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Abstract—In most sensing applications, the measurements generated by sensor networks are noisy and usually annotated with

some measure of uncertainty. The question that we address in this paper is how to estimate the accuracy of these uncertain sensor

measurements. Existing studies on estimating the accuracy of uncertain measurements in real sensing applications are limited in three

ways. First, they tend to be application-specific. Second, they typically employ learning techniques to estimate the parameters of

sensor noise models, and ignore alternative state estimation approaches without learning. Third, they do not explore whether exploiting

the dynamics of the monitored state can yield significant benefits. We address the above limitations as follows: we define the accuracy

estimation problem in a general manner that applies to a broad spectrum of application scenarios. We present a general framework

to address this problem, and show that the proposed framework can be implemented in a number of different ways. We evaluate

and compare the different implementations in the context of two real sensing scenarios, and discuss how they trade accuracy for

computation cost, and how this trade-off largely depends on the user’s knowledge of the application scenario.

Index Terms—Accuracy estimation, sensor systems

Ç

1 INTRODUCTION

WITH sensor technology gaining maturity and becom-
ing ubiquitous, we are experiencing an unprece-

dented wealth of sensor data. In most sensing applications,
users receive sensor measurements, which are prone to
error. As a result, they often contain some measure of uncer-
tainty, such as the confidence intervals or distribution var-
iances, which will be hereafter referred to as probabilistic
measurements. The presence of noise in sensor data has moti-
vated a lot of research in areas of sensor networks, mobile
robotics and machine learning over the last two decades.
This work can be broadly categorized into two classes:
1) state estimation: the first class has assumed known models
of measurement noise, and has explored the inference
algorithms to estimate the state of the monitored phenome-
non; 2) parameter estimation: the second class has employed
learning techniques to estimate the parameters of the mea-
surement noise that best explains the generated sensor
measurements. In this paper we investigate a related prob-
lem that lies in-between the two canonical problems of state
estimation and parameter estimation, and which we will
hereafter refer to as accuracy estimation. We start with a prob-
abilistic measurement (e.g. temperature value with a 95 per-
cent confidence interval), and our objective is to estimate
the accuracy of this measurement, i.e. how far it lies from
the ground truth given certain distance metric.

This is an important and timely problem in a number of
different sensing applications. First, knowing how accurate
the measurements of a sensor system are is paramount to
deciding whether to use or pay for the service it offers. For
example, if a positioning system consistently places a user

at locations far away from the ground truth, the users
should have a way of detecting the poor accuracy of this
sensing service. Second, a user may be faced with the choice
of selecting among multiple co-located sensor systems that
offer a similar service (e.g. a WiFi-based versus an FM-
based indoor tracking [1] system in the same building).
In this case, they should be in a position to compare or rank
the accuracy of different systems. Third, when a sensor sys-
tem is first deployed, the administrator typically assumes a
default noise model for the networked sensors. To detect
when a sensor starts malfunctioning, it is critical to be able
to assess when the accuracy of the measurements drops sig-
nificantly below a certain threshold. Finally, the emergence
of social sensing applications has raised the challenge of
estimating the trustworthiness of human participants.
When people report some observations (say, estimated air
pollution levels), it is key to be able to assess the accuracy of
the reported data.

The common denominator in the above examples is that
multiple data sources generate probabilistic sensor observa-
tions (e.g. mean and variance pairs) about certain physical
signals, and the goal is to estimate the accuracy of these
observations. This problem is challenging in many ways.
First in most sensing applications, the ground truth of the
measured signal is unknown, and thus the accuracy of the
sensor measurements cannot be evaluated empirically. Sec-
ond, the accuracy of a sensor system is typically context-
dependent, and we cannot rely on the accuracy of the system
in one context to infer its accuracy in another. Third, due to
security and privacy concerns, many sensor systems tend to
present themselves as black boxes, by hiding their implemen-
tation and deployment details, such as sensor locations or
sensor types. Therefore we have little or no knowledge
about how they work or where their sensors have been
deployed, or how optimistic/pessimistic they are in esti-
mating uncertainty.

Finally, the reported accuracy information encoded in a
probabilistic sensor measurement, e.g. the confidence inter-
val or the error ellipse, is not always a reliable indicator of
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its real accuracy. We observe two general cases where this
happens in practice, and provide illustrative examples in
real sensing applications. Case 1: the ground truth consis-
tently falls out of the reported accuracy bounds. For
instance consider the light intensity data reported by a sen-
sor system, as shown in Fig. 1a. The system consistently
underestimates the error in its measurements during the
highlighted time period. Another example could be the
safety-critical environments, where the sensor systems may
be compromised to consistently report wrong estimates
with very high reported accuracy. Case 2: the size of the
accuracy bounds reported by different sensor systems can
lead to wrong conclusion about which one is more accurate.
For instance, consider the indoor positioning scenario
where two real systems are reporting the positions of the
user, as shown in Fig. 1b. The top trajectory in Fig. 1b is gen-
erated by an inertial tracking system, while the bottom one
is from the commercial WiFiSLAM system [2]. Given the
ground truth (the black dotted line in both cases), one can
immediately see that the estimated trajectory on top is far
better than the bottom one, but the reported accuracy (indi-
cated by the dashed ellipses) is significantly lower. There-
fore the aim of this paper is to address theses challenges,
and provide a general framework to solve the accuracy esti-
mation problem for sensor systems.

To our knowledge, there have been few efforts to
tackle this problem. For example, the work in [3], [4] and
[5] estimates the correctness of measurements reported by
human participants in social sensing applications by solv-
ing the expectation maximization (EM) problem. Our pre-
vious work in [6] shows how to assess the accuracy of co-
located positioning systems by extending the Baum-
Welch algorithm—a special case of EM algorithm for
dynamic systems. These papers use algorithms tailored to
the specific application scenarios, and employ learning
(EM) techniques. There is currently no systematic study
that provides a general solution for accuracy estimation
and compares the algorithms proposed for different
applications in a common experimental setup. In this
paper we show that the problem of accuracy estimation
for sensor systems can be addressed with a general
framework, whose components can be implemented by a
number of different techniques. We advocate that learning
is not the only option for accuracy estimation, but infer-
ence techniques are equally viable alternatives, which

should not be confined to their traditional use in state
estimation problems. We show that, in certain cases,
inference techniques can offer more attractive trade-offs
between computational cost and estimation accuracy than
their learning counterparts. To summarize, the contribu-
tions of this paper are as follows:

1) We formulate the problem of accuracy estimation
for sensor systems in a general manner, which cov-
ers a broad spectrum of sensing applications. We
have motivated the problem in the context of pric-
ing sensing services, ranking them if they are com-
peting for the same users, detecting faults, and
establishing trustworthiness of different individu-
als in social sensing.

2) We propose a general framework to address the for-
mulated accuracy estimation problem, which con-
tains four layers: pre-processing, state estimation,
accuracy estimation and accuracy indexing.We show
that by passing sensor observations through those
layers, the proposed framework is able to assess the
accuracy of the reported measurements, and further
reason about the accuracy of the sensor systems.

3) We demonstrate that the state estimation layer can be
implemented in various ways, and create a taxonomy
of approaches ranging from simple voting schemes,
to inference-based and learning-based techniques.
We show how inference and learning techniques can
be further sub-divided into those that exploit knowl-
edge of the dynamics of the monitored process, and
those that do not. We also show that any prior infor-
mation on the monitored phenomenon can be easily
incorporated into inference and learning techniques
in both the static and dynamic cases.

4) We propose two accuracy metrics for the accuracy
estimation layer, one based on proximity and the
other on similarity between the probabilistic meas-
urements and the monitored state. Those metrics
evaluate the accuracy of sensor measurements from
different perspectives, and thus are suitable for dif-
ferent classes of applications. For accuracy indexing
layer, we propose a scheme that can build accuracy
indices of sensor systems by aggregating and inter-
polating the accuracy of reported sensor measure-
ments over given attributes.

5) We perform a systematic experimental evaluation of
the proposed accuracy estimation framework with
two real sensor datasets, one containing position sen-
sor measurements in an indoor environment, and the
other containing light intensity sensormeasurements.
We show how different implementations of the state
estimation layer can influence the performance of the
proposed framework, in terms of accuracy estimation
quality, computational cost, sensitivity to the prior
state distributions and coexisting sensor systems, etc.
We also show that those techniques have their own
merits in different contexts, and by carefully selecting
and tuning them, we can achieve the desired trade-
offs in different sensing scenarios.

The remainder of this paper is organized as follows:
Section 2 formulates the problem of accuracy estimation in

Fig. 1. (a) At the highlighted part, the real values of the light intensity con-
sistently fall out of the reported confidence intervals. (b) The reported
accuracy (error ellipses of the position measurements) is misleading as
to which is the most accurate sensor system.
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the context of one or more coexisting sensor systems, and
presents the high level idea of the accuracy estimation frame-
work. Sections 3, 4, 5 and 6 describe the layers of pre-process-
ing, state estimation, accuracy estimation and accuracy
indexing of the proposed framework inmore detail. Section 7
presents the experimental evaluation of the proposed accu-
racy estimation framework in the context of two real sensor
datasets, and provides a comprehensive discussion of the
experiment results. Section 8 overviews related work, while
Section 9 concludes the paper and discusses future work.

2 PROBLEM FORMULATION

2.1 Model and Assumptions

Monitored states. Let xt be the real value of the monitored
signal (e.g. temperature of a room or position of user) at a
given discrete time t, where the timestamps t ¼ 1 : T are a
totally ordered set. In the following text, we refer to xt as
the state, and denote the value domain of xt with a set V.
Without loss of generality, this paper focuses on dynamic
processes, where the monitored states evolve over time. Sta-
tionary processes can be viewed as special cases with only
one timestamp, i.e. T ¼ 1, where the measurements col-
lected during the entire period are all collapsed to t ¼ 1.

Sensor systems. We consider the general case where M
coexisting sensor systems sn1; . . . ; snM are monitoring the
underlying states xt and providing sensor measurements.
Depending on different sensor systems, a sensor measure-
ment could be either a single estimated value, or a value
paired with certain error bounds. This paper assumes that
the measurements are probabilistic: at a given time t sensor
system snm reports a probability distribution Zm

t defined on
V, representing its estimate of the monitored state xt. Deter-
ministic measurements can be viewed as special cases
where Zm

t is reduced to a point distribution. For instance, if
V is a finite discrete set containing N elements (e.g. all
rooms in a building), Zm

t is then a vector of probabilities
½Zm

t ð1Þ; . . . ; Zm
t ðNÞ�, where Zm

t ðjÞ is the belief of the system
snm that the state xt is the jth element of V.

Priors. We also assume that in certain timestamps, there
may be certain prior knowledge on the state xt. For instance,
consider an indoor positioning scenario where the states are
the locations of the user. Planned events, e.g. calendar
entries, or social interactions like store check-ins, may
directly reveal the actual location of the user at a given time-
stamp [6]. We refer to such information as the priors, and
use a probability distribution Ct defined on V to represent
the prior knowledge on the state xt.

Estimated state. In practice, the real state xt can not be
known or measured exactly, but needs to be estimated. In

this paper we use a probability distribution X̂t defined on V

to approximate the real state xt. The distribution X̂t is evalu-
ated with the observed probabilistic sensor measurements
and available priors, which represents our best knowledge

of the state xt. Techniques that can be used to compute X̂t

will be explained in Section 4.
Sensing applications. A sensing application is the agent

that requires information on the monitored state xt, and
selects the sensor systems to task based on its accuracy
requirements. We assume that a sensor application
describes its accuracy requirements by providing a pair

hf�; AAi, where f� is an accuracy metric, and AA is a set of attrib-
utes that specifies the accuracy index.

Accuracy metric.An accuracy metric f� is a function which
computes the accuracy of a probabilistic sensor measure-
ment Zm

t . We define the real accuracy of Zm
t as a function

with respect to the monitored state xt, denoted as f�ðZm
t ;xtÞ.

However, Since xt is typically unknown, the real accuracy
f�ðZm

t ;xtÞ can not be evaluated directly. Therefore in this
paper, for a given Zm

t , we consider its estimated accuracy

f�ðZm
t ; X̂tÞ, which is evaluated by feeding the estimated

state X̂t into the accuracy metric f�.
Accuracy index. An accuracy index is an array containing

the aggregated accuracy of a sensor system, defined by a set
of attributes AA, e.g. time or location. Assignments of attrib-
utes AA specify the context in which the measurements are
made, and can be used to aggregate them into groups, e.g.
the measurements reported during a given time period or at
a particular location. Thus elements of an accuracy index
are the average accuracy of measurements grouped by the
assignments of attributes AA, which describes the expected
accuracy of a sensor system in different context.

2.2 The Accuracy Estimation Problem

As discussed above, the sensing application needs to sense
the physical phenomenon xt, whileM coexisting sensor sys-
tems are offering sensing services by providing probabilistic
sensor measurements Zm

t , 1 � m � M, 1 � t � T . The accu-
racy estimation problem studied in this paper is to assess the
accuracy of the M sensor systems according to the accuracy
requirements hf�; AAi from the sensing application, given all

the observed sequences of sensor measurements Z1
1:T ; . . . ;

ZM
1:T and the prior knowledge on the monitored states C1:T .

This will empower the sensing application to proactively
select and task the suitable systems that satisfy its accuracy
requirements. Of course in practice the sensing application
may have other quality requirements, e.g. cost, energy con-
sumption, or privacy. In this paper we assume that such
information is already available from other sources (e.g.
energy monitoring tools, web sources, etc.), and focus on
estimating the accuracy. We also assume that the sensing
application only tasks one sensor system at a time, which
achieves the best trade-off between accuracy and the other
quality requirements.

2.3 The Accuracy Estimation Framework

To address the accuracy estimation problem, we propose an
accuracy estimation framework, which lies between the sens-
ing application and the underlying sensor systems, and esti-
mates the accuracy of the sensor systems given the
requirements of the application. The proposed framework
provides a general solution for accuracy estimation, which
can be implemented with different techniques. With the
available domain knowledge, it is also applicable to a broad
spectrum of sensing scenarios. Intuitively, the accuracy of a
sensor system should depend on the accuracy of its meas-
urements. Although the actual state xt is unknown, as dis-
cussed above, it is still possible to estimate the accuracy of a
given measurement Zm

t with the estimated state distribution

X̂t, under the accuracy metric f� provided by the sensing
application. Following this intuition, the proposed accuracy
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estimation framework has four layers: pre-processing, state
estimation, accuracy estimation, and accuracy indexing.

Fig. 2 illustrates the layers of the proposed framework.
The sensing application on top requires information on
certain physical signals, e.g. the temperature of a building
or the locations of a user, and would like to select one sen-
sor system to task. It poses corresponding queries to the
proposed framework, and specifies an accuracy metric f�
and a set of attributes AA, which will be used to evaluate
and index the accuracy of the reported measurements. The
framework first activates all the coexisting sensor systems
that can provide measurements on the queried states for a
short period of time, and the raw sensor measurements
pulled from the systems are first processed through the
pre-processing layer. Then the processed measurements
are forwarded to the state estimation layer, where the states
are estimated based on sensor observations and available
prior knowledge. The next accuracy estimation layer takes
the estimated states together with the pre-processed sen-
sor measurements as input, and evaluates the accuracy of
measurements with the accuracy metric f�. The estimated
measurement accuracy is then forwarded to the accuracy
indexing layer, where an accuracy index is built for each
sensor system, according to the attributes AA. Finally, the
accuracy indices of the sensor systems are reported as the
output of the accuracy estimation framework, which
empowers the sensing application to choose the desired
system to task depending on the context. The framework
will initiate this process periodically to keep the accuracy
indices updated. Now we are in a position to explain the
layers of the proposed framework in more detail.

3 PRE-PROCESSING

The pre-processing layer collects and processes the raw
measurements from coexisting sensor systems. It is optional,
but usually necessary in practice. Raw measurements from
different sensor systems are typically heterogeneous, for
instance they may not conform to a global clock, or they may
be generated at different time or space granularities. More-
over, some sensor systems may only be able to provide
deterministic measurements without any error bounds. To
address this, the pre-processing layer processes the raw sen-
sor measurements through two steps: a) the synchronization
step, and b) the resample step.

In the synchronization step, the measurements from dif-
ferent sensor systems are firstly re-timestamped according
to the global clock provided by the proposed framework. If
the measurements are generated in different metric systems,
e.g. some temperature readings may be reported in Celsius
scale while others could be in Fahrenheit scale, they are con-
verted into the same metric system. For measurements
without error bounds reported, this step also generates the
corresponding error estimations and thus parses the deter-
ministic measurements into probabilistic ones. This can be
achieved by various existing techniques, such as model-
driven approaches [7], [8], or approaches that leverage prior
knowledge on sensor noise characteristics [9].

After the synchronization step, the resample step further
subsamples or interpolates the measurements so that meas-
urements from different sensor systems have the same time
and space granularity. There is also a solid body of techni-
ques that can be used in this context, and in our experi-
ments, we use Gaussian process non-linear regression [10]
to interpolate the sensor data over time and space. Fig. 3a
shows the raw sensor measurements on light intensity, gen-
erated by two coexisting sensor systems used in our experi-
ments. Note that each system only generates deterministic
measurements at the locations where they have sensors.
Fig. 3b shows the pre-processed sensor measurements,
which have the same space and time granularity, and are
annotated with confidence intervals.

4 STATE ESTIMATION

Given the pre-processed sensor measurements and the
available priors as input, the state estimation layer com-
putes the estimated state distribution X̂t. We assume that
after pre-processing, at any given timestamp t, each sensor
system snm, 1 � m � M, provides a probabilistic measure-
ment Zm

t of the state xt, where Zm
t is a probability distribu-

tion defined on the sample space V. We also assume that
certain priors Ct may be available at some of the

Fig. 3. (a) A snapshot of the raw sensor measurements on light intensity
generated from two sensor systems sn1 and sn2. (b) A snapshot of the
pre-processed light intensity measurements by Gaussian process non-
linear regression.

Fig. 2. Measurements reported by sensor systems are passed through
the proposed accuracy estimation framework with four layers: pre-proc-
essing, state estimation, accuracy estimation, and accuracy indexing.
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timestamps, as defined in Section 2.1. This layer can be
implemented in various ways, and we design a taxonomy
consisting of three main classes of approaches: voting, state
inference and learning. The inference- and learning-based
approaches can be further divided into two subclasses:
static and dynamic, depending on whether the dynamics of
the monitored process are taken into consideration. Fig. 4
illustrates the taxonomy of those approaches, along with
specific examples of techniques under each class. In the fol-
lowing Sections 4.1, 4.2 and 4.3, we provide the high level
overview of the approaches, and discuss the algorithm
implementations of those approaches in the context of an
indoor positioning scenario, where the positions of a user
are monitored by multiple coexisting positioning systems.

Concretely, we assume that the indoor environment can
be represented as a finite set L of N discrete locations
l1; . . . ; lN , e.g. different rooms or corridor segments (note
that the described approaches can also be applied in the
continuous case, but the detailed derivations are omitted
due to space limitations). Therefore a probabilistic measure-
ment Zm

t can be represented as a vector of probabilities
½Zm

t ð1Þ; . . . ; Zm
t ðNÞ�, where Zm

t ðjÞ is the belief of the sensor
system that the user is in location lj. We use the same repre-

sentation for the estimated state distribution X̂t and the pri-
ors Ct. We also assume that Ct exists at each timestamp: if
prior information on state xt is not provided, Ct is reduced
to uniform distribution. Finally, we always assume that the
initial location of the user (i.e. state x1) can be known
exactly, e.g. from the card swipe at the main entrance.

4.1 Voting-Based Approach

Voting is a widely used approach, which aggregates the
preferences from multiple information sources to achieve a
collective decision. In the context of state estimation, the

voting approach works on one timestamp at a time. It treats
the sensor systems as individual voters, and a probabilistic
measurement Zm

t is the voting plan of the system snm, which
distributes a fixed amount of scores (the probability mass)
across the sample space V according to the measured distri-

bution. The estimated state distribution X̂t is then evaluated
by combining the measured probability distributions Zm

t

from the M coexisting sensor systems (using equal weights)
according to certain voting rules. Fig. 5a shows the basic
idea of the voting-based approach.

Algorithm implementation. In the indoor positioning sce-
nario, at a given timestamp t the reported measurements
from the sensor systems are M probability vectors,

½Z1
t ð1Þ; . . . ; Z1

t ðNÞ�; . . . ; ½ZM
t ð1Þ; . . . ; ZM

t ðNÞ�. In this paper, we
consider a simple yet effective voting-based algorithm
(referred to as VA hereafter) that implements cumulative
voting [11], where

X̂tðjÞ ¼ c
XM
m¼1

Zm
t ðjÞ; (1)

for every location lj (c is a normalizing constant). Fig. 6g
shows the result of this voting-based algorithm (VA), which

Fig. 4. The taxonomy of state estimation approaches, where for each
class of approaches, several representative techniques are listed.

Fig. 5. Comparison of different state estimation approaches. (a) Voting
merges sensor measurements with equal weight to evaluate X̂t. (b)
Static inference infers state xt with the measurements at t and known

model parameters ub, which determine the likelihood of different meas-
urements given the state (weighted arrows). (c) Dynamic inference esti-
mates xt with the full sequence of measurements and known model

parameters, which include both ub and in addition ua which control the
transitions between states. (d) Static learning re-estimates the model

parameters with the measurements at t, and uses the learned ûbML
(weighted arrows at the bottom, different from those in (b)) to infer xt. (e)
Dynamic learning learns the model parameters with the full sequence of

measurements, and infers xt with the learned ûbML and ûaML.

Fig. 6. Estimated states produced by different algorithms in the indoor positioning scenario, where the black dots in each figure show the ground
truth. The blocks with different densities indicate the likelihood that the user is believed to be in those blocks (darker blocks mean higher probabili-
ties). (a)–(f) The probabilistic measurements observed at two timestamps t and tþ 1. (g)–(k) The estimated state X̂t computed by the voting (VA),
static inference / learning (SIA / SLA) and dynamic inference / learning (DIA / DLA) algorithms respectively.
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fuses the three probabilistic sensor measurements observed
at time t, as shown in Figs. 6a, 6b and 6c.

4.2 Inference-Based Approach

The inference-based approach models the monitored states,
the measurements from one or more sensor systems, and
the available prior knowledge in a probabilistic model with
a set of parameters u known a priori. Generally u depends
on the type and structure of the model, and in our context

we assume u contains two parts: u ¼ fua; ubg, where ua deter-
mines the probability of being in current state xt given the

previous state xt�1; and ub controls the probabilities of

observing probabilistic sensor measurements Z1:M
t given

the current state xt. The inference-based approach estimates
the latent states based on observed measurements and pri-
ors, given the known u. Depending on whether we exploit
the temporal correlations between states, the approach can
be further divided into static and dynamic inference.

4.2.1 Static Inference

Static inference ignores any temporal correlations between
the latent states, and only accesses the measurements and
priors at single timestamps. Therefore static inference does
not consider the parameters ua, and evaluates X̂t as the pos-

terior state distributing given the observed Z1:M
t and Ct

with the known ub only. If we assume the measurements
from different sensor systems are conditionally indepen-
dent and ignore any external sources of noise, the estimated

state distribution X̂t can be computed as:

X̂t / pðxt jCtÞ
QM

m¼1 pðZm
t jxt; ubÞ; (2)

where pðZm
t jxt; u

bÞ is the conditional probability distribu-
tion of observing the measurement Zm

t given state xt and

known parameters ub. pðxt jCtÞ represents the state distribu-
tion given that the prior Ct is observed. Note that Ct is
treated as a special observation here, which is not controlled
by any model parameters and pðxt jCtÞ is assumed to be the
prior distribution Ct (we assume no additional knowledge
on xt is available). Fig. 5b shows an example of static infer-
ence, where state xt is influenced by prior Ct, and the likeli-
hood of observed measurements are determined by

parameters ub.
Algorithm implementation. We now explain the algorithm

implementation of static inference in the indoor positioning
scenario. We assume the identical setting as explained in
voting-based algorithm. In this context, the model parame-
ter ub can be defined concretely. We define ub ¼ fbmj ðkÞg,
which represent the probabilities of having a location lk in
the measurement given the fact that the user is in location lj
for system snm, and are referred to as the emission probability
hereafter. As shown in Eq. (2), pðxt jCtÞ is determined solely
by the prior distribution Ct, and thus the main task of this
static inference-based algorithm (SIA) is to evaluate the like-

lihood of observing the measurements Z1:M
t given the state

xt. If the measurements are deterministic (e.g. single loca-
tions as in a standard HMM) and assuming conditional
independence of measurements given the state, the likeli-

hood pðZ1:M
t jxtÞ is directly given by the products of the M

known emission probabilities bmj ðkÞ by definition. In the

presence of probabilistic measurements, this likelihood can
be evaluated by summing over all lk:

X̂tðjÞ / pðxt ¼ lj jCtÞp
�
Z1:M
t jxt ¼ lj

� ¼ CtðjÞrtðjÞ;

rtðjÞ ¼
YM
m¼1

XN
k¼1

Zm
t ðkÞbmj ðkÞ;

(3)

where variable rtðjÞ represents the likelihood of observing

the probabilistic measurements Z1:M
t given that the state is

lj. In our experiments, the parameters bmj ðkÞ are initialized

as follows: for each measurement Zm
t , we find the location �l

that has the largest reported probability. Then bmj ðkÞ is com-

puted as the average of Zm
t ðkÞ for all measurements from

snm, whose �l is lj. In other words, we assumes that the states

are �l and use them to compute the parameters bmj ðkÞ for snm

empirically. If the observed measurements are not sufficient
to estimate all the emission probabilities, those uninitialized
bmj ðkÞ are set to default values. Fig. 6h shows the estimated

state distribution computed by this algorithm (SIA), which
is similar to that of voting (VA).

4.2.2 Dynamic Inference

Dynamic inference assumes the monitored states are tempo-
rally correlated, and estimates the states with all the
observed measurements and priors. Let the states be a time-
varying sequence: x1:T , with M measurement sequences

Z1
1:T ; . . . ; Z

M
1:T from the sensor systems. In practice, the

dynamics are usually assumed to be Markovian for simplic-
ity, i.e. pðxt jx1:t�1Þ ¼ pðxt jxt�1Þ, which is determined by
the known model parameters ua. In addition, measurements
generated at different timestamps are assumed to be inde-
pendent conditioned on the states. Under those assump-

tions, the estimated state distribution X̂t, i.e. the posterior
state distribution given all the observed sensor measure-
ments and priors, can be represented as:

X̂t / p
�
Z1:M
1:t ;C1:t; xt j u

�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
At

p
�
Z1:M
tþ1:T jCtþ1:T ; xt; u

�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Bt

;
(4)

where At is the joint distribution of the observed measure-

ments Z1:M
1:t , priors C1:t and the state xt until time t, given

the known parameters u; while Bt is conditional distribution
of the measurements made from time tþ 1, given the cur-
rent state xt, future priors Ctþ1:T and parameters u. Both the
term At and Bt can be evaluated iteratively:

At / p
�
Z1:M
t jxt; u

b
� Z

xt�1

pðxt jxt�1;Ct; u
aÞAt�1 dxt�1;

Bt /
Z
xtþ1

p
�
Z1:M
tþ1 jxtþ1; u

b
�
pðxtþ1 jxt;Ctþ1; u

aÞBtþ1 dxtþ1;

(5)

where pðZ1:M
t jxt; u

bÞ and pðZ1:M
tþ1 jxtþ1; u

bÞ can be factored as
in the static case. In the dynamic case, the priors are incor-
porated in the probability distribution pðxt jxt�1;Ct; u

aÞ that
links two consecutive states, so that the state transition is
governed by both the model parameters ua and prior Ct.
Fig. 5c shows a simple case with two timestamps, where the
state xtþ1 is influenced by xt (through ua) and Ctþ1, while

measurements are emitted under the control of ub.
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Algorithm implementation. In the indoor positioning sce-
nario, under the assumption of discrete state space, we
define the model parameter ua ¼ faijg, where aij ¼
pðxtþ1 ¼ lj jxt ¼ liÞ, i.e. the probability that the user moves
from one location li to another lj at two consecutive time-
stamps (under the Markovian assumption). We refer to aij
as the transition probabilities, which are assumed to be
known, and in our experiments aij is determined by physi-
cal constraints: e.g. a user has equal probabilities of moving

to any adjacent locations. The parameter ub ¼ fbmj ðkÞg is

defined and initialized in the same way as the static algo-
rithm SIA. Following Eqs. (4) and (5), this dynamic infer-
ence-based algorithm (DIA) evaluates the estimated state

distribution X̂t by extending the forward-backward algo-
rithm in hidden Markov models (HMMs):

X̂tðjÞ ¼ p
�
xt ¼ lj jZ1:M

1:T ;C1:T

� / atðjÞbtðjÞ; (6)

where atðjÞ and btðjÞ are the extended forward and backward
variables:

atðjÞ /
XN
i¼1

at�1ðiÞaij
" #

CtðjÞrtðjÞ;

btðjÞ /
XN
i¼1

½ajiCtþ1ðiÞrtþ1ðiÞbtþ1ðiÞ�;
(7)

where rtðjÞ is the same as defined in Eqn. (3). Note that the
derivation of those variables are very different from the
standard HMMs, since here we have multiple sequences of
probabilistic measurements. Also the priors Ct are incorpo-
rated at each timestamp to bias the estimated state. Fig. 6j

shows the distribution X̂t estimated by this dynamic infer-
ence-based algorithm (DIA), where comparing with that in
static algorithm (SIA), more probability mass is concen-
trated in locations near the ground truth.

4.3 Learning-Based Approach

Unlike the inference-based approach, the learning-based
approach does not assume any prior knowledge on the
model parameters u. It starts with an estimate of the param-
eters, and iteratively refines this estimate to be more consis-
tent with the sensor measurements and priors. The

estimated state distribution X̂t is then inferred with the
learned model parameters and the observed data.

4.3.1 Static Learning

Static learning first tries to find the model parameters

u ¼ fubg (ua are not included in this case since the correla-
tion between states is ignored) that are the most consistent
with the data observed within each timestamp, given by the

maximum likelihood (ML) estimate ûML, as shown in

Fig. 5d. As in general latent variable models, ûML can be
computed by the EM approach [12], which works iteratively
with the following two steps until convergence:

a) The E-step, which computes the expected log likeli-
hood function Qðu0; uÞ of the new parameters u0. The
expectation is taken with respect to the conditional
distribution of the states given the observed data,
under the current parameters u:

Qðu0; uÞ ¼ Ext jZ1:M
t ;Ct;u

�
log p

�
Z1:M
t ;Ct; xt j u0

��
¼

Z
xt

p
�
xt jZ1:M

t ;Ct; u
�
log p

�
Z1:M
t ;Ct; xt j u0

�
dxt;

(8)

b) The M-step, which finds the new parameters u0 that
maximize the Q function: u0 ¼ argmaxu0Qðu0; uÞ.
After convergence, this approach evaluates the dis-
tribution of the estimated state X̂t with the learned

model parameters ûML as in static inference.
Algorithm implementation. For the indoor positioning sce-

nario, in this static case the model parameters that need to
be learned are ub ¼ fbmj ðkÞg, i.e. the emission probabilities.
Following the EM scheme discussed above, this static learn-

ing-based algorithm (SLA) finds the new parameters bmj ðkÞ0
that maximize the Q function, which are given by:

bmj ðkÞ0 ¼ X̂tðjÞ�1smt ðj; kÞ;

smt ðj; kÞ ¼ CtðjÞZm
t ðkÞbmj ðkÞ

YM
~m¼1
~m6¼m

XN
i¼1

Z ~m
t ðkÞb ~m

j ðiÞ; (9)

where X̂tðjÞ is the estimated probability of being in location
lj, and smt ðj; kÞ represents the probability that system snm

has location lk in its measurement Zm
t and observing all

measurements Z ~mt (1 � ~m � M, ~m 6¼ m) from other systems

when the actual state is lj. Both of X̂tðjÞ and smt ðj; kÞ are
evaluated with the current parameters. Note that inference
is in fact a subroutine of learning, and therefore the esti-
mated state distribution can be computed during the last

learning iteration. Fig. 6i shows the X̂t estimated by this
static learning-based algorithm (SLA).

4.3.2 Dynamic Learning

Similar to dynamic inference, dynamic learning also
assumes the hidden state varies over time, and the state
transitions are governed by parameters ua. Instead of rely-
ing on model parameters known in advance, it firstly use all
measurements and priors to learn the parameters

u ¼ fua; ubg, as shown in Fig. 5e. It also uses the EM scheme,
but the derivation of the Q function is different from the
static case. We make identical assumptions as in dynamic
inference, and the likelihood function Qðu0; uÞ becomes:

Qðu0; uÞ ¼ Ex1:T jZ1:M
1:T

;C1:T ;u

�
log p

�
Z1:M
1:T ;C1:T ; x1:T j u0��

¼
Z
x1:T

p
�
x1:T jZ1:M

1:T ;C1:T j u
�
log p

�
Z1:M
1:T ;C1:T ; x1:T j u0

�
dx1:T ;

(10)

which integrates over state sequences x1:T . The maximiza-
tion step is the same as in static learning. In both static and
dynamic cases, the priors C1:T are incorporated in the Q
function (as in Eqs. (8) and (10)) at each learning iteration,
and thus bias the learned parameters and estimated states.

Algorithm implementation. We now explain the implemen-
tation of dynamic learning in the context of the indoor posi-
tioning scenario. In this case, both the emission probabilities
bmj ðkÞ and the transition probabilities aij need to be re-

estimated. In addition, the derivation of the Q function in E-
stepis different from the static case, which takes multiple
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sequences of probabilistic measurements into account. In the
M-step, this dynamic learning-based algorithm (DLA) finds

the new parameters a0ij and bmj ðkÞ0 that maximize the derived

Q function:

a0ij ¼
XT
t¼2

at�1ðiÞaijCtðjÞrtðjÞbtðjÞ
" #

u1:T�1ðiÞ;

bmj ðkÞ0 ¼
�
sm1 ðj; kÞ þ vm2:T ðj; kÞ

�
u1:T ðjÞ;

u1:T ðjÞ ¼
XT
t¼1

X̂tðjÞ
" #�1

;

vm2:T ðj; kÞ ¼
XT
t¼2

XN
i¼1

at�1ðiÞaij
" #

smt ðj; kÞbtðjÞ;

(11)

where atðjÞ and btðjÞ are the extended forward and back-
ward variables evaluated with the current model parame-
ters, and can be computed as shown in Eq. (7). Fig. 6k shows

the estimated state distribution X̂t computed by dynamic
learning (DLA), where the majority of the probability mass is
correctly concentrated on the actual position of the user.

5 ACCURACY ESTIMATION

The state estimation layer discussed above approximates
the latent states with all observed sensor observations and
available priors. The proposed framework then forwards
the estimated state distributions together with the pre-proc-
essed sensor measurements to the accuracy estimation
layer, which estimates the accuracy of the measurements
with the metric specified by the sensing application. Given
a probabilistic measurement Zm

t and the computed state

distribution X̂t, the estimated accuracy of Zm
t is given by

f�ðZm
t ; X̂tÞ, which is assumed to be a scalar value. We con-

sider two accuracy metrics, a proximity-based and a similar-
ity-based, which can be applied in sensing applications with
different types of accuracy requirements.

The proximity-based accuracy metric. The proximity-based
accuracy metric defines the accuracy of a probabilistic mea-
surement Zm

t based on its distance to the estimated state X̂t.

Recall that both Zm
t and X̂t are in fact probability distribu-

tions defined on V. Let pZm
t
ðzÞ and pX̂t

ðxÞ be the probability

density functions (probability mass function in discrete

cases) of Zm
t and X̂t respectively, z;x 2 V. The proximity-

based accuracy of Zm
t is then defined as:

fp
� ðZm

t ; X̂tÞ ¼
Z
z;x

pZm
t
ðzÞpX̂t

ðxÞCðz � xÞ dzdx; (12)

where Cð�Þ is a distance function that can take various
forms, and in this paper we consider the Euclidean distance

Cðz � xÞ ¼ kz � xk. Therefore fp
� ðZm

t ; X̂tÞ can be viewed as
the “expected” Euclidean distance between the measure-

ment Zm
t and estimated state X̂t. It tends to favour the meas-

urements whose probability mass is geometrically close to
the estimated state distribution, and thus is typically used
in sensing scenarios that prefer such proximity.

The similarity-based accuracy metric. On the other hand, the
similarity-based metric defines accuracy as the divergence

between the probabilistic measurements and the estimated
state distributions. There are many statistical divergence
metrics that can be used, and in this paper we consider the
widely adopted Kullback-Leibler (KL) divergence. For a
measurement Zm

t , its estimated similarity-based accuracy is
defined as the KL divergence between the distributions of
the measurement and the estimated state:

fs�
�
Zm
t ; X̂t

� ¼ DKL

�
X̂t kZm

t

�
; (13)

which indicates how well the measurement Zm
t can be used

to approximate the estimated state distribution X̂t. This
accuracy metric is particularly useful when the sensing
application would like to discourage measurements with
unreasonably high confidence.

Of course many other functions can be used as accuracy
metrics, and there is no universal accuracy metric that is
suitable for all sensing scenarios. In practice, different sens-
ing applications are likely to prefer different accuracy met-
rics, even if they are monitoring the same physical signal.
For example, consider the air pollution monitoring scenario
shown in Fig. 7a, where the sensor systems are monitoring
the air pollution levels. If a sensing application would like
to rank the measurements based on how close they are from
the state, e.g. when calibrating the sensors, the proximity-
based accuracy metric should be used: in Fig. 7a, Z1

t is more

accurate than Z2
t under the proximity-based accuracy met-

ric. On the other hand, if a sensing application would like to
classify the pollution level based on the reported measure-
ments, the proximity-based accuracy metric may lead to
wrong conclusions. For instance in Fig. 7a, the proximity-

based accuracy metrics would prefer measurement Z1
t since

it is geometrically closer to the estimated state. However, it

is undesirable for this application because Z1
t puts the

majority of its belief in the “moderate” (AQI 50-100) cate-
gory, whereas the state is actually “unhealthy” (AQI 100-
150). This may cause serious false positives in practice, and
the similarity-based accuracy metric can avoid this by favor-

ing the measurement Z2
t that reports a relative “flat” distri-

bution without concentrating its belief wrongly.
To generalize, the proximity-based accuracy metric cares

more about the distance between the measurements and the
states, while the similarity-based accuracy metric is more
sensitive to the differences in the distributions. However, the
two metrics are not necessarily always opposite. Fig. 7b
shows a similar scenario as in Fig. 7a, but in this case the

Fig. 7. (a) Under proximity-based accuracy metrics fp� the measurement
Z1
t is more accurate, while under similarity-based accuracy metrics fs�

the measurement Z2
t is more accurate. (b) Under both metrics the mea-

surement Z1
t is more accurate.
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measurement Z1
t is considered to be more accurate under

both proximity- and similarity-based accuracy metrics.

6 ACCURACY INDEXING

The above accuracy estimation layer evaluates the accuracy
of individual sensor measurements, and this accuracy
indexing layer further aggregates the estimated accuracy to
reason about the accuracy of sensor systems. Intuitively, the
accuracy of a sensor system should depend on the accuracy
of all the measurements it generates. In practice, however, it
is usually more meaningful to investigate the accuracy of a
sensor system in a given context, e.g. accuracy during a cer-
tain period of time or at a particular location. In this paper,
we assume the context information is specified by value
assignments of a finite set of attributes AA (e.g. time or loca-
tion), which are provided by the sensing application. With-
out loss of generality, we also assumes the value domain
domAA of the attributes AA is discrete and finite.

Let aa 2 domAA be a value tuple defined in domAA. For a
given sensor system snm, we refer to the subset of measure-
ments whose attributes AA are assigned to aa as the measure-
ments grouped by aa. For example, it could be all the
temperature measurements observed for a particular loca-
tion, or the position measurements of a given user. Then for
a sensor system snm, its accuracy index is a multidimen-
sional array, where each element is the average accuracy of
the measurements grouped by aa, aa 2 domAA.

The proposed accuracy indexing layer builds the accu-
racy indices in two steps: a) the accuracy aggregation step,
and b) the accuracy interpolation step. The first aggregation
step is straightforward, where the estimated accuracy of the
sensor measurements is averaged according to the attrib-
utes AA: measurements are grouped by tuple aa assigned to
attributes AA, and for each value assignment with non-empty
group of measurements, the corresponding element in the
accuracy index is assigned to the average accuracy of all
measurements in this group. Fig. 8a shows an example of
the indoor positioning scenario, where the sensing applica-
tion would like to build the accuracy indices of three

positioning systems over the discrete space. Each block in
Fig. 8a represents the average accuracy of the measurements
observed at that particular location, where lighter blocks
indicate higher accuracy.

However in some cases, the average accuracy computed
by the aggregation step may not be sufficient to build the
complete accuracy indices. For instance in the example
shown in Fig. 8a, since the accuracy estimation process only
runs for a limited period of time, the computed accuracy
information may not be able to cover the entire environ-
ment, but only the parts that have been visited by the user.
The accuracy interpolation step addresses this by filling up
the unknown accuracy based on computed accuracy infor-
mation. This step can be implemented by various techni-
ques, such as linear/spline interpolation [13], wavelets [14],
or Gaussian processes [10]. Fig. 8b shows the complete accu-
racy indices after the interpolation step, where each location
is annotated with estimated accuracy.

7 EVALUATION

7.1 Experiment Setup

We evaluate the proposed accuracy estimation framework
on datasets collected from two real sensing scenarios.

Indoor positioning scenario. The data is collected from an
indoor localization scenario on the 4th floor of a CS depart-
ment building. Three different indoor positioning systems
are deployed and running in parallel, reporting user loca-
tion, as shown in Fig. 9a. Each of the positioning systems,
ps1 to ps3, owns a set of WiFi basestations placed in different
positions of the floor. These basestations periodically broad-
cast WiFi beacons, which are received by the nearby mobile
devices carried by the users. Each positioning system also
receives data from a set of inertial measurement units
(IMUs) attached to the feet of the users, and estimates posi-
tion by combining the inertial data and the WiFi signal
strengths from the basestations it owns. The ground truth is
collected by the users: the map of the floor is displayed on
their mobile devices and they tap the positions they are in
to log their coordinates.

We tracked two research students for approximately
3�4 hours per day (limited by the battery life of the
IMUs), and collected data for 20 days in total. We ran-
domly selected five days of the data, retrieved the mean-
ingful trajectories (the timestamps that the user is
actually moving) by thresholding the accelerometer read-
ings, and subsampled it at a rate of 0.5 Hz. We assume
space is discrete, i.e. it is a finite set L ¼ flkg with N

Fig. 8. The accuracy indices over locations built for three sensor systems
in the indoor positioning scenario, under the proximity-based accuracy
metric fp� . The lighter blocks indicate smaller averaged fp� values, i.e. the
systems are more accurate at those locations. (a) After the accuracy
aggregation step, the accuracy indices of the sensor systems only con-
tain the averaged accuracy at the parts that have been visited by the
user. (b) The accuracy indices after the accuracy interpolation step.

Fig. 9. (a) Experiment setup of the indoor positioning scenario (left) and
the environmental monitoring scenario (right).
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discretized locations, e.g. different rooms or corridor seg-
ments. In our experiment, the average size of a discrete
location is 3 m � 3 m and N ¼ 209. The trajectories were
then discretized according to L. For a given timestamp,
the measurement from a positioning system is a probabil-
ity vector of length N , where the ith probability repre-
sents the belief of the system that the user is at location li.

We also assume that in this scenario the proximity-based
accuracy metric fp� is preferred, i.e. the estimated accuracy
of a probabilistic location measurement Zm

t is determined
by the “expected” Euclidean distance between Zm

t and the

estimated state distribution X̂t, as defined in Eq. (12).
Environmental monitoring scenario. The data was collected

from the Intel Lab dataset [15]. The dataset contains tempera-
ture, humidity and light data collected from 54 sensors
deployed in a lab environment for more than a month. We
randomly selected the light intensity readings of approxi-
mately five consecutive days for our experiments. We
divided the 51 sensors (three sensors are omitted since they
failed midway) into two groups randomly, where data from
26 of them were used to generate light measurements (as
explained below), and the rest were used as ground truth.

We created two co-located sensor systems, sn1 and sn2,
by selecting different subsets of the 26 training sensors, as
shown in Fig. 9b, where sensors that are virtually “shared”
by the two systems are grouped by rectangles. We then
applied Gaussian process non-linear regression [10] to inter-
polate the data from each system across the space. There-
fore, for a given timestamp t and a given point in space, the
measurement from sensor system sn1 or sn2 is a Gaussian
distribution Nðm; sÞ, with an estimated light intensity value
m and variance s.

Unlike the positioning scenario, here we assume that the
similarity-based accuracy metric fs

� is used in this scenario,
which evaluates the accuracy as the KL divergence between
the measured distribution Zm

t and the estimated state distri-

bution X̂t: f
s
� ðZm

t ; X̂tÞ ¼ DKLðX̂t kZm
t Þ.

7.2 Competing Algorithms

We compare different implementations of the proposed
accuracy estimation framework in both experiment scenar-
ios introduced above. For simplicity, we assume the pre-
processing and accuracy indexing layers are always the
same, and the accuracy estimation layer is implemented
according to the different accuracy requirements of the sce-
narios (i.e. the proximity-based metric fp

� for the positioning
scenario while similarity-based fs

� for the environmental
monitoring scenario). We vary the algorithms used for state

estimation layer to create different implementations of the
framework. We consider all algorithms in Section 4: the VA,
the SIA, the DIA, the SLA, and the DLA. In addition, the fol-
lowing two algorithms are used as the baselines:

The oracle algorithm (OA) possesses the ground truth xt,
and for a given measurement Zm

t , the accuracy it computes
is the real accuracy, i.e. f�OðZm

t Þ ¼ f�ðZm
t ;XtÞ.

The report-based algorithm (RA) uses the mean mZm
t
of the

probabilistic measurement Zm
t as the estimation of the state

(X̂t is reduced to a point distribution) to evaluate the accu-
racy, i.e. f�RðZm

t Þ ¼ f�ðZm
t ;mZm

t
Þ.

Note that SIA, SLA, DIA and DLA can also incorporate
prior knowledge on states, as discussed in Section 4. We
evaluate the above competing algorithms against the metric
of Accuracy Estimation Error EEA. For a given measurement

Zm
t , EEA is defined as the squared difference between the

estimated accuracy f�ðZm
t ; X̂tÞ and the ground truth accu-

racy f�OðZm
t Þ: EEA ¼ ðf�ðZm

t ; X̂tÞ � f�OðZm
t ÞÞ2.

7.3 Experiment Results

The proposed accuracy estimation techniques are imple-
mented in Matlab 8.0, and all experiments were performed
on a quad-core machine with Linux 2.6.32.

Accuracy of sensor systems varies over time and space. The
first set of experiments shows that the accuracy of a sensor
system can vary over time and space, while the reported
accuracy may not be a good indicator of the real accuracy.
For the positioning scenario, Fig. 10 shows that the real
accuracy (averaged over all timestamps) of the co-located
positioning systems ps1 � ps3 (white bars) vary over space.
The accuracy of a positioning system is higher in areas
where it has denser sensing infrastructure. In this experi-
ment we see that ps1 has good accuracy (shorter white bars)
at the left bottom part of the floor, while ps2 performs well
at the right side, and ps3 dominates the top area. This exper-
iment also shows that the reported accuracy is not always
reliable: it (grey bars) consistently over or under estimates
the real accuracy (white bars). The accuracy computed by
DLA (black bars) is much closer to the real accuracy (white
bars). This shows that in the absence of ground truth, the
real accuracy can be effectively approximated by applying
suitable techniques. For the environmental monitoring sce-
nario, Fig. 11 shows that the real accuracy of a sensor system
can vary over both location and time. Figs. 11a and 11b
show snapshots of the light measurements reported at day-
time by systems sn1 and sn2 respectively. We can see that:
a) the differences between the real light values and reported

Fig. 10. The real, reported and learnt (computed by DLA) accuracy for positioning system ps1 (left), ps2 (middle) and ps3 (right).
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ones vary across space, and b) the reported accuracy (vari-
ance) is very unreliable and the real light values consistently
fall out of the 95 percent intervals of the reported ones.
Fig. 11c shows a snapshot of real and reported values (by
sn1) at night: notice the differences are very small, which
suggests that sn1 becomes more accurate at night.

Accuracy estimation performance. The second set of
experiments compares the performance of the competing
algorithms (discussed in Section 7.2) in terms of the aver-
age accuracy estimation error (EEA) over all measure-

ments. The left graph of Fig. 12a shows the average EEA

of different algorithms in the positioning scenario when
we consider the probabilistic measurements of all three
co-located positioning systems. We can see that the gap
between voting and report-based algorithms (VA and RA)
is about 50 percent, which means that measurements
from the co-located sensor systems can indeed help to
improve the estimation of accuracy, and simple
approaches like voting could be quite effective in practice.
Techniques that only operate on single timestamps (SIA
and SLA) can provide about 10 percent reduction of esti-
mation errors compared to voting, which actually comes
from the model parameters that determine the weights of
measurements from different systems when combining
them. When moving to dynamic approaches, however,
we observe significant improvements in estimation error.
Dynamic inference (DIA) features about 40 percent
improvement compared to voting, because it takes all
measurements into account and uses a state transition

model that reflects the underlying state dynamics.
Dynamic learning (DLA) offers more than 50 percent ben-
efit compared to voting, since DLA also learns new model
parameters that best explain the observed measurements.
Finally, the improvement from the naive approach (RA)
to the best technique (DLA) is almost eight fold. For the
environmental monitoring scenario, as shown in Fig. 12b,
there is a similar trend of improvement as we move to
more sophisticated techniques, but in this case the
improvement from voting to DIA is marginal, because we
use naive model parameters (derived directly from
reported confidence intervals, which often do not cover
the ground truth as shown in Fig. 11). The benefits of
DLA, however, are far more pronounced, since the learnt
model parameters are more accurate. Fig. 12c shows that
the relative performance of different algorithms varies
significantly over time.

Sensitivity to the number of information sources. The third
set of experiments investigate how the number of co-located
sensor systems affects the accuracy estimation. Fig. 12a
shows the results of the positioning scenario. We can see
that with fewer co-located systems, the performance gaps
between the different techniques become smaller. In the
case where only one system is available, the best performing
algorithm (DLA) has similar EEA to the naive approach of
trusting the reported accuracy (RA).

Running cost versus performance gain. The fourth set of
experiments studies the trade-off between accuracy estima-
tion and computation cost. We measure the execution time

Fig. 12. (a) Average estimation errors of different algorithms in the positioning scenario when the number of co-located systems varies from 3 to 1. (b)
Average estimation errors of different algorithms in the environmental monitoring scenario. (c) Estimation errors of different algorithms in the environ-
mental monitoring scenario vary over time.

Fig. 11. 3D snapshots showing that the real accuracy varies over space and time. The surfaces show the light intensity measurements (only the
means) across space at different timestamps. The first two graphs show real and reported light intensity data generated at daytime by sensor sys-
tems sn1 (left) and sn2 (middle). The right graph shows real and reported light intensity data generated by sn1 at night.

1340 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 14, NO. 7, JULY 2015



of different algorithms and compare it with the performance
gain in terms of accuracy estimation error EEA). Fig. 13
shows the trade-off on the two experiment scenarios respec-
tively. In general learning-based techniques are more
expensive than the inference-based, since learning requires
iterative evaluation of the likelihood of data, which is essen-
tially multiple runs of inference. In our experiments, on
average learning is several times slower than inference but
it can only improve the estimation performance by at most
30 percent (from DIA to DLA in the environmental monitor-
ing scenario). The results are similar in the positioning sce-
nario, where moving from dynamic inference to dynamic
learning, the performance gain is about 25 percent at the
expense of tripling the running time.

Sensitivity to prior knowledge. The last set of experiments
shows how prior knowledge can influence the competing
algorithms. For both scenarios, the priors are generated by
first selecting a random subset of the timestamps. At these
timestamps, the distribution of prior rt is set to be the
ground truth value plus a small quantity of noise. We vary
the percentage of timestamps that have priors, and study
the effect on performance of different techniques (Fig. 14).
In the positioning scenario, as the amount of priors
increases, the static algorithms improve linearly. For
dynamic algorithms, the estimation error has a quick drop
before the percentage of priors reaches 20 percent, and then
becomes flat. This is because the dynamic techniques exploit
temporal correlations in the data, which enables prior
knowledge to impact nearby states. There is also a small
gap between dynamic inference and learning, since learning
can use priors to better assess model parameters. In the
environmental monitoring scenario, a similar behavior can
be witnessed, but the gap between dynamic inference and
learning is larger since the model parameters used by infer-
ence is trivial, while learning can recalibrate them from
both the observed measurements and priors.

8 RELATED WORK

State inference. A large body of research in sensor networks
has involved statistical inference about the sensed environ-
ment. Examples are regression and prediction of environ-
mental variables, such as temperature, light intensity,
humidity and pollution, taking into account spatial and
temporal correlations in the sensor readings, and incorpo-
rating measurement noise. A common approach is to use
techniques such as Kriging [16] and Gaussian Processes
(GPs) [10] to interpolate between sensor readings and infer
the values of environmental variables in places where there

are no sensors, or when sensors have failed or simply did
not generate readings at certain timestamps. For example,
Osborne et al. have proposed a computationally efficient
implementation of GPs for sensor network applications in
the context of environmental sensing [17].

A lot of work has also investigated the dynamic version
of the estimation problem. A well-studied example is that of
node tracking, where the physical locations of moving
objects are tracked by fixed and/or mobile sensors. HMMs
are commonly used in the context of map matching, i.e. the
problem of finding the most likely trajectory that accounts
for measurement noise and known map constraints [18],
[19], [20], [21], [22]. More specifically, VTrack uses mobile
phones mounted in cars to estimate road travel times using
a sequence of inaccurate position observations [20]. Easy-
Tracker uses HMMs in the context of transit tracking, and
uses the inferred tracks to detect transit stops and predict
arrival times [22]. An HMM-based approach is also used in
CTrack, where the goal is to associate a sequence of cellular
fingerprints to a sequence of road segments on a known
map [23]. In addition, Bayesian filters, such as Kalman and
Particle filters have also been broadly used for online posi-
tion estimation both in sensor networks and robotics
research [24]. A recent comparative evaluation of different
filters for person localization using RSS (Received Signal
Strength) measurements is presented in [25].

Parameter estimation/learning. While much of the initial
work was restricted to distributed inference of the moni-
tored state, more recently there has been considerable inter-
est in parameter estimation. For example, [3] estimates both
the correctness of measurements and the reliability of par-
ticipants in social sensing applications by solving an expec-
tation maximization problem. The work in [4] considers a
stream setting, where the quality of observations are recur-
sively updated as new data arrives. Our work in [6] consid-
ers the indoor tracking problem, and assumes the
coexistence of multiple positioning systems that compete
for the same users. It proposes an expectation maximization
algorithm to learn the emission probabilities of each posi-
tioning system in various parts of the indoor environment.
Note that those approaches [3], [4], [6] first learn the param-
eters of the sensor models, and then use the learned param-
eters to estimate the accuracy of sensor measurements or
reliability of human participants. In this paper, we show
that parameter learning (or parameter estimation) is not the
only way to estimate the accuracy of sensor measurements.
A simpler alternative approach, which has been largely

Fig. 14. Estimation error of different algorithms when the percentage of
priors varies in the positioning scenario (left) and environmental monitor-
ing scenario (right).

Fig. 13. Running time versus performance for different algorithms in the
positioning scenario (left) and environmental monitoring scenario (right).
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neglected, is to use inference algorithms that estimate the
state of the monitored phenomenon, and then measure the
distance of stochastic measurements from the inferred state.
In this paper we show that both inference and learning
algorithms can be used to tackle the accuracy estimation
problem, and their relative performance largely depends on
the application scenario, and our prior knowledge of it.

Quality estimation. Our work is also related to quality esti-
mation approaches, e.g. fact finding techniques in informa-
tion networks [26], [27], [28]. In these networks, sources and
assertions are represented as nodes, and each fact “source i
made an assertion j” is represented by a link. Nodes are then
assigned credibility scores in an iterative manner: for exam-
ple, in a basic fact finder [26], an assertion’s score is set to be
proportional to the number of its sources, weighted by the
sources’ scores; similarly, a source’s score is set to be propor-
tional to the number of the assertions it made, weighed by
the assertions’ scores. A Bayesian interpretation of fact find-
ing is offered in [29] that allows quantifying the actual probabil-
ity that a source is truthful or that an assertion is true. Whereas
we share the same goal of assessing the credibility of differ-
ent data sources, we cannot directly apply fact finding tech-
niques. The key reason is that fact finding techniques tend to
work well when a large number of sources are used to report
on the same state (e.g. social sensing), and is therefore not
suitable for traditional sensor networks, where only very
few sensors typically detect and report the same event. The
work proposed in [30] uses a tree of regression models to
minimize the estimation error (maximizing the quality of
information) within certain cost budget. This work is differ-
ent in that we do not possess knowledge of the real states,
and thus cannot use it to train regressionmodels.

In summary, to date, accuracy estimation for sensor
networks has been done primarily through learning tech-
niques such as the EM algorithms. The parameters of sen-
sor measurement models are first determined and they
are then used to estimate the accuracy of sensor observa-
tions. Inference has been limited to state estimation prob-
lems, and has seen little use in the context of accuracy
estimation. The learning algorithms that have been used
for accuracy estimation are carefully designed to fit the
application under consideration (for example, [3] has
assumed non-dynamic state, whereas [6] and [4] consider
dynamic time-varying state sequences), and have not
been compared with each other. To our knowledge, the
impact of considering system dynamics or not on the
ability to estimate sensor accuracy has not been studied
in real-world scenarios. Research efforts have clearly
focussed on using learning (parameter estimation) algo-
rithms to estimate the accuracy of sensor measurements,
and have shown little attention to inference algorithms.
To our knowledge there are currently no empirical stud-
ies that compare both inference and learning algorithms
in the context of accuracy estimation using real datasets
from different sensing applications.

9 CONCLUSION AND FUTURE WORK

In this paper we studied the problem of estimating the
accuracy of one or more coexisting sensor systems based
on the probabilistic measurements they generate. We

proposed a general accuracy estimation framework, which
breaks the problem down to layers and addresses it step
by step. We show that the framework can be used in vari-
ous cases, and implemented in different ways: for the state
estimation layer, we created a taxonomy of techniques,
including simple voting, inference-based and learning-
based approaches, and explained their differences; for the
accuracy estimation layer, we introduced two accuracy
metrics, a proximity-based and a similarity-based, and
shown that they can be used by applications with different
types of accuracy requirements. Finally, we evaluated the
performance of different implementations of the proposed
accuracy estimation framework in two real-world sensing
scenarios, which generate probabilistic location and light
intensity data.

Our key findings are as follows: 1) the accuracy of sensor
systems can vary significantly in different contexts, and typ-
ically no system is superior overall; 2) the accuracy estima-
tion performance and running time of different accuracy
estimation techniques can be very different; 3) in our case
where only a few systems are available, static inference and
learning are only marginally better than voting, but much
more expensive; 4) dynamic inference and learning are sig-
nificantly better since the correlations between monitored
states are considered; 5) learning is preferred to inference
only if the initial knowledge on model parameters is poor,
at a much higher computation cost; 6) the more the coexist-
ing sensor systems, the greater the relative benefits of voting
(compared to trusting reported accuracy), and of dynamic
inference and learning (compared to voting); 7) prior
knowledge on states can significantly impact the perfor-
mance of different algorithms: whereas voting and static
algorithms improve linearly, dynamic techniques improve
faster with fewer priors since they exploit the state transi-
tions to propagate priors to nearby states.

A limitation of this work is that we have used directed
graphical models and recursive Bayesian techniques to cap-
ture the correlations between the states and measurements.
For future research, we plan to consider undirected graphi-
cal models (e.g. CRFs) for inference and learning in the con-
text of accuracy estimation. Another limitation is that the
prior knowledge considered is restricted to single time-
stamps, while in the future, we will extend this work to
incorporate other forms of prior knowledge on states, which
possibly span over multiple timestamps.
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