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Abstract—Obstacle avoidance is a fundamental requirement
for autonomous robots which operate in, and interact with, the
real world. When perception is limited to monocular vision
avoiding collision becomes significantly more challenging due
to the lack of 3D information. Conventional path planners for
obstacle avoidance require tuning a number of parameters and
do not have the ability to directly benefit from large datasets
and continuous use. In this paper, a dueling architecture based
deep double-Q network (D3QN) is applied for obstacle avoidance,
using only monocular RGB vision. Based on the dueling and
double-Q mechanisms, D3QN can efficiently learn how to avoid
obstacles even with very noisy depth information predicted from
RGB image. Extensive experiments show that D3QN enables
twofold acceleration on learning compared with a normal deep
Q network and the models trained solely in virtual environments
can be directly transferred to real robots, generalizing well
to various new environments with previously unseen dynamic
objects.

I. INTRODUCTION

When mobile robots operate in the real world, subject to
ever varying conditions, one of the fundamental capabilities
they need is to be able to avoid obstacles. A long established
problem in robotics, obstacle avoidance is typically tackled by
approaches based on ranging sensors [4], e.g. laser scanner and
sonar. However, ranging sensors only capture limited informa-
tion and some of them are expensive or are too heavy/power
consuming for a particular platform e.g. a UAV. Monocular
cameras on the other hand, provide rich information about
the robot’s operating environments, are low-cost, light-weight
and applicable for a wide range of platforms. However, when
perception of range is obtained by monocular vision, i.e., RGB
imagery, the obstacle avoidance problem becomes surprisingly
difficult. This is because the 3-D world is flattened into a 2-D
image plane, eliminating direct correspondence between pixels
and distances.

A standard framework to solve this problem consists of
two steps, the first of which utilizes visual information to
infer traversable spaces and obstacles, and then secondly
applying conventional path planning strategies. Recovering
visual geometry is a common approach to detecting obstacles,
e.g. through optical flow [18, 12], detection of vanishing
points [1] and even visual SLAM [16]. Segmenting traversable
areas, such as floors, based on visual appearance [22] is also
a popular method. Once the surroundings are understood,
various conventional path planners can then be employed
to drive robots along traversable routes [5]. Although the

described methods are able to decouple planning from vi-
sual information and hence benefit from conventional path
planners, they usually require a large number of parameters
which need to be manually tuned to plan feasible paths. It is
also challenging for them to automatically adapt to the new
operating areas.

Deep learning nowadays has shown its great performance
in robotics and computer vision[24, 2, 3]. And supervised
deep learning based path planning which learns how to avoid
collision is becoming increasingly popular. In particular, with
the recent advances of deep learning, several end-to-end su-
pervised learning approaches are proposed to directly predict
control policies from raw images [9, 7, 20] without following
the previous two-step framework. Therefore, they can avoid
complex modeling and parameter tuning of conventional path
planners. Convolutional Neural Networks (CNNs), for exam-
ple, are trained to enable flying robots to navigate in complex
forest environments in [7]. However, due to their supervised
nature, these approaches need manual labeling which is time-
consuming and labor-intensive to obtain.

Self-supervised learning can be used to automatically gen-
erate labels for path planners with the aid of additional feed-
back. For instance, in [26] an algorithm is designed to label
trajectory classes for a CNN based model by using 3D cloud
points. Gandhi et al. [6] proposes to train a drone controller by
predicting when it crashes. Although self-supervised learning
is a feasible approach to benefiting from large dataset without
human supervision, the learnt policy is essentially bounded by
the label generating strategy.

Reinforcement learning explores policies though trials, and
has been applied to vision based obstacle avoidance in [13].
However, the raw image is encoded as several levels of depth
to predict a suitable control strategy. Deep reinforcement learn-
ing (DRL) has recently been shown to achieve superhuman
performance on games by fully exploring raw images [15].
Since DLR usually utilizes a much weaker learning signal
compared with supervised learning, it requires a much larger
training dataset. This makes it difficult to directly use DLR for
robotic applications in reality. Therefore, simulations which
have a failure-and-recovery mechanism are usually used for
training rather than real world exploration [14]. The trained
networks can then be transferred to real robots. Although this
has been successful by using laser scanner [21] and depth
images [19], it is significantly more difficult for vision based
models [6]. Recently Sadeghi and Levine [17] propose to
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Fig. 1: Network architecture of monocular image based obstacle avoidance through deep reinforcement learning. A fully
convolutional neural network is firstly constructed to predict depth from a raw RGB image. It is then followed by a deep Q
network which consists of a convolutional network and a dueling network to predict the Q-value of angular actions and linear
actions in parallel.

train a network as a collision predictor entirely in a 3D CAD
model simulator and highly randomize the rendering settings,
approximately regarding the real world as a subset of training
data. Although their model can be extended into real world,
it requires substantial computational resources to generate the
huge dataset and train it.

In this paper, we focus on the problem of obstacle avoidance
with monocular camera. More specifically, our contributions
are:
• A two-phase deep neural network is proposed to achieve

monocular vision based obstacle avoidance.
• Dueling architecture based deep double Q network

(D3QN) is applied to obtain a high speed for end-to-end
learning with limited computational resources for obstacle
avoidance task.

• The knowledge learnt from simulation can be seamlessly
transfered to new scenarios in the real world.

• Extensive real-world experiments are conducted to show
the high performance of our network.

The rest of this paper is organized as follows. The proposed
D3QN model is described in Section II. Experimental results
are given in Section III, followed by conclusions drawn in
Section IV.

II. DEEP Q NETWORK FOR MONOCULAR VISION BASED
OBSTACLE AVOIDANCE

Since deep Q network (DQN) has been shown to be
trainable directly benefit from raw images [15], most DQN
models used for obstacle avoidance are based on this version
[19, 27]. Although this architecture can eventually achieve
reasonable results, it tends to overestimate Q values and takes
a long time to train as discussed in [23, 25]. This leads to
intensive computational resources for training in simulators. In
this section, an advanced architecture, D3QN, is introduced to
boost both performance and training efficiency for monocular
vision based obstacle avoidance.

A. Problem Definition

The monocular vision based obstacle avoidance problem can
be considered as a decision making process where the robot is
interacting with environments with a monocular camera. The

robot chooses an action at ∈A according to the camera image
xt at time t ∈ [0,T ], observes a reward signal rt produced by
an assessor (reward function) and then transits to the next
observation xt+1. The aim of the algorithm is to maximize the
accumulative future reward Rt = ∑

T
τ=t γτ−trτ , where γ is the

discount factor.
Given the policy at = π(xt), the action-value (Q-value) of

a state-action pair (xt ,at) can be defined as follows

Qπ(xt ,at) = E[Rt |xt ,at ,π], (1)

The Q-value function can be computed using the Bellman
equation

Qπ(xt ,at) = E[rt + γE[Qπ(xt+1,at+1)|xt ,at ,π].

By choosing the optimal action each time where Q∗(xt ,at) =
maxπE[Rt |xt ,at ,π], we can have the optimal Q-value function

Q∗(xt ,at) = Ext+1 [r+ γ max
at+1

Q∗(xt+1,at+1)|xt ,at ], (2)

which indicates that the optimal Q-value we can obtain at
time t is the current reward rt plus the discounted optimal
Q-value available at time t +1. Rather than computing the Q-
value function directly over a large state space, the problem
can be solved by approximating this optimal Q-value function
with deep neural networks, which is the main principle behind
DQN.

B. Dueling Network and Double Q-Network

With the intuition that it is unnecessary for all actions to be
estimated at each state s, Wang et al. [25] propose the dueling
network architecture. In traditional DQN only one stream of
fully connected layers is constructed after the convolution
layers to estimate the Q-value of each action-state pair, given
the current state. However, in the dueling network, two streams
of fully connected layers are built to compute the value and
advantage functions separately, which are finally combined
together for computing Q-values. This two-stream dueling
network structure is shown in the last section of Fig.1. It has
demonstrated a large improvement either on performance or
training speed in a number of ATARI games (but not all).
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Fig. 2: When given a batch of training data, including current
state xt , action a, reward r, and resulting state xt+1, the
training procedure of D3QN is shown in the figure. ⊕, 	
and ⊗ are element-wise operation for addition, subtraction and
multiplication.

Thus, it is exploited in our model to facilitate the learning of
obstacle avoidance.

The prototype DQN in [15] utilizes a target network along-
side an online network to stabilize the overall network perfor-
mance. The target network is a duplicate of the online one.
However, unlike the online network which updates weights
by back-propagation at every training step, the weights of the
target network are fixed over a short period and then copied
from online network. Based on this two-network framework,
Van Hasselt et al. [23] claim that the online network should
be used to select actions while the target network should be
used solving the problem of overoptimistic value estimation
[8]. This procedure is shown in Fig.2. More specifically, the
resulting state xt+1 is employed by both the online and target
network to compute the optimal value Q′∗ for time t+1. Then,
with the discount factor γ and current reward rt , the target
value y at t is obtained. Finally, the error is calculated by
subtracting the target value with the optimal value Q∗ predicted
by the online network, given current state x, and is then back-
propagated to update the weights.

With these two techniques, the proposed D3QN is expected
to be more data efficient to speed up learning. We will discuss
the details of the model architecture in Section II-D.

C. From Appearance to Geometry

Since DRL needs huge amounts of data and time to
train, its performance is usually demonstrated in simulated
environments. In order to apply it in practice for robotic
applications, a feasible solution is to train the models in
simulator and then transfer them to real robots. However, this

(a) RGB (b) Predicted Depth (c) Kinect’s Depth

Fig. 3: Images of RGB, predicted depth and Kinect’s depth.
Note the noisy depth predicted from the network.

TABLE I: Parameters of D3QN Model for Obstacle Avoidance

Name of layer Size of filters or
number of neurons Stride

Conv 1 (10, 14, 32) 8
Conv 2 (4, 4, 64) 2
Conv 3 (3, 3, 64) 1

FC 1 for advantage 512 -
FC 1 for value 512 -

FC 2 for advantage of angular actions 5 -
FC 2 for advantage of linear actions 2 -

FC 2 for value 1 -

is highly challenging for vision based techniques due to the
significant differences between virtual and real environments
due to appearance, illumination, etc. To solve this problem, we
propose to derive a geometric representation from the RGB
imagery.

As shown in Fig.1, the first part of the D3QN model is
inspired by a fully convolutional residual network (FCRN) in
[11], predicting depth information from a single RGB image.
However, as the depth image used is estimated by a deep
neural network rather than obtained from a 3D sensor, e.g.,
Kinect, they are very inaccurate in practice, see Fig.3. This
makes it impossible to directly use traditional ranging sensor
based methods for obstacle avoidance.

In order to tackle this serious challenge, the depth images
used for training in the simulator are corrupted with random
noise and image blur. We found this is critical to ensure the
trained models are transferable from simulation to reality, and
generalize well in real world.

D. Model and Training Settings

The D3QN model is built based on the dueling and double
techniques. Its architecture is shown in Fig.1 and correspond-
ing parameters are given in Table I. Specifically, it has three
convolutional layers, specified with filter size (height, width,
channel), and three fully connected layers for two streams of
dueling architecture discussed in II-B.

To train the network to produce feasible control policy, robot
actions need to be properly defined. Instead of the simple
commands e.g. “go ahead”, “turn left or right”, the actions
in our network are defined to control the linear and angular
velocities separately in a discretised format.

The instantaneous reward function is defined as r = v ∗
cos(ω)∗δ t where v and ω are local linear and angular velocity
respectively and δ t is the time for each training loop which is
set to 0.2 second. The reward function is designed to let the
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Fig. 4: Two simulation worlds in Gazebo used for training.
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Fig. 5: Smoothed learning curves of the three models with
average rewards acquired by robot.

robot run as fast as possible and be penalized by simply rotat-
ing on the spot. The total episode reward is the accumulation
of instantaneous rewards of all steps within an episode. If a
collision is detected, the episode terminates immediately with
an additional punishment of −10. Otherwise, the episode lasts
until it reaches the maximum number of steps (500 steps in
our experiments) and terminates with no punishment.

III. EXPERIMENTAL RESULTS

In this section, the proposed D3QN model is evaluated in
different environments. Two simulation environments, simple
and complex ones, are built in Gazebo simulator for training,
see Fig.4. The D3QN model is firstly trained in the simple
environment before being further trained in the complex
scenario. The trained model in the simulator is directly tested
in several different real world scenarios. The linear velocity
is set to be 0.4 or 0.2 m/s, while the angular velocity is π

6 ,
π

12 , 0, − π

12 or −π

6 rad/s, producing ten different behaviors.
Throughout our experiments, a NVIDIA TitanX GPU is used
for training while a laptop equipped with a NVIDIA GTX
860 GPU is used for real-time inference and testing in reality.
The learning rate is set to 10−5 in an Adam optimizer [10]. A
Turtlebot robot is used to test the control strategy in real-time.

A. Training Efficiency with Different Models

To analyse the training efficiency and performance of the
D3QN model and the advantage of introducing dueling and
double techniques for obstacle avoidance, deep double Q
network (DDQN) and DQN are compared. As shown in Fig.5,
D3QN model outperforms the others two both on the training
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Fig. 6: Experiments in different indoor environments, e.g.
library, museum, attic and bedroom (from top to bottom).
The underlying bars demonstrates the Q value for each linear
and angular action predicted by network, where the red ones
indicate the actions greedily selected by network. Notice that
the first two are for linear speed actions while the rest are for
steering actions.

speed and performance. Unlike DQN whose average reward
only reaches 10, networks with a double network structure
learn policies with higher rewards. This may be because,
for the obstacle avoidance problem, the overestimation of
Q value is not a problem that can be alleviated by getting
more exploration. Conversely, with a longer training period, it
might be more severe, preventing DQN from obtaining high
performance. Therefore, the D3QN architecture is about two
times faster on training than the widely used normal DQN,
which not only demonstrates its appealing performance on
obstacle avoidance but also suggests an interesting direction
of applying it on other robotic applications.

B. Real World Tests

Several experiments are conducted to directly test the
trained models in real world.

1) Action Prediction from Static Images: Firstly, we exam-
ine whether for arbitrary, complex scenarios, the network is
able to predict a reasonable action that will avoid obstacles.
As shown in Fig.6, a number of RGB images taken by a hand-
held camera in a variety of environments including library,
museum, attic and bedroom are used to predict actions. The
bars in the figure indicate the Q value of each action: the first
two bars are for linear velocity 0.2m/s and 0.4m/s, while the
rest are for the five angular velocity π

6 rad/s, π

12 rad/s, 0rad/s,
− π

12 rad/s and −π

6 rad/s. Note that these scenarios are more
complicated than the simulation ones used for training and
none of them has been “seen” by the model before. It can
be seen that the trained D3QN model is capable of producing



(a) Passing a doorway.

(b) Driving through a corridor.

(c) In an office room.

Fig. 7: Real world tests in three different scenarios. The curve
below the image streams shows the steering actions selected
by robots at each step.

reasonable actions to drive the robot according to the estimated
Q values.

2) Tests in Three Different Scenarios: The trained D3QN
model is tested for short-term (20s) navigation in three differ-
ent scenarios including a doorway, a corridor and an office.
The steering actions and some sample images of the three tests
are given in Fig.7. Specifically, Fig.7a shows the procedure of
the robot passing the doorway. Although the steering action of
the robot is a little bit unstable when approaching an unseen
obstacle (printer), it can still pass the doorway successfully.
For the corridor case, an obstacle is placed in the middle
of the corridor. As shown in Fig.7b, the robot can navigate
smoothly through the narrow space between the obstacle and
the wall. Similarly, robot can be controlled safely in an office
room which is a more complicated environment with many
previously unseen objects in the simulator. The experiments
validate that the trained D3QN model is able to enable the
robot to avoid obstacles by only using a monocular camera
in different real environments by benefiting from knowledge
learnt in virtual environments.

3) Tests in a Cluttered Environment: Several long-term
experiments are conducted in a cluttered room to further test
the performance with dynamic layouts and objects. A Vicon
system is used to record the ground truth poses of the robot.

Fig.8 records the trajectories of the robot when it is op-
erating around many obstacles. Green rectangles are fixed
furniture while the orange ones are movable boxes. Other
obstacles include two chairs (stars), a trashcan (circle) and
a small suitcase (back rectangle). From the results we can see

(a) (b) (c)

Fig. 8: Real world tests in a room with different number and
placement of obstacles. Rectangles show boxes while stars and
circles are chairs and trash cans respectively.

that the robot usually chooses to go along a similar path. This
is because that after the Q value of each state and action pair is
predicted by network, the action is selected by a greedy policy,
resulting a fixed policy for all states. Since the reward function
defined in the training phase prefers going in a straight line
than turning, the robot navigates as a loop with the smallest
curvature to maintain a maximum linear speed.

Fig.9 presents the results when the robot is tested on two
dynamic environments with different complexities. Although
we tried to significantly change the dynamic objects in the
environments, the robot was able to avoid them by using a
monocular camera, which further verifies the effectiveness of
the proposed method. The video of another test is available at
https://youtu.be/qNIVgG4RUDM.

IV. CONCLUSION

In this paper, a deep reinforcement learning based algorithm
is proposed for obstacle avoidance by only using monocular
RGB images as input. The network can be trained solely in
the simulator and then directly transferred to the real-world
tasks. D3QN, which is based on dueling and double network
techniques, demonstrates a higher learning efficiency than
normal DQN in this task and can learn from very noise depth
predictions. Extensive experiments in reality demonstrate the
feasibility of transferring visual knowledge of the trained
network from virtual to real and the high performance of
obstacle avoidance by using monocular vision.

In the future, this network will be augmented to have a more
complex structure and trained with auxiliary loss functions to
learn tasks such as exploration and global navigation.
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