
1

When The “Crypto” in Cryptocurrencies Breaks:
Bitcoin Security Under Broken Primitives

Ilias Giechaskiel, Cas Cremers, Kasper Rasmussen

University of Oxford, Oxford, UK

{ilias.giechaskiel, cas.cremers, kasper.rasmussen}@cs.ox.ac.uk

Abstract—Digital currencies such as Bitcoin rely on cryptographic primitives to operate. However, past experience shows that cryptographic

primitives do not last forever: increased computational power and advanced cryptanalysis cause primitives to break, and motivate the development

of new ones. It is therefore crucial for maintaining trust in a cryptocurrency to anticipate such breakage. We present the first systematic analysis of

the effect of broken primitives on Bitcoin. We analyze the ways in which Bitcoin’s core cryptographic building blocks can break, and the subsequent

effect on the main Bitcoin security guarantees. Our analysis reveals a wide range of possible effects depending on the primitive and type of breakage,

ranging from minor privacy violations to a complete breakdown of the currency. Our results lead to several suggestions for the Bitcoin migration

plans, and insights for other cryptocurrencies in case of broken or weakened cryptographic primitives.

1 INTRODUCTION

RYPTOCURRENCIES such as Bitcoin rely on cryptographic primitives

for their guarantees and correct operation. Such primitives

typically get weakened over time, due to progress in cryptanalysis

and advances in the computational power of the attackers. It is

therefore prudent to expect that, in time, the cryptographic

primitives used by Bitcoin will be partially, if not completely,

broken.

In anticipation of such breakage, the Bitcoin community has

created a wiki page that contains draft contingency plans [1].

However, these plans are informal and incomplete: no adequate

transition mechanism has been built into Bitcoin, and no plans for

weakened primitives have been considered. Primitives rarely

break abruptly: for hash functions, it is common that first a single

collision is found. This is then generalized to multiple collisions,

and only later do arbitrary collisions become feasible to compute.

In parallel, the complexity of attacks decreases to less-than-brute-

force, and computational power of attackers increases.

Even if such attacks are years away from being practical, it is

crucial to anticipate the impact of broken primitives so that

appropriate contingency plans can be put in place. Our work

contributes towards filling this gap. We provide the first

systematic analysis of the impact of broken primitives on Bitcoin.1

By analyzing the failure of primitive properties, both in isolation

and in combination, we describe the range of consequences

different breaks have, and pinpoint their exact cause.

We show that a break in RIPEMD160 can allow an attacker to

repudiate payments. SHA256 collisions and second pre-image

attacks, as well as selective forgery of ECDSA signatures, all allow

an adversary to steal or destroy coins. Finally, SHA256 pre-image

attacks have the most severe consequences, as they allow an

attacker to take complete control over the Bitcoin system, but only

through exploiting the flexibility of the coinbase transaction.

Our investigations raise concerns about the currently-specified

migration plans for Bitcoin, being overly conservative in some

respects, while inadequate in others. To that end, we make

1 This article extends a paper presented at ESORICS 2016.

suggestions regarding future iterations of Bitcoin in response to

entirely broken and partially weakened primitives, and relate

Bitcoin’s security model to that of other currencies.

2 BACKGROUND

In this section, we give a description of Bitcoin, the popular peer-

to-peer (P2P) cryptocurrency introduced in 2008 by Satoshi

Nakamoto [2]. Fig. 1 shows a high-level view of the main

component of Bitcoin—the blockchain—which will guide this

section. The blockchain is a public log of all Bitcoin transactions

that have occurred, combined together in components called

blocks. Transactions use a scripting language which determines

the owners of coins (Section 2.1), and it is up to “miners” to verify

that only valid transactions occur. To ensure that nobody can

change or remove past transactions, miners have to solve a hard

computational puzzle, known as a Proof-of-Work (Section 2.2).

The final component of Bitcoin is its underlying P2P network which

enables distributed communication (Section 2.3).

2.1 Transactions and Scripts

Bitcoin is an electronic cash system [2], so transactions to transfer

coins between users are central to its structure. A transaction is a

list of inputs—unspent transactions in the blockchain—and a list

of outputs—addresses to which to transfer the coins, whose unit

is a “satoshi”, equal to 10−8 Bitcoins or BTCs. To ensure that only

the owner can spend his coins, each input and output is

accompanied by a script. For outputs, this “locking” script contains

the conditions under which the output can be redeemed

(scriptPubKey), while for inputs, an “unlocking” script contains a

cryptographic signature (scriptSig) as proof that these conditions

have been met. These scripts are sequences of instructions

(opcodes) that get executed by special nodes called miners. To

prevent Denial-of-Service (DoS) attacks exploiting

computationally-intensive instructions, most nodes only accept

C

2

the five standard scripts:

1) Public-Key The unlocking script must sign the transaction

under this key.

2) Pay-to-Public-Key-Hash (P2PKH) The unlocking script
must provide a public key that hashes to the given value,
and must then sign the transaction.

3) Multi-Signature An M-of-N (𝑁 ≤ 15) multi-signature

scheme provides N public keys, and requires M signatures

in the unlocking script.

4) Pay-to-Script Hash (P2SH) This script is the hash of a non-
P2SH standard transaction. The unlocking script provides
the full script hashing to this value and any necessary
signatures. This script is typically used to shorten the
length of multi-signature transactions.

5) Data Output (OP_RETURN) The output cannot be

redeemed, but can be used to store up to 40 arbitrary

bytes, such as human-readable messages.

For a transaction to be valid, it must contain all the required

fields, all signatures must be correct, and the scripts must be

standard. This is a task that miners undertake for a small fee. In

addition, non-standard scripts using different sequences of

opcodes can be included in blocks for higher fees. We discuss

these in the context of a recent SHA1 collision in Section 6.2.

2.2 Mining and Consensus

To ensure that no coin is used more than once, every transaction

is made public through a global, append-only ledger called the

blockchain, consisting of blocks combining transactions in a

Merkle Tree. New blocks become a part of the blockchain through

a process called mining: miners need to find a value (nonce) such

that the hash of a block’s header is less than a given target

ℎ(ℎ𝑑𝑟||𝑛𝑜𝑛𝑐𝑒) < 𝑇 . The idea behind this proof-of-work (PoW)

scheme is that the probability of creating the next block is

proportional to the miner’s computational power, and because

miners receive transaction fees, they are incentivized to validate

transactions and blocks. A summary is shown in Fig. 2.

Due to the probabilistic nature of mining, the presence of
adversaries, and networking delays, miners may disagree on the
current state of the blockchain. This is known as a fork. To deal
with this issue, there are hard-coded blocks included in the clients,
known as checkpoints, starting from the first block, called the
genesis block. In addition, honest (non-adversarial) miners work
on the longest blockchain they become aware of, when other
nodes announce new blocks and transactions.

Fig. 2. Procedure to verify a block’s cryptographic primitives.

These temporary forks enable double spending: an adversary

can have different transactions in different branches of the fork

using the same inputs but different outputs. However, because

the probability of “deep” forks where branches differ in the top N

blocks drops exponentially in N, receivers usually wait for multiple

confirmation blocks.

2.3 Network

The last key component is the Peer-to-Peer (P2P) network for

distributed operation. Transactions and blocks are broadcast by

nodes to their peers, and then relayed further to flood the

network if they meet the relay policies (to prevent DoS attacks).

Not every node is a miner or necessarily has access to the full

chain: “lightweight” clients that use Simple Payment Verification

(SPV) only download headers and the relevant transactions (with

the corresponding Merkle Trees).

Over time, the need for extensions or bugfixing motivates

protocol changes. Since not all nodes upgrade at the same time,

this may introduce forks. If the validation rules in the upgrade

become stricter, then the protocol remains backwards-

compatible, resulting in a softfork. A hardfork, on the other hand,

is not backwards-compatible, and thus requires the entire

network to upgrade, as old software would reject new

transactions and blocks as invalid.

3 BROKEN HASHING PRIMITIVES

In this section, we look at the cryptographic hash functions in

Bitcoin, and analyze the effect of a break in one of the properties

of first and second pre-image and collision resistance.

Fig. 1. The blockchain data structure. This forms the basis of the public, append-only ledger where all transactions are recorded.

input : Bitcoin block

output: valid or invalid

/* Verify block header */

Verify Hash(block header) < target
Verify Merkle hash
Verify Hash(prev block) = prev_hash

/* Verify each transaction input in block */

foreach transaction input in the block do
Check that referenced output transaction exists and hasn’t
already been spent

Verify signatures
end

prev hash prev hash prev hash

prev hash

3
TABLE 1

Summary of the effects on Bitcoin for different types of hash breakage.

Breakage Address Hash (HA) Main Hash (HM)

Collision Repudiate payment Steal and destroy coins
Second pre-image Repudiate payment Double spend and steal coins
Pre-image Uncover address Complete failure of the blockchain

3.1 Hashing in Bitcoin

In the original Bitcoin paper [2], the concrete primitives used are

not specified: there were no “addresses” but just public keys, and

the hash used for mining and the Merkle tree was just referred to

as a hash function. The current Bitcoin implementation uses two

hash functions.

Main Hash This hash function has an output of 256 bits and

requires applying SHA256 twice: 𝐻𝑀(𝑥) =

𝑆𝐻𝐴256(𝑆𝐻𝐴256(𝑥)). It is the hash used for mining (Proof-of-

Work): miners need to find a nonce such that the double SHA256

hash of a block header is less than a “target” hash. It is also used

to hash transactions within a block into a Merkle Tree, a structure

which summarizes the transactions present within a block. Finally,

it is the hash used for transactions signed with a user’s private key.

Address Hash The second hash function is used as part of the Pay-

to-Public-Key-Hash (P2PKH) and the Pay-to-Script-Hash (P2SH)

scripts. Its output is 160 bits, and it is concretely instantiated as

𝐻𝐴(𝑥) = 𝑅𝐼𝑃𝐸𝑀𝐷160(𝑆𝐻𝐴256(𝑥)).

3.2 Modeling Hash Breakage

In this section, we analyze how hashes break in terms of their

building blocks.

3.2.1 Identifying Hashing Building Blocks

A good cryptographic hash function ℎ(𝑥) should offer three

properties:

1) Pre-image resistance Given 𝑦 it is hard to find 𝑥 with

ℎ(𝑥) = 𝑦.

2) Second pre-image resistance Given 𝑥1, it is hard to find

𝑥2 ≠ 𝑥1 with ℎ(𝑥1) = ℎ(𝑥2).

3) Collision resistance It is hard to find distinct 𝑥1 ≠ 𝑥2 such

that ℎ(𝑥1) = ℎ(𝑥2).

where “hard” refers to computational infeasibility. This is because

hash functions have a fixed-length output, so collisions always

exist.

We consider attacks against 𝐻𝐴 and 𝐻𝑀 abstractly, so that our

arguments can be extended for any future version that uses the

same structure. Currently, 𝐻𝐴 and 𝐻𝑀 are built using RIPEMD160

and SHA256. Table 1 contains a summary of our results, while we

relate the attacks we discover back to the concrete primitives in

Section 6.

3.3 Main Hash

In this section, we analyze the main hash 𝐻𝑀 , which is used for
mining, in Merkle Trees, and with signatures. We discuss all three
use-cases separately.

3.3.1 Mining

We first investigate pre-image attacks against the block headers

under two different attack scenarios, before turning to collision
and second pre-image attacks.

Attack 1: Pre-Image against Fixed Merkle Root We show that the

probability that an adversary with access to a preimage oracle can

break mining is negligible. Miners search for block headers whose

𝑛-bit hash is below a target, which we assume starts with 𝑑 zeros.

This assumption only introduces up to 1 bit of extra work, as there

is always a unique 𝑑 with 𝑇 ≤ 2𝑑 < 2𝑇, for any target T.

If the adversary controls 𝑏 ≤ 𝑛 bits of the input, there are 2𝑏

possible inputs to the hash function. These need to map to one of

the 2𝑛−𝑑 values in the range [0, 0𝑑1𝑛−𝑑), and will be uniformly

distributed across 2𝑛 values. This gives the expected number of 𝑏-

bit pre-images as 𝐸[# pre-images] = 2𝑏 ∙ (2𝑛−𝑑)/(2𝑛) = 2𝑏−𝑑 .

The adversary can only query the pre-image oracle for specific

target hashes. Because there are 2𝑏−𝑑 𝑏 -bit pre-images,

distributed across the 2𝑛−𝑑 values, the probability that a given

hash in [0, 0𝑑1𝑛−𝑑) has a 𝑏 -bit pre-image is:

𝑃[correct pre-image] = (2𝑏−𝑑)/(2𝑛−𝑑) = 2𝑏−𝑛. This probability

does not depend on 𝑑, as one might expect. This is because by

increasing 𝑑 to reduce the number of valid hashes, the adversary

also reduces the expected number of 𝑏-bit pre-images. Assuming

the adversary is allowed 2𝑎 queries to the oracle, the probability

of breaking mining becomes 𝑃[success] = 2𝑎 ∙ 2𝑏−𝑛 = 2𝑎+𝑏−𝑛.

To calculate 𝑏, we explore all fields in the block header. The

version number (nVersion), as well as the hashes of the previous

block header (hashPrevBlock), and of the current Merkle root

hash (hashMerkleRoot) are fixed. However, the adversary has

partial control over the remaining fields in the header. For the

timestamp field (nTime), the value can be within 7200 seconds of

the current median/average, giving the adversary approximately

13 bits of freedom. Moreover, the adversary has complete control

over the 32 bits of the nonce (nNonce). The nBits field

0𝑥𝐴𝐴𝐵𝐵𝐶𝐶𝐷𝐷 describes the target difficulty as 0𝑥𝐵𝐵𝐶𝐶𝐷𝐷 ∙

2560𝑥𝐴𝐴−3
, with the protocol only checking that the produced

number is at most the target value given by the consensus. At the

time of writing, the target value is 0𝑥18038𝑏85 , granting the

adversary approximately 27 bits of freedom.

Together the fields give 𝑏 = 72 . With 𝑛 = 256 , and

allowing 280 calls to the oracle, the probability of success is only

280+72−256 = 2−104, which is negligible.

Attack 2: Pre-Image against Variable Merkle Root By varying the

Merkle root, an adversary can break mining, though by the

discussion of Attack 1, this cannot be achieved by simply

reordering or excluding transactions. Instead the adversary must

work backwards, by querying the oracle for a target Merkle hash

and repeatedly querying the oracle to reconstruct the entire

4
Merkle tree. This would normally fail, as the transactions

generated would not be valid due to incorrect signatures, 2 but

Bitcoin does not enforce a minimum number of transactions in a

block. Hence, miners can mine blocks with just the coinbase

transaction which generates new coins, and which has a variable-

length input of up to 100 bytes that is controlled by miners. A

malicious miner with access to the pre-image oracle can then:

1) Pick an arbitrary target T and get a pre-image for

𝐻𝑀(𝑎||𝑥||𝑏) = 𝑇 where the desired 𝑥 is the

hashMerkleRoot field, and 𝑎, 𝑏 are the remaining

fields in a block header. Because the root is 256 bits,

there is a pre-image with high-probability, but if not,

repeat with some other random target 𝑇′.

2) Pick a length 𝑙 for the script, and fix all other fields for the

coinbase transaction. Solve 𝐻𝑀(𝑎′||𝑦||𝑏′) = 𝑥 where

𝑎′, 𝑏′ are the remaining fields for the coinbase

transaction. Because the number of free bytes is up to

100, there is an 𝑙-bit pre-image 𝑦 with high probability.

The miner then generates a coinbase transaction using

𝑎′, 𝑦, 𝑏′ and combines it into a block using 𝑎, 𝑏. This block

will have a hash of 𝑇 as desired.

Collisions, Second Pre-Images Collisions and second preimages

are only useful for mining if the pre-images start with 𝑑 zeros.

Assuming the pre-images contain valid transactions and

signatures, a miner can fork the chain, but this only occurs with

negligible probability.

3.3.2 Merkle Trees

Altering existing blocks A similar argument as for mining (Attack

1) shows that an adversary cannot find a valid second pre-image

of an entire block except with negligible probability. Pre-images do

not give the adversary new information, as they already

accompany the hash value. Collisions are also not useful, as both

values are attacker-controlled and cannot alter existing blocks.

Attacking new blocks For new blocks and transactions, an
adversary with sufficient network control can use a collision or
second pre-image to split the network, reject both blocks or
reverse transactions, thus enabling double-spending. Preimages
are again not useful, as they always accompany the hashed value.

3.3.3 Main Hash Usage in Signatures

In Bitcoin, signatures are over messages hashed with HM.

Therefore, a second pre-image attack or a collision on HM can be

used to destroy and possibly steal coins: an adversary can ask for

a signature on an innocuous transaction (e.g., pay 1 satoshi from

address X to address Y), but transmit a malicious one instead (e.g.,

pay 100 BTC from address X to address Z) since there are enough

bytes that the adversary controls to guarantee success with high

probability. Note that for this attack to succeed, the adversary

must still specify the same unspent transaction X belonging to the

victim for the signature to be valid, but can alter the amount

2 Although transaction malleability can allow the same signature to be valid for

two different transactions [3].

(bounded by the total number of Bitcoins present in address X),

and the destination.

TABLE 2
Effects of a broken signature scheme.

Breakage Effect

Selective forgery Steal coins from public key
Integrity break Claim payment not received
Repudiation -

3.4 Address Hash

The address hash is used in two contexts. First, in Bitcoin

addresses, using Pay-to-Public-Key-Hash (P2PKH) scripts: an

address is essentially 𝑦 = 𝐻𝐴(𝑝) =

 𝑅𝐼𝑃𝐸𝑀𝐷160 (𝑆𝐻𝐴256 (𝑝)) where p is the public key (together

with a checksum). Payments to addresses only use the hashed

value y, but transactions to addresses require the full public key p
and the signature on the transaction. The second use is in Pay-to-

Script-Hash (P2SH) scripts. A P2SH is 𝑦 = 𝐻𝐴(𝑠) where s is a

standard script, typically a multi-signature transaction. Payments

to a P2SH script do not reveal the pre-image, but transactions

spending the coins require it and the signatures of the

corresponding parties. We discuss them jointly, since the only

difference between a P2PKH and a P2SH in this context is the

number of required signatures.

Pre-image For previously spent outputs, or for reused addresses,

𝐻𝐴 is already accompanied by its pre-image. A pre-image thus can

only reveal the public key(s) for unspent outputs. This has minimal

privacy consequences since public keys are not tied to real

identities, but it could enable an offline attack on the key.

Assuming that the key was not chosen with bad randomness and

there is no weakness in the signature scheme, the probability of

success is still negligible.

Second pre-image A second pre-image gives the adversary access

to a different public key or script with the same hash. However,

because the adversary does not control the corresponding private

key, he cannot use this to change existing transactions or create

new ones. This is because preimages (whether a key or a script)

are only revealed and verified when spent in transactions.

Collision Collisions are similar, though in this case both public keys
are under the adversary’s control, and again the adversary does
not have access to the private keys. In both scenarios, there is a
question of non-repudiation external to the protocol itself: by
presenting a second pre-image of a key used to sign a transaction,
a user/adversary can claim that his coins were stolen.

4 BROKEN SIGNATURE PRIMITIVES

In this section, we describe the use of digital signatures in Bitcoin,

and analyze how a break in their unforgeability, integrity, or non-

repudiation impacts Bitcoin. We summarize our results in Table 2.

5
4.1 Digital Signatures in Bitcoin

Bitcoin’s digital signature scheme is the Elliptic Curve Digital

Signature Algorithm (ECDSA) with the secp256k1 parameters,

and is used to sign the main hash HM of transactions.

4.2 Modeling Signature Breakage Variants

The security of digital signature schemes is usually discussed in

terms of three properties, which we define as follows:

1) Unforgeability No-one can sign a message m that

validates against a public key p without access to the

secret key s.

2) Integrity A valid signature {m}s does not validate against

any 𝑚′ ≠ 𝑚.

3) Non-repudiation A valid signature {m}s does not validate

against any public key 𝑝′ ≠ 𝑝.

where there is an implicit “except with negligible probability”, due

to hashing.

These properties are linked and a breakage in one usually

implies a breakage in the others. In addition, they are often

discussed in a much more abstract way: non-repudiation refers to

the property that the signature proves to all parties the origin of

the signature, but, in this case, we introduce it in a way that is

more akin to Duplicate Signature Key Selection (DSKS) attacks [4].

4.3 Broken Signature Scheme Effects

We now analyze a break in each of these properties separately,

starting with the last two, as neither of them can lead to an attack

on their own.

Integrity In order for a break in the integrity of the signature

scheme to be useful in Bitcoin, a signature of 𝐻𝑀(𝑚) must also be

valid for 𝐻𝑀(𝑚′) . This involves HM in a non-trivial way, so we

discuss this further in Section 5, but note that transaction

malleability can cause the issuer of a transaction to think that his

payment was not confirmed [3].

Non-repudiation For non-repudiation, we note that for

transactions, even if a signature verifies under a different key, the

address hashes of the two public keys must match. A break thus

involves HA, so we discuss this case further in Section 5.

Unforgeability When it comes to unforgeability, we can

distinguish between various types of breaks [5]: Total break to

recover the private key, universal forgery to forge signatures for

all messages, selective forgery to forge signature on a message of

the adversary’s choice, and existential forgery to produce a valid

signature that is not already known to the adversary.

Because the message to be signed must be the hash of a valid

transaction, an existential forgery is not sufficient since the

probability that it corresponds to a valid message is negligible.

Selective forgery on the other hand can be used to drain a victim’s

wallets. From this perspective, selective forgery and a total break

have the same effect. However, as we discuss later, the type of

breakage influences how to upgrade to a new system. It is worth

noting that an adversary does not necessarily have access to a

user’s public key, since addresses that have not been reused are

protected by the address hash HA.

TABLE 3
Multi-breakage effects: combining broken hashes and signatures.

Hash Property
 Signature Property
Selective forgery Integrity break Repudiation

Address Hash (HA)
Collision Repudiate transaction - Change existing payment†
Second pre-image Steal all coins - Change existing payment
Pre-image Steal all coins - -

Main Hash (HM)
Collision Steal coins Steal coins† -
Second pre-image Steal coins Double spend† -
Pre-image - - -

† Achieving this requires a modification of definitions. See text for details.

5 MULTI-BREAKAGE

In this section, we analyze how combinations of breakages in

different primitives can impact Bitcoin. Because HA and HM are not

used together, we only consider a break in the signature algorithm

in combination with a break in one of the two hashes. The results

are summarized in Table 3.

5.1 Address Hash and Signature Scheme

Signature Forgery Combining a selective forgery with a first or

second pre-image break of the address hash can be used to steal

all coins that are unspent. Generating two public keys 𝑝, 𝑝′ with

𝐻𝛢(𝑝) = 𝐻𝛢(𝑝′) (collision) whose signatures the adversary can

forge does not have a direct impact, since the adversary controls

both addresses. However, it appears as if two different users are

attempting to use the same coin, thus raising a question of

repudiation, which we discuss in Section 6.

Signature Integrity As the messages signed for transactions do not

involve HA, this combination does not increase the adversary’s

power.

Signature Repudiation A pre-image attack on HA is not useful as

the public key is already known. For a second pre-image, assume

that given a message m (the hash of a transaction) and a public

key 𝑝, an oracle returns 𝑝′ such that 𝐻𝛢(𝑝) = 𝐻𝛢(𝑝′) and the

signature of 𝑚 under 𝑝 also validates against 𝑝′. Since the same

signature validates for both keys, an adversary can replace 𝑝 by 𝑝′

in the unlocking script. Though this does not give the adversary

immediate monetary gain, a transaction in the blockchain has

been partially replaced.

For collisions, assume that given a message m, an oracle

returns two public keys 𝑝, 𝑝′ such that 𝐻𝛢(𝑝) = 𝐻𝛢(𝑝′) and the

signature of 𝑚 under 𝑝 validates under 𝑝′. If the adversary does

not have access to the private keys, he cannot sign the transaction.

Otherwise, the effect is identical to the second pre-image case,

where the adversary can replace part of a transaction in the
blockchain.

5.2 Main Hash and Signature Scheme

Signature Forgery As explained in Section 3.3, none of the

potential attacks using the hash HM required a break in the
signature scheme. The partial exceptions were mining under a pre-
image break, and transactions with second pre-image or collision
breaks. We discuss each possibility below.

For mining, a pre-image attack is useful when working backwards

from a fixed target to get a pre-image for the Merkle root and turn

6
TABLE 4

Effects of concrete primitive breakage on the current version of Bitcoin.

Breakage Effect

SHA256
Collisions Steal and destroy coins

Second pre-image Double spend and steal coins

Pre-image Complete failure

RIPEMD160

 Any of the above Repudiate payments

ECDSA
Selective forgery Steal coins

Integrity break Claim payment not received

Repudiation -

it into a tree of transactions. The problem identified in Section 3.3

was that there is only negligible probability that the transactions

refer to valid, unspent outputs, so a forgery does not solve this

issue. Finally, for transactions, collisions and second pre-images on

their own can be used to destroy coins, or steal coins. If the

adversary can also forge signatures, he is guaranteed to be able to

steal coins no matter what address they went to, as long as it is

not protected by the address hash.

Signature Integrity A collision or a second pre-image attack

trivially breaks the integrity of the scheme as messages are always

hashed, and reduces to the case discussed in Section 3.3, so we

modify the definitions slightly to consider a joint break in the two

algorithms.

A collision integrity oracle given a public key p produces 𝑚, 𝑚′

such that the signature of 𝐻𝑀(𝑚) is also valid for 𝐻𝑀(𝑚′). The

adversary can ask for a signature on an innocent transaction, but

transmit the malicious one with the still valid signature. Unlike in

the regular collision case, the two hashes 𝐻𝑀(𝑚) and 𝐻𝑀(𝑚′)
are different. Hence, the adversary cannot just replace the

transaction in the block, but he can opt never to transmit the

innocent one instead.

A second pre-image integrity oracle given a public key 𝑝 and a

message 𝑚 produces 𝑚′ such that the signature of 𝐻𝑀(𝑚) is also

valid for 𝐻𝑀(𝑚′). This case also resembles the break on just 𝐻𝑀 ,

but, again, because the hashes are not equal, the adversary cannot

simply replace an existing transaction, unless it has not yet been

confirmed in a block. This can split the network and destroy coins.

Signature Repudiation The non-repudiation property of the

signature scheme necessarily involves a break of HA, as was

explained in Section 4.3. This combination therefore does not

increase the adversary’s power.

6 CURRENT BITCOIN IMPLEMENTATION

In this section, we revisit the current Bitcoin implementation, in

the context of its choice of primitives, non-standard scripts, and

contingency plans, using observations from the previous sections.

3 https://p2sh.info/dashboard/db/non-standard-outputs-statistics, accessed

2017-04-11.

6.1 Current Cryptographic Primitives

In the current implementation of Bitcoin,

𝐻𝐴(𝑥) = 𝑅𝐼𝑃𝐸𝑀𝐷160(𝑆𝐻𝐴256(𝑥)) , and 𝐻𝑀(𝑥) =

𝑆𝐻𝐴256(𝑆𝐻𝐴256(𝑥)). Because there are no critical breaks for

HA, a break in RIPEMD160 is not cause for concern. Moreover,

because HM only uses SHA256, an attack against SHA256 is

equivalent to an attack against HM. We can thus summarize the

effect of concrete primitive breakage in Table 4.

6.2 Non-Standard Scripts

As explained in Section 2.1, the Bitcoin scripting language extends

beyond the 5 standard types of transactions. In part due to the

higher fees associated with them, non-standard transactions

represent less than 0.02% of all Bitcoins in circulation,3 but are

more versatile and can include opcodes for calculating SHA1,

SHA256, and RIPEMD160 hashes. By using these primitives, one

can create “challenges” involving the primitives, so that, for

instance, a user needs to create a collision to redeem a certain

coin.

One set of such challenges was created by one of the early

Bitcoin developers asking for collisions on individual and combined

primitives.4 The challenge for a SHA1 collision was claimed using

the collision found by Stevens et al. [6], for a bounty of 2.48BTC,

the equivalent of approximately $2,800 at the time. Although the

USD/BTC exchange rate fell temporarily as a result of these news,

it quickly recovered, since SHA1 is not an integral part of the

Bitcoin protocol. However, this collision highlights the need to

anticipate the breakage of primitives, since non-standard

transactions allow collision and pre-image attacks to be used even

when the core protocol is not yet broken. However, as we explain

in Sections 6.3 and 6.4 the existing contingency plans are not

sufficient.

6.3 Existing Contingency Plans

A break of the primitives has interested the community from the

early days of Bitcoin. Informal recommendations by Satoshi in

forums evolved into a “wiki” page which describes contingency

plans for “catastrophic failure[s]” [1]. Such a failure for primitives

is defined in terms of an adversary that can defeat the algorithm

with “a few days of work” [1], and the focus is on notifying users,

and protecting the OP_CHECKSIG operation to prevent people

from stealing coins.

Concretely, for a “severe, 0-day failure of SHA-256” [1], the

plans propose switching to a new hashing algorithm 𝐻′, and hard-

coding known public keys with unspent outputs as well as the

Merkle root of the blockchain under 𝐻′. For a broken signature

scheme, if the attacker cannot recover the private key, and there

is a drop-in replacement using the same key-pair, the plan is to

simply switch over to the new algorithm. Otherwise, the new

version of Bitcoin “should automatically send old transactions

somewhere else using the new algorithm” [1].

4 See https://bitcointalk.org/index.php?topic=293382.0.

https://p2sh.info/dashboard/db/non-standard-outputs-statistics
https://bitcointalk.org/index.php?topic=293382.0

7
6.4 Potential Migration Pitfalls

The contingency plans suggest that “code for all of this should be

prepared” [1], but no such mechanism currently exists. Moreover,

no plans are in place for a break in RIPEMD160. Since sudden

breaks are unlikely, neither is cause for immediate concern, but

should be included in future plans.

Broken SHA256 By our analysis, it is clear that new transactions

should not use a broken hash. However, existing historical

transactions and blocks cannot be altered, except in a majority

mining attack. Thus, hard-coding public keys, and rehashing the

entire blockchain are more prudent than necessary. It should be

noted that a sudden break necessitates a hardfork for Bitcoin.

Broken ECDSA For a broken ECDSA, a transition is indeed easy if

there is a drop-in replacement and the private key is safe.

Otherwise, a gradual transition scheme is necessary as users will

need to manually switch over to a new key pair.

6.5 Recommendations

In this section, we make recommendations to more properly

anticipate primitive breakage. Recognizing that there are financial

considerations in addition to the technical ones, we do not

propose a full upgrade mechanism, but merely make suggestions

to the Bitcoin developers and community.

First of all, our analysis reinforces the idea that users should

not reuse addresses, not just for privacy reasons, but also because

they protect against some types of primitive breakage. For

instance, if the signature scheme is broken, addresses are still

protected by the hash.

The plans for a sudden breakage should address when to

freeze the blockchain, and whether to roll back transactions in the

case of a sudden break. Moreover, the centralized approach of

hard-coding well-known keys is perhaps not entirely in line with

Bitcoin’s decentralized philosophy and can lead to lost coins. If

keys are to be hard-coded, there is a trade-off between complexity

and risking making coins unspendable: developers must decide

whether the migration would occur at once, or whether new key

pairs should be distributed periodically. An alternative and

perhaps better approach would be to use Zero-Knowledge Proofs

to tie the old address still protected by their hash to the new public

key.

Given that sudden breaks are unlikely, there is a need for a

separate plan for weakened primitives. Based on our analysis, we

recommend the following:

• Introduce a minimum number of transactions per block to

increase the difficulty of performing the preimage attack

against the mining header target (Proof-of-Work or PoW)

using the coinbase transaction.

• To migrate from old addresses, whether due to a

weakened hash or signature scheme, introduce new

address types using stronger hashing and signature

schemes. This can be achieved with a softfork by making

transactions appear to old clients as “pay-to-anybody”,

akin to how P2SH was introduced.

• Instead of using nested hashes for HA, HM, combine

primitives in a way that increases defense-in-depth (see

related work in Section 8).

• Given that HM has multiple use-cases, consider whether

each of its functions should have a different instantiation,

whether through distinct primitives, by pre-pending

different values, or by using an HMAC with different keys.

• Consider a hardfork in response to a weakened HM, with

re-designed headers and transactions, and without any

use of the old primitives.

A softfork is insufficient for properly upgrading a weakened

hash function HM = H1 to the stronger H2, because HM forms the

core of the PoW scheme. Specifically, since any changes must be

backwards compatible, the old validation rules must still apply, so

for every new block, 𝐻1(ℎ𝑑𝑟) < 𝑇, where the target T is still

calculated by the same algorithm. New blocks would also need to

satisfy some additional constraint 𝐻2(ℎ𝑑𝑟′) < 𝑇′ , where the

target 𝑇′ is calculated independently and ℎ𝑑𝑟′ is the block header,

possibly excluding some fields. As a result, new clients would have

to solve two PoW computational puzzles. Though every instance

of H1 (transaction, Merkle root, etc.) could be accompanied by an

instance of H2, blocks and transactions are fundamentally

identified by their H1 hash, which an attacker could exploit. There

are also questions of incentives, and whether new iterations of

Bitcoin would still use a PoW scheme, but this is left as future

work.

7 OTHER CRYPTOCURRENCIES

Bitcoin is the largest cryptocurrency by market capitalization and

adoption, but both derivatives (“altcoins”) and completely

different designs have spread. Although discussing them all is out

of scope, we identify a few common threads amongst those which

use Proof-of-Work (PoW) schemes.

The first class of altcoins consists of those which are forks of

Bitcoin with additional types of transactions supported. For these

currencies, our analysis applies verbatim, but needs to be

extended to these new types of operations. As an example,

Namecoin introduces transactions for registering and updating

.bit domains. The name_new d/<name> command creates a

transaction whose outputs include 𝐻𝐴(𝑟 || name), where 𝑟 is a

nonce. This acts as a pre-order for the domain name.bit, which

is then updated by its owner after the transaction has been in 12

confirmed blocks. This pre-order commitment phase is necessary

to ensure no-one can steal the name of the address, which is fully

registered in a subsequent name_firstupdate command which

reveals the name, the nonce and the DNS configuration values,

signing the transaction with the user’s key.

Any updates for a domain require signatures, so any novel

exploit would involve the name_new and name_firstupdate

commands. Unlike Bitcoin, however, a pre-image attack on HA

allows recovering a random nonce and domain name. Namecoin

rules do not seem to preclude 𝑛𝑎𝑚𝑒_𝑛𝑒𝑤 transactions with the

same hash, but if the preimage recovers the original (𝑟, 𝑛𝑎𝑚𝑒)
pair, an attacker can pre-register the domain, by publishing his

own name_new transaction before the original user’s transaction

is confirmed. In practice, however, this attack would require pre-

image oracles for both hash functions used in HA (SHA256,

RIPEMD160), implying that there is a pre-image oracle for HM as

well, making the entire currency insecure.

8
The second set of cryptocurrencies consists of those which

separate the roles of HM and replace it by two different hash

functions, say HI for integrity checking and HP for the PoW. If HI

breaks, one can still steal coins, by creating collisions in

transactions, which are hashed before they are signed, as also

explained in Section 3.3.3. However, since HI is not used for PoW,

an attack on HI cannot directly be used to exploit mining. More

importantly, as explained in Section 3.3, even a full pre-image

oracle on HP is not sufficient for a breakdown of the currency. This

is because the probability of finding a valid pre-image for a fixed

target is negligible, as the adversary does not control sufficiently

many header bits. Instead, as also identified in Section 3.3, an

adversary needs to be able to alter the Merkle root at will, which

is protected by the different HI, requiring both to be exploited for

a successful attack. Example currencies employing this scheme

include Litecoin and Dogecoin, where HI = SHA256(SHA256), and

HP is the scrypt key derivation function. Ethereum is similar, with

HI using Keccak-256 and HP using Ethash, though it should be

noted that due to the different structure of the blockchain, our

results are not directly applicable, even though our methodology

is.

Primecoin has a different PoW mechanism. It is a fork of

Bitcoin using the same structures (and only the single HM), but its

PoW requires finding long chains of prime numbers 𝑝𝑖 which

satisfy 𝑝𝑖+1 = 2𝑝𝑖 ± 1 , 5 with 𝑝0 = 𝑘 ∙ 𝐻𝑀(header) ± 1 for

some 𝑘. An adversary with access to a pre-image oracle can attack

this scheme by re-using existing chains: if (𝑝𝑖) is a valid chain for

header h and the difficulty has not changed, then (𝑝𝑖) is also a

valid chain for ℎ/𝑞 for any factor q of h, and for ℎ · 𝑟, where r is a

small factor of k (to ensure that ℎ · 𝑟 remains a valid hash). Note

that once more, this exploit depends on using the pre-image

oracle twice: once for the overall header, and once for the

coinbase transaction, showing that it is necessary to increase the

minimum number of transactions per block.

Finally, there are currencies which use a hybrid PoW and

Proof-of-Stake or Proof-of-Burn scheme. For instance, Peercoin is

a fork of Bitcoin that uses the same PoW and structure as Bitcoin,

but also allows “minting” coins based on their age for a Proof-of-

Stake approach. As a result, the attacks identified in this paper still

apply, but the attack surface increases to include the new

transactions, and needs to be analyzed separately, as we did with

Namecoin above.

8 RELATED WORK

Identifying how hash collisions break the security of protocols such

as TLS, IPSec, and SSH was recently investigated in [7]. More

recently, researchers identified vulnerabilities with the

cryptographic function used in the IOTA cryptocurrency, which

allowed them to create syntactically valid transactions with the

same hash, but which pay out different amounts [8]. In terms of

the primitives used in Bitcoin, attacks against RIPEMD160 pre-

images [9] and collisions [10] as well as SHA256 collisions [11] and

pre-images [12] only work for a reduced number of rounds, and

incrementally improve upon brute-force solutions. Certain ECDSA

parameters can lead to Duplicate Signature Key Selection, where

5 Technically, Cunningham chains of first or second kind, or bi-twin chains.

an adversary can create a different key 𝑃’ that validates against a

correct signature under a key 𝑃 [4]. Such research indicates that

Bitcoin primitives are indeed under attack, highlighting the need

for anticipating their breakage.

More generally, for combining hashes effectively, [13] shows

that simultaneous collisions for multiple hash functions are not

much harder to find than individual ones. [14] shows that even

when the underlying compression functions behave randomly but

collisions are easy to generate, finding collisions in the

concatenated hash ℎ1(𝑥)||ℎ2(𝑥) and the XOR hash

ℎ1(𝑥)⨁ℎ2(𝑥) requires 2n/2 queries. However, when the hash

functions use the Merkle-Damgård (MD) construction, there is a

generic pre-image attack against the XOR hash with complexity

Õ(2
5𝑛

6) [15]. MD hash functions also behave poorly against pre-

image attacks, allowing one to find second pre-images of length

260 for RIPEMD160 in 2106 ≪ 2160 time [16]. If an adversary can

further find many collisions on an MD construction, he can also

find pre-images that start with a given prefix (Chosen Target

Forced Prefix) [17].

9 CONCLUSIONS

We presented the first systematic analysis of the effect of broken

primitives on Bitcoin. Our analysis reveals that some breakages

cause serious problems, whereas others are inconsequential. The

main vectors of attack involve collisions on the double SHA256

hash or attacking the signature scheme, which directly enable coin

stealing. In contrast, a break of the hash used in addresses has

minimal impact, since they do not meaningfully protect the

privacy of a user. Our analysis has also uncovered more subtle

attacks. For example, the existence of another public key with the

same hash as an address in the blockchain enables parties to claim

that they did not make a payment. Such attacks show that an

attack on a cryptographic primitive can have social rather than

technical implications. We leave the economic impact of such

attacks as future work. Because our analysis abstracts away from

the concrete primitives, our general results extend to future

versions that use a similar structure, as well as altcoins and other

blockchain-based schemes.

We uncovered a lack of defense-in-depth in Bitcoin. In most

cases, the failure of a single property in one cryptographic

primitive is as bad as multiple failures in several primitives at once.

For future versions of Bitcoin, we recommend including various

redundancies such as properly combined hash functions, and

requiring a minimum number of transactions per block. Bitcoin’s

migration plans are currently under-specified, and offer at best an

incomplete solution if primitives get broken. We offer some initial

guidelines for making the cryptocurrency more robust, both for a

sudden break, but also in response to weakened primitives.

However, future discussions should directly involve the

Bitcoin developers and community to propose plans that would be

in line with their expectations.

REFERENCES

[1] Bitcoin Wiki, “Contingency plans,” https://en.bitcoin.it/wiki/
Contingency plans, May 15, 2015, accessed: 2016-02-11.

https://en.bitcoin.it/wiki/Contingency_plans
https://en.bitcoin.it/wiki/Contingency_plans
https://en.bitcoin.it/wiki/Contingency_plans
https://en.bitcoin.it/wiki/Contingency_plans

9
[2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system, http:

//bitcoin.org/bitcoin.pdf,” 2008.
[3] C. Decker and R. Wattenhofer, “Bitcoin transaction malleability and

MtGox,” in European Symposium on Research in Computer Security
(ESORICS), 2014.

[4] S. Blake-Wilson and A. Menezes, “Unknown key-share attacks on the
station-to-station (STS) protocol,” in International Workshop on Practice
and Theory in Public Key Cryptography (PKC), 1999.

[5] S. Goldwasser, S. Micali, and R. L. Rivest, “A digital signature scheme
secure against adaptive chosen-message attacks,” SIAM Journal on
Computing (SICOMP), 1988.

[6] M. Stevens, E. Bursztein, P. Karpman, A. Albertini, and Y. Markov, “The
first collision for full SHA-1,” https://shattered.io/static/ shattered.pdf,
February 23, 2017, accessed: 2017-04-11.

[7] K. Bhargavan and G. Leurent, “Transcript collision attacks: Breaking
authentication in TLS, IKE, and SSH,” in Annual Network and Distributed
System Security Symposium (NDSS), 2016.

[8] E. Heilman, N. Narula, T. Dryja, and M. Virza, “IOTA vulnerability report:
Cryptanalysis of the curl hash function enabling practical signature
forgery attacks on the IOTA cryptocurrency,” https://github.com/mit-
dci/tangled-curl/blob/master/ vuln-iota.md, September 7, 2017,
accessed: 2017-09-08.

[9] C. Ohtahara, Y. Sasaki, and T. Shimoyama, “Preimage attacks on step-
reduced RIPEMD-128 and RIPEMD-160,” in International Conference on
Information Security and Cryptology (Inscrypt), 2010.

[10] F. Mendel, T. Peyrin, M. Schlaffer, L. Wang, and S. Wu, “Improved¨
cryptanalysis of reduced RIPEMD-160,” in International Conference on
the Theory and Application of Cryptology and Information Security
(ASIACRYPT), 2013.

[11] F. Mendel, T. Nad, and M. Schlaffer, “Improving local collisions:¨ New
attacks on reduced SHA-256,” in Annual International Conference on the
Theory and Applications of Cryptographic Techniques (EUROCRYPT),
2013.

[12] D. Khovratovich, C. Rechberger, and A. Savelieva, “Bicliques for
preimages: Attacks on Skein-512 and the SHA-2 family,” in International
Workshop on Fast Software Encryption (FSE), 2012.

[13] A. Joux, “Multicollisions in iterated hash functions. application to
cascaded constructions,” in Annual International Cryptology Conference
(CRYPTO), 2004.

[14] J. J. Hoch and A. Shamir, “On the strength of the concatenated hash
combiner when all the hash functions are weak,” in International
Colloquium on Automata, Languages and Programming (ICALP), 2008.

[15] G. Leurent and L. Wang, “The sum can be weaker than each part,” in
Annual International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT), 2015.

[16] J. Kelsey and B. Schneier, “Second preimages on n-bit hash functions for
much less than 2n work,” in Annual International Conference on the
Theory and Applications of Cryptographic Techniques (EUROCRYPT),
2005.

[17] J. Kelsey and T. Kohno, “Herding hash functions and the nostradamus
attack,” in Annual International Conference on the Theory and
Applications of Cryptographic Techniques (EUROCRYPT), 2006.

Keywords: Bitcoin, alt-coins, crypto-currencies, broken primitives,

SHA256, ECDSA, hashing pre-images, hashing collisions

Author Bios:

Ilias Giechaskiel is a DPhil (PhD) student in the Department of
Computer Science at the University of Oxford, focusing on
hardware security. He holds an MPhil in Advanced Computer
Science from the University of Cambridge and a BA in
Mathematics from Princeton University. He has also interned at
Bloomberg, Microsoft, Dropbox, Microsoft Research, and Jump
Trading, often taking on security-oriented projects.

Cas Cremers is a full professor in the Department of Computer
Science at the University of Oxford. His research focuses on
information security, in particular the formal analysis of security
protocols. This work ranges from developing mathematical
foundations for protocol analysis to the development of analysis
tools, notably the Scyther tool and the Tamarin prover. He has
also been involved in protocol standardisation, including the
improvement of the ISO/IEC 9798 & 11770 and IETF TLS 1.3
standards, and applied cryptography, leading to the development
of new security requirements and protocols.

Kasper Rasmussen is an Associate Professor in the Computer
Science Department at the University of Oxford. He joined the
department in 2013 and in 2015 was awarded a University
Research Fellowship from the Royal Society in London. Prior to
being at Oxford, Kasper Rasmussen spent two years as a post-doc
at University of California, Irvine.

Kasper Rasmussen did his Ph.D. with prof. Srdjan Capkun at the
Department of Computer Science at ETH Zurich (Switzerland),
where he worked on security issues relating to secure time
synchronization and secure localization with a particular focus on
distance bounding. His thesis won the "ETH Medal" for an
outstanding dissertation from the Swiss Federal Institute of
Technology and he was additionally awarded the Swiss National
Science Foundation (SNSF), Fellowship for prospective
researchers.

http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://shattered.io/static/shattered.pdf
https://shattered.io/static/shattered.pdf
https://github.com/mit-dci/tangled-curl/blob/master/vuln-iota.md
https://github.com/mit-dci/tangled-curl/blob/master/vuln-iota.md
https://github.com/mit-dci/tangled-curl/blob/master/vuln-iota.md

