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Abstract—Digital currencies such as Bitcoin rely on cryptographic primitives to operate. However, past experience shows that cryptographic 

primitives do not last forever: increased computational power and advanced cryptanalysis cause primitives to break, and motivate the development 

of new ones. It is therefore crucial for maintaining trust in a cryptocurrency to anticipate such breakage. We present the first systematic analysis of 

the effect of broken primitives on Bitcoin. We analyze the ways in which Bitcoin’s core cryptographic building blocks can break, and the subsequent 

effect on the main Bitcoin security guarantees. Our analysis reveals a wide range of possible effects depending on the primitive and type of breakage, 

ranging from minor privacy violations to a complete breakdown of the currency. Our results lead to several suggestions for the Bitcoin migration 

plans, and insights for other cryptocurrencies in case of broken or weakened cryptographic primitives. 

 

 

1 INTRODUCTION 

RYPTOCURRENCIES such as Bitcoin rely on cryptographic primitives 

for their guarantees and correct operation. Such primitives 

typically get weakened over time, due to progress in cryptanalysis 

and advances in the computational power of the attackers. It is 

therefore prudent to expect that, in time, the cryptographic 

primitives used by Bitcoin will be partially, if not completely, 

broken. 

In anticipation of such breakage, the Bitcoin community has 

created a wiki page that contains draft contingency plans [1]. 

However, these plans are informal and incomplete: no adequate 

transition mechanism has been built into Bitcoin, and no plans for 

weakened primitives have been considered. Primitives rarely 

break abruptly: for hash functions, it is common that first a single 

collision is found. This is then generalized to multiple collisions, 

and only later do arbitrary collisions become feasible to compute. 

In parallel, the complexity of attacks decreases to less-than-brute-

force, and computational power of attackers increases. 

Even if such attacks are years away from being practical, it is 

crucial to anticipate the impact of broken primitives so that 

appropriate contingency plans can be put in place. Our work 

contributes towards filling this gap. We provide the first 

systematic analysis of the impact of broken primitives on Bitcoin.1 

By analyzing the failure of primitive properties, both in isolation 

and in combination, we describe the range of consequences 

different breaks have, and pinpoint their exact cause. 

We show that a break in RIPEMD160 can allow an attacker to 

repudiate payments. SHA256 collisions and second pre-image 

attacks, as well as selective forgery of ECDSA signatures, all allow 

an adversary to steal or destroy coins. Finally, SHA256 pre-image 

attacks have the most severe consequences, as they allow an 

attacker to take complete control over the Bitcoin system, but only 

through exploiting the flexibility of the coinbase transaction. 

Our investigations raise concerns about the currently-specified 

migration plans for Bitcoin, being overly conservative in some 

respects, while inadequate in others. To that end, we make 

                                                                    
1 This article extends a paper presented at ESORICS 2016. 

suggestions regarding future iterations of Bitcoin in response to 

entirely broken and partially weakened primitives, and relate 

Bitcoin’s security model to that of other currencies. 

2 BACKGROUND 

In this section, we give a description of Bitcoin, the popular peer-

to-peer (P2P) cryptocurrency introduced in 2008 by Satoshi 

Nakamoto [2]. Fig. 1 shows a high-level view of the main 

component of Bitcoin—the blockchain—which will guide this 

section. The blockchain is a public log of all Bitcoin transactions 

that have occurred, combined together in components called 

blocks. Transactions use a scripting language which determines 

the owners of coins (Section 2.1), and it is up to “miners” to verify 

that only valid transactions occur. To ensure that nobody can 

change or remove past transactions, miners have to solve a hard 

computational puzzle, known as a Proof-of-Work (Section 2.2). 

The final component of Bitcoin is its underlying P2P network which 

enables distributed communication (Section 2.3). 

2.1 Transactions and Scripts 

Bitcoin is an electronic cash system [2], so transactions to transfer 

coins between users are central to its structure. A transaction is a 

list of inputs—unspent transactions in the blockchain—and a list 

of outputs—addresses to which to transfer the coins, whose unit 

is a “satoshi”, equal to 10−8 Bitcoins or BTCs. To ensure that only 

the owner can spend his coins, each input and output is 

accompanied by a script. For outputs, this “locking” script contains 

the conditions under which the output can be redeemed 

(scriptPubKey), while for inputs, an “unlocking” script contains a 

cryptographic signature (scriptSig) as proof that these conditions 

have been met. These scripts are sequences of instructions 

(opcodes) that get executed by special nodes called miners. To 

prevent Denial-of-Service (DoS) attacks exploiting 

computationally-intensive instructions, most nodes only accept  
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the five standard scripts:  

1) Public-Key The unlocking script must sign the transaction 

under this key. 

2) Pay-to-Public-Key-Hash (P2PKH) The unlocking script 
must provide a public key that hashes to the given value, 
and must then sign the transaction. 

3) Multi-Signature An M-of-N ( 𝑁 ≤ 15 ) multi-signature 

scheme provides N public keys, and requires M signatures 

in the unlocking script. 

4) Pay-to-Script Hash (P2SH) This script is the hash of a non-
P2SH standard transaction. The unlocking script provides 
the full script hashing to this value and any necessary 
signatures. This script is typically used to shorten the 
length of multi-signature transactions. 

5) Data Output (OP_RETURN) The output cannot be 

redeemed, but can be used to store up to 40 arbitrary 

bytes, such as human-readable messages. 

For a transaction to be valid, it must contain all the required 

fields, all signatures must be correct, and the scripts must be 

standard. This is a task that miners undertake for a small fee. In 

addition, non-standard scripts using different sequences of 

opcodes can be included in blocks for higher fees. We discuss 

these in the context of a recent SHA1 collision in Section 6.2. 

2.2 Mining and Consensus 

To ensure that no coin is used more than once, every transaction 

is made public through a global, append-only ledger called the 

blockchain, consisting of blocks combining transactions in a 

Merkle Tree. New blocks become a part of the blockchain through 

a process called mining: miners need to find a value (nonce) such 

that the hash of a block’s header is less than a given target 

ℎ(ℎ𝑑𝑟||𝑛𝑜𝑛𝑐𝑒) < 𝑇 . The idea behind this proof-of-work (PoW) 

scheme is that the probability of creating the next block is 

proportional to the miner’s computational power, and because 

miners receive transaction fees, they are incentivized to validate 

transactions and blocks. A summary is shown in Fig. 2. 

Due to the probabilistic nature of mining, the presence of 
adversaries, and networking delays, miners may disagree on the 
current state of the blockchain. This is known as a fork. To deal 
with this issue, there are hard-coded blocks included in the clients, 
known as checkpoints, starting from the first block, called the 
genesis block. In addition, honest (non-adversarial) miners work 
on the longest blockchain they become aware of, when other 
nodes announce new blocks and transactions. 
 

Fig. 2. Procedure to verify a block’s cryptographic primitives. 

These temporary forks enable double spending: an adversary 

can have different transactions in different branches of the fork 

using the same inputs but different outputs. However, because 

the probability of “deep” forks where branches differ in the top N 

blocks drops exponentially in N, receivers usually wait for multiple 

confirmation blocks. 

2.3 Network 

The last key component is the Peer-to-Peer (P2P) network for 

distributed operation. Transactions and blocks are broadcast by 

nodes to their peers, and then relayed further to flood the 

network if they meet the relay policies (to prevent DoS attacks). 

Not every node is a miner or necessarily has access to the full 

chain: “lightweight” clients that use Simple Payment Verification 

(SPV) only download headers and the relevant transactions (with 

the corresponding Merkle Trees). 

Over time, the need for extensions or bugfixing motivates 

protocol changes. Since not all nodes upgrade at the same time, 

this may introduce forks. If the validation rules in the upgrade 

become stricter, then the protocol remains backwards-

compatible, resulting in a softfork. A hardfork, on the other hand, 

is not backwards-compatible, and thus requires the entire 

network to upgrade, as old software would reject new 

transactions and blocks as invalid. 

3 BROKEN HASHING PRIMITIVES 

In this section, we look at the cryptographic hash functions in 

Bitcoin, and analyze the effect of a break in one of the properties 

of first and second pre-image and collision resistance. 

 

 

Fig. 1. The blockchain data structure. This forms the basis of the public, append-only ledger where all transactions are recorded. 

input   : Bitcoin block  

output: valid or invalid 

/* Verify block header */ 

Verify Hash(block header) < target 
Verify Merkle hash 
Verify Hash(prev block) = prev_hash 

/* Verify each transaction input in block       */  

foreach transaction input in the block do 
Check that referenced output transaction exists and hasn’t 
already been spent 

Verify signatures  
end 
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TABLE 1 

Summary of the effects on Bitcoin for different types of hash breakage. 

Breakage Address Hash (HA) Main Hash (HM) 

Collision Repudiate payment Steal and destroy coins 
Second pre-image Repudiate payment Double spend and steal coins 
Pre-image Uncover address Complete failure of the blockchain 

 

3.1 Hashing in Bitcoin 

In the original Bitcoin paper [2], the concrete primitives used are 

not specified: there were no “addresses” but just public keys, and 

the hash used for mining and the Merkle tree was just referred to 

as a hash function. The current Bitcoin implementation uses two 

hash functions.  

Main Hash This hash function has an output of 256 bits and 

requires applying SHA256 twice: 𝐻𝑀(𝑥) =

𝑆𝐻𝐴256(𝑆𝐻𝐴256(𝑥)). It is the hash used for mining (Proof-of-

Work): miners need to find a nonce such that the double SHA256 

hash of a block header is less than a “target” hash. It is also used 

to hash transactions within a block into a Merkle Tree, a structure 

which summarizes the transactions present within a block. Finally, 

it is the hash used for transactions signed with a user’s private key. 

Address Hash The second hash function is used as part of the Pay-

to-Public-Key-Hash (P2PKH) and the Pay-to-Script-Hash (P2SH) 

scripts. Its output is 160 bits, and it is concretely instantiated as 

𝐻𝐴(𝑥) = 𝑅𝐼𝑃𝐸𝑀𝐷160(𝑆𝐻𝐴256(𝑥)). 

3.2 Modeling Hash Breakage 

In this section, we analyze how hashes break in terms of their 

building blocks. 

3.2.1 Identifying Hashing Building Blocks 

A good cryptographic hash function ℎ(𝑥)  should offer three 

properties: 

1) Pre-image resistance Given 𝑦  it is hard to find 𝑥  with 

ℎ(𝑥)  =  𝑦. 

2) Second pre-image resistance Given 𝑥1, it is hard to find 

𝑥2 ≠ 𝑥1  with ℎ(𝑥1) = ℎ(𝑥2). 

3) Collision resistance It is hard to find distinct 𝑥1 ≠ 𝑥2  such 

that ℎ(𝑥1) = ℎ(𝑥2). 

where “hard” refers to computational infeasibility. This is because 

hash functions have a fixed-length output, so collisions always 

exist. 

We consider attacks against 𝐻𝐴  and 𝐻𝑀  abstractly, so that our 

arguments can be extended for any future version that uses the 

same structure. Currently, 𝐻𝐴  and 𝐻𝑀  are built using RIPEMD160 

and SHA256. Table 1 contains a summary of our results, while we 

relate the attacks we discover back to the concrete primitives in 

Section 6. 

3.3 Main Hash 

In this section, we analyze the main hash 𝐻𝑀 , which is used for 
mining, in Merkle Trees, and with signatures. We discuss all three 
use-cases separately. 

3.3.1 Mining 

We first investigate pre-image attacks against the block headers 

under two different attack scenarios, before turning to collision 
and second pre-image attacks. 

Attack 1: Pre-Image against Fixed Merkle Root We show that the 

probability that an adversary with access to a preimage oracle can 

break mining is negligible. Miners search for block headers whose 

𝑛-bit hash is below a target, which we assume starts with 𝑑 zeros. 

This assumption only introduces up to 1 bit of extra work, as there 

is always a unique 𝑑 with 𝑇 ≤  2𝑑  <  2𝑇, for any target T. 

If the adversary controls 𝑏 ≤  𝑛 bits of the input, there are 2𝑏  

possible inputs to the hash function. These need to map to one of 

the 2𝑛−𝑑  values in the range [0, 0𝑑1𝑛−𝑑), and will be uniformly 

distributed across 2𝑛 values. This gives the expected number of 𝑏-

bit pre-images as 𝐸[# pre-images] = 2𝑏 ∙ (2𝑛−𝑑)/(2𝑛) = 2𝑏−𝑑 . 

The adversary can only query the pre-image oracle for specific 

target hashes. Because there are 2𝑏−𝑑  𝑏 -bit pre-images, 

distributed across the 2𝑛−𝑑 values, the probability that a given 

hash in [0, 0𝑑1𝑛−𝑑)  has a 𝑏 -bit pre-image is: 

𝑃[correct pre-image] = (2𝑏−𝑑)/(2𝑛−𝑑) = 2𝑏−𝑛. This probability 

does not depend on 𝑑, as one might expect. This is because by 

increasing 𝑑 to reduce the number of valid hashes, the adversary 

also reduces the expected number of 𝑏-bit pre-images. Assuming 

the adversary is allowed 2𝑎  queries to the oracle, the probability 

of breaking mining becomes 𝑃[success] = 2𝑎 ∙ 2𝑏−𝑛 = 2𝑎+𝑏−𝑛. 

To calculate 𝑏, we explore all fields in the block header. The 

version number (nVersion), as well as the hashes of the previous 

block header (hashPrevBlock), and of the current Merkle root 

hash (hashMerkleRoot) are fixed. However, the adversary has 

partial control over the remaining fields in the header. For the 

timestamp field (nTime), the value can be within 7200 seconds of 

the current median/average, giving the adversary approximately 

13 bits of freedom. Moreover, the adversary has complete control 

over the 32 bits of the nonce (nNonce). The nBits field 

0𝑥𝐴𝐴𝐵𝐵𝐶𝐶𝐷𝐷  describes the target difficulty as 0𝑥𝐵𝐵𝐶𝐶𝐷𝐷 ∙

2560𝑥𝐴𝐴−3
, with the protocol only checking that the produced 

number is at most the target value given by the consensus. At the 

time of writing, the target value is 0𝑥18038𝑏85 , granting the 

adversary approximately 27 bits of freedom. 

Together the fields give 𝑏 =  72 . With 𝑛 =  256 , and 

allowing 280 calls to the oracle, the probability of success is only 

280+72−256 = 2−104, which is negligible. 

Attack 2: Pre-Image against Variable Merkle Root By varying the 

Merkle root, an adversary can break mining, though by the 

discussion of Attack 1, this cannot be achieved by simply 

reordering or excluding transactions. Instead the adversary must 

work backwards, by querying the oracle for a target Merkle hash 

and repeatedly querying the oracle to reconstruct the entire 
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Merkle tree. This would normally fail, as the transactions 

generated would not be valid due to incorrect signatures, 2 but 

Bitcoin does not enforce a minimum number of transactions in a 

block. Hence, miners can mine blocks with just the coinbase 

transaction which generates new coins, and which has a variable-

length input of up to 100 bytes that is controlled by miners. A 

malicious miner with access to the pre-image oracle can then: 

1) Pick an arbitrary target T and get a pre-image for 

𝐻𝑀(𝑎||𝑥||𝑏)  =  𝑇  where the desired 𝑥  is the 

hashMerkleRoot field, and 𝑎, 𝑏  are the remaining 

fields in a block header. Because the root is 256 bits, 

there is a pre-image with high-probability, but if not, 

repeat with some other random target 𝑇′. 

2) Pick a length 𝑙 for the script, and fix all other fields for the 

coinbase transaction. Solve 𝐻𝑀(𝑎′||𝑦||𝑏′)  =  𝑥  where 

𝑎′, 𝑏′ are the remaining fields for the coinbase 

transaction. Because the number of free bytes is up to 

100, there is an 𝑙-bit pre-image 𝑦 with high probability. 

The miner then generates a coinbase transaction using 

𝑎′, 𝑦, 𝑏′ and combines it into a block using 𝑎, 𝑏. This block 

will have a hash of 𝑇 as desired. 

Collisions, Second Pre-Images Collisions and second preimages 

are only useful for mining if the pre-images start with 𝑑  zeros. 

Assuming the pre-images contain valid transactions and 

signatures, a miner can fork the chain, but this only occurs with 

negligible probability. 

3.3.2 Merkle Trees 

Altering existing blocks A similar argument as for mining (Attack 

1) shows that an adversary cannot find a valid second pre-image 

of an entire block except with negligible probability. Pre-images do 

not give the adversary new information, as they already 

accompany the hash value. Collisions are also not useful, as both 

values are attacker-controlled and cannot alter existing blocks. 

Attacking new blocks For new blocks and transactions, an 
adversary with sufficient network control can use a collision or 
second pre-image to split the network, reject both blocks or 
reverse transactions, thus enabling double-spending. Preimages 
are again not useful, as they always accompany the hashed value. 

3.3.3 Main Hash Usage in Signatures 

In Bitcoin, signatures are over messages hashed with HM. 

Therefore, a second pre-image attack or a collision on HM can be 

used to destroy and possibly steal coins: an adversary can ask for 

a signature on an innocuous transaction (e.g., pay 1 satoshi from 

address X to address Y), but transmit a malicious one instead (e.g., 

pay 100 BTC from address X to address Z) since there are enough 

bytes that the adversary controls to guarantee success with high 

probability. Note that for this attack to succeed, the adversary 

must still specify the same unspent transaction X belonging to the 

victim for the signature to be valid, but can alter the amount 

                                                                    
2 Although transaction malleability can allow the same signature to be valid for 

two different transactions [3]. 

(bounded by the total number of Bitcoins present in address X), 

and the destination. 

TABLE 2 
Effects of a broken signature scheme. 

Breakage Effect 

Selective forgery Steal coins from public key 
Integrity break Claim payment not received 
Repudiation - 

 

3.4 Address Hash 

The address hash is used in two contexts. First, in Bitcoin 

addresses, using Pay-to-Public-Key-Hash (P2PKH) scripts: an 

address is essentially 𝑦 =  𝐻𝐴(𝑝)  =

 𝑅𝐼𝑃𝐸𝑀𝐷160 (𝑆𝐻𝐴256 (𝑝)) where p is the public key (together 

with a checksum). Payments to addresses only use the hashed 

value y, but transactions to addresses require the full public key p 
and the signature on the transaction. The second use is in Pay-to-

Script-Hash (P2SH) scripts. A P2SH is 𝑦 =  𝐻𝐴(𝑠)  where s is a 

standard script, typically a multi-signature transaction. Payments 

to a P2SH script do not reveal the pre-image, but transactions 

spending the coins require it and the signatures of the 

corresponding parties. We discuss them jointly, since the only 

difference between a P2PKH and a P2SH in this context is the 

number of required signatures. 

Pre-image For previously spent outputs, or for reused addresses, 

𝐻𝐴  is already accompanied by its pre-image. A pre-image thus can 

only reveal the public key(s) for unspent outputs. This has minimal 

privacy consequences since public keys are not tied to real 

identities, but it could enable an offline attack on the key. 

Assuming that the key was not chosen with bad randomness and 

there is no weakness in the signature scheme, the probability of 

success is still negligible.  

Second pre-image A second pre-image gives the adversary access 

to a different public key or script with the same hash. However, 

because the adversary does not control the corresponding private 

key, he cannot use this to change existing transactions or create 

new ones. This is because preimages (whether a key or a script) 

are only revealed and verified when spent in transactions. 

Collision Collisions are similar, though in this case both public keys 
are under the adversary’s control, and again the adversary does 
not have access to the private keys. In both scenarios, there is a 
question of non-repudiation external to the protocol itself: by 
presenting a second pre-image of a key used to sign a transaction, 
a user/adversary can claim that his coins were stolen. 

4 BROKEN SIGNATURE PRIMITIVES 

In this section, we describe the use of digital signatures in Bitcoin, 

and analyze how a break in their unforgeability, integrity, or non-

repudiation impacts Bitcoin. We summarize our results in Table 2. 
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4.1 Digital Signatures in Bitcoin 

Bitcoin’s digital signature scheme is the Elliptic Curve Digital 

Signature Algorithm (ECDSA) with the secp256k1 parameters, 

and is used to sign the main hash HM of transactions. 

4.2 Modeling Signature Breakage Variants 

The security of digital signature schemes is usually discussed in 

terms of three properties, which we define as follows: 

1) Unforgeability No-one can sign a message m that 

validates against a public key p without access to the 

secret key s. 

2) Integrity A valid signature {m}s does not validate against 

any 𝑚′ ≠  𝑚. 

3) Non-repudiation A valid signature {m}s does not validate 

against any public key 𝑝′ ≠ 𝑝. 

where there is an implicit “except with negligible probability”, due 

to hashing. 

These properties are linked and a breakage in one usually 

implies a breakage in the others. In addition, they are often 

discussed in a much more abstract way: non-repudiation refers to 

the property that the signature proves to all parties the origin of 

the signature, but, in this case, we introduce it in a way that is 

more akin to Duplicate Signature Key Selection (DSKS) attacks [4]. 

4.3 Broken Signature Scheme Effects 

We now analyze a break in each of these properties separately, 

starting with the last two, as neither of them can lead to an attack 

on their own. 

Integrity In order for a break in the integrity of the signature 

scheme to be useful in Bitcoin, a signature of 𝐻𝑀(𝑚) must also be 

valid for 𝐻𝑀(𝑚′) . This involves HM in a non-trivial way, so we 

discuss this further in Section 5, but note that transaction 

malleability can cause the issuer of a transaction to think that his 

payment was not confirmed [3].  

Non-repudiation For non-repudiation, we note that for 

transactions, even if a signature verifies under a different key, the 

address hashes of the two public keys must match. A break thus 

involves HA, so we discuss this case further in Section 5. 

Unforgeability When it comes to unforgeability, we can 

distinguish between various types of breaks [5]: Total break to 

recover the private key, universal forgery to forge signatures for 

all messages, selective forgery to forge signature on a message of 

the adversary’s choice, and existential forgery to produce a valid 

signature that is not already known to the adversary. 

Because the message to be signed must be the hash of a valid 

transaction, an existential forgery is not sufficient since the 

probability that it corresponds to a valid message is negligible. 

Selective forgery on the other hand can be used to drain a victim’s 

wallets. From this perspective, selective forgery and a total break 

have the same effect. However, as we discuss later, the type of 

breakage influences how to upgrade to a new system. It is worth 

noting that an adversary does not necessarily have access to a 

user’s public key, since addresses that have not been reused are 

protected by the address hash HA. 

 

TABLE 3 
Multi-breakage effects: combining broken hashes and signatures. 

Hash Property 
 Signature Property 
Selective forgery Integrity break Repudiation 

Address Hash (HA) 
Collision Repudiate transaction - Change existing payment† 
Second pre-image Steal all coins - Change existing payment 
Pre-image Steal all coins - - 

Main Hash (HM) 
Collision Steal coins Steal coins† - 
Second pre-image Steal coins Double spend† - 
Pre-image - - - 

† Achieving this requires a modification of definitions. See text for details. 

5 MULTI-BREAKAGE 

In this section, we analyze how combinations of breakages in 

different primitives can impact Bitcoin. Because HA and HM are not 

used together, we only consider a break in the signature algorithm 

in combination with a break in one of the two hashes. The results 

are summarized in Table 3. 

5.1 Address Hash and Signature Scheme 

Signature Forgery Combining a selective forgery with a first or 

second pre-image break of the address hash can be used to steal 

all coins that are unspent. Generating two public keys 𝑝, 𝑝′ with 

𝐻𝛢(𝑝)  =  𝐻𝛢(𝑝′) (collision) whose signatures the adversary can 

forge does not have a direct impact, since the adversary controls 

both addresses. However, it appears as if two different users are 

attempting to use the same coin, thus raising a question of 

repudiation, which we discuss in Section 6. 

Signature Integrity As the messages signed for transactions do not 

involve HA, this combination does not increase the adversary’s 

power. 

Signature Repudiation A pre-image attack on HA is not useful as 

the public key is already known. For a second pre-image, assume 

that given a message m (the hash of a transaction) and a public 

key 𝑝, an oracle returns 𝑝′  such that 𝐻𝛢(𝑝)  =  𝐻𝛢(𝑝′) and the 

signature of 𝑚 under 𝑝 also validates against 𝑝′. Since the same 

signature validates for both keys, an adversary can replace 𝑝 by 𝑝′ 

in the unlocking script. Though this does not give the adversary 

immediate monetary gain, a transaction in the blockchain has 

been partially replaced. 

For collisions, assume that given a message m, an oracle 

returns two public keys 𝑝, 𝑝′ such that 𝐻𝛢(𝑝)  =  𝐻𝛢(𝑝′) and the 

signature of 𝑚 under 𝑝 validates under 𝑝′. If the adversary does 

not have access to the private keys, he cannot sign the transaction. 

Otherwise, the effect is identical to the second pre-image case, 

where the adversary can replace part of a transaction in the 
blockchain. 

5.2 Main Hash and Signature Scheme 

Signature Forgery As explained in Section 3.3, none of the 

potential attacks using the hash HM required a break in the 
signature scheme. The partial exceptions were mining under a pre-
image break, and transactions with second pre-image or collision 
breaks. We discuss each possibility below. 

For mining, a pre-image attack is useful when working backwards 

from a fixed target to get a pre-image for the Merkle root and turn 
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TABLE 4 

Effects of concrete primitive breakage on the current version of Bitcoin. 

Breakage Effect 

SHA256 
Collisions Steal and destroy coins 

Second pre-image Double spend and steal coins 

Pre-image Complete failure 

RIPEMD160  

    Any of the above Repudiate payments 

ECDSA 
Selective forgery Steal coins 

Integrity break Claim payment not received 

Repudiation - 

it into a tree of transactions. The problem identified in Section 3.3 

was that there is only negligible probability that the transactions 

refer to valid, unspent outputs, so a forgery does not solve this 

issue. Finally, for transactions, collisions and second pre-images on 

their own can be used to destroy coins, or steal coins. If the 

adversary can also forge signatures, he is guaranteed to be able to 

steal coins no matter what address they went to, as long as it is 

not protected by the address hash. 

Signature Integrity A collision or a second pre-image attack 

trivially breaks the integrity of the scheme as messages are always 

hashed, and reduces to the case discussed in Section 3.3, so we 

modify the definitions slightly to consider a joint break in the two 

algorithms. 

A collision integrity oracle given a public key p produces 𝑚, 𝑚′ 

such that the signature of 𝐻𝑀(𝑚) is also valid for 𝐻𝑀(𝑚′). The 

adversary can ask for a signature on an innocent transaction, but 

transmit the malicious one with the still valid signature. Unlike in 

the regular collision case, the two hashes 𝐻𝑀(𝑚)  and 𝐻𝑀(𝑚′) 
are different. Hence, the adversary cannot just replace the 

transaction in the block, but he can opt never to transmit the 

innocent one instead. 

A second pre-image integrity oracle given a public key 𝑝 and a 

message 𝑚 produces 𝑚′ such that the signature of 𝐻𝑀(𝑚) is also 

valid for 𝐻𝑀(𝑚′). This case also resembles the break on just 𝐻𝑀 , 

but, again, because the hashes are not equal, the adversary cannot 

simply replace an existing transaction, unless it has not yet been 

confirmed in a block. This can split the network and destroy coins. 

Signature Repudiation The non-repudiation property of the 

signature scheme necessarily involves a break of HA, as was 

explained in Section 4.3. This combination therefore does not 

increase the adversary’s power. 

6 CURRENT BITCOIN IMPLEMENTATION 

In this section, we revisit the current Bitcoin implementation, in 

the context of its choice of primitives, non-standard scripts, and 

contingency plans, using observations from the previous sections. 

                                                                    
3  https://p2sh.info/dashboard/db/non-standard-outputs-statistics, accessed 

2017-04-11. 

6.1 Current Cryptographic Primitives 

In the current implementation of Bitcoin, 

𝐻𝐴(𝑥) = 𝑅𝐼𝑃𝐸𝑀𝐷160(𝑆𝐻𝐴256(𝑥)) , and 𝐻𝑀(𝑥) =

𝑆𝐻𝐴256(𝑆𝐻𝐴256(𝑥)). Because there are no critical breaks for 

HA, a break in RIPEMD160 is not cause for concern. Moreover, 

because HM only uses SHA256, an attack against SHA256 is 

equivalent to an attack against HM. We can thus summarize the 

effect of concrete primitive breakage in Table 4. 

6.2 Non-Standard Scripts 

As explained in Section 2.1, the Bitcoin scripting language extends 

beyond the 5 standard types of transactions. In part due to the 

higher fees associated with them, non-standard transactions 

represent less than 0.02% of all Bitcoins in circulation,3 but are 

more versatile and can include opcodes for calculating SHA1, 

SHA256, and RIPEMD160 hashes. By using these primitives, one 

can create “challenges” involving the primitives, so that, for 

instance, a user needs to create a collision to redeem a certain 

coin. 

One set of such challenges was created by one of the early 

Bitcoin developers asking for collisions on individual and combined 

primitives.4 The challenge for a SHA1 collision was claimed using 

the collision found by Stevens et al. [6], for a bounty of 2.48BTC, 

the equivalent of approximately $2,800 at the time. Although the 

USD/BTC exchange rate fell temporarily as a result of these news, 

it quickly recovered, since SHA1 is not an integral part of the 

Bitcoin protocol. However, this collision highlights the need to 

anticipate the breakage of primitives, since non-standard 

transactions allow collision and pre-image attacks to be used even 

when the core protocol is not yet broken. However, as we explain 

in Sections 6.3 and 6.4 the existing contingency plans are not 

sufficient. 

6.3 Existing Contingency Plans 

A break of the primitives has interested the community from the 

early days of Bitcoin. Informal recommendations by Satoshi in 

forums evolved into a “wiki” page which describes contingency 

plans for “catastrophic failure[s]” [1]. Such a failure for primitives 

is defined in terms of an adversary that can defeat the algorithm 

with “a few days of work” [1], and the focus is on notifying users, 

and protecting the OP_CHECKSIG operation to prevent people 

from stealing coins. 

Concretely, for a “severe, 0-day failure of SHA-256” [1], the 

plans propose switching to a new hashing algorithm 𝐻′, and hard-

coding known public keys with unspent outputs as well as the 

Merkle root of the blockchain under 𝐻′. For a broken signature 

scheme, if the attacker cannot recover the private key, and there 

is a drop-in replacement using the same key-pair, the plan is to 

simply switch over to the new algorithm. Otherwise, the new 

version of Bitcoin “should automatically send old transactions 

somewhere else using the new algorithm” [1]. 

4 See https://bitcointalk.org/index.php?topic=293382.0. 

https://p2sh.info/dashboard/db/non-standard-outputs-statistics
https://bitcointalk.org/index.php?topic=293382.0
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6.4 Potential Migration Pitfalls 

The contingency plans suggest that “code for all of this should be 

prepared” [1], but no such mechanism currently exists. Moreover, 

no plans are in place for a break in RIPEMD160. Since sudden 

breaks are unlikely, neither is cause for immediate concern, but 

should be included in future plans. 

Broken SHA256 By our analysis, it is clear that new transactions 

should not use a broken hash. However, existing historical 

transactions and blocks cannot be altered, except in a majority 

mining attack. Thus, hard-coding public keys, and rehashing the 

entire blockchain are more prudent than necessary. It should be 

noted that a sudden break necessitates a hardfork for Bitcoin. 

Broken ECDSA For a broken ECDSA, a transition is indeed easy if 

there is a drop-in replacement and the private key is safe. 

Otherwise, a gradual transition scheme is necessary as users will 

need to manually switch over to a new key pair. 

6.5 Recommendations 

In this section, we make recommendations to more properly 

anticipate primitive breakage. Recognizing that there are financial 

considerations in addition to the technical ones, we do not 

propose a full upgrade mechanism, but merely make suggestions 

to the Bitcoin developers and community. 

First of all, our analysis reinforces the idea that users should 

not reuse addresses, not just for privacy reasons, but also because 

they protect against some types of primitive breakage. For 

instance, if the signature scheme is broken, addresses are still 

protected by the hash. 

The plans for a sudden breakage should address when to 

freeze the blockchain, and whether to roll back transactions in the 

case of a sudden break. Moreover, the centralized approach of 

hard-coding well-known keys is perhaps not entirely in line with 

Bitcoin’s decentralized philosophy and can lead to lost coins. If 

keys are to be hard-coded, there is a trade-off between complexity 

and risking making coins unspendable: developers must decide 

whether the migration would occur at once, or whether new key 

pairs should be distributed periodically. An alternative and 

perhaps better approach would be to use Zero-Knowledge Proofs 

to tie the old address still protected by their hash to the new public 

key. 

Given that sudden breaks are unlikely, there is a need for a 

separate plan for weakened primitives. Based on our analysis, we 

recommend the following: 

• Introduce a minimum number of transactions per block to 

increase the difficulty of performing the preimage attack 

against the mining header target (Proof-of-Work or PoW) 

using the coinbase transaction. 

• To migrate from old addresses, whether due to a 

weakened hash or signature scheme, introduce new 

address types using stronger hashing and signature 

schemes. This can be achieved with a softfork by making 

transactions appear to old clients as “pay-to-anybody”, 

akin to how P2SH was introduced. 

• Instead of using nested hashes for HA, HM, combine 

primitives in a way that increases defense-in-depth (see 

related work in Section 8). 

• Given that HM has multiple use-cases, consider whether 

each of its functions should have a different instantiation, 

whether through distinct primitives, by pre-pending 

different values, or by using an HMAC with different keys. 

• Consider a hardfork in response to a weakened HM, with 

re-designed headers and transactions, and without any 

use of the old primitives. 

A softfork is insufficient for properly upgrading a weakened 

hash function HM = H1 to the stronger H2, because HM forms the 

core of the PoW scheme. Specifically, since any changes must be 

backwards compatible, the old validation rules must still apply, so 

for every new block, 𝐻1(ℎ𝑑𝑟)  <  𝑇, where the target T is still 

calculated by the same algorithm. New blocks would also need to 

satisfy some additional constraint 𝐻2(ℎ𝑑𝑟′)  <  𝑇′ , where the 

target 𝑇′ is calculated independently and ℎ𝑑𝑟′ is the block header, 

possibly excluding some fields. As a result, new clients would have 

to solve two PoW computational puzzles. Though every instance 

of H1 (transaction, Merkle root, etc.) could be accompanied by an 

instance of H2, blocks and transactions are fundamentally 

identified by their H1 hash, which an attacker could exploit. There 

are also questions of incentives, and whether new iterations of 

Bitcoin would still use a PoW scheme, but this is left as future 

work. 

7 OTHER CRYPTOCURRENCIES 

Bitcoin is the largest cryptocurrency by market capitalization and 

adoption, but both derivatives (“altcoins”) and completely 

different designs have spread. Although discussing them all is out 

of scope, we identify a few common threads amongst those which 

use Proof-of-Work (PoW) schemes. 

The first class of altcoins consists of those which are forks of 

Bitcoin with additional types of transactions supported. For these 

currencies, our analysis applies verbatim, but needs to be 

extended to these new types of operations. As an example, 

Namecoin introduces transactions for registering and updating 

.bit domains. The name_new d/<name> command creates a 

transaction whose outputs include 𝐻𝐴(𝑟 || name), where 𝑟  is a 

nonce. This acts as a pre-order for the domain name.bit, which 

is then updated by its owner after the transaction has been in 12 

confirmed blocks. This pre-order commitment phase is necessary 

to ensure no-one can steal the name of the address, which is fully 

registered in a subsequent name_firstupdate command which 

reveals the name, the nonce and the DNS configuration values, 

signing the transaction with the user’s key. 

Any updates for a domain require signatures, so any novel 

exploit would involve the name_new and name_firstupdate 

commands. Unlike Bitcoin, however, a pre-image attack on HA 

allows recovering a random nonce and domain name. Namecoin 

rules do not seem to preclude 𝑛𝑎𝑚𝑒_𝑛𝑒𝑤 transactions with the 

same hash, but if the preimage recovers the original (𝑟, 𝑛𝑎𝑚𝑒) 
pair, an attacker can pre-register the domain, by publishing his 

own name_new transaction before the original user’s transaction 

is confirmed. In practice, however, this attack would require pre-

image oracles for both hash functions used in HA (SHA256, 

RIPEMD160), implying that there is a pre-image oracle for HM as 

well, making the entire currency insecure. 
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The second set of cryptocurrencies consists of those which 

separate the roles of HM and replace it by two different hash 

functions, say HI for integrity checking and HP for the PoW. If HI 

breaks, one can still steal coins, by creating collisions in 

transactions, which are hashed before they are signed, as also 

explained in Section 3.3.3. However, since HI is not used for PoW, 

an attack on HI cannot directly be used to exploit mining. More 

importantly, as explained in Section 3.3, even a full pre-image 

oracle on HP is not sufficient for a breakdown of the currency. This 

is because the probability of finding a valid pre-image for a fixed 

target is negligible, as the adversary does not control sufficiently 

many header bits. Instead, as also identified in Section 3.3, an 

adversary needs to be able to alter the Merkle root at will, which 

is protected by the different HI, requiring both to be exploited for 

a successful attack. Example currencies employing this scheme 

include Litecoin and Dogecoin, where HI = SHA256(SHA256), and 

HP is the scrypt key derivation function. Ethereum is similar, with 

HI using Keccak-256 and HP using Ethash, though it should be 

noted that due to the different structure of the blockchain, our 

results are not directly applicable, even though our methodology 

is. 

Primecoin has a different PoW mechanism. It is a fork of 

Bitcoin using the same structures (and only the single HM), but its 

PoW requires finding long chains of prime numbers 𝑝𝑖  which 

satisfy 𝑝𝑖+1 = 2𝑝𝑖 ± 1 , 5  with 𝑝0 = 𝑘 ∙ 𝐻𝑀(header) ± 1  for 

some 𝑘. An adversary with access to a pre-image oracle can attack 

this scheme by re-using existing chains: if (𝑝𝑖) is a valid chain for 

header h and the difficulty has not changed, then (𝑝𝑖) is also a 

valid chain for ℎ/𝑞 for any factor q of h, and for ℎ · 𝑟, where r is a 

small factor of k (to ensure that ℎ · 𝑟 remains a valid hash). Note 

that once more, this exploit depends on using the pre-image 

oracle twice: once for the overall header, and once for the 

coinbase transaction, showing that it is necessary to increase the 

minimum number of transactions per block. 

Finally, there are currencies which use a hybrid PoW and 

Proof-of-Stake or Proof-of-Burn scheme. For instance, Peercoin is 

a fork of Bitcoin that uses the same PoW and structure as Bitcoin, 

but also allows “minting” coins based on their age for a Proof-of-

Stake approach. As a result, the attacks identified in this paper still 

apply, but the attack surface increases to include the new 

transactions, and needs to be analyzed separately, as we did with 

Namecoin above. 

8 RELATED WORK 

Identifying how hash collisions break the security of protocols such 

as TLS, IPSec, and SSH was recently investigated in [7]. More 

recently, researchers identified vulnerabilities with the 

cryptographic function used in the IOTA cryptocurrency, which 

allowed them to create syntactically valid transactions with the 

same hash, but which pay out different amounts [8]. In terms of 

the primitives used in Bitcoin, attacks against RIPEMD160 pre-

images [9] and collisions [10] as well as SHA256 collisions [11] and 

pre-images [12] only work for a reduced number of rounds, and 

incrementally improve upon brute-force solutions. Certain ECDSA 

parameters can lead to Duplicate Signature Key Selection, where 

                                                                    
5 Technically, Cunningham chains of first or second kind, or bi-twin chains. 

an adversary can create a different key 𝑃’ that validates against a 

correct signature under a key 𝑃 [4]. Such research indicates that 

Bitcoin primitives are indeed under attack, highlighting the need 

for anticipating their breakage. 

More generally, for combining hashes effectively, [13] shows 

that simultaneous collisions for multiple hash functions are not 

much harder to find than individual ones. [14] shows that even 

when the underlying compression functions behave randomly but 

collisions are easy to generate, finding collisions in the 

concatenated hash ℎ1(𝑥)||ℎ2(𝑥)  and the XOR hash 

ℎ1(𝑥)⨁ℎ2(𝑥)  requires 2n/2 queries. However, when the hash 

functions use the Merkle-Damgård (MD) construction, there is a 

generic pre-image attack against the XOR hash with complexity 

Õ(2
5𝑛

6 ) [15]. MD hash functions also behave poorly against pre-

image attacks, allowing one to find second pre-images of length 

260 for RIPEMD160 in 2106 ≪ 2160 time [16]. If an adversary can 

further find many collisions on an MD construction, he can also 

find pre-images that start with a given prefix (Chosen Target 

Forced Prefix) [17]. 

9 CONCLUSIONS 

We presented the first systematic analysis of the effect of broken 

primitives on Bitcoin. Our analysis reveals that some breakages 

cause serious problems, whereas others are inconsequential. The 

main vectors of attack involve collisions on the double SHA256 

hash or attacking the signature scheme, which directly enable coin 

stealing. In contrast, a break of the hash used in addresses has 

minimal impact, since they do not meaningfully protect the 

privacy of a user. Our analysis has also uncovered more subtle 

attacks. For example, the existence of another public key with the 

same hash as an address in the blockchain enables parties to claim 

that they did not make a payment. Such attacks show that an 

attack on a cryptographic primitive can have social rather than 

technical implications. We leave the economic impact of such 

attacks as future work. Because our analysis abstracts away from 

the concrete primitives, our general results extend to future 

versions that use a similar structure, as well as altcoins and other 

blockchain-based schemes. 

We uncovered a lack of defense-in-depth in Bitcoin. In most 

cases, the failure of a single property in one cryptographic 

primitive is as bad as multiple failures in several primitives at once. 

For future versions of Bitcoin, we recommend including various 

redundancies such as properly combined hash functions, and 

requiring a minimum number of transactions per block. Bitcoin’s 

migration plans are currently under-specified, and offer at best an 

incomplete solution if primitives get broken. We offer some initial 

guidelines for making the cryptocurrency more robust, both for a 

sudden break, but also in response to weakened primitives. 

However, future discussions should directly involve the 

Bitcoin developers and community to propose plans that would be 

in line with their expectations. 
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