ->» Xt e NatO[[X>0 —» Xi=X-1 fi

3-8

ii
iii

iv

vi

vii

viii

u [1r]

Then:

It

{x<—->x'_s__§x<0’/\x'>)0v x >0 Ax‘:x-—‘t}

i

7 [1r]
1 []
F(s)

While one fixed point iss

Int- {0}
fix (Ns. F(s))

{O} Y {x_s_& x # oa(Vxr ﬁM[IF]:x@x‘; x'eE S)}

#

3 (Int) = Int

the 1limit is:

003‘ ™ i}) = Nat0

If, however, Park /80a/ is followed (into the transfinite);

T}uk {}) = NatO

]

3 1))y = '3(1‘,‘*’(,{1)) Nato Ufieint st i < 0}

Int

~ (Park /80a/ also shows the cormection with the problem of

"fairness".)

There are then two possibilities, Either non;detefminism
should be confined to the bounded case (cf. discussion in sub-section
3.3,4) or the limit of 20 should be computed by the transfinite
union, Fdr the current purposes this issue ééhrbé:left dpeﬁ. The
proof rules of section 3.2 were designed under ihe former
assumption. DavidbPark has, however, pointed out that.the'well—
founded relation VAR could be defined over the transfinite ordinals;

in which case unbounded non-determinism could be handled.

50102) 3“‘"9

24

i

i

FPor the basic statements it is necessary (cf. 3.7.2(5)) to

assumes

(VP €Basic; Tlpl € gom ufrl)

The none-deterministic assignment in 21 being an example of a

basic statement.

3.1.2 Properties - -Tiffﬂc

The definition of sat in 1.2{10) can now be restated: E#@ e dom

[er] sat [Pl <> (1 [er] gefover o [r]a
elel; wulreal psar ulel)
The main result of this subwsection is to show that the program

combinators in 1% to 24 are monotone with respect to sat. Since

 program design will use sat as the touchstone of correctness, this

result justifies the placing of specifications in ¢ombinators.
This appears to be a highiy intuitive justification for the use of

an abstract notion like monotonicity.

As a first step, lemmas are given which show that the
termination set is always a subset of the domain of the meaning
relation,

u [e1] gerover 2 [p1] & mIpel gerover = leell =
MﬁEP1; PQ] defover T EP1; PQﬂ

This lemma can be shown to be true by:

M.[[m;.rz]] =»M[[P1]]; u [rel 3.1.1(13)

dom 1 [p1; p2l =
{segl_g_n}'_Mﬂ:m]] st (:']s' st M [[PJ] : s e’y s'e dom M[PZH)} i

nired

3-10 : | 3.1.2

iii- 7 KP1 PQY = : .
{serlel st (Vor st Ml : s @st; stenlpall) 3.1.1(14)

iv '”sé'l‘[[P‘l] = sedom M[[P1:H : o hyp.

v sE‘I‘HP‘I] A (Vs st MEP1] s¢>g'; s'€ TEP2]) >
(gs'sfMHP1] ser gty g 'THPEﬂ) iv

vi T[[m pel € Tserlpilss (For st ulpil s s sty sren[rel)]

Ciii,v

vii S{sedom u[p1T gt (Is* st ulpdl: seosry stegommlredy]
' hyps.

viii € aom M[p1; pel i

The result for conditionals is similar:

3 N\ (uleid dgefover 7 [Pi]) = M[re] gefover 7 [1r]

The corresponding lemma for the iterative construct requires

an inductlve proof.
}‘4 MHB] defover 'I‘ IIB_” = M[[WH_H defover 'I‘EWH:H
© lets

i }(S):X{\eu {seb __1:_(3‘7:5‘; ML’:B‘:'J: ‘s,f«.ss'/\s'és)}b

i (i) = & . i
111 L) = fseé st (do; mlal: sestaste IAN] d

lets

iv vg(R)zE ~ U & u[B];

~

e
v Q(ﬂ)=E iv

A
~e

() = & ulsl; (") o iv

vi
by i.nduc.tion on n, dom is monotones;

s ;:,,,,O 17 (1 }> aen Oy 70y -

3,1,2 ' 311

viii

ix

xi

xii

xiv

XV

Nows

plwal=
fix(>\s. ~e U{sé(enTﬂBw s

(Vs' st MH : éﬂs'; s' e S)}) 3.1.1(20)

. SE'YI‘[[B]]‘ = s€&dom MI[BJI : hyp.

,seT[B.‘U A (Vs'ﬂMﬂB]}: s &gy steg) =

(s st M[BI{: s ¢*s'; s'eS§) ix

TVH.WH] S rfix (As. ~e U[s&(enT[B])
(33" MEB]: sé’s'As‘GS)}) viii,x

< fix(>\<}. LVUfsed st
(_:_[s'" Mzl . s@s'/\s'es)}) ix,xi

Further, since ’} is monotone and W continuous:

vl ¢ ng 37 (1D xii,i
€ don 6" (0) vii
c gﬁgzg(fix:)jR.EA{éUé\; M[B:”;R) iv

The theorem which collects the results of lemmas 2, 3, 4 and
341.1(24) can now be proved by straightforward structural induction

over 3.1.1(5).

for P € stmt, M [p] defover 1] P]

The n’ext' task is to show that the language combinators are
monotonie with respect to T. 1In the rémé,ihder of this section, the
use of "B", “BR", "WH", "WHR" etc. will"be assumed to be obvious
substitutions in 3,1.1(18) etc. The proofs of the first two lemmas

are straightforward:

A [pir] sat [psls [p15 22] ¢ 1 [pig; por]
(Q'[[Pinl g@ﬁ,ﬂm]})= o [1r) ¢ = [ir]

o,

3=-12

For the iterative construct:

8 [m] sat [3] = v [we] ¢ [wmm]

i T[IWH]:'fix(’X.Q Ufse(e N lsl) st
" | ' o (Vs' stM[{BB s s'; s'e S)})

, 3.1.1(20)
ii S rix (Ms. %6 U {se(8N1[mT) st |
(\V's'_s_gMﬂ.BR]I: s &©s'; s'¢ S)})
14 ¢ v Jum] | - 3.1.1(20)

To show that the language is monotonic with respect to M:

2 /\('I' fril ; m[pir] psat u[rif) = |
T [P1; P2ll, u [pir; pom] psat M [p1; p2]

observes
i e (2 [er; pell M[[m]])smﬂpz]] 3.1.1(14)
Y ole1; pel 5 mlet] 5 w[per] psat u[et]; m[pel imyo
Caai o [er; el o el o | , 3.1.1(14)
iv. v [p1; pel; m[pir] peat w[p1] . hyp,iii

v o fet; 2]y mleirl s w[eer] psat w Je1d 5 w[e2l ii,iv

vi 1[p1; 2] M[[pm; per] psat u[p1; p2] . vi,3.1.1(13)

Similariy:
10 A(r Iril ; u [pir] sat Mfpil)= |
p[1rd; m IIIFRH psat M][IF]]

The corresponding lemma for the iterative construct is:

11 olsl; w0l psat u[e] =

| o - ofwal; w[wmrl psat n[wml |
i 'M[[WH]I_ gfix(xn.’n v & ullsl; r) 3.1.1(19)
U uleml; g 3.1,1(19)

o

11 bl = eix (Mg =

3.1.2

3.1.2

iii

iv

vi

vii

12

(Veer Dwal; sede v sed N o[s])y)
r Tvel , (E o V& u [2r] R) €
| elfwell; (8~ Vg ufsl; r)

by monotonicity:

o lwal; w[vir] psat o [wal ; w [l

o [wnl s w [wmr]l peat (aom w [fwn]); w [unl
v vl ; u[wim] psat m[wm] |

3.1.1(20)

hyp,iii

ivyi,ii

vi

After this preparation it is straightforward,to see that for

any combinator (g H
A (piR) sat Pi ® @ (PiR) sat £(pi)

follows from lemmas 6 to 11,

Monotonicity with respect to the expressions is not shown -

here since it is not used in the proof rules of the next section.

3=13

3=14

3.2 Proof Rules

As indicated above, the intention is to design programs by
showing that some combinator (applied to sub-specifications)
éatisfies a given specification. This is obviously a stepwise
procedure, It would, of course, be possible to prove any such step
of design correct with respect to the language definition given in
sub-section 3.1.1, Since Hoare /69a/‘it has, however, been obvious
that it is far more convenient to conduct suchrproofé on the basis
of specially constructed sets of proof rules.r'Bedausé of the
decision to use post-conditions of initial and final states, the
rules here appear more cumbersome. The divisionrinto separate
conditions does, however, greatly facilitate their use as "checke
lists" for "rigorous" Justifications, (Further comparison with
established methods is given in section 3.5.) In contrast to Tony
Hoare's original poéition,'the rules given here are not regarded
as a semantics for the language. Instead, the proof rules are
proven correct (in section 3,3) with respect to the denotational
semantics of section 3.,1. One effect of this viewpoint is that it
opens the possibility of providing alternative rules for different

uses of the same language construct.

Experience has shown that specification and proof via
predicates is more convenient than directly in terms of relations.

The relational form is, however, presented first and is used in

the consistency proof; one program proof in this style is given in

 section 3.4 for comparison.

5,2

3.241 | © 315

%3.,2,1 Relational Form
Specifications are viewed here (cf. 1.1,2(2))as relations.
It is straightforward to defines
M ‘ISPEC]} = SPREC
T HSPEC]iz dom SFEC
From this it is obvious that, in analogy to 3.1.2(5):
u [sprc] gefover T [sprc]

Also, 1 and 2 show that 3.1.2(1) and 1.2(10) are equivalent.

FPurthermore, from 3.1.2(12) it is clear that:

Hwbile e loop SPECB endloop:ﬂ sat [SPEC] A

[eooy] sat [sprcs] =
[[while e loop BODY endloop] sat H-SPEC],

The simplest of the proof rules is for the sequential

composition of statements.

[[1?1; p2] sat [spac] g

if the following three conditions hold., Firstly P! must terminate

DoM1

DOM2

RESULT

over a sufficiently large set:

1 [sexc] ¢ offe] |
Secondly, P2 must also be used only within its termination set:
g (7 [serc] ; Mﬂlﬂﬂ) € 'J.?[[Pzﬂ

Lastly, the result must not contradict the specification over the

required set:

rlseec]; m[p1];s w[e2] psat m[serc]

."'.L‘

3=16

As plamned, special cases of the guarded conditional

341.1(16,17) are provided with proof rules (cf. sub=-section

%,5.2), The rule for the conventional if/then/else is:
IFTE ﬂ- if e then TH else EL _q_r_xg_l_f_ﬂ sat [[smc]]

providing the following five conditions hold. Firstly, the

evaluation of the expression must be defined:
DOMX 1 [sere] € r[e]

Next, both embedded statements must terminate over the set of
states which they may encounter:

pomrs (v [seee] N %) ¢ ofmu]

DOMEL (7 [spEcﬂﬂ B8) ¢ T[EL]]

Lastly, neither of the potential execution paths should contradict

o .the specification:
mesoLri (7 [seec] 0 8); m [mn] psat w [senc]

RESULTEL (7 [[smc]]n 22); ufee] peat m[sec]

' The obvious rule for the case where the else clause is absent

iss

IFT H'_j_.i e then TH endif] sat [sec]

ifs:
DOMX v [serc] € 2 [e]
DOMIH (z[seac] N &) ¢ o]
RESULTH (T IISPE(;]I N 2y; uf[oa] psat n [serc]

mmsiren (r [lsere]ln), By, psat M [[seec]

3021-1
For the guarded conditional itself:
IFGD [ic er=p1] ... Jensen] sat [serc]

providing 3n + 1 conditions hold; none of the n expressions must

fail for any state required by the specification:

pomx, 7 [seec] € o [e;]
At least one expression must evaluate to true for any expected
state:

. N

DOMC T HSPEC]I € union feist1<1< n13

Each of the n embedded statements must be adequately defined:
' A

DOM; (r [sercl 0 &y ¢ r[p:]
Finally, none of the n potential paths should contradict the
vspeCification:

RESULT; (T IISPEG]] N ei); M[[Pi]] psat M”SPECI’

Since the main interest here is on a development method, rules
for the basic statements are of less interest than in the standard
axiométic/predicate transformer systems, It is, perhaps, worth
sketching a rule for assignment:

ASSN [x:=e] sat [serc]
ifs
DOM M [[el defover T [[SPEC]I (and syntactic types match)
RESULY {se(sT (x> u[el s]) st se v [spec]] ¢ [sprc]

If.might’be worthwhile to define, also, multiple assignment because

“its use can avoid over-specification of order.

3«18

A variety of methods are in use for proving results about
iterative statements (e.g. invariants, weakest pre-conditions,
tail induction). They are distinguished not so much by fundamentél
power as by convenience for various applications. Here, a range

of proof rules is offered (all within the relation scheme) which are

- ghown in section 3.4 to have different domains of usefulness., The

 WHILEDN

BODY

‘DOMLOOP

DOMX

reader who is familiar with the invariant rule of Hoare /69a/ will
certainly be dismayed by the number of conditions in these rules.
In forming a judgement on the length it is well to beér in mind
that each condition does correspond to a meaningful résult which
must be established: the separation of these conditions is an aid

to their use as a mental check-list,

The "down" rules are shown in section 3,4 to be useful where

the initial values of variables are destroyed in a computation:

ﬂ-"while o loop B endloop] sat [spuc]

if a set (Sl c St) of states can be found for which the following

conditions hold; 3B is defined on Sl:

(s1N2); MIBleg s1xs1

The required initial states are contained in 81:
? [seec] ¢ s1

The evaluation of the loop test must be defined in any state of Sl:

Slg Tﬂe]

3e2e1 : 3=19

The loop body must be defined whenever it can be executed:

DOMBODY s1Né ¢ olsl

"Falling through" the loop test must not contradict the specifi--
cation (basis of induction):

A

FALL . ~ey psat M ESPEC]

Bgy

The body of the loop composed with the specification must be

contained in the specification (inductive step):
cowr (&8 Ns1); ulsl; m[seec] peat w[serc]

Termination proofs should be an integral part of a development
process. Here, a well-founded relation VAR over S1 (>) must

be provided for which the loop terminates:
STOP Sl~dom VAR € <o
and the body always causes a decrease in the ordering:

DECR (8 N s1); u[B] € war

There are several interesting points about the general form
of iterative rules given here which can be discussed in terms of
WHILEDN., The r8le of the set S1 will be taken over in the predicate
form of these rules by a data type invariant., It'musf be understood,
however, that such “invariants® may be false within the body of the
loop: the BODY condition is only a constraint on the input/output
behaviour. The use of an arbitrary well-founded relation VAR is
more convenient than the more conventional function from statesvto

the natural numbers in three ways!

3.20

11

12

13.

14

i) The ability to have many stopping values can avoid the
necessity to define a conditional expression which, somewhat
artificially, maps them all to zero (cf. integer division

ekample 3.4(14 to 22)).

ii) Some odd formulations like the '"number of trailing zeros in
the binary representation of" (cf. p.110 of Jones /80a/) can

be replaced by natural relations.

iii) More general orderings like bag contaiﬁment for the
indices of out-of-order pairs of elements in a1Sort, or lexical

order, can be used.

One other interesting observation about WHILEDN is that it can

be derived from viewing the iterative construct ass

WH = while e loop B endloop

IF

'ii e ibgg B; SPEC endif

withs

[1r] sat [spec]

being a necessary condition for:

[we]l sat [semc]

as in Lihger /79&/.

Returning now to the presentation of proof rules for iterative

constructs, it is much more useful - especially in design - to have

rules available’whiﬁh include the initialisation, With the "down"

_version of these rules, the first step in design is usually the

3.2

discovery of an invariant relation (REST) which summarises the

relation computed by the remaining iterations of the loop. Thus:

* IWHILEDN [[INI‘I‘; while e loop B endloopﬂ sat ,ISPEC]]

DOMINIT

DoOML.OOP

DOMX

DOMBODY

FALL

CoMP

RESULT

ifs
(s1N2); el ¢ s1xs
REST € S1 x S1
r[serc] < o [mre]
rng (dom SPEC; INIT) & S1
s1€ 1fel
siNe ¢ [s]
X8; E., psat REST
e, ‘Sl Sat v}
(¢ Ns1); u[Bl; mEST psat REST

(dom spEc); i) ; mesr peat n [semc]
The STOP and DECR conditions are as for WHILEDN.

The "down" rules are most convenient where the weakest pre-
condition type logic is weakest (i.e. where input values are
modified by the body of a loop). But in this same area 1t is some~
times easier tb design by choosing 'smme "consi:éht expressions"

(this is illustrated in 3.4 (14 to 22)). Thus:

WHILEFIX ﬂ.while e loop B endloop]} gat H-SPECH

ifs

(s1nN 8); [8] ¢ s1xs1

EQ,.F>=—_* fis@)s'e”Slel st [[-ex]s = Hexﬂs'z

3e21

322

The DOMLOOP, DOMX and DOMBODY conditions are as for WHILEDN.

Thens

CONSTANCY (s1N&); u[s] ¢ mq

RESULT

S1; EQ; <& psat M [spec]
The STOP and DECR conditions are also as for WHILEDN.

In those loops in which temporary variables are counted up
to the value of some (unchanged) initial value, it is normally
simpler to expresé the effect of the initialisation and early

iterations of a loop in a relation (FRONT). The "up" rule is:

IWHILEUP H&NIT; while e loop B endlopp:ﬂ sat HéPECﬂ

BASIS

CoMP

RESULT

ifs

(s1n8); m[s] ¢ s1xs2

FRONT € St x Sl

- The DOMINIT, DOMLOOP, DOMX and DOMBODY conditions are as for

IWHILEDN. Then:
v [serc I; m [mvrr] psat wmowe
FRONT; &; M[B] psat FRONT

FRONT; <& psat M [semc]

The STOP and DECR conditions are as for WHILEDN.

34242 Predicate Form

The rules presented in this sub—sectionvare (except FORTO

and FORARB) straightforward translations of those in the preceding

‘sub-gection. Section 1.4 proposes that specifications be given by:

342.2

5.2.2 . 3—'23

DoM1
Dom2

RESULT

IFTE

DOMX

DOMIH

St, pres St -» Bool, posts St x St -» Bool
with the proviso:
(Vsest; pre(s) = (Js'e st; post(s,s')))

Thus:s

i}

Mi[St, pre, postﬂ {s ©s' €5t x St st pre(s) A post(s,s')}

o [st, pre, post] = fsest st pre (s)]
Because of 2, it follows that; |
THSt, pre, pos{ﬂ & dom M Hst, pre, post.ﬂ
To fit the style‘of thevrules given below a function will be

used:

eval(e,s) = H-e]s

The rules are given without the verbal description of the preceding
sub-sections the more compact form makes reference easier when they

are used.

I[(St,prehpost‘l); (St‘,pre2,post2)]} sat [(St,pre,post)]}

ifs

(VsESt st pre(s); prei(s))

(Vs,s'e st st pre(s); posti(s,s') = pre2(s'))

(Vs,st,s"¢ st st pre(s); posti(s,s') A post2(s',s") => post(s,s"))

ﬂ-ﬁ e then (St,preTH,postTH) else (St,preEL,pos‘tEL)ﬂ _ga;g(l-(st,pre,post)”
ifs

(Vses‘t st pre(s); (dbeBool; b= ‘eval(e,_s)))

(Vsest st pre(s); eval(e,s) = preTH(s))

324 - 3.2.2

DOMEL (Vsest st pre(s); ~eval(e,s) = preEL(s))
RESULTH (Vs,s' € St st pre(s); eval(e,s) A postTH(s,s') => post(s,s'))

RESULTEL (Vs,s' € st st pre(s); ~eval(e,s) A postEL(s,s') = post(s,s'))

IFT [it e then (St,preTH,postTH) endif U sat [(St,pre,post)ﬂ
ifs

DOMX (Vsest st pre(s); (JbeBool; b = eval(e,s)))

DOMTH (Vse st st pre(s); eval(e,s) = preTH(s))

RESULTH (Vs,s' € st st pre(s); eval(e,s) A postTH(s,s') = post(s,s'))

RESULTEL (Vsest st pre(s); ~eval(e,s) => post(s,s))

IFGD [ie e1-(st,prept ypostP)]... [en = (5t,prepn,postPn)] sat
H.(-St,pre,post)jﬂ
ifs |
DOMX 3 (V.s €5t st pre(s);i >(3b6}3001; b = eval(ei,s)))
- DoMc (Vsest st pre(s); \1/ eval(ei,s))
DOM; - (Vse Sf gt_:_ pre(s); eval(ei,s) = prePi(s))

RESULT, (Vs,ste st st pre(s); eval(ei,s) A postPi(s,s') = post(s,s'))

WHILEDN [[while e loop BODY endloop] sat H(St,pré,post)]l :

ifs

“invl: St - Bool

§1 = [sest st invi(s)}

[BODY] sat H(§1,preBODY, pqstBODY)] |
DOMLOOP (Vsest _g._z- pre(s); invi(s))
DOMX (VseSl; (JbeBoor; b= eval(e,s)))
DOMBODY (V's»e Sl; eval(e,s) = preBODY(s))

FALL (Vsesi; ~eval(e,s) =>post(s,s))

1’2

h

3¢242

COMP

STOP

DECR

IWHILEDN

ifs

DOMINIT
- DOMLOOP
DOMX
DOMBODY
FALL

CoMP

RESULT

STOP

DECR

IWHILEFIX

ivf :

3-25

(Vs,s',8" ¢ 513 eval(e,s) A postBODY(s,s') A post(s',s") =
post(s,s"))

var; S1 =»Wfs with <, Min € Wfs
(Vses1; var(s) € Min = ~eval(e,s))

(Vs,s'es1; eval(e,s) A postBODY(s,s') = var(s') < var(s))

I[INIT; while e loop BODY endloop] sat [(St,pre,post)_ﬂ

invl:; St =3 Bool

Sl = {s €St st invl(s)}

rest: S1 x S1 +=» Bool ‘

[INIT]] sat [(St,preINIT, post INT)]I
[Bomr]] sat][(31,preBODY,postBom)ﬂ
(Vs»e St st pre(s); preINIT(s))

(Vs,s' €5t st pre(s); postINIT(s,s') invi(s'))

"(Vs€81;v (gbAGBool; b = eval(e,s)))

(Ve€s1; eval(e,s) = preBoDY(s)) -
(Vsesi; ~eval(e,s) = rest(s,s))

(Vs,s',s"GSI; eval(e,s). A postBODY(s,s') A rest(s',s") =

rest(s,a))

(Vsgst,s',s"esl st pre(s); -
PostINIT(s,s') A rest(s',s") =>post(s,s"))

var: Sl-Wfs with €, Min € Wfs
(Vses1; var(s) € Min ~-eval(e,s))

(Vs,s'e8l; eval(e,s) A postEODY(é,s') = var(s') < var(s))

[iv1r: while e loop BODY endloopv] sat E(St,pre,post)]]

3_26 .) 3-2.2

invl: St - Bool
s1 = [sest gt invi(s)]
[mv1t] sat [(st,preInir,postiniT)]
EBODY] such £hat '
cons: S1 - Val-list

is constant

DOMINIT (Vsest st pre(s); preINIT(g))

DOMLOOP (Vs,s'eSt st pre(s); postINIT(s,s') = invi(s'))
DOMX (Vs esi; (IbeBool; b = eval(e,s))) -
DOMBODY (Vs€Sl; eval(e,s) = preBODY(s))

CONSTANCY (Vs,s' €513 eval(e,s) A postBODY(s,s') & cons(s) = cons(s'))

RESULT (Vsest, s', s" €Sl st pre(s);
postINIT(s,s') A cons(s') = cons(s") A ~eval(e,s") >
post(s,s"))

var: Sl -»Wfs with < y Min € VWfs

STOP (Vsesi; var(s) € Min = w~eval(e,s))

DECR (Vs,s'e 813 eval(e,s) A postBODY(s,s') = var(s') < var(s))

IWHILEUP [[INIT; while e loop BODY endloopﬂ sat H(St,pre,post)ﬂ
if;

invl: St = Bool

51 = fsest st invi(s)}

front:s St x S1 =» Bool

[vir] sat [(st,premnrr, postvar) |

[eony] sat [(s1,presony, postsony) |

DOMINIT (Vsest 8t pre(s); preINIT(s))
poMrooP (Vs,s'e St st pre(s); postINIT(s,s') invi(s'))
DOMX - (Vs esy; (Hb €Bool; b = eval(e,s)))

DOMBODY (Vsesl; eval(e,s) = preBoDY(s))

34242

BAGIS

COMP

RESULT

STOP

DECR

3=-217
(stst, s'€ 81 st pre(s); - postINIT(s,s') = front(s,s'))

(Vs,s',s" €51; front(s,s') A eval(e,s') A postBODY(s',s") =
’ : front(s,s"))

(VséSt,s! €51; front(s,s') A ~ eval(e,s') = post(s,s'))

var:s Sl -»VWfs with €, Min € wfs
(Vsesl; var(s)eMin » ~eval(e,s))

(Vs,s'€ 513 eval(e,s) A postBODY(s,s') = var(s') < var(s))

It would be possible to prove results about for/to style
loops via the equivalent form:

i:=v1; while i€ v2 loop B(i); i:=i+1; endloop

It is, however, more in the spirit of the rigorous method to tailor

a special rule to this task. (The control variable is treated as a

’ _-_1ocal constant in Ada. This is reflected by making B a general

FORTQ

DOMLOOP

DOMBODY .

BASIS

COMP

RESULT

‘operation with an 1nput)

[for i in (integer range v1..v2) 1002 B(i) endloopﬂ sat
K(St,pre,post)]

invls St x Int -»Bool o

= {sest st invl(s,i) A ie _{v1..v2}}'
fronts St x Int x S1 ~% Bool |
l[B(i)] sat (S1l,preB,postB) for i € {v1..v2}
(Vsest st pre(s); invi(s,v1))
(Vsesi; i € v2 =% preB(s,i))
(Vsest st pre(s); front(s,vi,s))

(VseSt,s',s"eSl; front(s,i,s') A 1€ v2 A postBODY(s',i,s") =>
S ' front(s,i+1,s"))

(VsESt,s'e S1; vfront(s,i,s') A i Y v2 Dpost(s,s?))

Notice that termination follows from the form of the construct,

3-28

FORARB

DOMLOOP
DOMBODY
FALL

CoMP

3.242

It is possible to go beyond FORTO to a proof rule which covers
the case where the order in which elements of the index set are
usedbis immatgrial;b It can be very important to record suéh freedom
of order iﬁ a:piogram design because of the difficulty in detecting
potential reordering (or paréllelism) in programs where the commit-
ment to order has been forced by the language rather than the
problem, Thus:

while § #{} loop let c€§ i B(e); S:= §- fef ; endloop

can be handled by:

{[__1_"_9_:; ee § loop B(e) endloop]| sat ﬂ'smc}

ife

invl: St x El=set -» Bool
S1 = ,{sest st invi(s,e) A e 651

‘_ HB(,e)] sat (S1,preB,postB) for e €S

(Vsé Sf st pre(é‘); irivl(s,s))
(Vsest; invi(s,$§) A ceS » preB(s,e))
(Vsesi; post(s, 13,s))

(Vs,s',s"e S1; eeSApostB(s,e,s') A post(s',g—‘{e} ,S") =

,:poét(s,é?,s"))

i

Sii

iii

iv

vi

3-29
3.3 Justification of Proof Rules ‘

A selection of the proof rules of the preceding section are proved
valid with respect to the denotational semantics of sub-section ‘
%.1.1. It is more convenient to undertake these proofs for the
relational versions of the rules. Thus any references to the

vnamed rules in this éection should be taken to refer to sub-section
3.2.1;
3.3.1 Sequential Rule

It is shown that under the conditioné of 3.2.1(SEQ) the
sequential composition must satisfy the specification.
SEQ establishes that [P1; P2 sat {[SPEC:B
K fseec] ¢ o [o1] DOM1
rng (T [[spmc]]; M[m]]) ¢ T [Pzﬁ DOM2
r[seec) € foenlm] s |

(Vs st M[m] iseds'; s'¢ TEPZ_B)} i,ii

THSPECE S T[P‘I; pe] S iii,3.1.1(14)
M[P1; Pzﬂ = M[m]] ; MHPZ] | - o 3,1.1(13)
T&SPEC]; M[P1; 1521! psat MHSPECﬂ ST v ,RESULT
AN [Ph PZB sat SPECF | o 'iv,vi,3.1.’2(1)

3.3.,2 Conditional Rules

In order to justify the proof rule for the‘standard if/then/else
construct 3.2,1(IFTE), it is first necessary to derive the

semantics as a speciai case of 3.1.1 (15 to 17):

330 | 3e3e3

1 IF = if e then TH else EL endif
2 ufrf = & MﬂTH] U & mfeL}
5 ofw] = N ofuly) vt olml)

4 isdisj (8, &8

4

Thus the required theorem is:

5 IFTE establishes that [IF]] sat [smf_:]]

i vlseec] € rlel | DOMX
11 rlsemcd € (U R j 1,3.1.1(10,11)
111 (2 lsrre] N By g 2 [ra] DOMTH
iv (elseecdne)y € 0o Tl iii
similarly:
v (v IsrecdNB) ¢ &N o]lwl DOMEL
vi nlseecl e (ENofwd) VU (LN lanl) iv,v,ii
vii 1 [seee] € o [1r] vi,3
viti (1 [seec] N 8); mIred ¢ w Msprc] RESULTH
ix (v [spre N); wle] € wlserc] RESULTEL

x ((v[[sercd N 2); mIoaly U (r Tsprcd N 2); ulml) ¢
| u fsereY viii,ix

xi [spmc]; ((8; M ﬂ_TH]])\)(J‘e; M [EL]))QM [[SPEEJ ii,x
xii TYSPECB; m [rr] psat » [seec] | | Xi,2

o [1r] sar [semc] vii,xit,3.1.2(1)

3.303 Iterative Rules

The proof of 3.2.1(WHILEDN) is slightly complicated by the
need for induction and is therefore split into parts., The first

lemma isg

3.3653 3-31

ii

iii

iv

vi

vii

viii

ix

ii

iii

iv

WHTLEDN establishes that 813 M-]ﬁ@ﬂ psat M ESPEE“

Use Scott induction (M in 3.1.1(19) is continuous), basis:

(s1;n) =.0. ¢ M Iseecl

inductive steps

s1 € 71hel A DOMX

s1¢ (e U .5 1i,3.1.1(10,11)
%; By € ulspucl FALL

me (51N 8); misl) e ;1 ~ BODY

si; r ¢ M fserc] | I.H.

(s1n 8); mlsY; wilseecl € w[sencl N COMP

(51N 8); misl; » ¢ wlspac] | v,vi,vii

s1; (85 V& mlsl; r) ¢ wUsercl iv,viii

. 513 mlwed psat w Uspecd ix,3.1,1(19)
Then:

WHILEDN establishes that §1 & 7 JH]
s1¢ 7 fel DOMX

rlell = ¢ U R | o 3.1(10,11)

By (complete) transfinite induction on S1 using the well-founded order
given by VAR, basise
s € (51 -dom VAR)
A ,
8 € w~e _ : iii,STOP

. serlwald 1v,3.1.1(20)

otherwises

3=32

vi

vii
viii

ix

xi

xii

3e344

s € S1 N dom VAR

A k3 3 .
for s € ~e argument is as in iv,v; so:

s €6 ii

se ksl vii, DOMBODY
(Vo' st M8l : sess'; st € 51) vi,vii,BODY
(Vs st MEBB: s ©sg'; VAR: s é»s!') vi,vii,ix,DECR
e (Vs st MIB]: sess'; ste T HVJH:H) x,IH

s e 1 fun] . vii,xi,3.1.1(20)
costen] | vyxii

Then finallys:

WHILEDN establishes that [[W] sat H%Pééﬂ

follows from 1,2,DOMLOOP.

3,3.4 On "Healthiness"

Dijkstra /76a/ requires that any putative proof rules should
satisfy certain "healthiness" criteria, This is necessary because
no model is given of the underlying language. Although the‘use of a
denotational semantic basis for the language hefe removes the need
to address this question, it is interesting to consider the notion.
The analogous concept to "weakest pre—conditionﬁ might bevthe largest

set over which a program matches a specification., Thus:

1s: Prog x (St X St)-» If"(St)

1s(P,R) is largest S such that

serlr] A s; nlrl psat R

34344 3-33

The "law of the excluded miracle™ becomes:
2 1s(p,) = 1}

which follows from defover.

The monotonicity requirement becomes:
3 q¢€¢mrR = 1s(P,q) € 1s(P,R)

which follows from defover and psat.

The third condition becomes:
4 1s(P,Q) N 1s(P,R) = 1s(P,qQMNR)

The argument being similar to that used by E.W. Dijkstra.

The fourth condition becomes:
5 1s(P,q) UV 1s(P,R) € 1s(P,Q UR)

because, withs

H

i q=1s(P,q)

ii r = 1s(P,R)

]

111 JpJaefover ¢ aFl defover r
iv .*. IpY gefover (q Ur)
v aulrl caars ufel ¢ n
vi (qUr); ufr] € qur

e qgVr € 1s(P,Q UR)

To see that 5 is not an equality in the non-deterministic case,

consider Dijkstra's example:

P = [[x':e {1,2}1
Q= {,xﬁx’ 8t x' = 1}

R = {Jc**x' gi x! = 2}

3-34

.In connection with the discussion in sub-seotionv§.1.1,vit
should be mentioned that the rule for introducing existential
quantifiers would have to rely on an assumption of bounded non-

determinism.

34344

344

3=35

3.4 Examples

The chosen examples illustrate points of contrast between the
Variousfproof rﬁles rather than providing realistic applicationg «
some more interesfing uses are contained in chapter 5. With the
exception of the very first example (1 to 5), the predicate form
of the rules is used in each case. Unqualified references to the

names of proof rules should be taken to refer to sub-section 3.2.2.

Consider a specification for factorial:
StssN:Int FN:Int

SPEC = {mk-5t(n,fn) e>mic-St(n*,fn') st n P 0afn' = nl # e}

Notice that negative values for N are deliberately allowed in 1 to

show the rdle of a "pre-condition",

 Since no-constraint is put on the final value of N, a design

which destroys N is permitteds

FACT = [while N # 0 loop BODY endloop |

[BODYB = imkest(n,fn) e nk-St(n',fn') st fn* = fn % n an' = n-1}
The overwriting of the initial values must be handled by a proof
rule (not a state ex{enSion)'which'keeps'traék'df thé_stétes

inveolved:

3.2.1 (WHILEDN) is designed specifically for such caseé. Thus to show:

- FACT sat SPEC

Sl ¢ st

-

inv nyo

3-36

ii

iii

iv

vi

vii

3.4
Then BODY becomes:
N
(s10 n £0); ooyl €s1xs:1

DOMLOOP:

dom SPEC € Sl

DOMX ¢

dom ”N;GOE;?St 2 s1

DOMBODY:

s1N n/,é\o € dom Eond |

FALL:
N
~n # 03 Ey, psat SPEC
froms

'_{ml_c-st(n,'fn)e-amk--St(n,fn) st n=0} € SPRC

COMP:

ix

xi

A
(n #0Ns1); ulsooyd; wPseec] psat m fsprc]
froms »

(an',fn' € Int; n D0 Aafn' =fn¥na n' = n-1a fn" = n'_l A fn') 2
{ik-st(n,fn) emk-st(n",fa")] € SPEC

and with a well=founded relation:

VAR = {mk—St(n,fn) émk—st(n',fn')r‘g_i_;_ 0£n'< nl

STOP:

Sl-dom VAR € ~n # 0

' DECR:

xii

BODY € VAR

3.4

ii

iii

iv

vi

33T

As an illustration of how the separate conditions serve as a check~

list, the same example can now be tackled using the predicate form

of the proof rule:

SPEC ,
globals N:wr Int, FN:wr Int

pre n 2 0
post fn'=nl#fn

FACT is as in 33 BODY is:

BODY
globals N:wr Int, FN:wr Int
post fn'=fn ¥nA n' = n-1

To éhow:
[raceY sat Fsemc]

use WHILEDN with:

- invl(mk-8t(n,fn)) n 20

DOMLOOP becomes:

n20=n %0

DOMX s

Test defined on a superset of 8t

DOMBODY ¢

n)0 an# 0 =TRUE

FALL:

n=0=)fn=n\.*fn

COMP:

n#£0A fn? =fn¥nAn'=n-1 Afn" =n',|.)kfn' =3 fn" ==n,!»fn

3-38

vii

viii

ix

10

11

Then withs
var: S1-» NatO

var(mk-St(n,fn)) ¢ n

STOP

n=0 = w~(n#o0)

DECR:

n' =n-1 z>n*'¢n

As is pointed out in sub-section 3.2.1 the rule which deals
directly with initialised iterations is frequently of more use.
Although the while loop of 6-8, 3 could be considered to be one
component in a sequential decomposition, such a design step would

be far harder to understand than one which recognises the natural

affinity of initialisation and loop body. Thus with:

 SPEC

globals - N: wr Int FNs wr Int
pre 1 »0
post fn' =n

a design can be sought with the aid of IWHILEDN. An cbvious aim

for the "rest" of the iterations is to compute:
fnt =n! # fn

Which suggests a program:

FACT = [[FN:=1; while N # O loop BODY endloop J|

Thus RESULT becomes:

m'*'=naAafn'=17Af" = n'! ¥ fn' Dfn" = n!

3.4

344

ii

iii

iv

vi

12

13 1

ii-

3-39

Al

and FALL:

n=0 ‘bfn=n!’*’fn»

A pre~condition cah be sought for BODY by considering the domain
rules. Thus:

preBODY as n >0

invl asn 20

and DOMINIT, DOMLOOP, DOMX and DOMBODY are all immediate.

A definition for postBODY which composes with'rest is:
fn' = fn #n A n' = n=1
Thus COMP becomes:
fn' =fn#*nAn'=n-1 Afn" = n'! # fn' = fn" = n.‘ ¥ fn
The termination argument is identical with vii-ix of 8, Finally,
it is trivial to show that:
[rw:=FN # N; N:=N-1;]] sat (S1,preBODY,postBODY)
It is a long-established tradition to overuse the factorial ‘
example and it will have to serve as a first introduction to the

IWHILEFIX rule. Taking 9 as a specification, and 11 as a tentative

design, an obvious expression to hold constant is:
fn ¥ n!

The requirement (CONSTANCY) to leave the value of this expression
unchanged can be viewed as a different form of specification for

BODY. The RESULT condition becomes:

fn' =1 an'=n Afn",*nv.v'l =fnt' ¥n'} A 0" =0 =}fn"=n!

3-40

14

15

16

17

3.4

The domain arguments are as in 11; . as is the S8TOP condition.

The DECR condition provides the other part of the "specification"

for BODY. It is obvious that the code in 12 meets the two given

réciuiremexits.

This example does less than justice to the IWHILEFIX rule.

A far more interesting challenge is to provide a perspicﬁous

development of the division algorithm used by mechanical calculators.

(This example was used by Tony Hoare in the Oxford M.Sc. course to

illustrate weakest pre-condition proofs, Hoare /803/.) The

specification is:

IDIV

globals Aswr NatO Biwr Nat Q:wr NatO

post b#q' + a'=a ara'<d ‘

The first part of the algorithm shifts B until it is larger than

A, the number of decimai shifts is recorded in N; in an iteration,
- controlled by N, successive subtractions are then done. Thus it

is required to show:

| FIRST; while N # O loop BODY endloop] sat ﬂnmrﬂ

Withe

FIRST }

globals B:wr Nat Qswr NatO N:wr NatO

post b'=Db % 10¥¥kn' A at<b?' A g'=0

BoDY

globals A:wr Nat0 B:wr Nat Q:wr NatO Nswr NatO

pre n #£ 0 :

cons b %*q +a, b/10OR¥ n

var n

5e4 ' ' 3-41

(Here the idea of recording the specification of BODY in a revised

form has been fully implemented.) With invl as:

i adba isciivisér,(ﬁ, 10 # n)

the démain conditions of IWHILEFIX are immediate, The RESULT
condition becomes:

ii a'=a/\q'=0/\b'=b*10‘~'*n'/\
b e qn 4+ a" = b * ql + at A b"/10ﬂ‘w n" = b!/‘[()#*nl A
nt=0Aa"< " D '

b":bAb“*q"+a"=aAa"(W'
from which:
iii b¥q"+a"=a A a"<b
is immediate., Termination is also trivial.
The prpbleb of implementing code for the initial shifting gives
risé tos
18 [N:=0; while B € 4 _1_929 B:=B * 105 Ni=N + 1; endloop; Q:=0J)
IWHILEFIX can be used to prove this step éorrect withs
i consBODY as b/10 ## n
The RESULT rule becomes:

i n'=0ADb'=Db A

L}

P"/10 A% n" = b'/10 %k n!' A a < b =

P" = b A10#4 n" Aa b

.

_Of more interest is the one remaining task: the realisation of

BODY. The basic idea is to shift B and subtract it from A keeping

342

19

20

21

22

track of the consequent changes in Q and N. Thus to show:

[N:=N-1; B:=B/10; qi=q #10;

while B § A loop BBODY endloopd sat [onr])

Use:

BBODY

globals A:wr NatO Bsrd Nat Qswr NatO
pre b £a ’
cons b¥q+a

The only non-trivial domain rule is DOMINIT whiéh becomes:

n 20ang#0 Aisdivisor (b, 10 #¥ n) =>

n >0 A isdivisor (b,10)
The preservation by 19,20 of 17 is obvious,
‘ Fihaily nofinéf
EQ:-—-QMY; As=p-B v_s;a_“t [zzovy]

permits collection of the whole algorithm:

N:=0; | ~ = FIRST
while B £ A loop

B:=B#10;

Ns=N+13

endloop;
Qs=0;

-~ FIRST

while N # 0 loop
Ne=N-13
B:=B/10;
Qs=Q * 105 .
while B¢ A loop

- BODY

Qe=Q+ly - =~ BBODY -
Az=A~Bs T = = BBODY
endloops; - -~ BODY |

endloops;

5.4

344

3~43

It is interesting to compare the expressions which arise in
proofs using the various methods. The addition by successor

example in Jones /80a/ was proved using a rule similar to IWHILEDN

" with a "rest® predicate;

23

24

.25

26

27

28

r'*=x+y
It is probably easier to spot the constant expression:
y+r

The inductive assertion method would require the use of a free

variable since the initial value of Y is overwritten:
r=x+ (y5-¥)

Furthermore, the "multiplication in logarithmic time" example

requires, with IWHILEDN, two different "rest" conditions.

' =T+ XKy outer

'+ x" kR y'=r+xky inner

Whereas, using IWHILEFIX the constant expression:
r+ xRy

suffices for the whole proof.

Examples of program proofs in the literaturg rarely overwrite
their initial values. It is claimed in section 5.5 that this is
avoided largely because of a deficiency in the inductive assertion
method. However, for progréms in which teﬁporary variables are
used as counters (in order to leave initial values intaet), the
IWHILEUP rule can also be used. Reverting again to the specification

in 9, the use of a temporary variable might suggest that:

344

29

50

ii

iii

iwv

vi

3e4

fn:C.’

could be preserved. In‘Jones»/BOa/ this was used as a clause of the
"front" condition. Here, the importance of recognising the data
type invariant of the loop is shown by absorbing 29. This also
makes an interesting comparison with the inductive assertion method.

Thus

[Fw:=1; c:=0; while N # C loop BODY endloop]| sat SPEC

BODY
globals FN:wr Int Ciwr Int

c+l A fn' = fn & ¢

o
155
ot
Q
-
i

The domain conditions are all immediate. Then with:
invl as Oéoéna\.fnzc!

front as n!' = n

BASIS becomes;

n'=n pn' =n

COMP:

n'.__nAn!I:n' %nﬂzn

RESULT ¢

fn'! = c'! An'=nAc'=n'" = fn'=n !

The termination proof is done with:

var as n-c € Nato

34

33

ii

Notice that 30 could be reformulated so as to be proved by FORTO.

If an inappropriate choice is made between "up" and "down" rules,
the corresponding invariant relation is likely to be more cumbersome
than need be. For example, if %0 is tackled with the IWHILEDN rule,

a rest predicate (cf 31 ii) results:

fn' = fn & n !/c! A n'=n

Similarly if 11 is to be proved correct via IWHILEUP the simple
invariant in 10 must be replaced by:

fa' = n !/n'g

Since it is one of the new rules, it is worth illustrating the
use of FORARB although it is also used in section 5.3. Consider
the following specifications
SETDIF (S: El-set)

globals Tsrd El=-set R:wr El-set
post r' = r U (s~t)

Clearly each element of S must be considered and the order in which

this is to be done is arbitrary:

for e €5 loop
if e4¢ T then Re= RV el ; endif
endloop

can be proved withs
preB as e € s

postB as r' =1r U ({e} ~t)

3-45

346

Two closing points: there is a discussion in Jones /80a/
of a design guideline called "active decomposition". This carries
over to the new rules and has been quietly adhered to here,
Although not illustrated in this section, it is a natural con-
sequence of the definition of gat that one piece of code can
satisfy many specifications. This point will recur with parallel

solutions in section 5.3,

3e4

347

3.5 Alternatives

This section resumes the comparison begun in sub-section

1061.1.

3.5.1 On Post=Conditions

The general idea ofvusing pré— and post«cénditions for the
specification and justification of sequential decomposition is widely
accepted, The detailed decisions give rise t0 ste diVErgence of
opinion. Hoare /69a/ and Dijkstra /76a/ (and, thus, nearly all other
published work in this area) use post-conditions of one state. (They
also tend to view the proof rules as a definition of the language,

but this point is less important.) The alternative adopted here of

- using a post-condition of both initial and final states means that

the proof fules of éub~section 3.2.2 are much longer than Hoare's axioms
or the relevant pfediéate transformers., - The brevity of the 1at£er |
rules results from punning in two ways. ‘Bgcause pre= and post-
conditions have the same type, they can be uéed interchahgeably. In
addition, since only‘oge set:of &élues is éf concern to a predicate,

the names of the variables can be used in the assértions to denote

the "current value", It is a major‘achievement that,this whole system
works. The result is a set of very brief proof rules which are easy

to remember. (Tony Hoare pointed out that oné of the advantages of

the relational form of the proof rules given in sub-section 3.2.1 is

that they are easier to memorise.)

3-48 » | | R N 32501

How can the decision to use predicates of two states and the
consequentially longer proof rules be justified? Three arguments

are givens.

i) They yield more natural specifications
ii) They are more useful for large problems

iii) The separate conditions provide a useful check-list.

These claims are presented in relation tojthé predicate transformer

approach,
Consider the specification;

1 FACT .
globals N: rd NatO FN; wr Nat
‘post fn' = n!

This'might‘be realised bys

2 . FACT = [FNi=1; C:=0; FACT B]

3 FACT B = [while N # C loop FN;=FN#C; C:=C+1; endloop]
An obvious post-condition of the final state alone ié;

4 fn = n}

- But this fails completely to.prohibitg‘
5 TAC? = [FNi=6; Ni=3]

The alternative to 4 is to use either free variables:
6 wp(FACT, fn = n!) & n=n

‘or free predicates:

7 wn(men, () e p(nn)

30501‘ ‘ . 3"49

10

11

The use of the free variables is error prone where many predicate
transformers are to be manipulated and pinpoints the obvious
requifement for a proper way of referring to the values in the
initial state. The ﬁse of a free predicate (in 7) to fix equality
appears to be unnecessarily high—levél and also to put the key

information (factorial) in the wrong place (i.e. in the pre-condition).

Nor is the above argument the only place where predicate
transformers cause an unnatural expression of'arspecification. The
concept‘of a weakesgt pre—condition prompts the question: to which
post-condition should this relate? Which of the following is the

"right" specification for FACT B?

wp(FACT B, fn = 1 Ac=OAn=no)®fn=nol

. . = \ = = n = : »
| wp(FACT B, fn = fn_ A.c 0 An no) & fn=n!*fn

wp(FACT B, fn =1 Ac =c_A n = no) & fn=n! /co!

o]

wp(FACT B, fn = fa A c

]
.0

An=n.)e& n = & ! %
o no) - fn=n! /e b * fn

In larger problems it is necessary to use several stages of
development, The style normally adopted withrprediCate trénsformers
is that of 4. There is also some mention made of ﬁﬁerfact that N
should not be overwritten (cf. g}gggg7of Dijkstfa./Yéé/ or 1).
Programs like thosevin 3;4 (3,4) are avoided-predisely because they
do‘overwrite their input.values. Thié is acceptable on factorial;

it leads in Hoare /80a/ to a confusing description of the mechanical

‘calculator rule for division because of the impression that more

registers must be available (ef. 3.4 (4-22)); for examples where

3=50

3.5.1

larger data structures are involved such a constraint is unacceptable.

A

The third argument in favour of the use of pogt-conditions of
two stéfes is the use of the conditions of the proof rules as a
checkéiist. This is iilustrated in section 3.4 and chapter 5, It
would be interesting to construct an interactive program development

gystem around these check=lists.

What overéll conclusion can be drawn from this comparison? The
Hoare axioms originated with the task of proviné extant programs.
For this problem they‘work very well: the "pﬁnning" leads to a
natural style of annotating a program (cf. King /76a/). The weaknesses
of the post-conditions of state pairs (e.g. the need to use primes and
their clumsiness as annotations) do not matter so much on larger
mﬁlti—sfaée developments and the advantages claimed above theﬁ out~‘

weight the disadvantages. If the standard predicate transformer

"~ scheme is used, then the temptation to save initial values in the

state solely for the purposes of the proof should be resisted, (This

point occurs again in connection with parallelism.)

Tt is interesting to note that the construction of a range of

| systems which handle post-conditions havé often adopted the pair

épproach (eeg. Wulf /16a/, Randell /78a/, Hantler /75a/).

Another interesting approach to the definition of which variables

are held constant is the specification logic of Reynolds /81a/. The

assertion:

12

‘Stmt 4% Expr

is taken to mean that the given statement does not alter any

variable in the given expression. (This is not quite the same as
the concept of a constant expression in 3.2,2 (IWHILEFIX).) The
difficultiesvof using assertions of the form of 12 as annotations

are similar to those of using post-conditions of pairs of states.

3.5.2 Technical Points

The denotational semantics in section 3.1 is based on relations
over St. In de Bakker /73a/ the domain of states is extended by
adding a bottom element (ﬂL) and all of the combinators are then

made strict. Although the semantics here could be redefined on

3=51

this basis, the given view is preferred because of the simpler ordering

(cf. discussion of Smyth ordering in section 1.2).

34543 Possible Extensions

Proof rules for justifying the use of inner blocks etc. should
be easy to define with the recognition of the states involved. 1In
fact, such a rule is relied on informally in 3.4 (30—31). Rules for
(recursive) procedures might be based on Hehner /79&2, The problem
of abnormal termination of loops and appropriate pfopf-rules has been
congidered in Bron /76a/, Bron /77a/. The “MétafIV"'gzgg/Eiig

construct (Jones /78b/) could be the basis of such extensions,

The "intermittent assertions" (Burstall /74a/, Manna /78a/)

- approach has recently produced some controversy. In spite of the

arguments in Gries /79a/, it would appear that there is a case that

such proofs are more natural for some programs. It is likely that

- 3-52

the summation operators required in normal inductive assertion

- proofs could be avoided by appropria‘te interpretation of predicates

of two states. However, some work in this direction has failed to

'yield proof rules of wide generality.

353

Chapter 4

Development of Interfering Programs

42

The preceding chapters provide a basis which greatly eases the
task of introducing the notion of interference. Particularly
important is the féct that specifications are given by predicates
of pairs of states. The decision to do this for sequential (non-
interfering) programs is defended in section 3.5; it has also bheen

invaluable in developing the ideas presented in this chapter.

The basic problem to be faced is that programs which do not
run (or appear to run) in isolation may interfere with each other.
This chapter concentrates on interference-pefceived through shared
variables; chapter 6 reviews the connections with interference by
communication., With the possibility of interference, the extensional
view of the effect of an operaﬁion is inadequate: the effect of a

parallel set of tasks can not be deduced from their post—-conditions

“alone. One approach adopted in the literature is to prove first the

separate operations correct in isolation and to subsequently
establish non-interference. The position taken in chapter 6 is that
this approach is unacceptable for a development method. Not only
would little guidance be given in the design process, but also
erroneous design decisions might remain undetected until after much

work had been based on them,

The proof rules given in chapters 2 and 3 represent the results
of an évolution brought about by application to many examples.
Although several different versions have been tried, the proof rules
in section 4.4 are relatively new., In this sense they must be con-

sidered to be less stable than the proof rules concerning sequential

.program development. The proof rules concerned with the notion of

interference are, however, justified with respect to an underlying
semantics. Here an operational semantics is chosen and this

decision is discussed in section 4.3 and chapter 7.

The key proposal in this chapter is to face the problem of
interference throughout the development process; to make a place_
for it in the specification format; to recognise that it must be
checked at any design step, The details of how this is currently
done should be viewed more as an existence proof than as a final
proposal for a development method. Indeed, the speéific proof
rules given here are restrictive in many ways (e.g.rsynchronisétion,
as such, has not been covered), Chapter 7 gives some indication of

how extensions might be made.,

For many problems, the overall specification makes no mention
of interference., Basically, parallelism is used as an implementation
technique ~ often to improve (potential) performance, (learly a
proof rule is required which copes with a decomposition into a family
of processes which are to be executed in parallel, In crder to prove
such a decomposition correct, the component operations must be
specified; it is these sub-specifications which must'define and

constrain interference,

The examples given in this chapter are small., As is mentioned
elsewhere, a development method can only be judged on meatier

problems and chapter 5 goes some way to fill this need.

44

ii

iii

iv

v

vii

4.1

4.1 Extensions to Specification Format

The view taken»dffspedifiéations and denotations of oﬁérations‘
in‘thé ébsence of interference is basicaily that of relations over
statés; iﬁ tﬁevpreéénde of interference this view is insufficient.
Consider an example in which the two following sequences of state-

ments are executed in parallel (assume X shared, T and U locals):

»T:=X; Xe=T + 13

Us=X; X:=U + 2;

Por the first:

and for the second:

X' =x+ 2

" However, in parallel the result will be:

x' € {x + 1 ¢0 X% } 3}

Furthermore, interference will bring with it a concern for the level
of atomicity. Thus, if single statements,wére to be viewed as

atomic, the effect of the two sequences:s = .

when executed in parallel with other processes sharingvx} might

différ.

The approach to specifications here is to retain the extensional

»view given by pre-vandbpbst-conditions but to add appropriate

4.1

specifications. of - the interference, .In‘analbgy to the extensional

view, a rely-condition records the assumptions made and a

guarantee-pondi#ion defines the commitments made.

As is mentioned above, the fact that relations permit more

than one result (under%determined) may cover»implementations‘in

‘which non-determinism results from interference. In fact,

sequential programs sometimes determine a specific result and thus

resolve the freedom (e.g. square root) whereas'paﬁailelism can give

-rise to non-deterministic methods of finding é:nnique result (e.g.-

section 5¢2).
The first part of specifying infefference is the rely-condition.
The intent is to record the interference which can be tolerated

while still pfomisihg7t6 meet the operation's commitments. Speaking

' operationaliygithé ﬁrocéssvwhose specification is being givén can no

longer assume that fhéVSfafe remains untouched other than by its own

assignments, It can, however, assume that if state s is changed to
s' by some other procéss'thén this pair of states»ﬁill satisfy the

rely-condition. Examples of rely-conditions might be:

xt=x the value of variable X is unghaﬁéed:'
X'+ y'=x4+y T
lock =3 cee

pointer chains remain linked

x' € x | ‘ X decréases_ monotonic_aily

a list remains ordered

4-5

46

A rely-condition, then, is a relation on states; it is assumed

to be total since this avoids the need to introduce a new subclass

of 3£ates (cf; invl); it must also be reflexive since "no change"

is obviously a possibility. Where there are to be more than two

processes, it is also necessary that the rely-condition

be transitive. (Examples follow the logic form of the specification

below.)

One of the results to be proved in a step of design which involves
parallelism will now be the coexistence of processes. In order to
check that their mutual‘interferende is acceptable at the design

stage, the specification of each process must also contain a guarantee=

‘COndition which. defines the effect it can have on the state in one of

its atomiq»transitions. Guarantee-conditions will also be total,

reflexiVe relatibns over states, Notice that the guarantee-condition
vvdefines a single step and does not, as such, have to cover the

interference which impinges on a process, However, such inter=-

ference may influenCe what actual transition is made.

The format of a specification is thens

op name ,
St set of states
pre [(st)

post - St x St

rely | 8t € st

guar St ¢» St

46

10

This is normally given via predicatess

- oP .
globals ... -
pre st —»Bool
post St x St — Bool
rely St x St — Bool
guar St x St —» Bool

(Vs est; (Js'e St; relyoP(s,s'))

(Ysest; (33'6 St; guarOP(s,s'))

(There is here again a systematic rule for'naming'conditions when -

they are taken from the context of their specifications.)

The technique of specifying acceptable states by recording

the global variables (cf. section 1.4) offers a great advantage:

‘knowing that, for ekamplé,.x is oﬁly available for reading says

more than a post-condition that x' = x. The use of globals
simﬁlifies both poéi—vénd guarantee~conditions in that variables

to which no explicit write access has been given cammot be changed.

The individual parts of 8 can now be reviewed. The pre-

condition is unchanged and the discussion in section 1.4 covers its

interpretation., The post-condition should not'be "completed”

(cf. section 1.4) in the presence of interference:'ra single process

cannot make any statement about the constancy of variables to which
other processes might have access, The need to reason about such

properties gives rise to the "dynamic invariant" in sub-section

‘4e4.17. The meaning of identifiers corresponding to global variables

is as above (i.e. unprimed lower case identifiers denote the value

. ;‘.“‘(‘.‘

. of the variable of the same name before execution and primed
identifiers denote the value after execution), Looking ahead,
proofs about the properties of a set of parallel tasks are able

v;to rely on thé conjunction of the post-conditions.

The rely-condition is also not‘subject to "completion" since
there is no need to rely on properties of variables which are not
visibles The x/x' etc. in a rely-condition denote values in two
states which arise during any peribd ithich the process to which

the rely-condition belongs makes no changes.

The guarantee-condition is completed since this shows the
lack of write access by a process. Here x/x' etc., denote values in

any two states which can arise by executing an uninterrupted

/

(sequence of)'Step(s),of the process in question.

These,commentsbcan be considered with the following diagrams

pre e

41

4.1

"

12

Notice that, in developing a program to such a specification,
the possibility of interference before the first and after the

last steps of the written code must be considered.

As a fivst example of a specification in the form of 8,

consider the following:

1

globals X:wr El
post x' = £(x)
rely xt=x
P2

globals Yiwr El
post y' = g(y)
rely yt=y

It should be possible to use these two processes in parallel-

. the aompletion of the guarantee—condltion will indicate in each case

 R2:=ROOT (E2)

that one process w111'n0t 1ntarfere w1th the*other. In order to

. deduce that the effect of thelr parallel execution yields the obv1ous

result, P1 and P2 must he executed in an envmronment which 1tself

- ensures that X,and Y are unchanged.

The example of 11 and 12 is really one of nan—interference.v
Such prob]ems do, however, arise naturally in the design of hlghly’
1nterfe:1ng programs. For example, ln sect&on 5 3 there is a

procedure ROOT which searches for the-reqt_of a (representgtion of

‘a) tree. Code which computes in parallels

R1ggﬁOQT (E?)i

4-9

4=10

14

15

16

can be shown to satisfy:

r1' = root(f,el) A r2' = root(f,e2)

because thé ROOT procedure has only one global access and that is
the ability to read the array F - there is also a rely-condition

on the whole procedure being developed that:

ft =1

Suppose, for the next example, that tQO'programs exist for the
same task, If their performance varies fdr different initial
values, it might be worth executing them in parallel. Of course,
as soon as one process has computed the desired result the other
process can terminate., The fact that the resultvhas been found
could be signalled by setting a Boolean variable (DONE) to TRUE.

A corresponding c1ausé muét be coﬁjoined to the post-oondition{

Sﬁppose now that process P1 makes a premature assignment to DONE

and then withdraws its notice by resetting DONE to FALSE. If P2
happens to see this change it might‘terminate prematurely. The
result might be that at least part of its post-condition would not
be fulfilled. The following rely- and guarantee-conditions express
the requirements for the proceSses to coexist in én honest way:

Pi

globals X:xd El Y:wr El DONE:wr Bool

post y!' = £(x) A done!
rely done = done' A x!

x A (yt=y vy =1f(x))
yvy'=1f(x))

i

guar done = done' A (y!

The clauses

done = done'

4.1

AN

17

18

4~11

prevents a process changing the value of DONE from TRUE to FALSE.

Assuming the two processes are run in an environment in which X

~and Y cannot be changéd, an obvious overall post-condition can be

established,

An extended version of the same technique can be illustrated
by the following example., Suppose it is required to find some
value i€ I which enjoys both properties p:I -» Bool and ¢q:I~» Bool.
If these properties areiindependent, the taék of exémining each can
be given to different processes, Each process will record its
findiﬁgs in an array (PV and QV respectively), If a value of I is
found which satisfies f and for which the @ task has already set the
cofresponding QV index, then the-variable R can be set to this value

of I. Thus to finds
ie I st p(i) A a(i)
execute PT and QP in parallel, where:

PT :
globals PViwr I -5 Bool QVsxd I — Bool .R:EE I
pre (Jie1; p(i) Aali))

post p(r') A q(r')

rely qv(i) = qv'(i)

guar (pv(i) =pv'(i)) & (pv(i) APV'(l) = p(l)) ‘A
(r* #r = pXx') Aqxr"))

4=12

19

4.1

Qr
globals PVsxd I = Bool QVswr 1 g Bool Rewr I

Cpre (Jier; p(i) Aq(i))

20

21

post p(s') A a(e?)

rely pv(i) = pv'(i)

guar (qv(i) = qv'(i)) A (qv'(i) =q(i)) A
(r* #r = pv(x') A qv(r'))

A more interesting example can be taken from Hoare /75&/.
The idea is to compute the primes (up to some given N) using
Eratosthene's "sieve" with two instances of a REMOVE process

executing in parallel. Thus:

SIEVE:= {2 .. N} ;

Asz=2;

B:=33

while A*¥2 < N loop
(REMOVE(A) || REMOVE(B));
if B**2 < N then As=nmins({ieSIEVE st B <i});
else A:=B; o | |
endif; o
Af A**2 < N then B:=mins({i ¢ SIEVE st 4 < i});
endif; | |

endloop

Here, only REMOVE is of interest.

REMOVE procedure (X:in Nat);
globals SIEVEs;wr Nat-set

In a sequential solution, postREMOVE might be:

sieve' = sieve = {m*x,_g_j;_ méNat}

but since othef instance(s) of REMOVE might also be removing

elements from SIEVE, this is not correct. An obvious (weak)

4.1

22

23

24

25

4-13

post=-condition is:

(VmeNa.t; m*x ¢ sieve!)

But this, alone,' is too weak - a possible implementation would be:

SIEVE:= {l

In order to prohibit such implementations a guarantee-~condition

can be used:

c €sieve A ¢ ¢ sieve! = (ImeNat; m¥x = c)

Can the post-condition in 22 be realised in the présehce of
arbitrary interferenée? In fact, no! It relies on the fact that
once an element has been removed, no other process reihserts it.
Thus there is a rely-condition (and consequent clause of the

guarantee~condition) thats

cgsieve v ¢ ¢ sieve'

Summariging 21 to 24 yields:

REMOVE procedure (X:_iﬁ Nat)
globals SIEVE:wr Nat-set
post (VmeNat; m*x ¢ sieve')
rely c €sieve V ¢ ¢ sieve! ‘
guar (¢ esieve Ac ¢ sieve' =(Jm € Nat; m*x = c¢))

(c € sieve v ¢ ¢ sieve')

Notice that the conjunction of the post-conditions will not now be
enough to give an overall post-—-condition.' This is one of the cases
where a dynamic invariant (cf. sub-section 4.4,1) is required to

complete the overall correctness proof.,

4=14 . ' SR 4.1

There are a number of special'cases of 8 which are worth
recognising. A rely—cqndition of s' = s implies that an operation
is run in.an atomic fashion, Leading on from this, the defaults
are a‘rely-conditionvof s' = s and a guarantee-condition of TRUE.
This links the form in 8 to the sequential case in 1.4(2). .Two
processes with incompatible rely-/guarantee-conditions cannot be run
in parallel: some technique‘must be used to'énsufe their mutual

exclusion,

4-15

4.2 Realisation

Given an extended notioh of specification, it is necessary to
ﬁodify the notion of realisation given in section 1,2, For a
realisationvwith identica1 rely- and guarantee~-conditions, the sat
relation given above suffices, How can the interference constraints
change? In analogy with 1,4(WKNPRE/STRPOST) it should be clear
that it is acceptable for a putative realisation to rely on less or
guarantée more than is stated in its specificétion, Thus:

(s', ', G') sat (S, R, G) &

(domS); S'psat S A S'defover dom § A
R psat R* A G' psat G

‘Forvexample, in the specification of REMOVE in 4.1(25) a
weaker rely-condition could be given by limiting, with a bounded
.QUantifief, the assumption to the elements about‘which the post-
condition makes a reguirement. Similarly, in 5.2.4(4) the rely-
condition need only be concerned with the part of X indicated by

the set of indices in MINE,

In comparing 1 with 1.2(10) it should be remembered that the

rely- and guarantee-relations are total,

416

4.3

4.3 Operational Semantics for Parallelism

Language design for parallelism is a large subject in its own
right. In Owicki /75a/ both a “"General" and a "Restricted Pro-
gramming Language" are offered. This reflects a commonly accepted
fear that parallel programming languages which are insufficiently
constrained make Rdsger Dijkstratls briginal concerns about the goto
statement pale into insignificance, The trend in language design
has been in the direction of providing more and more structure.
Thus Dijkstra /68a/ used semaphores; critiéa} regions were
introduced in Brinch Hansen /73a/; Hoare /74&/ discusses monitors;
and even the permissible paths are constrained by CSP (cf. Hoare
/78a/). This degree of bundling may not be wise for all problems

although it must be obvious that only by imposing structure,doés it

_becbme practical to reason about systems. The activity in the

language design area indicates that it would be premature to focus
attention on one particular approach here. By concentrating on the

central concept of interference the comments will, to some extent,

" become more general., The only assumption made is that there is some

way of executing a number of operations in pafallel.

The programsg presented below use fhe syntax of Ada, This is
no more an indication of a wholehearted support for that language
than was the similar decision to use PL/I in Jones /80a/. 1In com-

parigon to the Pascal derivatives which cope with parallelism, the

“rendezvous" concept of Ada (cf, Hoare /78a/ on CSP) is one of the

~ better thought out new ideas in Ada. In fact, as indicated ahove,

,L .

4.3

4-17

the reasoning at the code level will be relatively informal. The

interest here is to focus on the central issue of interference,

As observed in section 4.1, the extensional view of operations

ié not adequate to provide a basis from which the semantics of

-their parallel combination can be deduced. This presents a severe

problem for the provision of a denotational semantics. The con-
clusion accepted by some researchers in this area is that the
history must be recorded in the denotation by, for example, using

resumptions:

Res = St — 6«St x Res)

The parallel combination can then be built up by some form of non-

deterministic merge of the steps. There are, however, problems in

~achieving "full abstraction" (cf. Hennessy/80a/).

The distinction between operational and denotational semantics"'

-is frequently exaggerated. For example, the "functional semantics"

of Allen /72a/ indicates that the step to a “small gtateﬁ»is,more
important than the decision to use functional denotations. With a
resumption style semantics the two methods are drawn even closer
together, What remains in the denotational definition is the need to
solve ordering problems (cf. Plotkin /76a/, Smyih /78&/; Scott

/81a/) in order to support recursive definitions,

The decision made here is to present an operational semantics

"in terms ofbwhich the proof rules of the next section can be

justified. It is, however, clear that the Justification used in

4~18

section 3+3 is much more formal than that in section 4.5. The

operational definition given uses a '"control tree"-like concept

~ as in VWalk /69a/ (cf. Lucas /68b/ and Owicki /75a/).

The concrete syntax (cf. 3.,1.1(5)) of the language to be

defined iss

Program::= Stmt
Stmtss= Composition‘Guardedif‘WhileiPar‘BaSié
Par::= ((\Bag(Stmt))
The semantics is given by a relation bver extended states.

An extended state is a pair containing a Control and a state as

in sub-gection 3.1.1. A control contains a bag of components:

Control = Bag (Component)

- Component: s v[Stmt] Control

Tﬁe ﬁéétihg éf Céntrol within Control represents the cailing
sequencé; the branching represents the éofential for parallel
(non~deterministic merge) execution. At any point inrtime, the
collection»df potential next éteps are repiesented By the leaf nodes
(ive. a component with an empty bag aSVCoAtrdfj.. This implies that
execution of the Basic statements is atomic'and since this is not
part of the central theme here,'this conééquencé will be accepted,

The semantic relations

(Control x St) x (Control x St)

" is presented by (conditional) rules of the form:

(o) o flothen) st e)

stmt will be used for (stmt, emptybag())

4.3

4-19

Qhere ¢ is a leaf component of the control and s is the current St;

c¢' is placed in the control in place of ¢ and s' is the "next" element

of St. For:

10

i

12

13

prog & Program

begin withe

co = (STOP, bag(prog))
so = {id » 2 gt id is an identifier of prog |

For sequential compositions it is only necéssary to set up the

appropriately nested control tree:
(B13 P2,) «» {((P2, bag(P1)),s)}
For conditional statements:

IF =....i_§_>e'1_ ".’ipi I ... fQenorngi

‘providing no ei can lead to abort, a truly non-deterministic choice

is represented by a many-many relation:
(1E,s) « {(Bi,s) st eval(ei,s)}

For iterative statements:

WH = while e loop B endloop

the standard expansion is useds

if eval (e,s) then

(u,5) « {((uH,bag (B)),5)}

- else

| . (¥§:3)¢§'- i(§2LvS)I

420

For a parallel statement:

14 PAR = ('IP1 ves Pn)

~a bag of compdnents is placed in the control (notice this is a

single multi-element bag unlike the conditional which defines a

set of possible single component bags):

15 (Eﬁg,s) > {((y;;, bag(Ply oo, Pn)),s)}r

Finally, to illustrate a basic statement:

16 (uzes) o (L, st fvreval(e,n) })}

A leaf node of the control with a NIﬁVStatement'is replaced

by an empty bag.

N

o4
edal

4.4 Proof Rules

The basic task here is to present a proof rule for the

: justification of the parallel construct of the language., It is

also necessary to review the effect of interference considerations

on the rules of section 2,2 and sub-section 3,2.2 since it is
obviously necessary to retain these tools for program development.
4.,4.1 Parallel Combination

In order to show thats

!I(“P‘l cee Pn)] sat a specification SPEC given by T,M,R,G

it is necessary to establish both that the overall effect is as

~required by T [sPrc] /M [spec] and also that the interference

considerations for the components match. As in chapter 3, the rule

is first presented via relations and then the predicate form (PARCOOP)

DOMi

is given (in a denser style), The latter is the one hormally ised
in justifyiné development steps.v The first collection of‘conditions
requires that the domains of the individusl procesgeé mateh the
specifications |

[Pi] defovef T {SPEC]

(Remember that the development of Pi must accept the'possibility

of interference even at the very beginning of its execution.)

The overall effect of executing the processes will be the

‘intersection of their individual effects. As is pointed out above,

hoWevér, the need to develop the processes under the assumption of

421

422 - ' _ ' ‘ 4.4.1

interference will mean that this is frequently too little or, in
other cases, can only»be»made stfong enough by an overly=
bgmplioatea’set éf rely-conditions, The resolution of this problem
fisvto bring in a dynamic invariant. Thé fSle of the dynami§
invariant can be compared with that of invl in proofs of iterative
constructs and, as in sequential development, the dynamic invariant
is also a usefﬁl aid in choosing a design;. Thé dynamic invariant
(DINV) is a relation over twovstatés:' the starting state and any
~other that can arise during execution of fﬁe.pa?allel processes.

Thus:

RESULT DIWV A mt fu [Pi] st 1 €3 ¢n} psat M [semc]

Notice that although the use of M.[Pi]] suggests an extensional
view of the processes, thig has to be established with recognition

_of interference'(as defined by the rely-condition).

The dynamic invariant obviously has to be shown to hold.

The initial condition is:
mwsasis 7 [seec]; B g prw

The guarantee-conditions of the indiVidualiprdcesses'show what
transitions are possible. Thus, for each process, it is necessary

to shows
mwveresi piwv; 6 fri] € pow
There is also the danger that some process in the environ-

ment of the whole parallel construct could disturb the state. The

rely-condition,of the specification can be used to establish:

INVPRESENV DINV; R [spEc] ¢ opmv

404~1 ’ : ' 4"‘25

Finally; it is necessary to establish that the processes co-~

exist harmoniously both with each other and with the environment:
INTERFERE J.% ¢ fp,1 ¢ r[eil

vrerFEREENY R [spEc] € m [pi]

/

(The guarantee-condition of the specification has been assumed to

be TRUE - cf., sub-section 4.4.3.)

The diagram of section 4,1 can be eitended to show two

procesgses:
Pi ‘ Pj

relyi arbitrary
number of
steps
guari guarj
4 _ | ' relyi <
guari guarj
dinv{
¢ ¢
' <
:}guari : gudrj
relyi
L ST

424

PARCOQOP

DoMi -

The interference matching must be established in both directions,

The rely-condition can be thought of as the post-condition of an

’interfering operation which is slotted between any two atomic

steps of a prooessv. For this reason the rely-condition must be
inherited in the development process ‘(cf. sub-section 4.4.3).
The predicate form of 1 is:
[[(H P1...Pn)]] sat (»St,pre,post,z;e_lyr,gua.r)
if withs |
dinv: S5t x St -> Bool
the following conditions hold:

(Vsest st pre(s)s prei(s))

INVBASIS . (Vse st st pre(s); dinv(s,s)) -

~ INVPRESi (Vs,s',s"evst; dinv(s,s') A guari(s',s") = dinv(s,s"))

INVPRESENV (Vs,s',s"est; dinv(s,s') A rely(s',s") = dinv(s,s"))

INTERFEREAL j;}i (Vs,s'e sty guarj(s,s') =» relyi(s,s'))

INTERFERENV (Vs,s'€ St; rely(s,s') = relyi(s,s'))

RESULT

(Vs,s'est; dinv(s,s') a /1\ posti(s,s') => post(s,s'))

As a first example of the use of the PARCOO_P proobf rule a
simplified version of the problem of _sectibr_x 5.2 is considered,
Suppose it is desired fo reduce the_value of some variable X to
the minimum of its. initial value and any element of § which satis~

fies some predicate p:

X = m;ns,({.nes st pn)} U x})

4.4.1

4.4.1

Two subsets of the set S could be sought such that they cover S
(it is not necessary that {s51,52} is a partition):

s1 U s2=s5s

Then the type of the processes is:

Pi (Si:in Int-set)
globals Xzwr Int

If Pi were to be considered in isolation it would be possible to
define its final value precisely; in the presence of interference

only a bound can be given., Thus postPi iss

(Ynesi; p(n) =2 x' ¢ n)

If the fellow process were to cheat by setting X to some low value

then subsequently’recanting, Pi could never safely ignore values,

'Td define its reliance on honest behaviour of its fellows the rely-

condition is:

xt < x

The obvious design will be to ensure that p(x')_is‘true for any
value of X differing from its initial value, In order to prove such
a dynamic invariant true, each process must have a guarantee-

conditions
x' # x (x' < x A p(x))
This is a case where the conjunction of the process poste

conditions (cf. RESULT) would not yield the overall post-condition.

Here,\it wpuld bé possible to patch things up by complicating prePi

4-25

4-26

10

11

and relyPi but it is preferable to employ a dynamic invariant:

X' = X Vp(éc')

Thié can be seen to satisfyb INVBASIS and INVPRESi. The conjunction
of the post-conditions a.ndv the dynamic invariant are sufficient to
establish 2. (This was, in fact, an example where the guarantee~
conditions were derived from the dynamic invariant in the design -
process.) An even stronger case for thé use _oi‘ a dynamic invariant

can be made in the example of sub-section 5.2.8.

The next example continues the study of the prime algorithm
presented in 4.1(20~25), Since the REMOVE operation is total, the
DOMi conditions are vacuously satisfied. Since the conjunction of

the post=-conditions are inadequé,te to ensure (RESULT):

sieve'*:b_ sieve=({m*i‘l _s_;h_ meNat J U {mux2 st méNat})

it is necessary to think of a dynamic invariant. (In the ac-tuai
design, this would come first.) Thus:

(Ve € sieve-sieve'; (Hm,nsl\]at; mn=c))

Clearly INVBASIS is satisfied because the dynamic invariant is

reflexives Furthermore, for either process, the guarantee-condition
is absorbed by the dynamic invariant (INVPRESi)s
(Ve ¢ sieve-sieve'; (Sm,neNat; m*n =c))a

(Ve € sieve'-sieve"; (ImeNat; m¥x1=c)) =
(Ve esieve-sieve; (dmyn ¢ Nat; mn=c))

Assuming that no process external to 4.1(20) is changing SIEVE, then

' INVPRESENV is immediate. Also iinmediate is the containment of the

~ guarantee-condition by the rely~condition (INTERFEREi). ‘

4-4—-1

4edo

12

Before leaving aside the examplés, it is perhaps worth high=-
lighting a few points which arise in the larger examples of
chaffer 5. In sﬁb-section 5¢3¢4 a problem similar to that with
4.5(20—25) arises. The obvigus post-coﬁdition for EQUATE12 would

be:

fr=rT {root(f,e1) haroot(f,eZ)}

but this is too strict because of the parallel path compression
which might be going on. The attempt to perform the design step
prompts a dynamic invariant and guarantee- and rely;éonditions

which partition the fields of effect. The interest in this problem
is that the CLEANUP is essentially performing “garbage collection
and a basically similar approach appears to handle the design of the

"On-the fly Garbage Collector" of Dijkstra /78a/. The example in

‘section 5.3 is one where not only was the dynamic invariant

documented as part of the design discovery, but also the design and
Justification suggested a program better than that first sketched.
Furthermore, the method has also made it possible to solve a

problem which was left open in Jones /80c/.

It is interesting to note that the idea of a dynamic invariant
could be used in discussing sequential programs., With some manipul=
ation, it is even possible to see a séquential proof rule like

342,2(IWHILEUP) as an instance of PARCOOP.

4-27

4=28 ' : 4e4.2

4.4.2 Guarantee Conditions

It must be remeﬁbered that guarantee-cohditions are expécted
to hold for the atomic steps of a process. Thus guarantee- |
conditions must be inherited by the development process. It is
possible (cf. section 4.2) to strengthen the implied promise and
still satisfy a specification. This situaiion will frequently
arise in decomposition where some sub-components will not need the
full freedom of an overall specificatibn._rA special case of this
is where (e.g. ROOT in EQUATE of section 5.3%) some sub-components

require only read access to the global variables.

It is normaliy easy to show that guarantee-conditions are
fulfilled and the justification is normally fairly informal., It
is, however, importanﬁ to remember that interference (as defined
by the rely;cbndition) can occui between atomic stepss Thus, even

if assignment is atomic:

only permits claims to be made about y? whiéh follow from the rely-

condition on X.

Notice that it is possible to avoid the strict rule of
Owicki /75a/ that only one global reference is permitted per

assignment., BEven if assignment is not atomic:
{2__ Xe=X +1

guarantees x' » x if the rely-condition gives x' = x or,

4.4.3 ' 4-29

alternatively, x') x if the rely-condition defines x' » x.
Some practical examples of two global references in an assignment

occur in section 5.3.

4.4.3 EBffect on Sequential Proofs

The use of the parallel construct is, of course, just:another ‘
design step like those of refinement in chapter 2 and decomposition
in chapter 3. A series of design steps may go through both data
refinement and decomposition to some sequentialrconstruct before
parallelism is introduced, Equally, a specification in the form
of 4.1(8) might be realised by some sequential construct. It is
this situation, where an implementation is sought to satisfy a
specification which includes rely- and guarantee-conditions, which

is of concern here.

Where data refihement is té be used the rules about weakeniﬁg
rely-conditions and strengthening guarantee~conditions (cf.
4.2(1)) suffice. 3 o ~ Examples of
this are given in chapter 5., One interesting point is that the
analog of the "potential problem" discussed in sub-section 2.2.6

actually arises in the refinement of sub-section 5.2.8.

Where a decomposition into a control structure is made, it
should be obvious that the sub-components must inherit the rely-
condition (in a possibly weaker form) and the guarantee~condition
(in a pgssibly stronger form) of the specification. 1In a step of

‘decomposition it is obviously necessary to compose the rely-relation

4-30

.use is illustrated in chapter 5.

443

between each component, The proof rules for the. sequential

combinators of chapter 3 are modified in an obvious way. Their

Section 3.4 refers to the rule of "active decomposition";
an analogous rule avoids unconsidered copying of interference

specifications from one level of design to another,

405 . 4"31

4,5 Justification of Proof Rule

'It>on1y remainsito show that the relational form of the proof
rule of sub=section 4,4,1 is valid with respect to the opefational
semantics of section 4.3. Itvwould be excessively heavy to set up
a full set of notation (cf,»Walk /69a/) fér this one proof and,
for thisg reason, the argument givep here is less formal thah‘the p?oof

in section 3,3,

Any leaf node of the control tree is'"available"rto be

performed. Suppose one of the available leaf nodes is an element

of Par (4.3(2)), say

i Pa=([[?1 ... Pn)

Notice that Pa may not be the only leaf node - call any others the
‘ﬁinterference" of Pa, If the Pa node is chosen for execution (and
fhe state valﬁe is s) fhen it is replaced in the Conﬁrol by a bag of
P1 to Pn (cf. 4.3(15)). The first step of the proof is to show that
when each Pi is removed from the tree, the state (say) s,' is such

thats

1 wfei]s s e

This will, in general, only be true if R [Pi] is valid. So,
‘consider changesrto the state made by othei_than Pi, If there are
no such‘changes then R EPi] holds because it is require& to be
reflexive, If a change is made by some Pj also an element of‘Pa,

then by 4.4.1(INTERFEREL):

i o [ps] € m[pi]

4--32

iv.

vi

4.5

If a state change is caused by some leaf in the interference of Pa

then by 4.4.1(INTERFEREENV)
R [ra] ¢ = [pi]

Any sequence of the above is also contained because R ‘Pi“ is
transitive. So R [Pin is préserved providing all components

have been developed so as to meet their specifications.
Now consider T [Pi] and M [[P:.])

4.4.1(DOML) gives:

pfra] € 1 [ri]

and thus:

M {Pi]l ¢ 8 & si'

But because R,HPiﬂ ‘is accepted in the design of Pi, vi will
remain true while all other componentsAof Pa are run to termination,

This argument is general for all i c,{1..n} .

Now, to see that the dynamic invariant is preserved, observe
that it is reflexive (cf. 4.4.1(INVBASIS»; is preserved by any
element of Pa (cf. 4.4,1(INVPRESi)); and is preserved by the

environment (cf. 4.4.1(INVPRESENV)).

All processes must terminate since this is a part of their
specification and thus eventually all post-conditions and the dynamic

invariant will hold. At the point at which the bag of procesées (énd

.-fheir subsequent developments) becomes empty, 4.4.1(RESULT) can be

used to justify the overall post-condition.

Chapter 5

Examples

)m

The examples in this chapter show the use of the method
described in chapters 2 -~ 4 on more interesting problems. Given
the constraints of a thesis, the examples tackled here are of
reasonable size although they are clearly not on the same scale as

applications of the sequential parts of "VDM",

For each of the problems to be considered a specification is
given which makes no mention of parallelism., Furthermore, the
initial design in each case is of a sequential program, The
sorting problems (section 5.1) illustrate how a study of data
structures via data type invariants can yield more insight into a
degign than an algorithmic definition, The sequential solution of
the problem in section 5.2 illustrates design by decomposition and
that in section 5.3 design by data refinement using theories of

data types.

The parailel solutions in section 5.2 employ both the basic
interference ideas, with control via monitor-like tasks, and an
interesting data refinement., The first refinement proof in section
53 is forced to handle parallelism in the same step of design.
Furthermore, the rather intricate rely- and guarantee~conditions
were a tool to aid the discovery of the algorithms given for the

equivalence relation problem,

For each specification, a number of different designs are

given and justified,

5.1 Soriing and Searching

This, rather short, section trespasses on an area which is
thoroughly described in the literature (cf. Knuth /7%a/). The
normal method of describing sorting techniques is to present a
sketch of the algorithm in some more or less formal (pseudo-code)
language., This description, because of its opacity, is almost
always supported by examples. The position taken here is that
much more insight can be gained by studying the data structures
involved, Since one general structure (a list) would cover most
algorithms, the taxonomy can best be tackled via the data type

invariants.

A more general point lies behind the specific examples given

‘here., It can be argued that the amount of engineering knowledge

recorded about software is very limited: nearly all software
designs begin "from scratch". The obvious advantages of re-

using some of the (enormous) existing reservoir of code has not
made it happen. Chapter 6 of Jones /80a/ indicates how an outline
of an algorithm with precise specifications for its components might
be used to record design. Here, it is suggested that recording
facts about data structures may be an even better way of

communicating designs for some problems,

The examples of this section also offer the chance to exhibit

some of the list notation developed in sub-section 2.1.6,

53

T

5¢1e1 Binary Search

The task of locating an element in an ordered array can be

specified bys

SEARCH

globals L: rd El-list1 E: rd Bl IND: wr (inds L) FOUND: wr Bool
pre isascending (1)

post if e€elems 1 then found' A 1(ind') = e else w~ found'

The post-condition is equivalent to the slightly less obvious form:

if found' then 1(ind') = e else e¢ elems 1

The by-now-standard way to solve this problem is to use “binary
search" (cf. Reynolds /79a/). One way of understanding this idea
is to study the invariant on valid states. Suppose a variable I

is to be used to record the lower end of the search fange and J the
upper, the invariant becomes:

isascending (1) A 1 €1 A j< lenl A

(if found then 1(ind) = e else
e ¢ (elems subl(l,1,i-1) U elems subl(l,j+1,len 1)))

The new variables have to be declared in a block. No formal proof
rule is used to justify this. Initialisation to establish the

invariant is easy to choose. Thus:

declare
I,J: Int;
FOUND:=FALSE;
I:=1; Jsi=len L;
while =(FOUNDv I > J) loop BODY endloop;

end
—————

141

withe

BODY
globals ... I: wr Int J: wr Int
pre 1< j A {i.. j! ¢ inds 1

post (j'=i' < j=i) v found'

Notice that postBODY is very weak because most of the important
conditions are expressed in 3. The loop used in 4 can be proved
to satisfy 1 using the 3.2.2(IWHILEUP) proof rule. The domain
conditions are all immediate. The predicate summarising the

iterations at the "front" of the loop need only constrain:

1" =1 A e' = ¢

With this definition, the BASIS and COMP conditions are also

immediate., RESULT becomes:

1'=1Ae'=¢e A (found' v i'> j') A

(if found' then 1(ind') = e’

else e € (elems subl(1l',1,i'=1) U elems subl(1l',j'+1,len 1')))
——is e N e —

if found' then 1(ind') = e else e ¢ elems 1)

Termination can be established using a cross-product of FOUND

(TRUE > FALSE) and J-I.

The next stage of decomposition might yield:

[prexn;
if L(IND) = E —» FOUND:=TRUE
I () < B - I:=IND+1
[L(x) y & - Js=18D-1 g3
I sat BODY

10

11

withs

PICKIND

globals I: rd Int J: xd Int IND: wr Int
pre i€ |
post i € ind' €

It would be possible to develop a design, satisfying the

specification in 1, with two tasks working independently in the

interval defined by I and J. This would give rise to:

I:s=1; Ji:=len L

(P1]] p2)

Pi (for i = 1 or 2)
globals L: rd El-list? B: rd EL I: wr Int J: wr Int

post 3 <i v i=i Ali)=e

rely i€ i'A '€ jAl'=1 Aet=ce

guar i€ itA 3T g

But there is vefy little incentive for pursuing such a solution:
there would clearly be a requirement for synchronisation during
the setting of I and J and yet the time to test for equality with
E is very short. 'Furthermore, the points which arise are made more
clearly with the example in section 5.2. (Milner /80a/ does give

a parallel solution to a related problemjy searching for the zero
point of a function is used which shifts someﬁhat the balance of

computation versus housekeeping.)

501 02 Sorting

A second illustration of the way data type invariants capture

a design can be found in internal, in-place sorting:

5.1.2

50102 . 5"7

SORT
globals L: rd Key-list
post isascending (1') A ispermutation (1,1')

An obvious approach is to introduce a new variable I and then use

an invariant:

2 isascending (subl(1,1,i))

This invariant is to be preserved by a loop which increases I to
the value of the list length (say N). There are two basic
alternatives. The first is to absorb, at each step, the I+1 st

element of L, thus:

3 for I in (2 .. N) loop BODY (I) endloop
with front ass

4 ispermutation (subl(1l,1,i), subl(1',1,i)) A
subl(1l,i+1,len 1) = subl(l',i+1,len 1)

5 BODY(I)
globals L: rd Key-list
pre i€ inds 1 |
post (Jje H..i41} 3 subl(1,1,i) = del(subl(1',1,i+1),3) A
1'(3) = 1(i+1)) A
subl(1l',i+2,len 1) = subl(1l,i+2,len 1)
Implementations of BODY(I)-mighf either shuffle L(I+1) down

("straight insertion") or find J by a binary search and move all

elements above J at one time ("binary insertion").

An alternative to slavishly accepting the I+1st element of L

for insertion is to select the lowest remaining element of L. The

5-8

N
.
—-—
.
N

effect of this design decision can be seen immediately by an extra

clause which can be conjoined to the invariant (2):
(Y1e elems subl(1,1,i), r € elems subl(l,i+1,len 1); 1 € 1)

Thus:

for T in (1..N=1) loop BODY(I) endloop
With rest asg

subl(1',1,i) = subl(1,1,i) A 7
ispermutation (subl(l',i+1,len 1),subl(1,i+1,len 1))

BODY(TI)
globals L: rd Key-list
Ppre iéinds 1 ,
post (Jie fi+1 .. zen 1l 5 subl(1',i+2,len 1) = del(subl(1,i+1,len1),3)
11(1i+1) = 1(3)) A
subl(1l',1,i) = subl(1,1,i)

A greater Challenge is the QGICKSORT algorithm. This algorithm
is studied in Allen /72b/. One‘of‘the‘most interestihg facets of
QUICKSORT is the reasoning concerning termination. This would
probably be handled more elegantly than in the oriéinal report by
using bag ordering on the indices of inverted elemenfs. The mistake
is made in the report itself of using sets in the design: QUICKSORT
is so tied to manipulation of indices that tﬁis abstraction is some-

what unnatural,

5.2 Locating an Array Element

The problem discussed in this section is taken from Owicki
/76a/ alfhough several alternative implementations are given
before one corresponding to the original design appears (sub-
section 5.2.8). The implementations give an idea how interferences
interact, In addition, sub-section 5.2.7 shows the refinement of
a variable into a task and 5,2.8 the refinement of a variable into

an expression in terms of other variables.

The specification in sub-section 5.2.1 makes no mention of
parallelism and sub-section 5.2.2 gives a simple sequential
solution, The remainder of the section explores how parallelism
can be used to increase the (potential) performance. The develop=
ment is broken into several steps as illustrated in the following

diagram,

56241 FINDFP

specification

52,2 (FINDP.1

decomposition to sequential algorithm

D.2.3 FINDP,2
INIT; SEARCHES

simple decomposition

5.2.4 SEARCHES.1
arbitrary number of || SEARCHi

5.2.5 [[SEARCH,1

task per index

56246 A SEARCH.2
‘lazy task per)index

5¢247 | SEARCH.2.1

task for variable T

5.2.8 SEARCH.3
even/odd tasks
refinement onto an expression

59

510

5.2,1 FINDP

2.1

1

The task to be considered is, given an array with indices 1 to N,

find the lowest index sugh that the corresponding element of the
array satisfies some predicate (say P). That is, set RES to be an
index to the array such that P is false for all elements of the array
with lower index and P is true for the array element indexed by RES.

By convention, RES is set to some value greater than N if no element

of the array satisfies P. Thus:

procedure FINDP;
globals X: rd array (Ind) of Val
RES: wr Inde

speC
post (¥ie {1 .. res'=1} ; ~ p(x(1))) A satp(x,res')
rely x' =x A res' = res
~end |

With a pure function:

function P(V: in Val) return Bool

and:

subtype Ind is Int range 1 .. N
subtype Inde is Int range 1 .. N+1

satp(x,t) & t & N & p(x(t))

(The global array X is not essential to the problem; it dnly makes
some of the rely-and guaranteeéconditiéns more interesting.) The
condition relyFINDP is not used explicitly in the sequential solution

since isolation is assumed. To see that such a result exists notice

that postFINDP is equivalent tos

He2ol

if (die1nd; p(x(i))) then res' = mins ({i€1na st p(x(i))})

else res' = N41

Although solutions, much less parallel designs, are not yet
being discussed, it is easy to see that RES could be initialised
to N+1 and that a dynamic invariant of satp(x,res) might be

preserved.

5.2.,2 FINDP,1

The first design to be considered is a purely sequential loop.
The requirement is té achieve postFINDP (5,2.1(i)). A standard
technique for designing a loop is to begin with the invariant, and
an equally standard way of seeking an invariant is to introduce a
temporary (CTR) which weakens the final post-condition into an
'expression which is both easy to satisfy by initialisation and to

preserve, Such an invariant (invl) is:

(Vie f1 .. min(ctr,res)-ﬂ 5 ~p(x(i))) asatp(x,res)

Thus the design step can be shown by:

E declare CTR: Inde
RES:=N+1; CTR:=1;
while CTR § N loop BODY endloop] sat FINDP

The fact that X is not overwritten can be recorded by a front

predicates

x' = x

but since only read-aoceSS'is possible, no proof that this is

H=12

ii

5e242

preserved need be given. It is easy to see that BODY needs a
specification like:

BODY
globals X: rd array (Ind) of Val

RES: wr Inde

CTR: wr Inde
pre ctr {N
post ctr' > ctr
The proof uses 3.2.2(IWHILEUP): the DOMINIT condition follows
because of the types of the variables; DOMLOOP is immediate;
DOMX is vacuous; and DOMBODY is immediate., Even the conditions

involving relations are relatively simple: BASIS and COMP are

both trivial; RESULT becomes:

front(s,s') ainvl(s') A ~(ctr'< n') = postFINDP(s,s')

x' =x o (Vie {1 ..min(N+1,res')—-1}; ~p(x'(i))) A satp(x',res') =
(Vie f1..res'=1} 5 ~p(x(i))) A satp(x,res')

The termination (STOP and DECR) conditions follow easily with a

“yariant function':

N+1 - etr

The main requirement on BODY is that imposed by the invariant

(1). A possible design is:

[if P(X(CTR)) then RES := CTR; CTR:=N+1;
elgse CTR:=CTR+1
endif H
(Note that it would be preferable to use a for loop with exit

statement but such control constructs are not considered in the

current work - cf, discussion in sub=-section 3.5.3.)

523 PINDP.2

As the name (FINDP.2) indicates, this sub~section presents
an alternative to the development in sub-section 5.,2.2. That is,
a new development from the specification 5.2,1(1) is proposed
here, The design step is, in fact,; a triyial deqomposition
preparatory to the introduction of parallel.tasks. The decomposition

of FINDP can be presented as:

procedure FINDP is
declare T: Inde

Te=N+13
SEARCHES .
- globals X:rd array (Ind) of Val
T:wr Inde

pre satp(x,t)
post consid(x,t',Ind) A satp(x,t')
rely x'=x At'=

RES:=T}3

end

The identification of "consid" as a separate predicate aids the

subsequent presentation:

consid (x,t,s) 2 (Vies; p(x(i)) » t ¢ i)

The validity of relySEARCHES follows from relyFINDP (5.2.1(1))
and the fact that 1 makes T local, (Notice that both rely-conditions
could be wéakened by only requiring that the value does not alter in

a way which changes whether or not it satisfies P.)

5=14 5.244

As is required of a development method, having made and
Jjustified this design decision, it need not be considered again:

subsequent development is concerned only with SEARCHES.,

5.2.4 SEARCHES.1

This sub-section records and justifies the decision to
implement SEARCHES by a family of parallel tasks. An array (GRPS)
is introduced in which the i'th element records the set of (X)

indices for which the i'th task is responsible,

An obvious objective is to arrange that it is always true that:

1 satp(x,t') A x' = x

Thus the individual tasks must t constrained so that any change
made to T will represent an index for which the corresponding
element of X satisfies P. Furthermore, each task must consider
the set of indices for which it is responsible; if the value of T
could increase as well as decrease, this would be impossible.

Suppose SEARCHiI is responsible for checking the indices:

2 {1,3,5}

where P is satisfied by X(3) only and suppose further that T has
the value 2 during the execution of SEARCHi but is reset to 4 just
before termination; then the lowest index would not be found.

Thus a rely-condition of:
3t <t

is required (notice that this is reflexive and transitive)., This is

5.244

in addition to assumptions on X. A clause corresponding to 3 will

also be required for the guarantee-condition.

Thus the design of SEARCHES can be shown as:

4 declare GRPS: constant array (Tind) of Ind-set:= ...;

task type SEARCH;
task body SEARCH is

globals X: rd array (Ind) of Val
T: wr Inde

MINE: congtant Ind=-set:=GRPS (SEARCH' index);
post consid (x',t',mine)
rely x! [mine = x [mine A t' £t
guar t'# t Pt <t A satp(x,t')
end
SEARCH ARRAY: array (Tind) of SEARCH;
begin

end = - waits for all tasks to terminate

(Notice that the post-condition alone could be satisfied by
setting T to one - this is ruled out by the guarantee-condition.
It is also interesting to note that the post- and guarantee-
conditions do not prevent a task looking outside its set MINE of
indiceg although a étronger rely~-condition would be required to

make this safe,)

The correctness argument uses 4.4.1(PARCOOP) with the

envisaged dynamic invariant:

x' = x A satp(x',t')

\Jb

The DOMi conditions are vacuous; INVBASIS becomes:
i preSEARCHES(s) = dinv(s,s)

which is immediate; +the INVPRESi conditions become:

5=15

5-16

ii

iii

iv

vi

dinv(s,s') A guarSEARCHi(s',s") =»dinv(s,s")
which requires a simple case analysis as to whether T changes or

not. The INVPRESENV condition is obviousj; +the INTERFEREL

conditions become:

52} guarSEARCH;(s,s') = relySEARCHi(s,s')

which is immediate. Also immediate is the acceptability of the
interference from the environment (INTERFERE ENV). The RESULT

condition becomes:

dinv(s,s") a {} postSEARCHi(s,s') = postSEARCHES(s,s!')

x' = x A satp(x',t') A consid(x',t',union rng grps) &%
postSEARCHES(s,s')

which follows providing the range of GRPS covers the index set:

Ind &€ union rng grps

In these interference proofs (iii) the rely-and guarantee-
conditions are taken from instances of the same task but, since 4
provides only a specification, the differentrinstances could be

implemented by different code.

The next step could be to implement the (abstract) object T
as a task and achieve appropriate atomicity via “rendezvous",
This is done in sub-section 5.2.7. However, SEARCH is first

refined somewhat before T is considered,

Here again, the criteria for a development method are met

in that this design step and its justification will not have to

be reconsidered., In fact, the sequential implementation of
sub-section 5.2.2 is a special case of 4. Notice also that a

great deal of freedom has been left:; there is an obvious incentive
to read T in order to avoid unnecessary work but this is not

required; instances of SEARCH could even spawn their own tasks.,

H5.2.5 SEARCH.1

Three implementations of the specification for SEARCH given
in 5.2,4(4) are considered. That studied in the current sub-
section can be viewed as being maximally parallel in that it employs
a task per index (of X). Two consequences of this decision should

be noted. Firstly the declaration of SEARCHARRAY in 5.2.4(4)

becomess
SEARCHARRAY: array (Ind) of SEARCH;

Secondly the array GRPS is not required and the unit sets which

would have been allocated to the local variables named MINE are
now assigned as elements to local variables named ME. Thus the

specification for SEARCH in 5.2.4(4) can be specialised tos

task body SEARCH is
globals X: rd array (Ind) of Vals
T: wr Inde
ME: consiont Ind:=SEARCH'index;
post consid (x',t', {mel)
rely x'(me) = x(me) A t' < t
guar t'#t D t'< t A satp(x,t!)

end

ii

iii

s
@
N
®
f}

The simplest implementation of SEARCH is to evaluate P at
X(MB). If this test yields true the code must be careful not to
risk increasing T (i.e. guarSEARCH must be respected). This facet
of the problem can be postponed (cf. sub-section 5.2,7) by using

a specification within the implementation as follows:

task body SEARCH

if P(X(ME)) then
SETT
globals T: wr Inde
post t' £ me
rely t'<£ 1t
guar t' £ttt =mea t' <t
endif;
end

In order to establish that 3 is correct with respect to 2,
it is necessary to use 3.2.2(IFT) extended in the way discussed in
sub=-gsection 4.4.3. Condition DOMX is fulfilled because of the
variable types and DOMIH is vacuously true., The RESULTH condition

becomess

p(x1(me)) A relySEARCH(s1,82) A postSETT(s2,s3) A relySEARCH(s3,s4) =
postSEARCH(s1,s4)

p(x1(me)) A x2(me) = x1(me) A 12 € t1 A t3 &€ me A x3 = x2 A
t4 § t3 A x4(me) = x3(me) =
consid(x4,t4, {me})

The RESULTEL condition becomess

~p(x1(me)) A x3(me) = x1(me) = consid(x3,t3, {mef)

50246

Purthermore, the rely-conditions match since:

iv relySEARCH(s,s') = relySETT(s,s")

Finally, it is enough to pass guarSEARCH on to guarSETT as

above since SETT brings about the only state change in 3,

Before considering a realisation of SETT, sub-section 5.2.6

introduces a lazier algorithm,

5.2.6 SEARCH.2

Suppose that the function P (5.2.1(2)) is very expensive

\

to evaluate. There would then be an advantage in checking T to
determine whether evaluation could be avoided. (In fact, given
m procéssors, it would be oﬁtimal to initiate m tasks of the form
5.2.5(3) and the rest of the form 1,) Thus an alternative

implementation of 5.2.5(2) might be:

1 task body SEARCH
if ME <1 then
TESTP
globals X: rd array (Ind) of Vals
T: wr Inde '
post postSETT
rely relySETT
guar guarSETT

end.

The correctness argument for 1 is similar to that given in

the preceding sub-section; +the only interest being in the RESULTEL

520 5e2.7

condition. As should be clear from the specification of TESTF

in 1, the body of 5.2.5(3) is a possible implementation.

It is now time to consider how the behaviour of T is to be

realised.

5.2.7 SEARCH.2.1

Sub-gections 5.2.5 and 5.2.6 use T as a shared variable.
This is a convenient abstraction but the required monotonic
behaviour is best realised via a "monitor". This corresponds to

one of the uses of monitors envisaged in Hoare /74a/. In Ada

/

this will be programmed as a task with entries; the "rendezvous"

concept gives the required atomic behaviour.

Thus the program becomes:

1 procedure FINDP ig

task TOP is
entry SET (V: in Inde);
entry READ (V: out Inde);

end;

task body TOP is
Ts Inde;
TEMP: Indes

begin _
accept SET (V: in Inde) do T:=V end;
loop

select
accept SET (V: in Inde) do TEMP:=V end;
if TEMP € T then T:=TEMP; endif;

accept READ(V: out Inde) do V:=T; end;

terminate

end select;
end loop;

begin
TOP.SET(N+1);
declare
task type SEARCH;
task body SEARCH is
ME: constant Imd:=SEARCH.index;
TEMP: Indes
begin
TOP.READ(TEMP) ;
if ME<TEMP then
if P(x(ME)) then TOP.SET(ME);

endif;
endif;
end;
SEARCHARRAY: array (Ind) of SEARCH;
end; = - causes wait
TOP.READ(RES);

end

An indication of how much less verbose CSP can be than Ada

is gained by comparing 1 and 2 with 6.2 (4-8).

5.2.8 - SEARCH,3

As can be seen from the name of this development step, an
alternative approach to implementing 5.2.4(4) is considered in
this sub=section. SEARCH.1 and SEARCH.2 give maximum parallelism,
Here, the partition of the indices into groups is acceéted with,
perhaps, the idea of creating one process for each processor.

With each process a global variable can be associated in which the

5=21

process records the position of any index(ices) where it finds P
to be true. Only one process has write accesgss to each variable
but the tasks "communicate" by reading each other's variables

and thus avoid searching beyond a point where P has been found

to be true,

This step can best be thought of as an unusual data refine-
ment of T of 5.2.4(4) ase
mins ({ti st ieT ind})

A special case of this approach is to split the indices into

odd and even values. This then yields the design originally

envisaged in Owicki /76a/. This pre-defined division again avoids

the need for the array GRPS.

The appropriate specialisations of 5.2.4(4) use a post-

condition of:
consid(x',t',evens(N))
wheres

evens(n) = {ie Nat st i€n A iseven(i)}
The rely- and guarantee-conditions are obvious.

FINDP must now include appropriate declarations of ET and OT
and initialisation of both to N+1. The refinement of T onto
min(ET,0T) shows the use of a true shared variable implementation.

Thus;

w1

n

@€

4 task body ESEARCH is
globals X: «u. ET: ... OT: ...
EC: Inde;
post consid (x', min(et',ot*), evens(N))
rely x! revens(N) = X revens(N) Aet! = et A ot' € ot
guar et' # et ® et' < et A satp(x,et’)

end

5 OSFARCH mutatis mutandis

Considering the refinement (cf. sub-section 4.443), it is
easy to see that the guarantee-condition of ESEARCH is a

strengthening (under the retrieve function) of guarSEARCH:

i guarESEARCH (s,s') = guarSEARCH (retr(s), retr(s?'))

it (et' # et et' < et A satp(x,et')) A ot' = ot =»
(min(et',o0t') # min(et,ot) =
min(et',0t') < min(et,ot) A satp(x,min(et',ot')))
Is relyESEARCH a weaker form of relySEARCH? Unfortunately, no!

The difficulty is analogous to the "potential problem" discussed

in sub-section 2,2.6, It is not true that:
iii min(et',ot') ¢ min(et,ot) = et' = et A ot' < ot

Moreover, there is no way of stating an appropriate condition
on the more abstract level, Tpere is, however, no problem in
reproving acceptable interference between ESEARCH and OSEARCH,

The INTERFEREL condition of 4.4.1(PARCOOP) becomes:

iv. (ot' # ot D ot'< ot) Aet' = etDet! = ot A ob! € ot

(Clearly what is missing in the refinemeént step is the recognition

that only ESEARCH has write access to ET - it would be worth

=24

observing how often this property arises before seeking to extend

the proof rules.)

The code for ESEARCH becomes:

task body ESEARCH is
EC: ..e3

EC:=23

while EC < min(ET,0T) loop
if P(X(EC)) then ET:=EC endifj;
EC:=EC + 23

endloop

end

This loop checks ET at each iteration. The version of Ada given in
DoD /80a/ takes a rather odd position on shared variables: on the
one hand they are permitted and on the other it is very difficult

to ensure that a defined result is obtained. In order to

minimise the use of SHARED~VARIABLE~UPDATE, the freedom in 4 could

be exploited to check OT less often than is done in 6,
The justification of this step can be made with a suitably
extended version of IWHILEUP with invl ass
ec € N+2
and preBODY as:
ec £ N
all of the domain conditions are immediate, Then with "front" as:
consid(x',min(et',0t'), evené(ec‘—Z))

(X constant because read access only), BASIS becomes:

2.8

502;8 5““25

i 51; relyESEARCH; INIT; relyESEARCH € FRONT
which follows from "consid" being vacuously true for the empty
sety BC is local, BODY obviously satisfies the post-condition:
10 ec' = ec+2 A consid(x',min(et',ot'), fecl)
From which COMP follows since the interference can only decrease

OT; RESULT is straightforward.

The preservation of guarESEARCH follows since X and ET are

not changed between the test and the assignment,

5=26

5«3 Recording Bquivalence Relations

The problem of recording equivalence relations occurs
frequently and is widely discussed in the literature (e.g.
Tarjan /75af, Morris /72a/, Dijkstra /76a/, Jones /79a/). Most
solutions are based on the Fischer/Galler algorithm. The
solutidns presented here are intended to illﬁstrate the rigorous
development method rather than to confribute efficient algorithms,
(The approach adopted differs, even for the sequential case, from
that in Jones /79a/. The changes have been made partly in
response to criticisms by Lockwood Morris.) The solutions which
employ parallelism have been designed with the aid of the methods
of chapter 4. Once again several alternative, multi-stage,
developments are shown from one specification (see diagram below).
The parallel solution of sub-section 5¢3¢4 has something in common
with the "On-the~fly Garbage Collector" discussed in Dijkstra /78a/
(a development of which has also been sketched using the methods of

this dissertation,)

One point of interest in this section which has not occurred

in the other examples is the acceptability of dne piece of code to

satisfy two or more specifications, Some points about a CSP

approach to this problem are made in section 6.2.

5.3

5.35;] 5““‘27

5e361 QREL

specification using partitions

53,2 QREL. 1

refinemen§ to mappings

% v - - .3refinement to rings (Jones /80a/)

50303 Q,RELQ1.1
refinement to forests

decomposition to code
L3

‘‘‘‘‘ »Dijkstra/Rem (cf. Dijkstra /76a/)

5.5¢4 GREL.1,2

refinement to forests

parallel CLEANUP

decomposition to code (partly as in QREL.1.1)

5¢3.5 QREL.1.3
refinement to forests
multiple parallel CLEANUP tasks |
decomposition to code (partly as in QREL.1.2)

5¢3.1 QREL

A natural mathematical view éf an equivalence relation is
the partitioning which is induced. Partitions (cf. sub-section 2.1.8)
are used as a basis of the specification. Thé equivalence relation
can be thought of as an abstract data type with constructor operations
which initialise (INIT) and record new equivalences (EQUATE) and a
selector opération (TEST) which determines whether two elements are

equivalent.

5--28 5.3.1

The specifications of the three operations, and an indication

that results satisfying the specifications exist, are:

1 procedure INIT;
| globals P: wr Partition (EL)

post p' = {{e} st esﬁEl}

end

The fact that postINIT can be fulfilled with an object satisfying

the invariant follows from 2.1.8(2).

2 procedure EQUATE (E1: in El, E2: in El);
globals P: wr Partition (E1)
post p' ={Sepstel ¢ s4e2d¢ s} U funion {Sepstelesv
e2e& 8 H
end
Existence of such a result follows from 2.1.8(3).
3 function TEST (El: in E1, E2: in E1) return RES: Bool;
globals P: rd Partition (E1)
post res' & (JSep st eles A e2es)

end
Existence is immediate.

To show that this specification is not "biased” it is
necessary to show that equivalence under the operations implies
equality of the underlying objects (i.e. members of Partition (E1)).

Since the only selector operation is TEST, it is necessary to prove:

4 (Vel,e2¢El, p, p'e Partition (¥1);
((5ep; ele Sae2e8)e> (dS'ep'; eleS! A e2¢8')) =
p=73")

Consider any:

i S €p

5e342

then:

ii {lesem i, 2.1.8(1)
from the equivalence given (as the antecedent in 4) there must
existe

iii s¢€ s'e p' ii, 4
and similarly:

iv s'¢€ s
therefore:

v St =985 iii, iv
but since i is general, then

vi p = p! i, v

The specification given in 1«3 is an abstraction of many
representations (e.g., lists of pairs, Boolean arrays, Fischer/Galler
trees, ring structures). In fact 4 has shown that partitions are an

abstraction for any valid implementation of the problem.

5.3.2 QREL.1

The final algorithms presented in this section represent the
equivalence classes as trees. This sub-section introduces an
intermediate representation which both isolates some of the problems
and which provides a starting point for other, non-tree, algorithms

(e.gs the ring version in Jones /80a/).

5=-29

5=30

The data structure used here is a mapping from the given set

of elements (El) to an arbitrary set of keys (Key):

Totmap (E1) = E1 —* Key

The relation between 1 and the partition of the preceding sub-
section can be given by:

retrp: Totmap (E1) —» Partition (E1)
retrp(m) & {fe‘§E m: ek} st ke rng m}

It is easy to give a constructive argument for the adequacy

of 1 - but notice that adequacy does rely on the absence of empty

sets in partitions (cf. 2.1.8(1)). 1In view of the invariant on
2.1.8(1) the model in 1 might appear to be simpler. It should,
however, be noted that the latter model would be biased and

should, therefore, not be used as a specification.

The retrieve function (2) gives a clear indication of what

the operations on the representation must be., Thus:

procedure INIT1j
globals M: wr Totmap (E1)

post dom m' = El A isoneone (m')

end

i

Clearly, such an m' exists providing the cardinality of the Key

set is at least as great as that of El. The result is not, however,

unique. Condition 2,2.1 REFINE (RESULT) becomess

(Vm,m' € Totmap (E1); postINITI(m,m') =
| postINIT(retrp(m), retrp(m'))

which is immediate, The DOMAIN condition is vacuous for total

operations.

552
The EQUATE operation is to be modelled by:
5 procedure EQUATE1(E1: in El, E2: in El1);

ii

iii

iv

globals M: wr Totmap (El)
post m' = m T {e rym(e2) st m: et»-)m(e1)}

end

o

5-31

(Note that the choice of which element's key to preserve is

arbitrary and that a more general post-condition could cover both

cases.) Clearly m' must exist and, again, the DOMAIN condition is

vacuous., The RESULT condition becomes:

(Vm,m' € Totmap (El); postBQUATE1(m,el,e2,m') =>

postEQUATE(retrp(m),el,e2,retrp(m')))

Now:

st m'ze +» k| _s_t__ker_nﬁm'}‘

i
-
—ty
®
w
‘-’4

retrp(m!) =

{
lana
p———
©
Em
ot

{{e st mfze w m’(e‘l)}]

= {{e_s_jim:e w k}

5t

m'te s k] st kerngm' a4 k £ m'(e1)j U

t kerng m A k # m(e1) A k # m(e2)}U

{{e st mie +» k] st k = m(el) v k = m(eZ)T{ ii, 5

{S €retrp(m) st e1¢ S A e2¢ s} U

iunion {s €retrp(m) st ele Sve2e S”

"« PostEQUATE(retrp(m),el,e2,retrp(m'))

Finallys

function TEST1 (E1: in E1l, E2: in El) return RES: Bool
globals M: rd Totmap (E1)
post res' & m(el) = m(e2)

end

All conditions are trivially fulfilled here.

5.3.1(2), iv

.

5-32

The ﬁapping solution is useful in that it splits the
development task, but the search which is implied by 5 would be
unacceptable for an implementation which had to cater for large
sets El. It is exactly the elimination of this search which makes
the tree~like structure of the Fischer/Galler algorithm attractive,
As is pointed out elsewhere, it is an essential feature of a
development method that complete and justified design steps need
not be rechecked: 3,5,7 are used as the specification for three

alternative designs.

5¢3.3 QREL.1.1

The basic idea of the Fischer/Galler algorithm is to

represent equivalence classes by (representations of) trees. 1In
terms of the design decision in the preceding sub-section, the root
of such a tree can be thought of as the key for the elements in the
tree. The advantage of this representation is that EQUATE can be
performed by grafting the root of one tree onto some point in the
other tree: this changes the keys of all elements in that class at
one step. The search time is proportional only to the average depth

of the trees (a point which must be considered again below).
The required data structure is (cf. sub-section 2.1.9):

Forest (E1)

The relation to 5.3.2(1) is defined by:

retrm: Forest (El) ~> Totmap (E1)
retrm(f) 2 fe w root(f,e) st eerl}

5¢343 5-33

An example of a forest and the effect of a change might be:

f1
c e f
/ ! \
b d g
/
a
EQUATE (a,g): f1 w» £2 .
£2 £ e

It is again easy to argue that the representation is adequate., It
is, however, important to notice that there are many ways of
representing the same mapping: optimisation consists of com=—

pressing the trees while preserving their "meaning".

The retrieve function again gives a clear idea of how to re-

specify the operations. Thus:

3 procedure INIT11
globals F: wr Forest(El)

post f' = {1
end
Clearly f' must exist and is well-founded. DOMAIN conditions (for
all three operations) are vacuous. The 2.2.1 REFINE(RESULT)
condition becomes:

4 (Vr£,£1 ¢ Forest(El); postINIT11(f,f') = postINITI(retrm(f),retrm(£*)))

which is immediate,

5"'34 50563

Then

5 procedure EQUATET1(E1: in El, E2: in E1);
globals F: wr Forest(El)
post f£' = if root(f,el) = root(f,e2) then f
else £1 {root(f,e1) & root(r,e2)}

end

(As in the preceding sub-section, it would be possible to give a
more general post-condition.) The existence of such a (valid) f°'

follows from 2.1.9(7) because:
i root(f,e1) # root(f,e2) = root(f,e2) ¢ coll(f,root(f,el))
The interesting property is the RESULT condition:

6 for f,f' € Forest(El), el, e2 € El
postEQUATE11(f,e1,e2,f') =»
postEQUATET (retrm(f),el,e2,retrm(f"))

Begin by considering the case:

i root(f,e1)v= root{f,e2)
ii f' = f i, 5
iii retrm(f)(e1) = retrm(f)(e2) i, 2

iv ', retrm(f)(e) = retrm(f)(e1) &
retrm(f)(e) = retrm(f)(e?2) 3

v postEQUATET (retrm(f),el,e2,retrm(f*)) 5¢.3.2(5), iv, ii

Alternatively:
vi root(f,el) # root(f,e2)
vii £' = £ T {root(f,e1) v root(f,e2)} | vi, 5

let rm = retrm(f), rm' = retrm(f') consider:

viii, 2
2.1.9(4)

ix, x
vii,xi,2.1.9(9)
xii, 2.1.9(2)

viii, xiii

xXv, 2
xvi, 2.1,9(6)
xvii, 2.1,9(5)
2.1.9(3)
xviii,xix
xx, 2.1.9(8)
AVy XX1
xiv, xxii

xxiii

543.3

viii e€El st rm: e +»rm(el)

ix root(f,e) = root(f,el)

x e € coll(f,root(f,e))

xi e €coll(f,root(f,el))

xii root(f',e) = root(f,root(f,e2))

xiii = root(f,e2)

xiv .. (Ve st rm: e »rrm(el); rmm'(e) = rm(e2))

Now considers

xv e€Fl st ~rm: e = rm(el)

xvi root(f,e) # root(f,el)

xvii isdisj(coll(f,root(f,e)),coll(f,root(f,e1)))
xviii isdisj(reach(f,e),reach(f,e1))

xix root(f,el) € reach(f,el)

xx . root(f,el) § reach(f,e)

xxi root(f',e) = root(f,e)
xxii W' (Vegp_ ~rms e v»rm(el); rm'(e) = rm(e))
xxiii ' = rm T {e »rm(e2) st rm: e v#rm(e1)}

<"+ postEQUATE1(retrm(f),el,e2,retrm(f'))
The selector operation on forests becomes:
7 function TESTI11 (E1: in El, E2: in El) return RES: Bool

globals TF: rd Forest(El)
post res' & root(f,el) = root(f,e2)

end

The result obvidusly exists.since "root" is total and the RESULT

condition is trivial.

5-36

The use of the forest properties has had a considerable
simplifying effect on the proofs of this sub-section: the proofs
given here have not been clouded by results which relate to the
data structure in general rather than its use here. Purthermore,
sub=gection 2.1.9 contains a body of results which can be used for

other problems,

The use of the tree structures has now been justified and
345,7 can be taken as a specification for code which is to be
designed. The forest will be represented by an array (i1 .. N)
where a zero value corresponds to an element not in the domain of the
mapping. This simple refinement step is handled informally.
Implementation of INIT11 presents a typical case for the use of
3.2.2(FORARB): the order in which the array elements are

initialised is immaterial., The actual code is:

for CTR € {1 .. N} loop F(CTR):=0 endloop
This would have to be implemented in Ada by a conventional for
loop.

The implementations of EQUATE11 and TEST11 both require a
ROOT functions

function ROOT11(E: in E1) return RES: El is

PTR: E1;

PIR:=Es

while F(PTR) # O loop
PTR:=F(PTR);

endloops

return PTR;

end

1

«3.3

De5e.

10

ii

11

12

AN

This can be shown to satisfy:
postROOT11(f,e,res') € res' = root(retrf(f),e)
by using 3.2.2(IWHILEDN) with:

rest as ptr' = root(retrf(f),ptr)

preBODY as f(ptr)# O

Then:

procedure EQUATE11(E1: in E1l, E2: in El) is
R1, R2: El;

begin
R1:=ROOT11(E1);

R2:=ROOT11(E2);
if R1 # R2 then P(R1):=R2; endif

end

can be proved correct using the 3.2,2(SEQ) rule.

Similarly the correctness of 12 with respect to 7 can be
checked by inspection:

function TEST11(E1: in El, E2: in El) return RES: Bool is
R1, R2: Elj

begin
R1:=RO0T11(E1);

R2:=RO0T11(E2);
return (R1 = R2);

end
The implementation of 8, 9, 11 and 12 could still lead, in
carefully selecled cases, to unbalanced trees and several papers

have considered how to compress trees. Tarjan /75a/ keeps track

of the "weight" of a tree and uses this to govern the order of the

=37

_;L‘" .

grafting; Dijkstra /76a/ compresses the trees during EQUATE but
not during TEST; "Rem's algorithm" (also Dijkstra /76a/) attempts
to make the EQUATE more symmetrical (unfortunately there are cases
where this algorithm actually extends trees). It is now time,
with the groundwork done, to consider how parallelism can be used

to help with tree compression.

He3e4 QREL.1.2

The problem of tree depth can be tackled by a design using
parallelism. In fact, an aside in Jones /79a/ mentioned that it
would be advantageous to compress (or CLEANUP) trees using a
parallel, low priority, process. At that time, it was thought that
the interruption of the CLEANUP process would be quite messy. In
%h@ event, the use of the methods of chapter 4 has shown that it is
possiblevto design the algorithms so that the CLEANUP process does
not need to be reinitialised after interruption. (In earlier joint
work with Wolfgang Henhapl, it was found that the interesting
results were those where readers looked for counter examples before
bothering to read the proof; presentations of these parailel
algorithms have given rise to the same phenomenon.) Although the
proof rules of chapter 4 can only be used to estéblish correctness,
the general ideas of interference do appear to give a framework for

thinking about possible designs.

The parallel CLEANUP provides an interesting example for the

use of the interference ideas proposed here. Given the near-linear

" performance of the algorithms employing both compression and tree

5:344

04 5"39

weights, it is not being claimed that the parallel algorithms

offer any great advantage.

The overall program structure can be shown by the following

Ada package body:

package body QREL is

F: array (E1) of El - -~ array representation of forest
INIT12; .se - = gpec below
declare

task CLEANUP12;
task OPS12 is

entry EQUATE12(El: in E1, B2: in El);

entry TEST12(E1: in El, E2: in El, RES: out Bool);
end;
task body CLEANUP12 - - spec below
task body OPS12 is

loop
select .
accept EQUATE12(E1: in El, E2: in E1);
- - gpec below
end;
()_}:
accept TEST12(E1: in El,E2: in El, RES:out
- - spec below BGSTT;
end;
end select;
end loop
end
end

ces ~ = use of EQUATE12/TEST12

5=-40

34

W

The specification and implementation of INIT12 is the same as

for INIT11 because there is no danger of interference.

The specification of postEQUATE11 in 5.%.3(5) effectively
prohibits any interference. If an interfering CLEANUP routine is
to be tolerated, a looser condition must be derived from
postEQUATE1 of.5,3.2(5). The parallel algorithm employs the same
basic tree-like data structure. Considering the retrieve function
in 5.3,3(2) it is clear that it is the overall tree groupings
which must be conserveds EQUATE cannot tolerate interference which

changes the root of any tree. A predicate to express this is:
rootunch(f,f') 2 (Ve €El; root(f',e) = root(f,e))

EQUATE12 is obviously concerned mainly with roots and it would be
desirable to show the limitation of its effect by a predicate which

states that the "body" of the forest is unchanged:

vodyunch(f,f') 2 (Ve edon £; f's e w1(e))

Using 2 and 3 appropriately in the interference conditions is
not enough to control the developmentAof code, It is often
necessary to think ahead in a design and here it is clear that
EGUATE12 requires some ROOT (cf. 5.3.3(9)) operation and CLEANUP12
must also be able to scan along the tree. Arbitrary changes to the
structure of the trees could be difficult to cope with in the
programs to be written. With some experimentation a sufficient

constraint can be formulated as:

ordpres(f,f') & (Vee dom f; f'(e) € rreach(f,e))
rreach(f,e) & reach(f,e) - {e}

(cfe 2.1.9.(3) for reach).

With the aid of these auxiliary definitions (2-5) the
specification becomes:

entry EQUATE12(E1: in El, E2: in El);
globals F: wr Forest(El);
post root(f',el) = root(f,e2)
rely rootunch(f,f') A ordpres(f,f')

guar (Yeewl; f1(e) = £f(e) v e = root(f,el) 4 e # root(f,e2)a

f's e » root(f,e2))

end

(Notice that if the preservation of the other roots was required
by the post-condition, it would be very difficult to formulate a
useful dynamic invariant,) It is clear that a result exists which

matches the guarantee~ and post-conditions.

The corresponding specification of the CLFANUP process has a
weaker rely-condition than is given by guarEQUATE12; clearly this
is acceptable.

tagsk CLEANUP12

globals
post TRUE

rely bodyunch(f,f*)
 guar rootunch(f,f') A ordpres(f,f')

end

The vacuous post-condition is interesting: CLEANUP12 is not
required to have any final effect; it is only required to con-

tinually seek to optimise the data structure. Of course, without

542

ii .

some additional guidance about performance, one valid implement-—

ation of CLEANUP12 is to do nothing,

EQUATE12 is the more difficult case., The interaction of
TEST12 with the CLEANUP12 routine occurs in only one direction.

Thuse

entry TEST12 (E1: in El, E2: in El, RES: out Bool);
globals F: rd Forest(El)
post Tes' & root(f,el) = root(f,e2)
rely rootunch(f,f') A ordpres(f,f')

end

(Notice that, from the guarantee-condition implied by the "read
only" access, it would be possible to run more than one instance

of TEST12.)

'~ Having used the general ideas of interference as a prompt to
suggest specifications, it is now necessary to provg that the
operations co~exist and achieve the desired effects. The design
step considered here forces consideration of the data refinement
at the same time as the interference. In fact, given that 1
causes CLEANUP12 to execute when OPS12 is waiting for a "rendez-
vous",; the first task is to show that CLEANUP12 running alone is
an identity transformation when viewed under the retrieve function

5¢36%(2)s

guarCLEANUP12(f,f') =% retrm(f') = retrm(f)

which follows froms

(Ve_e El; root(f',e) = root(f,e))

5.344

The next task is to establish that, under the retrieve function,
EQUATE12 run in parallel with CLEANUP12 satisfies the specification
of EQUATE1. The rely~ and guarantee=-conditions have fixed the

"spheres of influence" of the two tasks. The dynamic invariant iss

]

i (VeeEl; root(ft,e) = root(f,e)v
root(fye) = root(f,el) A root(f',e) = root(f,e2))

With this the 4.4.1 PARCOOP(INVBASIS) condition is trivial. The

INVPRES condition for CLEANUP12 becomes:

9 dinv(f,el,e2,f') A guarCLEANUP12(f',f") = dinv(f,el,e2,f")
which follows from;

i root(f',e) = root(f',e)

The INVPRES condition for EQUATE12 is simple, and the dynamic'in_
variant is preserved by the environment since F is local to the

package,
The domain rules of both operations are vacuously true.

For the INTERFERE conditions it is easy to see in one case
that the guarantee- and rely-conditions are equivalent and that in

the other the rely-condition is an immediate consequence.

For RESULT:

10 dinv(f,el,e2,f') A postEQUATE12(f,el,e2,f') =
postEQUATE1(retrm(f),el,e2,retrm(f"'))

fdllows fromsg

(Veer; if root(f;e) = root(f,el) then root(f',e) = root(f,e2)

else root(f',e) = root(f,e))

ke

5~43

5-44

11

De3e4

As would be expected, the work involved in showing that TEST12
coexists with CLEANUP12 is less. The conditions can be established
with an identically TRUE dynamic invariant, The proof follows by

inspection of the conditions in 4.4.1(PARCOOP).

Tt is now possible to consider code to match the specifications
in 6, 7 and 8. Once again a development step by data refinement
is followed by operation decomposition., Since both EQUATE12 and
TEST12 are concerned with roots of the trees, it is worth considering
a specification for finding roots, This will only require read access
to the global F so no guarantee-~condition need bé considered. The
rely-condition, however, must be no stronger ihan the weakest

condition where this function is to be used, Thuss

function ROOT12 (E:in El) return RES: El;

global F: rd Forest (EL)
post res' = root(f,e)
rely rootunch(f,f') A ordpres(f,f')

end

With this function the code for BQUATE11 (5.3.3(11)) satisfies
the specification in 6 and the code for TEST11 (5.3.3(12)) satisfies
the specification in 7. (It would also be possible to search for the
roots in parallel.) Even more'interestingly, the specification in 11

is satisfied by the original code for finding roots (cf. 5.3.3(9}).

The problem of implementing the tree compression routine (7)

~is solved in two ways. A first algorithm looks for any "dog's legs"

and shortens the path appropriately. Thus:

5.344

12 task CLEANUP121 is
CUR: El;
NEXT: El;
begin
loop - = forever
for CURs=1 .. N loop
if F(CUR) #£ O then
NEXT:=F(CUR);
if P(NEXT) # O then
F(CUR) :=F(NEXT);
endif;

endif;

endloops;
endloop;

end

It is only necessary to show that guarCLEANUP12 is preserved
under the assumption -of interference which satisfies relyCLEANUP12,
The main step in this proof is:

i f: cur v»next A f: next > nnext b

(£T {cur wnnext]}) (cur) € reach (f,cur)

It is interesting to note that the assignment in 12 has two references
to the global variable. The rely-condition shows that this is cne of

the cases where it is safe to break Owicki's rule (cf. Owicki /75a/).

An alternative approach to tree compression is presented because,
withiits inifial search to the root of a tree,rit matches more
closelyiwhat has been done in sequential algorithms. (Clearly with
relyCLEANUP12 (cf. 7), it is not possible to deduce relyROOT12
(cfe 11). A functidn with a suitably weakened rely~-condition must

have a weaker post-condition. Thuss

5=45

5=46

13

14

function ROOT122(E: in K1) return RES: Elj
globals F: rd Forest (El)

~ post res ereach (f,e)
rely bodyunch (f,f!')

end

with this function it is possible to show that:

task body CLEANUP122 is
CUR: El; R: El; TEMP: El;

loop - = forever
for CUR:=1 .. N loop
R:=ROOT122(CUR);
TEMP:=CUR3
shile TEMP # R loop
_ F(TEMP), TEMP:=R,F(TENMP);
endloop
~ endloop
endloop
end

(Note: a first attempt at this code made the innermost loop
terminate only on a root =~ the rather subtle error was uncovered

in the proof attempt.)

Finally, how is ROOT122 to be implemented? It can be shown
that, once again, the code in 5.3.3(9) satisfies this specification,
Thus the one piece of code has been shown to éatisfy three specifi-
cations with increasing interference (more precisely, less reliancé

on lack of interference).

56364

5¢345 : =47

56345 GQREL.1.3

An interesting question now arises: dis it possible to run more
than one instance of the CLEANUP process at a time? This was an
opeh problem in Jones /80c/ which has been resolved by a study of

the dynamic invariants and interference specifications,

Clearly the specification of 5.3.4(7) is too restrictive since
itg rely-condition islnot a consequence of its guarantee-condition.
The situation can be analysed as follows. The weakest guarantee-
condition for CLEANUP that can be accepted by, for example, TEST is
that any changes to the trees do not cause an effect to the mappings
as retrieved by 5.3.3(2) (the "meaning of a tree"). A predicate to

cover this iss:
1 equimap(f,f') € (Ve €El; root(f',e) = root(f,e))

HoweVer, a CLEANUP process can only provide this guarantee if‘it‘can
rely on something. It would appear that a rely-condition of
"equimap" would be desirable. Although this would cover the inter-
action with other instances of the CLEANUP tgsk or with TEST, it will
not cover the case of interaction with EQUATE, What is the minimum
requirement for CLEANUP to be able to guaraniee‘"equimap“? It would
appear to need to rely on the fact that no o;her procesélsplitsva
grouﬁ. This condition is strictly weaker than "equimap" and can be
defined by:

2 growing (f,f*) @ (\/d,ee El; root(f,d) = root(f,e) =
. root(f*,a) = root(f',e))

5""48 505.5

Tt is also necessary to reconsider the other part of the
interference consgideration of sub-section 5.3.4. The rather strict
. order preserving predicate in 5.3.4(4) can no‘longer be guaranteed
if moré than one process is working on the "body" of the tree at
the same time, If, however, all attempt to check order is
abandoned then, for example, an attempt to find the root of a tree
may get caught in a "whirlpool" caused by continﬁal reversing of
the order of nodes. A weaker condition is:
3 wkordpres(£,£') & (Vi,eeml st d # e; dereach(f,e) =
’ e § reach(f',d))
>(This can be characterised by an analogy with a face-saving
management policy which mandates that if d works for e at one point

in time, e will never work for d however senior d becomes.)

Collecting up the thoughts outlined above leads to the following
specifications:

4 task CLEANUP13
globals F: wr Forest(El)
post TRUE |
rely growing(f,f') A wkordpres(f,f')
guar equimap(f,f') A wkordpres(f,f')

end:

5 entry EQUATE13 (E1: in E1, E2: in E1);
‘globals F: wr Forest(El)
post root(f',el) = root(f,e2)
rely equimap(f,f') A wkordpres(f,f')
guar (VeeEl; £'(e) = f(e)v
| e = root(f,e1) A e # root(f,e2) A
f's e wroot(f,e2))

end

in El, E2: in El, RES: out Bool);

e

entry TEST13(E1:
globals F: wr Forest(El)
post res' 4% (root(f,el) = root(f,e2))
rely equimap(f,f') A wkordpres(f,f')

end

mma——

It is now appropriate to consider the correctness of an

implementation along the lines of 5.%.4(1) but with parallel

instances of CLEANUP, The basis for the justification is, once

again, the specifications in 5e3e2(557)

The actual coexistence of two instances of CLEANUP follows
from 4 in which it can be seen that the rely-condition is a con-
sequence of the guarantee-condition. This of course on1y covers'
correctness; it is possible for parallel instances of CLEANUP to

cause the trees to get deeper! Although the timing would be unlikely

to occur, it does suggest that the number of parallel tasks should

not be increased indiscriminately.

The argument that CLEANUP preserves, under the retrieve
function, identical mappings is similar to that in the last sub-

gsection and follows from "equimap".

The proof that EQUATE13 performs the'required function in the
presence of interference is more interesting., The dynamic invariant

of the preceding sub-section can still be establisheds:

(VeéEl; root(f',e) = root(f,e) v
’ root(f,e) = root(f,e1) A root(f',e) = root(f,e2))

The proof (using 4.4.1(PARCOOP)) of the domain conditions is vacuous;

5-49

the INVBASIS condition is trivial; INVPRES follows from "equimap"
for CLEANUP and from guarEQUATE13; the acceptability of each

éther's interference is immediate in one case and straightfbrward
in the other; the proof of the RESULT condition is exactly as in

the preceding sub-section,

The proof that TEST 13 satisfies its specification is straight-

forward,

Finally, the code for specifications 4«6 must be congideredﬁ
As elsewhere, it is found that one and the same piece of code
satisfies more than one specification, The code of 5.5.4(12)
satisfies 4; the code of 5.3.3(11) satisfies 5; and the code of

5¢343(12) satisfies 6,

It:is>inteiésting to speculate on further developments of
Ehis pr&blem.' There are situations in which it is necessary to
permit simultaneous updating and enquiry. The difficulty which is
often encountered is how to specify the required result, The
equivalence relation problem is shown in sub=-section 6,1.5 to be
one which is amenable to simultaneous update and interrogation
because there is a sense in which the answers to the queries change
mbnotoniéally. An alternative possibility is to have.mére than one
instﬁnce of the EQUATE process active at the same time. An
implementation would probably require soﬁe locking. This would
then provide an example on which s&nchronisation and deadlock

problems could be investigated. This topic leads naturally into

-other approaches and a discussion of the limitations of the current

work.,

Chapter 6

Alternatives

62

Virtually all sequential programming languages accept the notion
of a state which is modified by assignment statements, Similarly,
the first attempts to produce parallel programs were built around the
notion of shared variables, For many applications of parallelism
this approach is still necessary in order to achieve adequate
performance. There is; however, a movement to avoid the problems of

shared states altogether and to achieve co~operation solely by

communication, The main argument in favour of this approach being

that it is easier to reason about such programs., This chapter reviews

alternative methods within both approaches.

6.1 Shared Variable Parallelism

The first landmark in the attempt to bring some order iﬁto‘
the analysié and construction of parallel programs is Dijkstra
/68a/. This section considers some of the subsequent attéméﬁs to
provide a formal basis for reasoning about programs whichlihterferé
with one another during execution. (Another area of comparison

vhich is not pursued here is the work on distributed databases, e.g.

Lindsay /79a/.)

6.1.1 Proof Rules

One of the earliest attempts to provide proof rules for
reasoning about parallel programs is Hoare /75a/. Processes are

analysed by their degree of interaction:

disjoint processes
competing processes
cooperating procegsses

communicating processes

In order to reason about parallel processes, notions like "commutative"

operations are introduced., At least in the way this idea is
presented in Hoare /75a/, these notions are applicable only to actual
code, Unlike the notion of interference in chapter 4, it would be

difficult to use such ideas in a development method.

Proof rules for monitors have also been given (e.g. Adams /81a/

and references therein).

Gundl 6.1.1

Hehner and Lengauer have continued the work on commutative
operations.v They have, in fact, used it to propose a novel

approach to the definition of potential parallelism, With only

slight exaggeration, the standard approach to defining parallelism

could be characterised by:

i) develop a number of processes whose interaction would
be unsafe
ii) introduce synchronisation to make the interaction safe

iii) avoid the danger of deadlock
The approach in Lengauer /81a/ is:

i) develop a program which can be read as though it were
sequential
ii)_ Qbserve relaxations which make it possible to execute

some éteps in parallel,

The advantage claimed for this approach is that the amount of effort
invested in step ii can be varied: the program is correct at any

stage.,

- How are the "relaxations" of order handled? Commutativity with
respect to some predicate P is defined via predicate transformers:
wp (S1; S2, P) = wp (525 S1, P)

Independence is defined syntactically. E. Hehner tackled the problem

of sub-section 5.,2.5 at the January 1981 WG2.3 meeting as follows:

6.1.2

(The large semi-colon can be read as "for".)

if P(X(i)) then Mi fi

N
)]
e

i

4 Mi=jif 1< T then Ti=i fi

The formulae 2-4 could be read as a sequential program., If, however,
it is observed that Mj and Mk commute and that each of the P(X(j))
tests is independent of othei Sk, then it is clear that all of the

. tests méy be started in parallel and the Mi executed (each atomically)
on a first-come, first-served basis, In ordérrto handle the version
of this same problem which is considered in sub-section 5.,2,6, 2

becomess

w
=3
L
+
-
ee:=

Ri

6 Ri=jif 1< T then Si fi

In this case Rj is not independent of other Mk and some weaker notion

would be required in order to achieve the potential parallelism.

As was discussed at the WG2.3 meeting, this approach will require
some more-fhought before it is possible to use it in a development

method in the sense of section 0,1,

6+1.2 Owicki/Gries

The,"Owicki/Gries” method for developing parallel programs is

referred to above. The approach proposed in Owicki /75a/ and Owicki

65

/76a/ is to prove (complete) programs correct in isclation and then to
show that the proofs do not interfere. Applying this to larger
problems, it would be necessary to perform a multi-stage development
of a prbgram postponing the issue of interference until the final code
wag developed. This clearly violates the basic tenet of section 0.1
in that an early error made in a long development might be discovered

only in the interference check.

In préctice, the sitﬁation is even worse. The "einmischungsfrei"
property‘is quite strong and, even for correct programs, the proofs
may have to be rearranged in order to satisfy the condition. Thus,
not only may errors cause revision but the need for revision is also

inherent in the approach.

kAs'exemplified in section 5.3, the Owicki rule on only one
global reference per assignment is too striét: the notion of inter-
ference makes it possible to be more specific about the reliance on

the behaviour of other processes.

6.1e3 2

Therwork which is known’as nzn isrstiilreVOlving. The comments
here are based on Abrial /79a/, Abrial‘/79b/, Abrial /80a/, Abrial
/80b/ and discussions with Jean-Raymond Abrial and his colleagues.
As discussed in sub;section 1.6,2 the "2" approach to data types is
also model oriented and is thus rather similar to the style used in
"Méta-IV".lbSequentialicombinatioh of operations is specified in

"Meta-IV" by the use of combinators; in "z" such specification is.

normally achieved by adding statement counters to the state., (Here,

- and elsewhere, the;comparison must distinguish between those points of
basiq differeﬁoé and those which are just questions of usage.) The
statement counters can then be used in the definition of "firing

conditions",

A class defines a set of objects - including sets to be used as
"states". The "class functions" (cf. "operations") are then given

firing conditions which define both a pre=-condition and also any

constraints governing the order of execution qfrclass functions. When
a class functipn is fired, it is considered to éxecute atomicaily.

This approach makes it possible to give some very pleasing proofs

about deadlock (cf. Lamsveerde /79a/). Unfortunately, it lends

itself less weil to a developmenf method since subsequent decémposition

| could introduce new dangers of deadlock.

Another important differencevfrom the methodé used in this
digsertation, is that "2" specifications tend to put more in the state.
In fact, this is really (only) an issue of style. But the approach
adopted here is to make a clear distinctioﬁrbetweeﬁ values required
in the state and those which might be put thgre f6r purposes of the
proof, In contrast, a "2" specification mighf ﬁaVe all initial values
~ and all future inputs in the state, It is easy to argue that these
should, at leaSt, be clearly distinguished from the essential state
components. »But, moreover, bgth the experience with operational
semantics defiﬁitions and the prejudice against ghost variables in
refineméﬁt éroofsvcause doubt about the wiédoﬁ of using state domponents

for things like a statement counter.

6.1.4

6.1.4 Interference Method

This sub-section reviews some of the alternatives considered

in the preparation of chapter 4. The‘alternatives are described

in tefms of specification although it must be appreciated that the
adoption of a different specification style would necessitate changes

to the proof rules.

The acceptance of a guarantee-conditioﬂ as a predicate of two
states prompts re-examination of the decision to allow post—conditions
to refer to the initial state. in order words, it might be hoped that
a specifidafion could be given by a guarantee-condition governing'the
dynamic behaviour and a post—condition defining the final state.

Although this works for some problems} it was found not to cover, for

-example,'the specification of postEQUATE in section 5.3.

The possibility éf néeding to specify systems in which updating
can proceed in parallel with enquiries (cf, sub-sectioﬁ 6;1.5)
prompted another possible view of post—cdnditions. The idea would be
to interﬁret the post-condifion as béing true at some point in time
but not hecessarily of the final stéte; This approach might be
investigated with a view to covering intermittent assertions (cf.

sub-section 3.5.3).

There are cases where the restriction to transitive rely-conditions

is inconvenient, It might, for example, be useful to be able to state

that some variable either remains constant or increases by one. Lifting

the restriction on transitivity poses problems with more than two tasks.

6.1.5 Temporal Logics

A number of faété prompt consideration of 1ogiés in which the
nétioﬁ‘of:time is recognised in the‘operators (e.g; modal‘ldgic‘
uses sometiﬁes 0 ; always O). The most urgent extension required
for the interference method is éonsidération of synchroniéétion ih‘
general and deadlock in particular, Tor example, in proving Dekker's
semaphore implemenﬁatioﬁ correct (cf. Dijkstra /68a/) it is necessary
to aésert that something Will change in the future, Using Rod

Burstall's "aslongas" operators:

aslongas w~sl = ¢ turn = 1
aslongas (81 A turn = 1) = O ~ s2

Furthefmore, even some specifications appear to require temporal
étatementé; Suppose a system is to permit paréllel updating and
fétrieval of information. Informally, it is éésy“té étate that any
answers given must have been_trne at séme point in time, For some
problemsithis can be formalised with post-conditions (é.g. for the

equivalence relation problem of section De3:

(~res' =» root(f,et) # root(f£,e2)) a

{(res? = root(f',el) = root(f',e2)) - -

but this only works because the results are, in a sense, monotonic),

There are, however, many problems where a formal statement of the

informal criterion above would require temporal operators,

In fact such temporal specifications are already in use. The

behaviour specifications of subwsection 6.2,1 use the trace as a way

610 ' 6.1.6

of defining a time sequence; even fhe interpretation of pre-~ and
post-conditions requires a discussion of before and after execution.
Thus, the choice is between factoring out the notion of time as
against makihg all assertions and‘proofs in some temporal logic,

The advantage of pre-packaging certain rules (e.ge 3+2.2(SEQ)) which
reflect the notion of time is that proofs of program correctness
need only use standard predicate calculus, The potential advantages
of using a temporal logic include the possibility of stating more
general conditions., For example, it might be possiblé to merge the
pre-~ and rely-coﬁditions (post— and guaranteeecqnditions) into an

assumption (promise).

Manna /79a/ uses modal logic to state and prove properties of
programs, It might be nedeSSary to design a new system in which the

~ predicates are properties of two states. See also Sernadas /80a/.

6.1.6 Denotational Semantics

As is pointed out above, the arguments based on the operational
gemantics definition of the parallel»language are less formai than
those based on the denotational semantiCS_of the ﬁoﬁ—deterministic
sequential language. Although the qperatiqnal‘Qefinition could be
made more fopmal, earlier experience with language definition styles
suggests that ﬁroofs based on denotational Seﬁantics would e less

cumbersome,

~ The denotational semantics of non-determinism are given in

terms ofs

6.1.6 | 6=11

1 uf[e] ¢ o

Resumptions can be used to record the history of a computations

3 Res = St -» (St x Res)

It is then possible to define merges of resumptions. The effect of
parallelism is to force such a merge to be non-deterministic

leading to denotations like:

4 Res = 8t = W(st x Res)

One of the arguments for denotational semantics is the
possibility of being "fully abstract". That is, two objects with
the same '"behaviour" will be connected with the same denotation.
This is not, hoWevér,,that easy with denotations like 4 because the
number of steps is retained. For example, Hennessy /80a/ obseryes

the difficulty withs

5 Xe=X3 NAymx versus X=X

An interesting way out of this problem might be to base the

gemantics on the notion of interference. TFor example:

6 Res - p(’]}r)

6-12 6.2

6,2 Communication Based Parallelism

The intricacy of the reasoning required to handle shared
.vafiables has led to a search for more tractable ways of representing
parallel processes. The approach considered in this‘section coﬁfines
all interaction between processes to communication: separate

processes are not allowed to refer to each other's state,

Not surprisingly there are different flavoufs within the overall
approach. Kahn /7%a/ assumes (infinite) buffefing of communications
whereas CSP (Hoare /78a/) and ¢CS (Milner /803/) require that all
processes involved in a communication synchronise forvmessage
transmission. The slightly artificial assumption of infinite buffering
cgn simplify some proofs. The unbuffered approach does, however, leave
kopen the_possibility of writing processes which introduce any desired
degree of bﬁffering. For this reason the CSP approach is the one
vdiscussed here. (It is also worth noting that shared variable
parallelism can be simulated by defining processes in plaoe of

shared variables - see below,)

CSP can be seen as resulting from the culmination of several
trends in programming language design. Ohe aspect of CSP provides
a useful generalisation of the guarded‘coﬁmands of Dijkstra /75a/.
Thus. the sort example of Dijkstra /76a/ can be generalised to work

on an array A of N elements:
¥ ([Ui e {1: N—1}] s A(i) D> A(i+1) —» swap)

achieving a post-condition of:

642

(Vie Dan-1) 5 a@i) g a(is1))
(Note that the syntax of Hoare /78a/ is not followed too slavishly!)

To this useful extension of guarded commands is added the
concept of communication. Thus a process which can be used like a

shared variable might be written:

SVAR = var i;
([ﬂpe Proc] p?i€ Nat —>
* ([upé Proc] p?i € Nat —» skip

[l [[perroc] »ii - skip
) L .

(In gome cases the mapping of array variables onto arrays of

processes requires some care, For example, in the equivalence

"relafion problem of section 5.3 there is some danger of delay or

even deadlock if too much of the procedural logic is put into the

processes which simulate the array elements.)

A third trend leading to CSP-like languages is the concept
of monitors which control shared variables; - CSP procesées not
only localise storage but they also add a path~expression-like
control. Consider, for example, a CSP version of the program
given in sub-section 5.2.6:

([Jiefr vl 1:m
[[(10c: FINDP || top: TOP)

”...

6-13

614

EL = var cj
([ﬂpEProc] pfec €Val =
»*([ﬂpe?mc]jﬁcevm.-)ggi
ﬂ[ﬂp Proc] plc — skip

D)

6 FINDP = top! N+ 1;
([” i€ {1..8]] SEARCHi);
top?i =y !i

7 SEARCHi = (top?t —=» if i <t then
(1?veval - if p(v) then top!i)

8 TOP = var t;
([ﬂ peProc] p?t € Nat —»
¥ ([[JpeProc] ptvemat —>
(if v < t then ti:=v)

'ﬂ[”p'eProc] pit —» skip
)

Notice that both 5 and 8 require that the "variables" are initialised

before use and that each value is local to one process.

An even better example of the path-expression-like control
in CSP is given by studying programs for the behaviour of buffers.

A simple single buffer can be represented bys

9 (ins ...
" bs Bl

” outs ...

)

10 Bl = %(in?eg¢El — out!e —» skip)

6.2

6,241

11

Multiple buffering can be achieved in several ways: with appropriate
naming, single buffers can sim?ly be strung together; one process
can have an ihternal state containing the whole buffer; a parallel
collection of buffer processes can preserve the correct order of
passed elements by handing batons between them. This last example
allows parallel reading and writing in the buffer and is an
interesting example of synchronisations
Bi = var -ej; .

(bi@1?RDB —> [[oeProc] p?eekl - bi@ 1! RDB —

bi@1? kB - [[pe Proc] ple —bi@® 1! WRB —

skip) |

Various semantic models are being considered for CS?. Ih the

deterministic Qasé the denotation of a process can be viewed as a‘
treé or, isomorphically, sétsvﬁf (prefix-closed) strings - see Hoare

/80b/. A richer model is required to cope with parallelism and Hoare

- /Bla/ uses a relation on sets of (prefix-closed) strings and "refusal

sets'" of alphabet symbols, Such models are the basis for the
correctness of proof rules but the issues involved are sufficiently
difficult that even the notion of equivalence is an active topic of

research.

6.2.1 Proof Rules

As with sequential programs, the very first proofs given (Roscoe

and Hoare) were proofs of program equivalence. The next stage is the

proof of programs with respect to specifications and, here, the work

in Zhou /81a/ is considered. Communication is constrained to occur

615

=16 ' 6.2.1

on channels and a trace is a sequence of communications. The
external behaviour of a process is taken to be its set of possible
traces. The notion of specification is to define a permissible
set of traces (for example via a grammar). Zhou /81a/ gives
inference rules which are proved consistent with a denotational

semantics for the process language.

This approach is applied in Zhou /81b/7to the prdblem of
protocols. There are two interesting points about this application.
Firstly, it is a completely new approach toran impdrtant problem,

The standard abproach‘to ngpecifying" protocols is to provide an
abstract program for each of the nodes (e.g. IBM/a/ uses a finite
state language called FAPL). The new approach rightly rejects this
algorithmic approach and states that the overall specification of a
.proﬁocol is that it beﬁaves like a buffer (cf. 6.2(10)). In addition,
the speéifiéation must state under what-degree of misbehéviour of the
communication medium (or a lower level protocol) this ideal view can
be achieved., This, of course, provides a genuine specification of

WHAT the protocol should achieve.

The second interesting point about the approach of Zhou /81b/
is that it can be thought of as taking the interference approach to
communication based parailelism. The‘(noisy) wire process being, in

some sense, the inverse of the rely-condition of chapter 4.

Hoare /81b/ extends the system of Zhou /81a/ to tackle total

correctness.

6.2.2 6-17

There is room for some doubt about a proof or development
method based on stream assertions alone. The cause of doubt is
gimilar to that which is evoked by the denial of a state in the

property oriented view of abstract data types (cf. sub-section 1.6.3).

Zhou /81a/ states:

"In this paper, we regard a process as being defined not by its
internal states and transitions, but rather by its externally

observable behaviour ..."

This approach appears to match only some problemss: it is significantly
more difficult to specify a stack than a queue; the equivalence
relation ﬁroblém becomes unclear unless a state is used in the
specification; even the»problem of section 5.2/6.2 (4=8) becomes

difficult purély in terms of messages.

6.2,2 Development Method

As is pointed out above, the history of the work on éequential
programs suggests that work on development methods will follow the
work on the proof of extant programs. Milner /BOa/ moves ‘towards
a development method with the notion of "environments". Apt /80a/
applies an approach, similar to that of Owicki ahd Gries, to
CSP programss CSP processes are developed in isoiation and then
"joint cooperation between isolated proofs" is shown. The version
of CSP considered includes non-deterministic guards and distributed
termination. (Barringer /81a/ applies this method to Ada tasks.) A
similar approach (though not covering distributed termination) is

described in Levin /80a/:

6-18 - 6.2.2

i) sequential proof
ii) satisfaction proof covering possible messages

iii) non-interference proof to show that the earlier proofs

Ymatch"

As is argued in sub-section 6,1.,2, this approach does not
appear to meet the criteria for a development method set out in
section 0.1. But the similarity with the Owicki/Gries approach
does, paradoxically, offer hope that a development method could
be created., The essential step is to repeat the work éf chapter 4
for communication based parallelism, That is, the notion of inter-
ference should be recognised and elevated to part of the specification‘

and proof method.

Chapter 7

Conclusions

It is pointed out in the introduction that the current
dissertation is a report on work-in-progress rather than a

completely satisfactory, all-embracing, program development method.

Tt is now appropriate to review some of the limitations and directions

for further work.

7.1

7.7 Achievements

It is claimed that the methods described for the development
of sequential programs are satisfactory. Specifications in. the
VDM style have been writfen for both a large number and a wide
raﬁge of systems; the proof rulés have also been shown to be useful
in a wide range of examples, There is still, clearly, a great deal
to be done in the dissemination of these meticds and some of the
technical problems to be solved in order to make tﬁis posgible are
themselves far from trivi@l (cf. section 7.4). The main contribution
of this dissertation is the sounder basis provided for the methods
used in Jones /80a/ especially as concerns non-deterministic

programs,

The claims in the area of developing parallel programs are more
modest, The foremost limitation stems from the concentration on the
shared variable view of paxallelism. Within this class of problems,
however, it does appear that the attempt to meet head-on the notion
of interference has worked., The examples illustrate that a develop~
ment method (in the sense of section 0,1) can be built around
specifications which record the acceptéble and potential inter-
ference, The proof rules employed will éertainly continue to evolve,
but even in their current form they have proved useful guides to

design,

-3

7.2 Limitations

Within the field of shared-variable parallelism, the notion of

synchronisation has not been treated. As is pointed out in sub-

section 6.1.5 and section 7.3, an extended form of logic notation
may be necessary to handle such issues as deadlock. It is,
however, hoped that the additional specification required can be

fitted into the framework of rely- and guarantee-conditions.

The program developed in section 5.2 is arranged so.as to

terminate gracefully; that in section 5.3 makes no provision for

termination. The general problem of "distributed'iermination"

cf. Francez /80a/) is one which re uires greater study.
q

A specific problem with the scheme of proof proposed in

chapter 4 maﬁifests itself when a combined effect on several

. variables is to be described. One example where this can be seen

is if an additional Boolean output is required in the example of

section 5,2 (also the example given in 4.1(18,19)).

T.2

T3

7.3 PFurther Work

The necessary extensions to cope with synchronisation problems
might be tackled by using some temporal logic (cf. sub=section
6.1.5). An alternative approach proposed in Lauer /81a/ is to
use only language (construct)s about which it is possible to

egtablish freedom from deadlock etc.

The incentives to find a denotational semantics for the
parallel language (full abstraction etc.) are stated elsewhere, It
is clear thgt the least constrained parallel languages tend to force
a rather operational view of what is meant by programs, There is,
however, some hope that the higher level constructs like the
"rendezvous”" of the Ada language might be easier to define

denotationally than operationally.

The parallel designs shown here are all fairly obvious
relaxations of sequential thinking. An important aim for the future
would be methods that encouraged the use of new, more radical,

approaches to the use of parallelism,

If the communication view of parallelism is to supplant the
shared variable approach, it will be important to carry the notion

of interference over to the new area. As is pointed out, this has

already been achieved in the area of protocol validation. The

question still remains whether the step from the proof method of
Owicki /76a/ to the development method discussed here can be repeated

based on, for example, Levin /80a/ or Apt /80a/.

=5

7.4 Bringing into Practice

The aim of the overall endeavour, of which this dissertation
is but a part, is to bring systematic program development methods
into use by sofiware engineers, Many of the problems are common

to both sequential and parallel programs.

One useful aid would be the development of a machine support
system for handling development histories. What should such a
system do? The temptation to provide a system for "executing
specifications” should be resisted -~ this inevitably leads users
away from the proper goal of ; specification as an abstract (thinking)

model. Some useful objectives might be:

i) Syntax checking of formulae

ii) Type checking of function arguments

iii) Inférmation retrieval

iv) To support routine operations like substitutiocn
v). To provide ap?ropriate instances of proof rules
vi) To handle simple proof checking or generation
vii) To trace the impact of changes

viii) To draw consequences from definitions

These objectives will require the adoption of a fairly rigid
syntax for definitions etc, Care will have to be taken that this
does not unnecessarily hinder expression. It is for this reason that
a support tool is seen more as a series of useful functions which can

be invoked rather than a controlling environment.

7-4

7‘94

The progress of rigorous methods will largely be governed by
the extent to which their use becomes easier with time., It is
therefore crucial that any suppoft system should aid with the
collection of general results like the theories of data types

discussed above.

Earlier experience with the sequential parts of VDM have
shown the importance of educational material in getting systematic
methods adopted. There is clearly an urgent need for a soundly

based course on the design of parallel programs.

7-8

References

REF-1

3

h

REP-2

Abrial /79a/: Non-Deterministic System Specification, by J-R. Abrial
and S.A. Schuman. In Semantics of Concurrent Computation (Proc.
Evian, France), Springer-Verlag, LNCS No.70.

Abrial /79b/: Specification Language, by J-R. Abrial, S.A. Schuman and
B. Meyer. In Construction of Programs (ed. McKeag), Cambridge
University Press.

Abrial /BOa/: The Specification Language Z: Syntax and Semantics, by
J~R, Abrial, PRG, Oxford University.

Abrial /80b/: The Specification Language Z: Basic Library, by J-R. Abrial,
PRG, Oxford University.

Abrial /82a/:; Book to be published by J-R. Abrial, Prentice~Hall Int.

Adams /81a/: On Proof Rules for Monitors, by J.M. Adams and A.P. Black
(to be published), _

Allen /72a/: A Formal Definition of Algol 60, by ¢.D. Allen, D.N.
Chapman and C,.B, Jones, IBM Hursley, TR12,105.

Allen /72b/: The Formal Development of Algorithms, by C.D. Allen and
C.B. Jones. IBM Hursley, TR12.110.

Apt /B0a/:s A Proof System for Communicating Sequential Processes, by
K.R, Apt, N. Francez and W.P. de Roever. ACM Toplas, Vol. 2, No.3,
- Pp. 359-385.

Backus /78a/: Can Programming be Liberated from the von Neumann Style? A
Punctional Style and its Algebra of Programs, by J. Backus, CACM, '
Volo 21, NO.B, pp. 613"641-

Barringer /81a/: Axioms and Proof Rules for Ada Tasks, by H. Barringer
and I. Mearns. Dept of Computer Science, Manchester University,
Internal document,

Bekié /74a/: A Formal Definition of a PL/I Subset (2 parts), by
‘H. Bekié, D. Bjgrner, W, Henhapl, C.B. Jones and P. Lucas.
IBM Vienna, TR25.139.

Bjgrner /78a/: The Vienna Development Methods: The Meta-Language, by
D. Bjﬁrner and C.B. Jones (eds), Springer~Verlag Lecture Notes in
Computer Science, No.61. . -

Bjfrner /80a/: Abstract Software Specifications, by D. Bjgrner (ed.),
Springer, LNCS No.86.

Bjfrner /81af/: Towards a Formal Description of Ada, by D. Bjgrner and
0.N. Oest (eds), Springer, LNCS, No.98.

Bothe /792/: Specification and Verification of Abstract Data Types,
by K. Bothe, Humbolt-Universitaet zu Berlin Mathematik Seminarbericht
Nr 13. v : o

REF~3%

Bothe /80a/: A Generalised Abstract Data Type Concept, by K. Bothe,
Humbolt~Universitaet, Berlin, Preprint No.3.

Brinch Hansen /73a/: Operating System Principles, by P. Brinch Hansen,
Prentice-Hall.

Bron /765/:v A Proposal for Dealing with Abnormal Termination of
Programs, by . Bron, M.M. Fokkinga and A.C.M. de Naas, Dept App.
Maths, Twente Univ. of Technology, Memo Nr.150,

Bron /772/: Exchanging Robustness of a Program for a Relaxation of
its Specification, by C. Bron and M.M. Pokkinga, Mem Nr,178, Dept
App. Maths, Twente Univ, of Technology.

Burge /75&/: Recursive Programming Techniques, by W.H. Burge, Addison~
Wesley.

Burstall /69a/: Proving Properties of Programs by Structural Induction,
by R. Burstall, CJ, Vol. 12, No.l.

Burstall /74a/: Program Proving as Hand Simulation with a Little
Induction, by R.M, Burstall, Procs IFIF Congress 1974, pp. 308-312,
North Holland.

Burstall /77a/: Putting Theories Together to Make Specifications, by
R.M. Burstall and J.A. Goguen, Int. Jt Conf on AI, Boston.

Burstall /BOa/: ‘An Informal Introduction to Specifications using CLEAR,
by R.M. Burstall and J.A. Goguen.

Burstall /80b/: The Semantics of CLEAR, a Specification Language, by
R.M. Burstall and J.A. Goguen, in Bjgrner /80a/.

Cooper /66a/: The Bquivalence of Certain Computations, by D.C. Cooper,
BCS comp J., Vol. 9, No.1.

Dahl /78a/: Can Program Proving be made Practical? by 0-J, Dahl,
Lectures presented at EEC~-CREST course on Prog. Foundations,
Toulouse, '

de Bakker /75&/: A Calculus for Recursive Program Schemes, by J.W. de
Bakker and W,P. de Roever, in Automata, Languages and Programming,
ed. Nivat, North-Holland.

Dershowitz /79a/: Proving Termination with Multiset Orderings, by
N. Dershowitz and Z. Manna, Comm. ACM 22/8, Stanford.

Dijkstra /68a/: Co-operating Sequential Processes, by E.W. Dijkstra,
Nato Advanced Study Institute, Academic Press.

Dijkstra /75a/: Guarded Commands, Non-determinacy and Formal Derivation
of Programs, by E.W. Dijkstra, CACM, Vol. 18, No.8.

REF-4

Dijkstra /76a/: A Discipline of Programming, by E.W. Dijkstra,
Prentice~Hall.

Dijkstra /78a/: On-the-Fly Garbage Collection: An Exercise in
Cooperation, by E.W. Dijkstra, L. Lamport, A.J. Martin, C.3. Scholten
and E.M.F. Steffens, Comm ACM, Vol. 21, No.11, pp. 966~974.

DoD /80a/: Reference Manual for the Ada Programming Language (Proposed
Standard Document), U.S. Dept of Defense.

Donahue /75a/: Complementary Definitions of Programming Language
Semantics, by J. Donahue, Univ. Toronto Tech. Report. CSRG-6Z.

Dungan /79a/: Bibliography on Data Types, by D.M. Dungan, ACM Sigplan
Notices, Vol. 14, No.11, pp. 31=59.

ECMA /76a/: American National Standard Programming Language PL/I,
ECMA TC 10 and ANSI. x3.53-1976.

Ehrig /80a/: Algebraic Implementation of Abstract Data Types, by
H. Ehrig, H.-J. Kreowski, B. Mahr and P. Padawitz, Technische
Universitidt Berlin, 80-~32,

Ehrig /81a/: Algebraic Theory of Parameterised Specifications with
Requirements, by H. Ehrig, 6th CAAP, Genova, Italy.

Pielding /80a/: The Specification of Abstract Mappings and their
Implementation as B+-Trees, by EB. Pielding, Oxford Univ., Monograph

Floyd /67a/: Assigning Meanings to Programs, by R.W. Floyd,
Proc, of Symposia in Appl. Math., Vol. 19.

Francez /30a/: Distributed Termination, by N, Francez, ACM TOPLAS,
Vol. 2, No.1.

Goguen /75a/: Abstract Data Types as Initial Algebras and the Correct-
ness of Data Representations, by J.A. Goguen, J.W. Thatcher,
E.G. Wagner and J.B. Wright, IEEE Conference Proc. - Computer
Graphics, Pattern Recog. and Data Structure, IEEE Cat. No. 75CHO981-1C.

Goldstine /47a/: Planning and Coding of Problems for an Electronic
Computing Instrument, by H.H. Goldstine and J. von Neumann, Report
for the U.S. Army Ord. Dept.

Gries /79a/: Is Sometime Ever Better than Alway ? by D. Gries, ACM
TOPLAS, Vol. 1, No. 2, pps 258=-267.

Guttag /77a/: Abstract Data Types and the Development of Data Structures,
by J. Guttag, Comm ACM, Vol. 20, No. 6.

Guttag /80a/: Formal Specification as a Design Tool, by J. Guttag and
J.J. Horning, Proceedings of ACM POPL conference, pp. 251-261.

REF-5

Hantler /753/: EFFIGY Reference Manual, by S.L. Hantler and A.C.
Chibib, IBM (Research) RC 5225.

Hehner /79a/: do considered od: A Contribution to the Programming
calculus, by E.C,R. Hehner, Acta Informatica, Vol. 11, pp. 287-

304.

Henderson /76a/: A LaZy Evaluator, by P. Henderson and J.H. Morris,
Third Symposium, POPL.

Henderson /80a/: Functional Programming Application and Implementation,
by P. Henderson, Prentice-~Hall Int,

Hennessy /80a/: Tull Abstraction for a Simple Parallel Programming
Language, by M.C.B. Hennessy and G.D. Plotkin.

Hitchcock /72a/: Induction Rules and Termination Proofs, by P. Hitchcock
and D., Park, IRIA Procs.

Hitchcock /74&/: An Approach to Formal Reasoning about Programs, by
P. Hitchcock, Ph,D. Thesis, Warwick Univ.

Hoare /69a/: An Axiomatic Basis of Computer Programming, by C. Hoare,
CACM.

Hoare /71a/: Proof of a Program - FIND, by C.A.R. Hoare, CACM, Vol.
14, pp. 39-45. : '

Hoare /72b/: Proof of Correctness of Data Representations, by
C.A.R, Hoare, Acta Informatica, Vol. 1, pp. 271-282,

Hoare /74a/: Monitors: An Operating System Structuring Concept, by
C.A.R. Hoare, Comm ACM 17/10, pp. 549-557.

Hoare /75a/: Parallel Programming: An Axiomatic Approach, by C.A.R.
Hoare, In Computer Langs, Vol. 1, pp. 151-160, Pergamon Press,

Hoare /78a/: Communicating Sequential Processes, by C.A.R. Hoare,
CACM, Vol, 21, No.8, pp. 666-677.

Hoare /80a/: Oxford M.Sc. Lectures, by C.A.R. Hoare,

Hoare /BOb/: A Model of Communicating Sequential Processes, by
C.A.R., Hoare, in On the Construction of Programs, pp. 229-254,
CUP.

Hoare /81&/: A Non-deterministic Model for'Communicating Sequential
Processes, by C.A.R. Hoare, S.D. Brookes and A.W. Roscoe.

Hoare /81b/: A Calculus of Total Correctness for Communicating Processes,
by C.A.R., Hoare, Oxford Univeksity, PRG Monograph 23.

IBM /a/: Systems Network Architecture Format and Protocol Reference
Manual: Architecture Logic.

REF-6

Jackson /75a/: Principles of Program Design, by M.A. Jackson,
Academic Press.

Jackson /78a/: Information Systems: Modelling, Sequencing and Trans-
formations, by M.A. Jackson, Proc. 3rd Int. Conf. Soft Eng.,
IEEE.

Jackson /80a/: Structural Design of the Information System, by
M.A. Jackson.

Jones /72a/: Formal Development of Correct Algorithms: An Example
Based on Earley's Recogniser, by C.B. Jones, SIGPLAN Conf.,
SIGPLAN NOT 7/1.

Jones /7%a/: Formal Development of Programs, by C.B. Jones, IBM
Hursley Lab., TR12.117.

Jones /77a/: Structured Design and Coding: Theory versus Practice,
by C.B. Jones, Informatie, Jaargang 19, nr 6, pp. 311=319,

Jones /77b/: Implementation Bias in Constructive Specifications of
Abstract Objects, by C.B. Jones,

Jones /78a/: The Meta-Language: A Reference Manual, by C.B. Jones,
in Bjgrner /78a/.

Jones /78b/: Denotational Semantics of Goto: An Exit Formulation
and its Relation to Continuations, by C.B. Jones, in Bjgrner

/18a/ .

Jones /79a/: Constructing a Theory of a Data Structure as an Aid to
Program Development, by C.B. Jones, Acta Informatica, Vol. 11,
pp. 119-137.

Jones /SOa/: Software Development: A Rigorous Approach, by C.B. Jones,
Prentice~Hall Int.

Jones /80b/: The Role of Formal Specifications in Software Development,
by C.B. Jones, in Life Cycle Management, Infotech State of the Art
Report, Ser. 8, No. 7.

Jones /80c/: Tentative'steps Towards a Development Method for Inter=-
fering Programs, by C.B, Jones (to be published),

Jones /81a/: Towards More Formal Specifications, by C.B. Jones, in
Software Engineering Entwurf u. Specifikation. (Proc. Berlin),
THbner Verlag.

Kahn /73a/: A Preliminary Theory for Parallel Programs, by G. Kahn,
’ IRIA report, No, 6. : . :

Kahn /77af: Coroutines and Networks of Parallel Processes, by G. Kahn
and D.B. MacQueen, in IFIP 77 procs.

Kamin /BOa/: Final Data Type Specifications: a New Data Type
'‘Specification Method, by S. Kamin, Proceedings of ACM PCPL.
conference, pp. 131=138.

King /76&/: Symbolic Execution and Program Testing, by J.C. King,
Comm, ACM, Vol. 19, No. Te

Knuth /73%a/: The Art of Computer Programmings Vol. 3/Sorting and
Searching, by D.E. Knuth, Addison~Wesley.

Lamsweerde /76a/: TFormal Derivation of Strongly Correct Parallel
Programs, by A. van Lamsweerde and M. Sintzoff, M.B.L.E.,
Report R338.

Lauer /71a/: Consistent Formal Theories of the Semantics of Programming
Languages, by P.E. Lauer (Thesis), IBM, TR25.121,

Lauer /81a/: COSY. An Environment for Development and Analysis of
toncurrent and Distributed Systems, by P.E. Lauer and M.W. Shields,
in Software Engineering Environments, (ed) H. Huenke, North-
Holland.

Lehmann /78a/s Algebraic Specification of Data Types: a Synthetic
Approach, by D.J. Lehmann and M,B. Smyth, Univ, of Leeds, Dept of
¢S, Report 115,

Lengauer /81a/: A Methodology for Programming with Concurrency, by
'¢. Lengauer and E.C.R. Hehner, talk at CONPAR 81, Nurenberg,
Germany .

Levin /80a/: Proof Rules for Communicating Sequential Processes, by
G.M. Levin, thesis, Cornell Univ, ‘

Lindsay /79a/: Notes on Distributed Databases, by B.G. Lindsay et al.
IBM Research Report RJ 2571.

Linger /79a/: Structured Programming, Theory and Practice, by
R,C., Linger, H.D. Mills and B.J. Witt, Addison-Wesley.

Lovengreen /80a/: Parallelism in ADA, by N.H. Voengreen, Master Thesis,
Tech, Univ. Denmark,

Lucas /68a/: Two Constructive Realisations of the Block Concept and
their Equivalence, by P. Lucas, IBM Lab. Vienna, ULD-Version 2,
Tr 25.085.

Lucas /68b/: On the Formal Description of PL/I, by P. Lucas and K. Walk,
Annual Review in Automatic Programming, Vol, 6, Part 3, pp. 105-181,
Pergamon Press, New York, London,

Lucas /69&/: On the Documentation of Programming Ideas, by P. Lucas
and K. %alk, IBM Lab Vienna, LN 25.3.064.

REF-T

REF-8

MacLane /79a/: Algebra (2nd ed), by S. Maclane and G. Birkoff,
Macmillan.

Manna /69a/: Properties of Programs and the First-Order Predicate
calculus, by Z. Manna, J ACM, Vol. 16, No.2.

Manna /78a/: Is "sometime" Sometimes Better than "always"? by
7. Manna and R. Waldinger, Comm ACM, Vol. 21, No. 2, pp. 159-172.

Manna /79a/: The Modal Logic of Programs, by Z. Manna and A. Pnueli,
sixth ICALP Conference, Graz.

Milner /71a/: An Algebraic Definition of Simulation between Programs,
by R. Milner, Stanford, Memo AIM-142, Report No. 0S=-205,

Milner /80a/: A Calculus of Communication Sysfems, by R. Milner,
Springer Verlag, Lecture Notes in Computer Science, Vol., 92,

Morris /72a/: A Correctness Proving Using Recursively Defined
Functions, by J.H. Morris Jr., in Rustin /72a/.

Morris /73a/: Advice on Structuring Compilers and Proving them
Correct, by F.L. Morris, ACM Symposium on POPL, Boston.

Mosses /77a/: Meking Denotational Semantics Less Concrete, by P.D.
Mosses, Arhus University.

Naur /66a/: Proof of Algorithms by General Snapshots, by P. Naur, BIT 6,
pp. 310-316.

Naur /69a/: Programming by Action Clusters, by P. Naur, BIT,
Vol. 9, pp. 250-258,

Naur /72a/: An Experiment on Program Development, by P. Naur, BIT,
Vol. 12, pp. 347=365.

Naur /74a/: Concise Survey or Computer Methods, by P. Naur, Student
Litteratur, :

Needham /72a/: Protection Systems and Protection implementations
Capability Addressing via Indirection, by R. Needham, FJCC,
APIPS Conference Publications, Vol. 41, pt I, pp. 571=578.

Owicki /75a/: Axiomatic Proof Techniques for Parallel Programs, by
S.S. Owicki, thesis, Dept of Computer Science, Cornell University,
TR 75-251,

Owicki /76a/: Verifying Properties of Parallel Programs: An Axiomatic
Approach, by S.S. Owicki and D. Gries, Comm. ACM, Vol. 19, No. 5,
pp. 279-285.

REF=9

Park /80a/: On the Semantics of Fair Parallelism, by D.M.R. Park, in
Bjgrner [80a/.

Plotkin /76a/: A Powerdomain Construction, by G.D. Plotkin, SIAM J.
Comput., Vol. 5, No, 3.

Pnueli /79a/: The Temporal Semantics of Concurrent Programs, by
A. Prueli, in Semantics of Concurrent Computation (Proc. Evian,
France), Springer-Verlag.

Randell /78a/: Reliability Issues in Computing System Design, by
B. Randell, P.A. Lee and P.C. Treleaven, ACM Comp, Surv., Vol,.
10’ NO. 2’ ppo 123""166- V

Reynolds /79a/: Reasoning about Arrays, by J.C. Reynolds, CACM,
Vol. 22, No. 5, pe. 290,

Reynolds /81a/: The Craft of Programming, by J.C. Reynolds, Prentice=-
Hall Int.

Rustin /72a/: Formal Semantics of Programming Languages, by R. Rustin,
Prentice~Hall.

Schonberg /81a/: An Automatic Technique for Selection of Data
Representations in SETL Programs, by E. Schonberg, J.T. Schwartz
and M, Sharir, ACM TOPLAS, Vol. 3, No. 2, pp. 126=143,

Scott /81a/: Lectures on the Mathematical Theory of Computation,
by D.S. Scott, to be published as an Oxford PRG monograph.

Sernadas /80a/: Temporal Aspects of Logical Procedure Definition, by
A. Sernadas, Information Systems, Vol. 5, pp. 167-187.

Smyth /78a/: Power Domains, by M. Smyth, J. Comp. Sys. Sci., Vol.
16, ppe 23-26'

Stoy /77a/: Denotational Semantics -~ the Scott—Sfrachay Approach to
Programming Language Theory, by J.BE. Stoy, MIT Press.

Parjan /75a/: Efficiency of a Good but not Linear Set Union Algorithm,
by R.E. Tarjan, J. ACM, Vol, 22, No, 2, pp. 215-225.

Tennent /81a/: Principles of Programming Languages, by R.D. Tennent,
Prentice-~Hall Int, :

Turing /49a/: Checking a Large Routine, by A.M. Turing, in Report of a
Conference on High Speed Automatic Calculating Machines, Univ,
Math., Lab., Cambridge, ppe 67=69.

- Veloso /79a/: Traversible Stack with Fewer Errors, by P.A.3. Veloso,
ACM Sigplan Notices, 14/2, pp. 55=59.

Veloso /79b/: Traversible Stack with Fewer Errors: Addenda and
Corrigenda, by P.A.S. Veloso, ACM Sigplan Notices 14/10, p. 76.

REF--10

wWalk /69a/: Abstract Syntax and Interpretation of PL/I, by K. Walk
et al., IBM Lab Vienna, ULD-Version 3, TR 25.098.

Wand /77a/: Final Algebra Semantics and Data Type Extensions, by
M. Wand, Univ, of Indiana, Comp. Science Dept, TR-65.

Welsh /80a/: Structured System Programming, by J. Welsh and
M McKeag, Prentice~Hall International. .

Wirth /71a/s Program Development by Stepwise Refinement, by N. Wirth,
CACM, Vol. 14, No. 4.

Walf /76a/: Abstraction and Verification in Alphard, by Wm. A. Wulf,
R.L, London and M, Shaw, in New Directions in Algorithmic Languages,
(edc) Se Schuman.

Zhou /81a/: Partial Correctness of Communicating Sequential Processes,
by Zhou Chao Chen and C.A,.R. Hoare, Procs of Int. Conf. on

Distributed Processes, Paris.

Zhou /81b/: Partial Correctness of Communication Protocols, by
Zhou Chao Chen and C,A,R. Hoare, NPL workshop.

Zemanek /80a/: Abstract Architectures, by H. Zemanek, in Bjgrner /80a/.

Zilles /80a/: An Introduction to Data Algebras, by S.N. Zilles,
in Bjgrner /80a/.

PROGRAMMING RESEARCH GROUP TECHNICAL MONOGRAPHS
JUNE 1981

This Is a serles of technical monographs on topics In the field of computation.
Copies may be obtained from the Programming Research Group, (Technlcal
Monographs) 45 Banbury Road, Oxford, OX2 6PE, England.

PRG-1 fout of print)
PRG-2 Dana Scott : :
Outtine of a Mathematical Theory of Computation
PRG~-3 Dana Scott :
The Lattice of Flow Diggrams
PRG-4 (cancelied)
PRG~5 Dana Scott
Data Types as Lattices
PRG-6 Dana Scott and Christopher Strachey
Toward a Mathematical Semantics for Computer Languages
PRG-7 Dana Scott’ '
: Continuous Lattices
PRG-8 Joseph Stoy and Christopher Strachey
_ 086 - an Experimental Operating System for a Small Computer
PRG-9 _ Christopher Strachey and Joseph Stoy
, The Text of OSPub -
PRG-10 Christopher Strachey
<L The Varieties of Programming Language
PRG-11 Christopher Strachey and Christopher P. Wadsworth
, Coantinuations: A Mathematical Semantics for Handling Full Jumps
PRG-12 = Peter Mosses
_ The Mathematical Semantics of Algol 60
PRG~-13 Robert Milne

The Formal Semantics of Computer Languages
and their Implementations

PRG-14 Shan S. Kuo. Michael H. Linck and Sohrab Saadat
, A Gulde to Communicating Sequential Processes
PRG-15 Joseph Stoy
The Congruence of Two Programming Language Definitions
PRG~16 C. A. R. Hoare. S. D. Brookes and A. W. Roscoe
A Theory of Communicating Sequential Processes
PRG~-17 Andrew P. Black “.
Report on the Programming Notatlon 3R
PRG-18 Elizabeth Fielding

The Specification of Abstract Mapplngs
and thelr Implementation as Bt-trees

" PRG-19 Dana Scott
Lectures on a Mathematical Theory of Computatfon
PRG-20 Zhou Chao Chen and C. A. R. Hoare
Partial Correctness of Communicating Processes and Protocols
PRG-21 Bernard Sufrin
~ Formal Speclfication of a Dlsplay Editor
PRG-22 - C. A. R. Hoare
A Model for Commumcarlng Sequential Processes
PRG-23 C. A. R. Hoare
' A Calculus of Total Correctness for Communicating Processes
PRG~24 Bernard Sufrin '

Reading Formal Speciflcat:ons

