1st International
Workshop on

Data

Manaﬁﬁmént
for

Sensor Networks

In Conjunction with VLDB 2004

Tt

Toronto, Canada
August 30, 2004

Editors:

Alexandros Labrinidis .
Samuel Madden Sponsored by Intel ||'T|:e|®

Message from the Program Chairs

August 4, 2004

The past few years have seen substantial amounts of computer science research on sensor networks. Other
subfields have had a number of workshops on the topic (e.g., the Workshop on Wireless Sensor Networks
and Applications (WSNA) in 2002 and 2003 and the Sensor Networks Protocols and Applications (SNPA)
Workshop in 2002 and 2003, both of which are systems/networking focused). Furthermore, there are now at
least two major conferences — the Conference on Information Processing in Sensor Networks (IPSN), started
in 2002, and the ACM Conference on Sensor Systems (SenSys), started in 2003. These conferences have
published a small number of database papers, but there is no forum for discussion on early and innovative
work on data management in sensor networks.

We believe that the Workshop on Data Management for Sensor Networks (DMSN’04) fills a significant
gap in the database community by bringing interested researchers together to identify research challenges
and opportunities. Specifically, the workshop focuses on data processing and management in networks of
remote, wireless, battery-powered sensing devices (sensor networks). The power-constrained, lossy, noisy,
distributed, and remote nature of such networks means that traditional data management techniques often
cannot be applied without significant re-tooling. Furthermore, new challenges associated with acquisition and
processing of live sensor data mean that completely new database techniques must also be developed.

The workshop represents a wide range of topics, including: data replication and consistency in noisy
and lossy environments, database languages for sensor tasking, distributed data storage and indexing, energy-
efficient data acquisition and dissemination, in-network query processing, integration of sensor network data
into traditional and streaming data management systems, networking support for data processing, techniques
for managing loss, uncertainty, and noise, query optimization, and privacy protection for sensory data.

As a response to the Call for Papers, the DMSN’04 workshop received 38 abstracts, of which 25 materi-
alized as full papers by the submission deadline. During the review process, each paper was reviewed by at
least three PC members or external reviewers, resulting in the acceptance of 15 papers.

We are grateful to many people who contributed to the content and organization of the workshop. First of
all we would like to thank the steering committee: Panos Chrysanthis, Mike Franklin, Johannes Gehrke, and
Joe Hellerstein. Their advice and support proved invaluable. We are also grateful to the Program Committee
members and the external reviewers for helping us put together a high-quality program for the workshop. Intel
Corporation’s generous donation enabled us to support activities that would not have been possible with just
the registration income, like the best paper award and student travel grants. We would also like to thank Surajit
Chaudhuri of Microsoft Research and the CMT team for allowing us to use the Conference Management
Toolkit service and for their assistance. Finally, we would like to thank the VLDB’04 organizing committee
and in particular John Mylopoulos, Alberto Mendelzon, S. Sudarshan, Mariano Consens, Grant Weddell, and
lluju Kiringa.

Alexandros Labrinidis and Sam Madden

August 2004

DMSN '04 Organization

Program Chairs:

Steering Committee:

Program Committee:

External Reviewers

Alexandros LabrinidisUniveristy of Pittsburgh
Samuel MadderMIT

Panos Chrysanthig)niveristy of Pittsburgh

Michael J. FranklinlJC Berkeley

Johannes Gehrk€ornell University

Joseph M. Hellersteirintel Research and UC Berkeley
Philippe BonnetlUniversity of Copenhagen

Luc BouganimNRIA

John ByersBoston University

Ugur CetintemelBrown University

Panos Chrysanthig)niversity of Pittsburgh

Isabel CruzUniversity of lllinois at Chicago
Michael J. FranklinlUniversity of California, Berkeley
Minos GarofalakisBell Labs

Johannes Gehrk&ornell University

Phil Gibbons|ntel Research

Ramesh Govindarniversity of Southern California
Carlos Guestrinintel Research and CMU

Joseph M. Hellersteirintel Research and UC Berkeley
Wei Hong,Intel Research

Zachary G. lvesUniversity of Pennsylvania
Christian S. Jenseialborg University

George KolliosBoston University

Alexandros LabrinidisUniversity of Pittsburgh
Qiong Luo,HKUST

Samuel R. MaddeMIT

Sharad MehrotrdJniversity of California at Irvine
Silvia Nittel, University of Maine

Sunil PrabhakaRurdue University

Mema Roussopoulogjarvard University

Timos SellisNational Technical University of Athens
Anthony StefanidisUniversity of Maine

Matt Welsh,Harvard University

Adam Wolisz, Technical University of Berlin
Vladimir ZadorozhnyUniversity of Pittsburgh

Feng ZhaoMicrosoft Research

Reynold Cheng

Rashmi Chitrakar

Qi Han

losif Lazaridis

Kostas Patroumpas

Roberto Tamassia

Xingbo Yu

Contents

Statistical and Probabilistic Techniques

BINOCULAR: A System Monitoring Framework
F. Emekci, S.E. Tuna, D. Agrawal, A.E. Abbadi University of California Santa Barbaja 5

Adaptive Data Sampling for Sensor Networks
A. Jain, E. Chang (University of California, Santa Barbaja 10

Predictive Filtering: A Learning-Based Approach to Data Stream Filtering
V. Kumar, B.F. Cooper, S.B. Navathe Georgia Institute of Technologyly 17

Confidence-based Data Management for Personal Area Sensor Networks
N. Tatbul (Brown University M. Buller, R. Hoyt, S. Mullen (USARIEN),
Stan Zdonik (Brown University 24

Algorithms for In-Network Query Processing

Approximately Uniform Random Sampling in Sensor Networks
B. Bash, J. Byers, J. ConsidineBoston University 32

Optimization of In-Network Data Reduction
J.M. Hellerstein (Intel Research and UC BerkeleyV. Wang (UC Berkeley 40

Networking Support

WaveScheduling: Energy-Efficient Data Dissemination for Sensor Networks
N. Trigoni, Y. Yao, A. Demers, J. Gehrke Cornell University,
R. Rajaraman (Northeastern Universily 48

MEADOWS: Modeling, Emulation, and Analysis of Data on Wireless Sensor Networks
Q. Luo, L.M. Ni, B. He, H. Wu, W. Xue (HKUST) 58

A Framework for Extending the Synergy between Query Optimization and MAC Layer in Sensor
Networks
V. Zadorozhny, P. Chrysanthis, P. Krishnamurthy (University of Pittsburgh 68

Programming Languages and Architectures

Region Streams: Functional Macroprogramming for Sensor Networks
R. Newton MIT CSAID, M. Welsh (Harvard University 78

StreamGlobe: Adaptive Query Processing and Optimization in Streaming P2P Environments
B. Stegmaier, R. Kuntschke, A. Kemper Technische Universitut Munchen 88

Active Rules for Sensor Databases
M. Zoumboulakis, G. Roussos, A. PoulovasilisBirkbeck University of Londgn 98

Spatio-temporal Techniques

A Framework for Spatio-Temporal Query Processing Over Wireless Sensor Networks
A. Coman, M. Nascimento, J. SanderJniversity of Alberti 104

Mission-Critical Management of Mobile Sensors (or, How to Guide a Flock of Sensors
G. Trajcevski (Northwestern Universiy H. Bronnimann (Polytechnic University
P. Scheuermann Northwestern Universily 111

KPT: A Dynamic KNN Query Processing Algorithm for Sensor Networks
J. Winter, W-C. Lee (Penn State Universily 119

BINOCULAR: A System Monitoring Framework

Fatih Emekcit Sezai E. Tunat Divyakant Agrawal® Amr El Abbadit

Department of Computer Sciencet Department of Elec. and Comp. Engineering?
University of California Santa Barbara
Santa Barbara, CA 93106, USA

{fatih,agrawal,amr} @cs.ucsh.edu?

Abstract

Recent advances in hardware technology facili-
tate applications requiring a large number of sen-
sor devices, where each sensor device has com-
putational, storage, and communication capabili-
ties. However these sensors are subject to certain
constraints such as limited power, high communi-
cation cost, low computation capability, presence
of noise in readings and low bandwidth. Since
sensor devices are powered by ordinary batteries,
power is a limiting resource in sensor networks
and power consumption is dominated by commu-
nication. In order to reduce power consumption,
we propose to use a linear model of temporal, spa-
tial and spatio-temporal correlations among sen-
sor readings. With this model, readings of all
sensors can be estimated using the readings of a
few sensors by using linear observers and multiple
queries can be answered more efficiently. Since a
small set of sensors are accessed for query pro-
cessing, communication is significantly reduced.
Furthermore, the proposed technique can also be
beneficial at filtering out the noise which directly
affects the accuracy of query results.

1 Introduction

Due to advances in miniaturization, low power, and low
cost design of sensors, large-scale sensor networks are be-
ing deployed to monitor systems. Examples include en-
vironment monitoring on Great Duck Island and James
Reserve [2, 7]. In sensor networks, each sensor can be
modeled as a full fledge computer with computational,
communication, and sensing capabilities. However, these
sensors are subject to several constraints such as limited
power, high communication cost, low computation capabil-
ity, presence of noise in readings and low bandwidth. Be-

Copyright 2004, held by the author (s)

Proceedings of the First Workshop on Data M anagement for
Sensor Networks (DM SN 2004),

Toronto, Canada, August 30th, 2004.
http://db.cs.pitt.edu/ dnmsn04/

emre@ece.ucsh.edut

cause of these constraints, techniques for distributed sys-
tems, databases, and data stream management cannot be
applied directly to sensor networks. In particular, any sys-
tem dealing with sensor generated data needs to pay atten-
tion to these constraints.

There have been many related research efforts in the
database and data stream management areas. Traditional
database management aims to reduce the query response
time using indexes. On the other hand, the main goal in
the context of data streams is to reduce the storage and
computational cost and give fast approximate answers to
queries. However, monitoring a system (a system can be
any measurable phenomenon in the physical world) with
queries is quite different from query processing over data
streams and database management systems. The cost of
query execution in sensor networks is not only bounded
by computational and storage costs but also bounded by
data collection cost. In data stream and database manage-
ment systems, however, data collection cost is not taken
into account explicitly; instead it is assumed that data is
already available. This assumption is quite reasonable in
database and data stream management systems which are
built on wired systems that do not have energy and band-
width constraints. This, however, is not true in sensor net-
works where each sensor is run by ordinary batteries and
has energy and bandwidth constraints which directly affect
the quality of monitoring.

Recently, there are several proposals to deal with sen-
sor generated data aiming to reduce the cost of data col-
lection to prolong the lifetime of the sensors. In [5], re-
searchers proposed the Fjords architecture for managing
multiple queries over many sensors. They collect readings
of all sensors and try to compute common subexpressions
among queries only once. There are several researches try
to compute queries in-network such as [10, 6, 11, 12]. In
general, in-network aggregation can reduce the power us-
age by pushing part of the computation into the network.
However, these works only consider aggregation queries
and do not consider multi-queries. Lazaridis and Mehro-
tra [4] proposed to compress the raw data at each sensor
node, then the compressed data is sent to the basestation
when the precision is out of bound. Goel and Imielinski [3]
proposed a prediction technique to monitor environment by

applying MPEG techniques in prediction.

When monitoring the physical environment, there are
physical rules relating to data originating from differ-
ent data sources (there is a physical rule between read-
ings of sensors), which is different from data streams and
databases. Most of the time, these physical rules can be
discovered and modeled using correlations among sensor
readings. Once this model is known, the query processor
can use this model to observe the environment by collect-
ing data from a few sensors instead of all of them. Fur-
thermore, this model can be used to reduce the noise in the
measurements. Our main observation behind this work is
that if two sensors are close to each other, then there is a
physical rule between their measurements. And this physi-
cal rule can be discovered with temporal, spatial and spatio-
temporal correlations among sensor readings. For example,
if two sensors are 100 meters apart from each other then
their temperature measurements are correlated. Therefore,
if these correlations are determined and modeled with his-
torical data, the query processor can use that model to esti-
mate the readings of all sensors using the readings of a few
sensors. Formally, if a system is identified and modeled
using a linear model, then that linear model can be used to
observe all readings using only a subset of the sensors.

Hence, the properties of BINOCULAR can be summa-
rized as follows:

e BINOCULAR is a monitoring system where users
pose continuous queries to monitor the physical en-
vironment. Therefore, it is a multi-query processing
platform.

e BINOCULAR models the readings of sensors as a lin-
ear system to observe readings of all sensors with a
small set of sensor readings. Therefore, it is an energy
efficient monitoring system.

e BINOCULAR improves the quality of the answers of
queries by reducing the noise over sensor readings us-
ing linear observers.

e BINOCULAR balances energy consumption among
sensors while extending their lifetime.

The rest of the paper is organized as follows: Section 2
formalizes the problem of monitoring systems with queries
and gives a solution overview. Linear observers are intro-
duced in Section 3. Section 4 describes the proposed query
processing technique. Section 5 reports the results of our
preliminary experimental evaluations. Section 6 concludes
the paper, presents future work and discusses open research
problems.

2 Problem Formulation and Solution

Overview

Given a set of sensors BINOCULAR divides them into two
types: working and sleeping sensors. In order to estimate
the readings of all sensors, BINOCULAR only collects
data from the working sensors and uses a system model

to estimate the readings of the sleeping sensors. A system
model expresses an estimate based on the current readings
of the working sensors (ux) and the current estimate of the
sleeping sensors (zr). In a linear system model this is ex-
pressed by a linear relationship between x 1 and (x, ux)
based on a linear correlation using system matrices A and
B. This can be expressed as follows:

Tpy1 = Azp + Bug, @
where z € R™*! is the state (the estimated readings of
the sleeping sensors), w € R™*! is the input (the actual
readings of the working sensors), A € R™*™ is the system
matrix, B € R™*™ is the input matrix, m is the number
of the working sensors and n is the number of the sleeping
sensors. Matrices A and B are derived using a system iden-
tification toolbox e.g, Matlab [8], which uses some histori-
cal data set to derive them. Thus, queries can be thought of
as a function of these states and inputs. If the correlations
among sensor readings can be captured by a perfectly linear
model (e.g, illumination), then we can estimate the exact
readings of all sensors using the working sensors. How-
ever, in most cases these correlations cannot be captured
by a linear model but need to be approximated by a linear
model (e.g, temperature readings). In this case we have to
collect readings of all sleeping sensors periodically (every
D time units) in order to avoid error accumulation. The
appropriate value of D can be derived from historical data.

However, if the readings of sleeping sensors can be es-
timated by a small subset of them (linear observers), then
collecting readings from that subset is enough to estimate
the readings of all sleeping sensors. This scheme requires
the system model to be continuously used to derive the es-
timated readings of all sensors based on the readings of the
working sensors. The linear observers are activated peri-
odically every D time units for a short period to recalibrate
the errors in the system model. In this paper we use a linear
observer to estimate the readings of all sleeping sensors. A
linear observer is a linear system built from the original sys-
tem model given by (1). Given a system model in the form
of (1) and a vector of readings of a subset of the sensors
yr, of size p (yr = Czy, where C € RP*™ and C(i,5) is 1
if sensor j is in the observer set and it is the only 1 in that
row), our goal is to determine whether all sleeping sensors
can be observable via the y;, referred to as the observer.
If it is possible to observe, then we use the linear observer
specified by the y, = Cxy,

Example Consider an environment monitored by three
sleeping sensors and one working sensor with a system
model:

Tkt1 = Azyp+ Bug, 2
where z; is a 3 x 1 matrix such that zy () is the estimated
reading of sleeping sensor ¢ and uy is 1 x 1 matrix and
ug (1) is the actual reading of the working sensor at time
k. A and B are matrices given by a system identification
toolbox based on historical data. If this model is accurate

then actual readings of sleeping sensors need not to be col-
lected, because all of the readings of the sleeping sensors
can be estimated from the reading of the working sensors.
However, if the model is a linear approximation, then the
error given by the system model will accumulate over time.
In order to decrease such an error we collect readings of
the three sleeping sensors every D time units. However, if
the readings of these three sensors are observable by any
of them, then the readings of the other two sleeping sen-
sors can be estimated by collecting data from that observer.
Then the question becomes: Is this system model observ-
able via y, = Cxy, where C' = [0 0 1] (the reading of the
third sensor)? If it is observable then we can construct a
linear observer and use that to estimate the readings of the
other two sleeping sensors.

The problem of monitoring systems with queries can be
formulated as follows: Given a set of historical readings of
sensors, and a set of continuous queries to monitor,

e build a scheduler to schedule sensors as a working or
a sleeping sensor,

e discover a linear model between the readings of work-
ing sensors and sleeping sensors,

e construct linear observers and an observer scheduler

to execute queries while reducing and balancing the energy
consumption.

In this paper, we assume that the working and sleep-
ing sensors are statically assigned. In addition, we as-
sume working sensors are not subject to energy constraints.
However, these assumptions are not realistic. Hence, we
need a scheduler to schedule sensors as a working or a
sleeping sensor. The choice of working sensors to model
the system more accurately and a scheduling technique
needs further research.

3 Formal Modd For Observers

Given a system model and a C' matrix where y;, = Cuxy,
we can construct a linear observer if the pair (4, C) is an
observable pair which is defined as follows [1]:

Definition 1 The pair (4, C) is said to be an observable
pair if the matrix

c
CA

cant
is full column rank.

Theorem 1 states how and why a linear observer can be
constructed with an observable pair (4, C).

Theorem 1 Given a system model and a y, as follows:

Az, + Buy, ?3)
ka) (4)

Tp4+1 =
Y =

The states of all sleeping sensors can be observed via yy,
using the following system called linear observer if the
(A, C) pair is observable:

Ii'k_;,_l = ASIAZk + L(yk — C.ﬁk) + Buy, (5)
where L is an observer matrix.

Proof 1 If we define the error as e := z — £, then we can
write using (3), (4), and (5)

Tht1 — Trt1
= Azp — Az — L(yr, — Ciy)
= A(zg — 2x) — LC (2 — 24)
= (A—LC)(.’L'k —i’k)
— (A= LC)es. ©)

Ck+1

Equation (6) tells us that if all the eigenvalues of the error
gain matrix A — LC are with magnitude strictly less than
unity, i.e., A — LC' is Schur, then we can claim |ex| — 0
and hence £, — x as k — oo. Now, the question is can
one always pick L so that A — LC has this property. It is
possible to pick such an L only if the (4, C) pair satisfies
the observability condition [1]. Indeed, if (A4, C) is an
observable pair then the eigenvalues of A — LC' can be ar-
bitrarily placed (all of them can be set to zero for instance)
with a proper choice of L and the system called observer
given by Equation (5) can be used to estimate all of the
states.

Suppose we are given the system matrix A and we can
measure two of the sleeping sensors, say z(1) and z(3),
where z = [z(1) z(2) ... z(n)]T. Then we can construct
an observer with a decaying observer error if (A, C) pair
is observable where

1000 ... 0
C= 0 010 0
Therefore, we can estimate all of the states by collecting the
readings of sleeping sensors 1 and 3 via the linear observer
in Theorem 1.

Using the same observer will drain the energy of the sen-
sors designated as observers. Therefore, we should find a
set of observers and switch among them periodically. In
order to do this, we should have an observer determination
technique. The goal of the observer determination process
is to give a set of C' matrices such that the system is observ-
able via yy = Czy. The number of possible different ob-
servers is 2V, where IV is the number of sleeping sensors.
For small IV, it is possible to test all C' matrices whether
(A, C) is observable or not. However, for large IV it is im-
possible to test all of the possible 2V cases. Therefore, we
need a heuristic to find a set of observers in polynomial
time.

Discussion So far, we use the system model to estimate
the readings of sleeping sensors with the readings of the
working sensors. However, the linear observer given by

(5) can be used to estimate the readings of all the sleeping
sensors with readings of the working sensors and sensors
in that observer. Although it seems inefficient in terms of
energy consumption, it may be beneficial to get more ac-
curate results. We leave these experimental evaluations as
future work. In general, we need a set of observers and an
observer scheduler to select a linear observer to estimate
the readings of all the sensors. Given a set of observers,
we can not switch them at any time. Formally, suppose we
have a set of observers defined by {L;, Ls, ..., Ly} and
{C1, C4, ..., Cp}. Let the resultant error gain matrices
be {Hi, Hs, ..., Hy}, where H; = A — L;C; is Schur
foralli € {1, 2,..., m}. Although each error gain matrix
is Schur, there is no guarantee that the error decays to zero
under arbitrary switching between observers. Intuitively, if
we stay at an observer long enough before switching to an-
other one then we still should have a decaying observer er-
ror. Therefore, we need an observer scheduler to schedule
observers appropriately. Throughout the paper, we assume
that we are given a set of observers and a time matrix T
such that given two observers O; and O;, T;; is the time to
switch from O; to O;.

4 Query Processing

The readings of the sensors are needed to answer queries.
Recall there are two methods to estimate the readings of the
Sensors:

e Method 1: Use the system model continuously and
access any of the observers for a short time every
D time units to recalibrate the errors in the system
model.

e Method 2: Use only observers such that at any time
only one of the observers is accessed and the estimated
readings of all of the sleeping sensors are derived from
that observer.

The job of the query processor is to schedule observers
to balance energy consumption among sensors. The ob-
server scheduler chooses the observer with the highest
score where the score is defined as the Average Energy
Consumption to Collect Readings of the Observer di-
vided by the Average Available Energy of Sensors in
the Observer. At any time the observer scheduler chooses
the observer with the lowest cost and the highest energy.

Observer scheduling is quite straightforward in Method
1. The job of the observer scheduler is to select the observer
with the highest score every D time units and execute it for
a short time to estimate readings of all sleeping sensors in
Method 1.

Since the observer scheduler cannot switch observers at
any arbitrary time, observer scheduling is not straightfor-
ward in Method 2. An example of observer scheduling for
Method 2 is shown in Algorithm 1, which uses an eager
approach to schedule observers assuming the 7' matrix is
known. Let O; and O; be the two observers with the high-
est scores and T5; is the time needed to execute O; before

switching from O; to O;. Algorithm 1 uses O; for T;; time
units. After that, it calculates the new scores and repeats
the same process based on the new scores.

Algorithm 1 Observer Scheduler Algorithm

1. Input:

2: T Time matrix shows time needed before switching observers;
3. O: Setof observersO = Oq, ..., 0,

4: Procedure:

5: while Thereisaquery do

6: Calculate the score of each observer in O

7: Find two observers O; and O; with highest scores

8. UseO; for Tj;

9: end while

10: End Procedure

5 Preliminary Results

The main motivation behind BINOCULAR is modeling the
correlations among the sensor readings and use that model
in query processing. Thus, we conducted some prelimi-
nary experiments over a real temperature dataset from the
Tropical Atmosphere Ocean Project [9] to show correla-
tions among the readings of sensors can be modeled. We
took the average daily temperature readings of 20 sensors
for 1000 days. After that we randomly select one sensor
as a working sensor and the remaining as sleeping sensors.
Based on the first 300 days we build a system model and
try to measure the average errors of readings of sensors for
each time interval during the remaining 700 days In addi-
tion to this, we collect actual readings of all sleeping sen-
sors at time 300 in order to avoid the error accumulation
(we did not use observers). The average error for time ¢ is
calculated as follows: ((1/19)*>_; o0 | $i—si | /si)%100
where §; is the estimated reading and s; is the actual read-
ing of a sensor ¢ at time ¢. Results are shown in Figure
1, where the z axis represents time and the y axis repre-
sents the average percentage error. With the system model
and one working sensor, we can estimate the reading of
all sensors within 3.5 percent error on the average (this
is & F1°C). This preliminary result shows that we can
model the readings of sensors and use that model in order
to process queries resulting in significant savings in energy
consumption. In this study, for example, we need only one
sensor to be working instead of all of the 20 sensors.

6 Conclusion and Future Work

In this paper we presented our system monitoring frame-
work, BINOCULOR, and also showed some preliminary
results. BINOCULAR uses a linear model between work-
ing sensors and sleeping sensors to answer queries while
using a small set of sensors. We introduced the notion of
linear observers to account for the fact that the linear model
will always be an approximation of the physical environ-
ment. By using the linear observers, the modeling error
can be reduced exponentially over time. This results in less
communication cost and prolongs the lifetime of sensors.
Although we presented the general framework, there are
still open research questions. These include:

35

15

051

0 I I I I
0 100 200 300 400 500 600 700

Figure 1: Average error (in percentage) of sensor readings

e How to choose working sensors and balance energy
usage among all sensors?

e How to determine the set of observers in large scale
networks?

e When and how to switch observers to balance energy
consumption?

e How to adapt the system model to changes which is
needed for systems with mobile sensors?

References

[1] PansJ. Antsaklis and Anthony N. Michel. Linear Sys-
tems. The McGraw-Hill Companies, Inc.

[2] A. Cerpa, J. Elson, D. Estrin, L. Hamilton, and
J. Zhao. Habitat monitoring: Application driver for
wireless communications technology. In ACM SIG-
COMM Workshop on Data Communications in Latin
America and the Caribbean, pages 88-97, 2001.

[3] S. Goel and T. Imielinski. Prediction-based monitor-
ing in sensor networks: Taking lessons from mpeg.
Technical Report DCS-TR-438, Rutgers University,
June 2001.

[4] losif Lazaridis and Sharad Mehrotra. Capturing
sensor-generated time seires with quality guaran-
tees. International Conference on Data Engineering
(ICDE 2003), pages 429-, March 2003.

[5] S. Madden and M.J. Franklin. Fjording the stream:
An architecture for queries over streaming sensor
data. International Conference on Data Engineering
(ICDE 2002), pages 555-566, March 2002.

[6] S. Madden, M.J. Franklin, J.M. Hellerstein, and
W. Hong. Tag: A tiny aggregation service for ad-
hoc sensor networks. 5th Symposium on Operating
Sytsem Design and Implementation, December 2002.

[71 A. Mainwaring, J. Polastre, R. Szewczyk, and
D. Culler. Wireless sensor networks for habitat mon-
itoring. In ACM Workshop on Sensor Networks and
Applicaions, 2002.

[8] Matlab. http://www.mathworks.com/products/sysid/.

[9] M. J. McPhaden. Tropical atmosphere ocean
project. Pacific marine environmental laboratory.
http://www.pmel.noaa.gov/tao/.

[10] Anantha Chandrakasan Wendi Rabiner Heinzelman
and Hari Balakrishnan. Energy-efficient communi-
cation protocol for wireless microsensor networks.
HICSS, January 2000.

[11] Yong Yao and Johannes Gehrke. The cougar approach
to in-network query processing in sensor networks.
SIGMOD Record, 31(3):9-18, 2002.

[12] Yong Yao and Johannes Gehrke. Query processing
for sensor networks. In CIDR 2003, January 2003.

Adaptive Sampling for Sensor Networks

Ankur Jain

Computer Science
University of California, Santa Barbara
Santa Barbara CA 93106
ankurj@cs.ucsb.edu

Abstract

A distributed data-stream architecture finds
application in sensor networks for monitoring
environment and activities. In such a network,
large numbers of sensors deliver continuous
data to a central server. The rate at which the
data is sampled at each sensor affects the com-
munication resource and the computational
load at the central server. In this paper, we
propose a novel adaptive sampling technique
where the sampling rate at each sensor adapts
to the streaming-data characteristics. Our ap-
proach employs a Kalman-Filter (KF)-based
estimation technique wherein the sensor can
use the KF estimation error to adaptively ad-
just its sampling rate within a given range,
autonomously. When the desired sampling
rate violates the range, a new sampling rate
is requested from the server. The server allo-
cates new sampling rates under the constraint
of available resources such that KF estima-
tion error over all the active streaming sensors
is minimized. Through empirical studies, we
demonstrate the flexibility and effectiveness of
our model.

1 Introduction

As sensor networks grow in size, bandwidth allocation
becomes increasingly critical. A sensor network needs
to allocate its bandwidth to maximize total informa-
tion gain. A desirable bandwidth allocation scheme
should distribute the given bandwidth such that it
is sensitive to streaming data characteristics, query
precision, available resources (communication, power,
CPU), and sensor priority (data from some sensors
might be more important than others) [9, 2]. We can

Copyright 2004, held by the author(s)

Proceedings of the First Workshop on Data Mana-
gement for Sensor Networks (DMSN 2004),
Toronto, Canada, August 30th, 2004.
http://db.cs.pitt.edu/dmsn04/

Edward Y. Chang

Electrical and Computer Engineering
University of California, Santa Barbara
Santa Barbara CA 93106
echang@ece.ucsb.edu

further motivate this research using the following two
examples.

e Wireless sensor-networks are being used for habi-
tat monitoring applications. In [11], sensors regis-
tering light, temperature, and sound are deployed
in burrows of Storm Petrels (a seabird) for mon-
itoring purposes. During the day time, the bur-
rows are expected to be empty, and thus we can
have a low sampling rate. However, if some un-
usual measurements are recorded at some burrows
(say abrupt increase in sound levels), it would be
desirable to collect samples from them more fre-
quently than the other burrows.

e In video surveillance applications like [6], multi-
ple cameras are mounted at key locations to mon-
itor activities of vehicles and people in a parking
lot. If a camera shows a vehicle exhibiting unex-
pected behavior (random swirling, speeding), the
camera’s sampling rate should be increased by de-
creasing the sampling rates of the other cameras
that are not observing abnormal behavior.

A naive solution to the above-mentioned problems
is over-sampling [12]. However this comes at increased
cost of resources, namely:

e CPU — The CPU at the central server might
have to process unnecessary data from numerous
sources, but this would not affect the result sig-
nificantly.

e Network Bandwidth — The communication chan-
nel would be transmitting unnecessary data.
Moreover, in cases of low bandwidth networks the
option of over-sampling might not be available at
all.

e Power Usage — Power conservation is critical for
wireless sensors. Over-sampling leads to increased
power consumption of a sensor’s measuring de-
vices, radio transmitter, and processing unit.

10

There has been a significant amount of work in the
sensor-network resource management. The key aspect
that differentiates this work from the prior efforts lies
in data collection (sensing). We adjust sampling rates
(sensing rates) at sensors to adapt to data characteris-
tics. Traditional methods (e.g., load-shedding [17] and
adaptive precision setting [13]) collect data at a peak
sampling rate and then determine whether collected
data should be dropped to conserve resources. Even
though the filtering and load-shedding approaches can
reduce bandwidth consumption in the transmission
phase, excessive sampling rates incur high cost in data
collection and processing (to determine what data to
drop) at the sensors. The adaptive sampling scheme
proposed in this paper adjusts the data collection rate
according to data characteristics. Therefore, resources
are conserved and better utilized working only on data
relevant to the queries.

Our general and adaptive sampling approach ad-
justs the sampling interval SI (the time interval be-
tween two consecutive samples) collectively. At the
sensors, the ST is adjusted depending on the stream-
ing data characteristics. The remote source is allowed
to modify the sampling interval independently within
a specified Sampling Interval Range (SIR). If the de-
sired modification in the ST is more than that allowed
by the STR, a new sampling interval is requested from
the server. At each sensor, we use the Kalman Filter
estimator to predict the future values of a stream based
on those seen so far. Large prediction errors signify un-
expected behavior of the streaming data or an interest-
ing event. The sampling interval is adjusted based on
the prediction error. At the server, new sampling in-
tervals are allocated to the requesting sensors based on
available bandwidth, network contention, and stream-
ing source priority.

We consider a simple network model to conduct the
experiments, where all the streaming sources connect
to a single network channel. The server continuously
monitors the usage of this network channel and allo-
cates new bandwidth based on its availability. These
kinds of networks are prevalent in video surveillance,
object tracking and process control (automated meter
reading, building automation). Extending our current
architecture to multi-hop sensor networks is a part of
future research.

The main contributions of our work can be summa-
rized as below:

e We propose a model which, is adaptive to adjust
the sampling rate based on the input data charac-
teristics and general to map to linear (as well as
non-linear) problems without many major modi-
fications.

e Our method utilizes the given bandwidth judi-
ciously such that more important sources get more
bandwidth by reducing the bandwidth of less im-
portant ones.

e Our method allows the capability at the remote
site to adjust the sampling rate (to a certain
extent) independently without the central server
mediation to improve response time.

e Finally, we propose an optimal estimation scheme
(Kalman Filter) that can be used on the sensor
side to assess data arrival characteristics.

2 Related Work

The resource management problem in data streaming
has been studied mainly from the perspective of data
filtering [5, 13]. It has been shown that using adaptive
precision bounds [13], unusual ¢rends in the streaming
data can be captured (the data is updated to the server
only when it falls out of an adaptive precision bound)
at low communication costs. However, due to uniform
sampling, the approach does not have the capability to
utilize a given bandwidth to maximize the information
gain.

The adaptive sampling approach proposed in [10]
considers only the network channel contention while
adjusting the sampling rate. The sensors check for the
network channel contention before putting the data on
it and reduce the sampling rate if the contention and
data-tuple drop rate is high. This reduces the overall
load on the network channel and achieves a better de-
livery rate at the server. The proposed approach does
not utilize the network channel judiciously, and it uses
adaptive sampling only when the network channel be-
comes congested and requires load-shedding.

The use of adaptive sampling and bandwidth man-
agement in sensor networks has been very well moti-
vated in [12, 3, 14, 9]. However a scalable method ap-
plicable in a distributed environment is still not avail-
able.

As we have discussed in Section 1, the problem of
adaptive sampling is not the same as that of load-
shedding [17]. First, to the best of our knowledge, none
of the load-shedding techniques have yet used predic-
tion/estimation models. Second, while load-shedding
modules are activated only when the load on the sys-
tem increases beyond what it can handle, adaptive
sampling modules are executed during the lifetime of
a stream. In the event of network congestion, the
load-shedding module would reduce the data transmis-
sion rate of the sensor by randomly dropping tuples,
whereas an adaptive sampling technique would reduce
the data collection rate in such a way that higher pri-
ority data receive a higher proportion of the available
bandwidth.

3 The Kalman Filter

The Kalman Filter was introduced in 1960 by R. E.
Kalman [7] as a recursive solution to the discrete-data
linear filtering problem. Since then, it has found ap-
plication in the fields of data smoothing, process es-

11

timation, and object tracking, to name a few. The
traditional Kalman Filter is a linear algorithm that
estimates the internal state of a system based on a
prediction/correction paradigm. Below, we provide
a brief overview of the Kalman Filter’s mathematical
formulation, for more details refer [18].

The Kalman Filter comprises a set of mathematic
equations that provide a recursive solution to the least-
squares method. The system model is represented in
the form of the following equations:

Trpi1 = QrTr + Wi (1)
2 = Hkmk + v (2)
where
xE = state vector of the process
¢ = state transition matrix relating xy

to Tp41

wy = process model noise

zZ = measurement vector

H;, = matrixz relating system state and
measurement vector

Vi = measurement noise

k = discrete time index

The prediction &g is based on a linear combination
of previous prediction/estimation and the weighted
prediction error. This error is called innovation g,
which is calculated as follows:

The value of the weight is called Kalman Gain Kj
which is adjusted with each measurement. The pre-
diction is calculated as follows:

&y = &), + Kitr. (4)
Applying the least-square method we get
Ky =P, HI (H.P, HF + Ry,)™". (5)

P, = (I - KuHy,) Py . (6)

where, P, and Ry are the error covariance and mea-
surement noise covariance matrices respectively (the
superscript denoting the a priori state of the matri-
ces).

The advantage of using the Kalman Filter is that it
gives satisfactory results even when we cannot model
the process accurately (i.e., when the values of matri-
ces Vg, and ¢y are unknown) and that the innovation
sequence can be used to evaluate the performance of
the estimation process.

There is a wide spectrum of filtering solutions
available which work on the estimation/correction
paradigm and can be substituted for Kalman Filter in
our proposed architecture. However, we support the
use of Kalman Filter as it can be easily customized to
provide good results on a wide range of streaming sen-
sor data and produce unbiased estimates even when
the incoming data have high variance. Biased algo-
rithms (like Exponential Weighted Moving Average,
EWMA) might not be the best choice when incoming
data has high variance. Error estimates can be fur-
ther improved using more sophisticated solutions like
Particle Filter [8] or condensation (conditional density
propagation) [4] as they work on non-Gaussian noise
processes and multi-modal state propagation. Such
algorithms are likely to provide better results as real-
life data are not Gaussian, however this performance
upgrade comes at increased cost of computational re-
sources. Most of the sensing devices have limited com-
putational capacity and selecting the best filtering so-
lution is subject to the availability of the resources.
The advantage of using Kalman Filter here is that the
computational complexity can be easily manipulated
by adjusting the number of state variables in the state
propagation equation.

4 Our Approach

We now present our adaptive sampling approach in a
distributed stream environment. We consider an envi-
ronment where numerous sensors continuously stream
updates to a central server. For example, a system
of sensors that continuously measure the location of a
moving object in two dimensions (one sensor for each
object). Our adaptive approach would distribute the
available bandwidth automatically in such a way that
sensors monitoring objects showing increased activity
have shorter time intervals between successive (low
sampling interval) measurements whereas those with
reduced activity have longer time intervals (high sam-
pling interval). This way, the trajectory generated at
the server by interpolating the measurements from the
sensors would be closer to the original trajectory than
that obtained by performing uniform sampling.

To maintain simplicity, we do not assume the pres-
ence of any data filtering or load-shedding modules in
our discussion. Thus, the data-sampling interval is the
same as the data-transmission interval of the sensor.
We interpret the sampling interval as the number of
time units between two successive measurements.

There are two main modules in the system, one
on the sensor side and the other on the server side.
Due to the space limitations, we describe each of them
only briefly. To simplify our discussion, we assume in
this paper that the tuple size over all the sources is
the same, and hence the bandwidth consumption is
directly proportional to the sampling interval at the
streaming sources.

12

4.1 Source Side Module

Let SI; denote the current sampling interval at source
S; (i is the i*" source) which, is the number of time
units between two consecutive measurements. Let
SIR,; denote the range within which, the sampling
interval can be adjusted by the source without any
server mediation and SI/%** denote the latest value of
sampling interval received from the server. (We cur-
rently assume static STR;’s.) Let SIdesired denote the
desired sampling interval based on the KF prediction
error. Sensor S; need not contact the server for addi-
tional bandwidth provided that

(SIl%" — SIR;/2) < SIdesired < (S[lest 1 STR,/2).

(7)
If SIdesired gatisfies Equation 7 then SI; takes the
value of SIdesred. This scheme helps the source to
capture unexpected data trends immediately as the
server grants over the network could be delayed due
to network congestion or unavailability of resources.
Each data tuple sampled by S; is forwarded to a
Kalman Filter KF; which, provides with the innova-
tion ¢ value (Section 3). The estimation error §; at
any instant t is then calculated as:

8, = sqrt(trace(yi(zi)~1)?). (8)

We multiply the innovation (error in prediction) by the
inverse of the measurement matrix to get the fractional
error (¢! and z} are column matrices). We take the
square of the matrix to eliminate any negative values.
Finally the square root of the trace gives the fractional
error over all the variables in the measurement matrix.

S; maintains a sliding window of size W; that holds
the last W, values of the estimation error. If n; is the

4t element of the sliding window at S; (n} being the
latest element), total error A; over the sliding window
is calculated as:

=i
> ni/j
j=1

2 /i
j=1

9)

Equation 9 ensures that the newer values in the win-
dow have higher weight.

User parameters \; and 6; control the dynamics of
SI;. Each time A; is calculated, a new sampling in-
terval SI]**" is generated as follows:

SIMw = ST + 0; (1 — e). (10)
where f; = Ai; A Equation 10 ensures sharp fall and
gradual rise in the sampling interval due to the expo-
nential factor that helps improving the response time
of the system. If SI]*" satisfies Equation 7, then the
sampling interval is assigned this new value; otherwise,

a new sampling interval is requested from the server.
The source requests the change is the sampling interval
ASI; such that

ASI; = SI'" + SIR; /2. (11)

In addition the source also sends the fractional error f;
for each request of decrease in the sampling interval.

4.2 Central Server module

We now discuss the sampling rate allocation policy at
the central server. The allocation algorithm is exe-
cuted each time a request for decrease in sampling in-
terval (increase in the sampling rate) is received from
a streaming source. The server maintains a variable
Ravair that holds the amount of communication re-
source available at any time. When a source reports
about an increase in its sampling interval, the server
immediately adds the proportional amount of resource
units to Rgyqi and sends an acknowledgment to the
source. Any request for a decrease in a sampling in-
terval is added to a job-queue that is processed con-
tinuously by a separate thread.

Each job J, in the job-queue has 5 attributes which,
are described below:

1. Fractional error f, is received from the source
when it sends a request.

2. Request Reqp is the units of resource requested.

3. History hy is the age of the request in the job-
queue. Its value is incremented by unity each time
the job-queue is processed.

4. Grant g; is the fraction by which, the Regq, has
been satisfied so far.

5. Query Weight w, the weight of the streaming
source from the query evaluator.

Assuming that the error f, is reduced to zero if re-
source request J, is satisfied completely, we can for-
mulate a linear optimization problem, minimizing the
total error over all the jobs. If J), is allocated A, units
of resources, then the residual error after satisfying
the job is proportional to (1 — A,/Reqy). Jobs hav-
ing higher f,, hp, and w, are given more priority than
others, whereas the priority varies inversely with g,,.
We normalize each attribute by dividing it by the sum
of its value in all the jobs in the job-queue. Thus the
objective function can be formulated as:

hyp wp

: f >y _ A
n}lpn (Zz}p * > hp * > wp * gpp * (1 REZP))(12)

st Z Ap S Ravail
1 0< A, £ Regp

(13)

Constraints in Equation 13 ensure that the sum of the
allocated resources is less than that of the total avail-
able and that each grant is less than its request. Once

13

the optimization problem is solved, the resource units
are distributed to the requesting sources and the job-
queue attributes are updated accordingly.

5 Results

In this section we present the preliminary results of our
distributed adaptive sampling system. We performed
the experiments on data produced by the oporto real-
istic spatio-temporal data generator [15]. We recorded
the trajectories (in 2 dimensions) of 12 shoals produced
by the generator for 3,000 time units. Oporto pro-
duces data with uniform distribution and some of the
trajectories were more complex than the others.

We implemented our system and conducted the ex-
periments on a Pentium III processor workstation with
256MB of RAM on a 10/100 Mbps LAN. The coding
was done on JDK 1.2.4, using JAMA [1] matrix pack-
age for matrix operations and OR-Objects [16] package
to solve the LP problem.

We initialized different streaming sources with dif-
ferent trajectories but the same initialization parame-
ters using a linear KF model [5]. All the sources had
to wait until the sliding window was full. We ran the
simulation until one of the sources had read all the
3,000 records. The tuples received at the server with
their timestamps were then used to create the com-
plete trajectory using linear interpolation for both X
and Y coordinates. We evaluated the performance of
our system based on an effective resource utilization
(ERU) metric which, is calculated as

E=nxm (14)

where m is the fraction of messages exchanged between
the source and the server, to the total number of tuples
read by the source, where 7 is the mean fractional error
between the actual trajectory and that generated by
interpolation. While calculating m we considered the
number of tuples forwarded by the source, messages for
bandwidth allocation and acknowledgment messages
from the server to the source. In all the experiments
0;=2, the initial sampling interval was five tuples and
none of the sources were allowed to skip more than 12
tuples in the adaptive sampling module. We studied
the affect of the number of sources, sliding window size
W; and A; on the FRU. Results shown in Figures 1,
2, and 3 were obtained using W; =5 and \; = 0.6.

Figure 1 shows the mean fraction of messages for-
warded to the main server against the number of
sources. In this figure m is low for a small number
of sources, but as the number of sources increases, it
rises and stabilizes around 0.12. In all the cases the
number of messages is less than or equal to that sent
using uniform sampling.

Figure 2 shows that the fractional error using adap-
tive sampling is always less than that using uniform
sampling, except when the number of sources is one.
This is because we initialize the experiments with same

0.13 ‘ ‘
Adaptive Sampling —e—

Uniform Sampling —--o--

0.125 S S——

0.12

>—$\

2 0115

0.11

0.105

0.1

0 2 4 6 8 10

No. of Steaming Sources

Figure 1: m on varying # of streaming sources

12

0.35 ‘ :

Adaptive Sampling —e—
0.3 Uniform Sampling —--o—-"_|

o’
0.25 ‘ —
et
0.2 e
0.15 -
ey
0.1 S
/;‘
0.05
0 -
0 2 4 6 8 10 12

No. of Steaming Sources
Figure 2: n on varying # of streaming sources

sampling interval for both uniform and adaptive meth-
ods. Thus if the number of sources is one, then we
cannot beat the uniform sampling method.

Figure 3 shows change in FRU on varying the num-
ber of sources. The trend is similar to that in Fig-
ure 2. We observe that our approach outperforms the
uniform sampling method even when the number of
sources is high. There are some unusual results when
the number of sources is five and seven. This is be-
cause the trajectories for these sources of input data
may be unusually simple/complex.

Figure 4 shows the affect of parameter A\; on the
FERU. Resource utilization is high for very low values
of \; because although the error rate would be low, the
number of messages would be very high. We observed
lower ERU when \; varied around 0.4 and 1.2. This is
because at lower values of \; the error is low and thus
FERU is low, on slightly higher values, although the
error is high, the value of m drops down significantly
enough to reduce the resource utilization below that of
uniform sampling. However at further increasing the
value of \;, n; starts to dominate and the FRU starts
to increase.

The effect of varying the sliding window size is
shown in Figure 5. It is observed that at low values

14

0.045 ‘ ‘
Adaptive Sampling —e—

0.04 Uniform Samplin

-—0--
2
,

A

0.035 mr-el

0.03 &
0.025 sz’

ERU

0.02 o
0.015 et

0.01 s

0.005 ’
oL &=

0 2 4 6 8

No. of Steaming Sources

10

Figure 3: ERU on varying # of streaming sources

0.016

12

I I I
Adaptive Sampling —e—

0.015 Uniform Sampling ---o---

0.014

0.013 \ T =

ERU

0.012

0.011

0.01

0.2 0.4 0.6 0.8 1

Ai

1.2 1.4

Figure 4: FRU on varying \;

of W; give better ERU. As the window size increases,
the FRU approaches constant value.

6 Conclusions and Future Work

In this paper we have proposed an adaptive sampling
technique based on a Kalman Filter estimation of er-
ror as an alternative to commonly used uniform sam-
pling techniques. We motivated the need for adap-
tive sampling techniques in a sensor network environ-
ment, where network bandwidth is a valuable resource.
Adaptive sampling was shown to be desirable not only
to conserve resources but also to improve the overall
quality of results (minimize the fractional error be-
tween the actual and the interpolated results).

We discussed some of the preliminary results in Sec-
tion 5 to show the effectiveness of our approach. We
observed that when we choose the input parameters
judiciously, our system can provide performance up-
grade as much as three to four times as compared to
uniform sampling (Figure 3). We have also shown the
effect of different input parameters on the system per-
formance which, suggests that further research needs
to be conducted to enable us to choose optimal param-
eters for the system.

1.6

0.018

I I I I
Adaptive Sampling ——

/Yniform Sampling ---o--- —

0.017

0.016

0.015

0.014

ERU

0.013

0.012

0.011

0.01

10
Wi

12 14 16 18 20

Figure 5: ERU on varying W;

Our preliminary results are encouraging but further
research is indicated in the following directions:

e Extending the current architecture to multi-hop

sensor networks.
Choosing appropriate window size.

Developing efficient techniques to compute the er-
ror over the sliding window. In some cases expo-
nential decay methods might provide better re-
sults.

Developing efficient algorithms to reduce the re-
quest/acknowledge message overhead between the
server and the sources. (Currently the message
overhead is high.)

Developing algorithms to incorporate adaptive
SIRs in the current system.

Testing the system performance on more real life
data sets.

References

[1] R. F. Boisvert, B. Miller, R. Pozo, K. Remington,
J. Hicklin, C. Moler, and P. Webb. Jama : A java
matrix package.

[2] P.Bonnet, J. E. Gehrke, and P. Seshadri. Towards

sensor database systems. In Second Intl. Conf. on

Mobile Data Management, Hong Kong, January

2001.

[3] B.Hull, K. Jamieson, and H. Balakrishnan. Band-

width managment in wireless sensor networks. In

Intl. Conf. on Embedded Networked Sensor Sys-

tems, Los Angeles, California, USA, November

2003.

M. Isard and A. Blake. CONDENSATION — con-
ditional density propagation for visual tracking.
International Journal Computer Vision, 1998.

[4]

15

[5]

[7]

8]

(10]

(1]

[12]

(13]

A. Jain, E. Chang, and Y. F. Wang. Adaptive
stream resource management using kalman filters.
In Proceedings of the 2004 ACM SIGMOD Intl.
Conf. on Management of Data, 2004.

L. Jiao, Y. Wu, G. Wu, E. Y. Chang, and Y. F.
Wang. The anatomy of a multi-camera security
serveillance system. ACM Multimedia System,
2004.

R. E. Kalman. A new approach to linear filter-
ing and prediction problems. Transactions of the
ASME-Journal of Basic Engineering, 82(Series
D):35-45, 1960.

M. K.Pitt and N. Shephard. Filtering via simu-
lation: auxiliary particle filters. Journal of the
American Statistical Association, 94(446):590—
599, June 1999.

I. Lazaridis, Q. Han, X. Yu, S. Mehrotra,
N. Venkatasubramanian, D. V. Kalashnikov, and
W. Yang. QUASAR: Quality aware sensing ar-
chitecture. ACM SIGMOD Record, 33(1):26-31,
Mar. 2004.

S. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. The design of an acquisitional query
processor for sensor networks. In Proceedings of
the 2003 ACM SIGMOD Intl. Conf. on Manage-
ment of Data, pages 491-502. ACM Press, 2003.

A. Mainwaring, J. Polastre, R. Szewczyk,
D. Culler, and J. Anderson. Wireless sensor net-
works for habitat monitoring. In ACM Intl. Work-
shop on Wireless Sensor Networks and Applica-
tions, WSNA, Atlanta, Georgia, USA, September
28 2002.

A. D. Marbini and L. E. Sacks. Adaptive sam-
pling mechanisms in sensor networks. In London
Communications Symposium, London, UK, 2003.

C. Olston, J. Jiang, and J. Widom. Adaptive
filters for continuous queries over distributed data
streams. In Proc.of ACM SIGMOD Intl. Conf.
on Management of Data, San Diego, California,
USA, June 2003.

J.-Y. Pan and S. S. amd Christos Faloutsos. Fast-
cars: Fast, correlation-aware sampling for net-
work data mining. In GLOBECOM 2002 - IEEE
Global Telecommunications Conf., pages 2167—
2171, Taipei, Taiwan, November 2002.

J.-M. Saglio and J. Moreira. Oporto: A realistic
scenario generator for moving objects. Geolnfor-
matica, 5(1):71-93, 2001.

D. Systems. OpsResearch:
http://www.opsresearch.com.

OR-Objects.

[17]

(18]

16

N. Tatbul, U. Cetintemel, S. Zdonik, M. Cherni-
ack, and M. Stonebraker. Load shedding in data
streams. In 29th Intl. Conf. on Very Large Data
Bases (VLDB), pages 309-320, Berlin, Germany,
September 2003.

G. Welch and G. Bishop. Introduction to Kalman
Filter. http://www.cs.unc.edu/~welch/kalman,
2002.

Predictive Filtering: A Learning-Based Approach to
Data Stream Filtering

Vibhore Kumar, Brian F Cooper, Shamkant B Navathe

College of Computing, Georgia Institute of Technology
801 Atlantic Drive, Atlanta, GA 30332-0280
{vibhore, cooperb, sham} @cc.gatech.edu

Abstract

Recent years have witnessed an increasing
interest in filtering of distributed data streams,
such as those produced by networked sensors.
The focus is to conserve bandwidth and sensor
battery power by limiting the number of updates
sent from the source while maintaining an
acceptable approximation of the value at the
sink. We propose a novel technique called
Predictive Filtering. We use matching predictors
at the source and the sink simultaneously to
predict the next update. The update is streamed
only when the difference between the actual and
the predicted value at the source increases
beyond a threshold. Different predictors can be
plugged into our framework, and we present a
comparison of the effectiveness of various
predictors. Through experiments performed on a
bee-motion tracking log we demonstrate the
effectiveness of our algorithm in limiting the
number of updates while maintaining a good
approximation of the streamed data at the sink.

1. Introduction

Advances in networking and sensor technology have
made it possible to access sensor data as it is gathered,
and this in turn has fueled the development of applications
that use a continuous stream of data. To manage this data,
several data stream management systems have been
developed, including STREAM [4], NiagaraCQ [6],
TelegraphCQ [7] and Aurora [5]. We consider distributed
environments in which remote data sources continuously
stream updates to a stream processing installation. These
environments incur a significant communication overhead

Copyright 2004, held by the author(s)

Proceedings of the First Workshop on Data
Management for Sensor Networks (DMSN 2004),
Toronto, Canada, August 30th, 2004.
http://db.cs.pitt.edu/dmsn04/

17

in the presence of rapid update streams. Limiting the
number of updates can significantly reduce this overhead.

We present a novel approach to limiting stream
updates, called Predictive Filtering. In many scenarios
like motion tracking and network monitoring,
approximate data values can be tolerated by the stream
applications [2]. When the data values do not change
randomly, prediction algorithms can be wused to
approximate the next update when it occurs without
actually streaming the data. In our approach the sink
requesting data from a stream source specifies to the
source a certain precision constraint that needs to be
satisfied. Predictors are then deployed both at the source
and the sink that adapt to evolving data patterns in the
stream. An update is streamed only when the difference
between the actual and the predicted value at the source
increases beyond the threshold or the precision constraint;
otherwise the sink uses the predicted update. In the case
of streams with a known update rate, the sink knows when
the next update should be predicted; otherwise an update-
beacon (described later) is used to signal the occurrence
of a new update at the source.

As with all previous prediction techniques our
approach is also limited to data streams that show some
pattern in the updates because predictions are based on the
previous updates and patterns. Our approach is well suited
for streaming sensor data, since many sensors track
phenomena with an inherent pattern, such as temperature,
motion, and so on. We next give an example of one
particular application of our approach.

1.1 Example Application: Location Tracking and
Collision Prevention

Consider a scenario where a number of fast moving
objects are being tracked to maintain location
information. Tracking the location of fast moving objects
incurs a large amount of communication overhead
because of the large number of updates required per unit
time to track an object. Our predictive filtering approach
takes advantage of the fact that motion does not tend to be
random. For example, airplanes follow air routes and bees

move in a way that communicates information to other
bees. As long as the objects being tracked stay on the
predicted course, few updates will have to be streamed.
Moreover, our filters can allow us to look beyond the
current update and predict with some probability the
future positions of the tracked objects. This can aid in
applications that may need to react early to certain
conditions, such as two airplanes passing too close to each
other.

1.2 Related Work

An approach to data stream filtering was suggested by
Olston, Jiang and Widom [1], which makes use of
adaptive filters for processing continuous queries with
precision guarantees. However, the approach makes no
attempt to predict the next update and is thus similar to
our approach with the predictor always predicting the next
update to be equal to the last update. We present results
comparing our techniques to their approach in Section 4.
Quantitative guarantees regarding the precision of
approximate answers is dealt with in [3]. One possible
application for monitoring of environmental conditions
using wireless sensors is discussed in [8, 9, 10].

1.3 Roadmap of the paper

The rest of this paper is divided into 4 sections; Section 2
gives a brief description of various prediction techniques
explored in this paper. Section 3 contains the details to
incorporate the prediction techniques into our stream
framework. Section 4 contains an evaluation of our
approach and its performance when compared to existing
data stream filtering algorithms. In Section 5 we conclude
by discussing some possible future directions and
challenges in the domain.

2. Overview of Algorithm & Prediction
Techniques
The choice of a prediction technique is highly dependent

on the nature of the data stream under consideration.
Using linear extrapolation one can easily approximate a

V.

linear data stream that monotonically increases, decreases
or remains constant for sufficiently large intervals of time;
such a scenario happens when tracking fast moving
objects that tend to stay on course. In situations where
linear extrapolation is not appropriate because of the
rapidly fluctuating or more complex patterns of behavior,
enhanced prediction techniques like double-exponential
smoothing can be used. In some cases like streaming
stock market data, statistically modeling a system for
predicting such updates might not be possible. In such
scenarios neural network-based time series prediction
methods can serve the purpose. However, besides the
nature of data stream, the update rate may also affect the
choice of the prediction technique. We can tolerate
computational delays for streams with slow update rates;
but for streams with faster update rates, techniques with
less computational overhead have to be used to ensure
delivery of all updates. We now briefly describe each of
these approaches.

The basic components of our approach are shown in
Figure 1. We maintain two predictors; one at the source,
and other at the sink, that are exact copies of each other.
The predictors contain three components; the ‘Predict’
component that is responsible for predicting the update
based on past updates; ‘Learn’, which performs the
learning in case of an incorrectly predicted update, and
finally the ‘Update Trigger’ that causes periodic
generation of an update in case of regular streams or
causes the generation of an update on arrival of an update-
beacon. The update-beacon is a small message that occurs
in lieu of the actual update to signal the sink that an
update has occurred. Update-beacons are important for
streams with irregular update rates in which the
occurrence of next update cannot be determined until it
actually occurs. An update-beacon is not required for
regular streams, but for irregular streams we must tolerate
some communication overhead imposed by update-
beacons (which is less than actually propagating the
updates) in order to know when updates should be
predicted. It may be possible to extend our predictors to
predict the update rate as well, although we have not yet

Pm-- - ------e RCtUal Update

4

’,,ff+Filter Bound

] 3
1 1
1]
1
| | | |
| I Mispredictdd '
I I Update : | < Predicted:
1
[Predicti Learn I :| Update ,
: | Update '
| Update Trigger | Beacon '
| | ! !
[| | , |
—————————————— ! Predicti Learn
| |
1 1
1 1
1 1
1 1

/
7/
i

Sink

e Update Trigger

Source

Figure 1. Showing the components in Predictive Filtering

[* source side component is invoked for each update */

I user defined
Il true if stream is periodic

THRESHOLD threshold;
BOOLEAN regular_stream;

source_update(UPDATE actual_update)
{
UPDATE predicted_update;
predicted_update = predict();
if(difference(actual_update, predicted_update)>threshold){
stream(actual_update);
learn(actual_update);
}
else{
if('regular_stream){
signal_update_beacon();
}

}
}

Figure 2. Source side update component

[* sink side component is invoked by trigger update with NULL *
* (either a timer or update-beacon) or by an arriving update */

sink_update(UPDATE actual_update)

{
If(actual_update == NULL){ // no update arrived
actual_update = predict(); // need to predict the update
}
else{

learn(actual_update);

}
}

Figure 3. Sink side update component

examined this possibility. The filter-bound at the source is
a user specified parameter that encapsulates the degree of
approximation that is tolerable.

The procedures at the source and the sink for handling
updates / update-beacons are shown in Figure 2 and
Figure 3 respectively. The learn () and predict ()
procedures are specific to the type of prediction technique
being used. The following sub-sections contain details
about these procedures.

2.1 Linear Extrapolation

Linear Extrapolation provides a technique that imposes a
very low overhead but performs sufficiently well for
predicting a wide range of data streams. Given two
updates at time #, and #,,, the update at time #,,, is given
by the following expression:

M(tn+l)—M(tn) " M(tn+1)—u(tn) £ }
h+1—1h Ih+1—1h

Thus, the next update is predicted to be on a straight line

connecting the previous two updates. When the stream is

M(tn+2) = n+2+{M(tn)_

19

not changing rapidly we can predict more than the next
update i.e. the " update into the future is calculated using
the following expression:

U(tn+d)=mXtn+d+c

M(tn + l) - M(tn)

where m = and ¢ ={u(tn) — m X tn}

th+1—1n

For linear extrapolation, learning consists only of tracking
the previous two updates.

2.2 Double Exponential Smoothing

Double exponential smoothing-based prediction (DESP)
[11] models a given time series using a simple linear
regression equation where the y-intercept ¢ and slope m
are varying slowly over time. An unequal weighting is
placed on these parameters that decays exponentially
through time so newer observations get a higher
weighting than older ones. The degree of exponential
decay is determined by the parameter o € [0:1). The
method makes use of two smoothing statistics:

Su(ta) = & uta) + (1— @) S (utn - 1))

S'(u(t) =aSu)+ (1 -a)S' (u(tn-1))
Using these smoothing statistics ¢ and m can be estimated
as ¢’ and m” by applying the following equations

m' (1) %(S(u(rn»—swu(tn»)
-

c'(tn) =285 (u(tn)) — S'(u(tn)) — tam' (tn)
Given these estimates and with some algebraic

manipulation the next update is predicted time d into the
future with

w0y = 2+ 2L 5w - A+ 258 (it
- -

In this case, the predictor learns by refining ¢ and m over
time based on updates.

2.3 Artificial Neural Network based Predictors

Another popular technique used for prediction is Neural
networks [12, 13, 14]. Compared to the previous two
techniques, they tend to be more adaptable and flexible,
since they can effectively model complex non-linear
mappings and a broad class of problems due to their non-
parametric nature. Their topology and weights are
adaptable; therefore they are able to learn, which makes
neural networks well suited for applications like
prediction, system identification, and classification in
many problem domains. One of the drawbacks of neural
networks is that they need a sufficiently large data set to

[* source side component is invoked for each update */

THRESHOLD threshold;
BOOLEAN regular_stream;

Il user defined
Il true if stream is periodic

source_update(UPDATE actual_update)
{
UPDATE predicted_update;
predicted_update = predict();
if(difference(actual_update, predicted_update)>threshold){
stream(actual_update);
}

else{
if('regular_stream){
signal_update_beacon();
}

}
}

[* E-Code Equivalent of source side linear predictor */

{

int predicted_val;

predicted_val = filter_data.m * filter_data.x + filter_data.c;

if((predicted_val — input.val)>=filter_data.threshold ||

(input.val — predicted_val)>=filter_data.threshold)){

Ilupdate the filter_data
filter_data.m = (filter_data.last_val — input.val);
filter_data.c = input.val — filter_data.m * filter_data.x;
filter_data.x = filter_data.x + 1;
filter_data.last_val = input.val;
return 1;

filter_data.x = filter_data.x + 1;
filter_data.last_val = predicted_val;
return 0;

}

Figure 4. Modified source side update component

[* sink side component is invoked by trigger update with NULL *
* (e.g. a timer or update-beacon) or by an arriving update ¥

sink_update(UPDATE actual_update)

{
If(actual_update == NULL){ // no update arrived
actual_update = predict(); // need to predict the update
1
else{

learn(actual_update);
update_source_predictor();

}

Figure 5. Modified sink side update component

train the network, but this is what makes them even more
suitable for stream-based applications that present
enormous amounts of data. Another advantage of using
neural networks is that they can be used to predict
categorical data streams, which may have certain
elements that cannot be mathematically approximated.
However, the inherent mathematical complexity involved
in training neural networks and then in the prediction may
limit the usefulness of this approach.

Since we do not want to overload the stream data-source
with computations for predicting the next update, we use
a modified algorithm in this scenario. The learning
component in case of neural network based predictors is
present only at the sink and the predictor at the source is
periodically updated to ensure similar predictions as the
sink. The modified source and sink procedures are shown
in Figure 4 and Figure 5 respectively. Further
modifications to the algorithm include updating the sink
predictor with batched updates after a threshold number
of mispredictions. This allows us to limit the number of

Figure 6. E-Code representation of source side linear
predictor

source predictor updates and produces better on-line
training of the neural network. We have so far
experimented with simple three-layer feed-forward neural
networks and made use of the error back-propagation
method to train the network; units with sigmoid function
were used to construct the network. We are gathering
results for neural-network based predictors as part of our
ongoing work.

3. Implementation Details

In this section we deal with the issues concerning the
deployment of predictive filters. We have implemented a
distributed stream management framework using the
ECho publish-subscribe middleware [18, 19] developed at
Georgia Tech. The predictive-filtering algorithm
discussed in this paper was implemented as a part of our
stream management framework. The ECho middleware
supports channels that facilitate the flow of data between
the source and the sink. One of the important features of
the ECho-Channel framework is its ability to dynamically
compile and deploy filters written in E-Code, a highly
portable subset of C, at remote sites to process data at the
source. We have used this ability of the framework to
enable deployment of predictors at the source. More
details about ECho and the E-Code Language can be
found in [18].

The E-Code equivalent of a source-side predictor
using linear extrapolation is shown in Figure 6. The
variables input and filter_data are implicitly available to
the function. The input variable contains the update. The
filter_data variable contains configuration and state
information, including the slope, y-intercept, last update
and the update iterator. A return value of 1 causes the
update to be transmitted to the sink while a 0 results in
non-transmission of the update.

20

Bee-Path Tesce Original

y-axis (blocks)

o

=] L e

ano oo
x-axis (blocks)

Figure 7. The original path followed by the Bee.

Bee-Path Teace usmg Soures Apgeorinsion

oo T T T T T T T T T T

y-axis {blocks)

) a0
x-axs [blocks)

Figure 8. Bee-Path Trace using Source
Approximation

y-axis (blocks)

w1 v T T T 1

Bee-Paih Treace usmg L Extespolaton

L=l

=0 L e

s oo
x-axis (blocks)

Figure 9. Bee-Path Trace using Linear Extrapolation

y-axis {blocks)

Bee-Path Teace usmg DESE

a0 a0

a0
x-axs [blocks)

Figure 10. Bee-Path Trace using Double Exponential

Smoothing

Table 1. Comparison of various predictive filtering techniques for constant Filter-Bound = 5

Filtering Technique Number of Updates RMS Error
Propagated
No Filtering 7846 -
Source Approximation[1] 542 3.98
Linear Extrapolation 672 2.62
Double Exponential Smoothing 454 2.07

Another advantage of using ECho channels is that the
sink can remotely access the filter_data configuration
information available to the source-predictor. This facility
helps in remote maintenance of this structure and proves
helpful in implementation of neural network based
predictors in which the source predictor needs to be
updated by the sink.

4. Experimental Results

We evaluated the performance of our technique and its
applicability by designing a motion tracking system that

21

records a log of various fast-moving objects. The
temporal data feed was visual data collected by the
BioTracking group at Georgia Tech [20]. The group video
recorded activity of bees around a beehive for 10 days, 12
hours per day; and then processed the video using an
image-processing algorithm to track the individual bees.
We chose this data stream because the high rate of change
in a bee’s trajectory allows us to examine our techniques
for predicting very complex data streams.

The original motion log of a single bee is shown in
Figure 7, which depicts 7846 updates from the bee-path

Table 2. Comparison of various predictive filtering techniques for RMS-Error ~ 4

Filtering Technique Number of Updates Filter-Bound
Propagated
No Filtering 7846 -
Source Approximation [1] 542 5.00
Linear Extrapolation 464 6.30
Double Exponential Smoothing 359 7.80

trace. In our experiment, we limited the number of
updates for tracking the bee by using various prediction
techniques discussed above. Figure 8 shows the path
traced by the bee using the source approximation
technique discussed in [1]. Note that the path is very
sparse and misses some details. Figure 9 shows the results
obtained by using a linear extrapolation predictor. The
figure shows more of the zig-zag nature of the original
curve as the filter tries to predict and approximate the
correct position of the bee. The results of using a double
exponential smoothing based predictor are shown in
Figure 10 and smooth edges and even more detail are
shown in the figure.

Table 1 shows the actual number of updates
propagated from the source to approximate the position
log for the various prediction techniques when filter-
bound is kept constant. It also contains the root-mean-
squared (RMS) difference (error) between the updates
predicted by or received at the source and the actual
updates. The RMS measures the quality of the
approximated data; lower error is better. The number of
updates required for linear extrapolation is more than that
required for source approximation but the corresponding
RMS error is considerably lower. However, the double
exponential smoothing technique is the best both in terms
of the number of propagated updates and the RMS error.
Table 2 shows the actual number of updates required by
each technique to approximately deliver the same quality
in terms of RMS error at the sink. The table clearly shows
the advantage of using prediction-based methods for
filtering the updates. It maybe noted that better filtering
techniques allow for relaxed filter-bound to achieve the
same quality of sink updates.

Experiments with neural-network based predictors are
being conducted as part of our ongoing work.

5 Conclusion and Future Work

We have presented a novel approach to limiting the
number of updates in streaming data environments by
predicting values rather than streaming them. We have
described the basic algorithm, which can be used in
conjunction with a number of prediction techniques. Our
initial experiments suggest that our approach can produce
high quality data at the sink while effectively limiting the
number of updates that must be sent. Our approach is

22

applicable to a large number of streaming data
applications typically present with sensor networks that
deal with regular data: e.g. network monitoring data,
traffic data and stock market data, and so on. We are
currently exploring the possibility of predicting
categorical data streams using neural network based
predictors. We understand that the techniques are limited
to data with numeric values; if the data is from a domain
with discrete strings or categories as values, a
modification of the proposed techniques will be needed.
This is left as part of our future work.

References

[1] C Olston, J Jiang, J] Widom. Adaptive Filters for
Continuous Queries over Distributed Data Streams. In
proceedings of the ACM SIGMOD International
Conference on Management of Data, 2003.

[2] R Min, M Bharadwaj, S Cho, A Sinha, E Shih, A
Wang and A Chandrakasan. Low-power wireless sensor
networks. In proceedings of the Fourteenth International
Conference on VLSI Design, India, January 2001.

[3]1 H Yu and A Vahdat. Efficient numerical error
bounding for replicated network services. In proceedings
of the Twenty Sixth International Conference on Very
Large Databases, Cairo, Egypt, September 2000.

[4] S Babu, J] Widom (2001) Continuous Queries over
Data Streams. SIGMOD Record 30(3):109-120

[5] D Carney, U Cetintemel, M Cherniack, C Convey,
S Lee, G Seidman, M Stonebraker, N Tatbul, S Zdonik.
Monitoring Streams: A new class of data management
applications. In proceesings of the twenty seventh
International Conference on Very Large Databases, Hong
Kong, August 2002.

[6] J Chen, D DeWitt, F Tian, Y Wang. NiagaraCQ: A
scalable continuous query system for internet databases.
In proceedings of the ACM SIGMOD International
Conference on Management of Data, Dallas, May 2000.

[7] S Chandrasekaran, M Franklin. Streaming Queries
over Streaming Data. In proceesings of the twenty seventh
International Conference on Very Large Databases, Hong
Kong, August 2002.

[8] J M Kahn, R H Katz, K S J Pister. Next century
challenges: Mobile Networking for "smart dust". In the
proceedings of the ACM/IEEE International Conference

on Mobile Computing and Network Monitoring
(MobiComm-99), Seattle, Washington, August 1999.

[9] S Madden, M J Franklin. Fjording the stream: An
Architecture for queries over streaming sensor data. In the
proceedings of the 18th International Conference on Data
Engineering, San Jose, California, February 2002.

[10] G J Pottie, W J Kaiser. Wireless integrated
network sensors. Communications of the ACM,
43(5):551-558, May 2000

[11] Joseph J LaViola Jr. Double exponential
smoothing: an alternative to Kalman filter-based
predictive tracking. Proceedings of the workshop on
Virtual environments, Zurich, 2003.

[12] C. Lee Giles, Steve Lawrence, A. C. Tsoi. Noisy
Time Series Prediction using a Recurrent Neural Network
and Grammatical Inference. Machine Learning Journal,
volume 44, 2001.

[13] Amalia Foka. Time Series Prediction Using
Evolving Polynomial Neural Networks. MS Dissertation.

[14] S. Bengio, F. Fessant, and D. Collobert. A
Connectionist System for Medium-Term Horizon Time

Series Prediction. In International Workshop on
Applications of Neural Networks to Telecommunications,
Stockholm, Sweden, 1995.

[15] G. Cybenko. Approximation by superposition of
sigmoidal functions. Mathematics of Control, Signal and
Systems, 2:303--314, 1989.

[16] F. Fessant, S. Bengio, and D. Collobert. On the
Prediction of Solar Activity Using Different Neural
Network Models. Annales Geophysicae, 1995.

[17] F. Fessant, S. Bengio, and D. Collobert. Use of
Modular Architectures for Time Series Prediction. Neural
Processing Letters, 1995.

[18] Greg Eisenhauer, Fabian Bustamente and Karsten
Schwan. A Middleware Toolkit for Client-Initiated
Service Specialization. Proceedings of the PODC
Middleware Symposium - July 18-20, 2000.

[19] Greg Eisenhauer. The ECho Event Delivery
System. Technical Report GIT-CC-99-08, College of
Computing, Georgia Institute of Technology, Atlanta.

[20] http://borg.cc.gatech.edu/biotracking/

23

Confidence-based Data Management for Personal Area Sensor

*

Networks
Nesime Tatbul? Mark Buller! Reed Hoyt! Steve Mullen® Stan Zdonik®

§ Brown University

{tatbul, sbz} @cs.brown.edu
TU.S. Army Research Institute of Environmental Medicine
{mark.j.buller, reed.hoyt, stephen.mullen} @us.army.mil
Abstract database management systems (DBMS) that run on large

The military is working on embedding sensors in a
“smart uniform” that will monitor key biological
parameters to determine the physiological status
of a soldier. The soldier’s status can only be deter-
mined accurately by combining the readings from
several sensors using sophisticated physiological
models. Unfortunately, the physical environment
and the low-bandwidth, push-based personal-area
network (PAN) introduce uncertainty in the inputs
to the models. Thus the model must produce a
confidence level as well as a physiological status
value. This paper explores how confidence lev-
els can be used to influence data management de-
cisions. In particular, we look at power-efficient
ways to keep the confidence above a given thresh-
old. We also contrast push-based broadcast sched-
ules with other schedules that are made possible
by two-way communication.

1 Introduction

Data management has traditionally been reserved for large
complex software environments in which huge amounts of
data must be processed with limited resources. Modern

*This work has been supported in part by the Military Operational
Medicine Research Program, the Combat Casualty Care Research Pro-
gram, and the Telemedicine and Advanced Technologies Research Cen-
ter, US Army Medical Research and Material Command, Ft. Detrick,
MD, 21704-5014; and by the NSF, under the grants IIS-0086057 and IIS-
0325838. The opinions or assertions contained herein are private views of
the authors and are not be construed as official or as reflecting the views
of the US Army or Department of Defense. Citations of commercial or-
ganizations and trade names in this report do not constitute an official De-
partment of the Army endorsement or approval of the products or services
of these organizations.

Copyright 2004, held by the author(s)

Proceedings of the First Workshop on Data Management for
Sensor Networks (DMSN 2004),

Toronto, Canada, August 30th, 2004.
http://db.cs.pitt.edu/dmsn04/

24

back-office servers are the most well-known embodiment
of this kind of technology. Researchers have recently re-
alized that similar technologies are needed in smaller en-
vironments in which resource limitations are also an issue
[9, 4]. In sensor-based applications, bandwidth and battery
power are typically the scarce resources.

This paper looks at a real sensor-based application in
which results are computed along with a confidence value.
The data management game that we play here is to set
transmission parameters (statically or dynamically) in or-
der to achieve the highest confidence only when the appli-
cation requires it. Our techniques use strategies that are
informed by the confidence models to conserve bandwidth
and power. We discuss these ideas and some possible ap-
proaches in terms of a military physiologic sensing applica-
tion. Our main contribution is in the way that confidences
can be used in this particular application.

The warfighter’s workplace has unique occupational
challenges: from mission demands, the environment, and
combat injuries. Modern dismounted soldiers commonly
engage in intense, mentally and physically demanding 3-
10 day missions, often in rugged terrain or complex urban
settings. Warriors carry heavy loads and are often food and
sleep-restricted. Environmental conditions can vary widely
in terms of ambient temperature, humidity, wind speed,
barometric pressure, and the like. In non-war mode the
military can suffer over 120 heat casualties a year [1]. Un-
der or over hydration can decrement physical and cogni-
tive performance, and increase the risk of heat injury, hy-
ponatremia, or death [14, 15, 16]. Added to the harsh en-
vironment is the possibility of receiving a wound. Once
a warfighter has become a casualty, it is critical that treat-
ment is received quickly during the “golden hour”, which
is the short period of time when proper medical treatment
can mean the difference between life and death. It has been
suggested that 20% of these deaths could be prevented with
rapid intervention [13]. Therefore, wearable physiological
and medical status monitoring can play an important role
in: sustaining physical and mental performance, reducing

the likelihood of non-battle injuries such as heat stroke, and
provide remote notification and medical status of a casu-
alty.

In this paper, we first describe the Warfighter Phys-
iologic Status Monitoring (WPSM) application in detail
in Section 2, where we also present an example scenario
and show how the sensor network behaves under this sce-
nario. We discuss potential data management techniques
that would improve the existing network in Section 3. We
present some preliminary simulation results in support of
these discussions. Section 4 summarizes related work in
the area. We conclude the paper by discussing future direc-
tions in Section 5.

2 The WPSM Application
2.1 The Sensor System

The Medical Research and Material Command (MRMC)
under its Warfighter Physiologic Status Monitoring - Initial
Capability (WPSM-IC) program is developing what is es-
sentially a wellness monitor for each soldier. This system
is comprised of a medical hub which hosts a personal area
network of physiologic and medical sensors and a num-
ber of algorithms. The algorithms estimate the state of
the warfighter in the following areas: Thermal, Hydration,
Cognitive, Life Signs, and Wound Detection. Each area has
four potential states that are coded by color. Green repre-
sents normal-no action is required; Yellow means requires
attention; Red calls for immediate action; and Blue indi-
cates a system fault. For each area’s state, the hub also esti-
mates a confidence level. Confidence refers to the accuracy
level of the state estimated by a model.

The states for each medical and physiologic area are
based upon input to the state algorithms from a number
of sensors distributed around a warfighter’s body, uniform
and equipment, as well as outputs from other algorithms
resident in the medical hub. Figure 1 shows a schematic
of the current WPSM-IC sensor system and the physical
placement of sensor equipment on a warfighter. The in-
gestible thermometer pill is network-enabled, and mea-
sures the temperature of the stomach and intestines, which
is usually a good indication of body core temperature. The
fluid intake monitor measures the amount of fluid con-
sumed through a bladder-style canteen. The life sign de-
tection sensor (LSDS) is an integrated system with multiple
parameters and algorithms including heart rate, respiration
rate, body orientation, actigraphy !, and skin temperature.
The LSDS also has an integrated ballistic impact detec-
tion device which provides an alert when on-body acous-
tic signals are detected that indicate the probability that a
ballistic projectile has impacted the warfighter. The sleep
performance watch treats sleep as a consumable quantity,
measures it, and uses an algorithm to equate this to appar-
ent cognitive readiness. The soldier also carries a GPS and
other technologies which report his geographic location.

! Actigraphy is a measure of activity patterns [7].

25

3 GPS System Fluid Intake Monitor
| Medical Hub X
. Ambient Temperature Wornonpack i on; Hails
ﬂi Warn on Belt
[~—] Core Temperature Fil !

Ingested
Life Sign Detection
Ballistic Impact Detection

Sleep Performance Watch Skin Temperature

‘Worn on Wrist Heart Rate
Respiration Rate
Actigraphy
Body Crientation
‘Worn on Chest

Figure 1: WPSM-IC Sensor System

The sensors are connected to the medical hub by a pro-
prietary wireless RF network [12]. The network was devel-
oped with a number of key requirements unique to a mil-
itary operational environment. The network needed to be
very low power, to allow miniature physiologic sensors to
run for weeks without the need of battery recharge or re-
placement, and also have an ability to reject cross talk and
interference from similar networks borne by other soldiers
when congregated in close proximity to each other. In ad-
dition, the network had to provide a low profile signature
to avoid detection.

The current network uses a detuned (low detectability)
40MHz radio frequency (RF) carrier. Digital data are trans-
mitted from sensors to the medical hub utilizing a pseudo
random push transmission scheme. Sensors are factory set
with an identification number (ID) and random number ta-
ble seed. Sensors are supplied operating in a deep sleep
mode and are activated through an infrared (IR) port, by a
medical hub. Activation associates a particular sensor with
a particular hub. The sensor in a series of initial transmis-
sions sends its transmission schedule (based upon its ID
and random number seed) and clock information to the hub.
Knowing this information, the hub is able to keep itself in
a sleep mode, powering up fully only when it knows to ex-
pect a transmission from an associated sensor. This reduces
power consumption in the hub (~0.1% duty cycle) and also
guards, to some degree, against cross talk from other sen-
sors. This “push-only” scheme has the benefits of allowing
sensors to only carry transmission circuitry which is acti-
vated on a known schedule, rather than both a transmitter
and receiver. In a “polled” scheme, a sensor would need
to constantly power the receiver circuitry to listen for data
polls, and hence consume more power. Sensors in the cur-
rent network sample every 15 seconds and transmit data at
2400 baud on average every 15 seconds. The transmission
interval can vary from 3 seconds to 27 seconds according
to the pseudo random schedule with each transmission time
interval having an equal probability of occurrence. Each
sensor message is 240 bits long.

[Model

| Skin Temp. | Heart Rate | Actigraphy | Geo-Location | Resp. Rate | Pill | # Sensors |

TSkin v

1

Threshold

Vv v

Modell

Model2

<

Model3

v

v
v

TCore

el B S e Y

Table 1: Models for estimating thermal state

2.2 Example Scenario: Estimating the Thermal State

In this paper, we focus more closely on the warfighter ther-
mal state, and the sensors and models which allow thermal
state and its confidence to be determined. In what follows,
we describe an example scenario for estimating the thermal
state of a soldier.

The best and most confident method to assess thermal
state is direct measurement of core body temperature by
using the network-enabled ingestible pill. When core body
temperature is greater than 39.5°C, there is a high prob-
ability that the warfighter is in thermal strain. However,
this method is impractical for continual use. Thus, these
devices are reserved for use during high thermal stress
missions, while encapsulation in nuclear, biological, and
chemical protective suits, and/or if use is indicated by other
algorithms or medics.

When a core temperature pill is not being used, WPSM-
IC plans to use variants of two basic types of models to
provide an estimate of thermal state. The simplest model
is the Threshold Model [2] that takes inputs from two sen-
sors measuring skin temperature and heart rate. Under very
low and high skin temperatures, the confidence in states
produced by this model is higher than otherwise. For mid-
values of temperature, knowing heart rate values improves
confidence. The second model is a first principles model
similar to the USARIEM Scenario Model [6], that takes
metabolic rate, environmental conditions, clothing config-
urations and biometric data as inputs to estimate core body
temperature. Metabolic rate and the environmental con-
ditions are key drivers of this model. From the current
system, metabolic rate can be derived independently from
heart rate, respiration rate, actigraphy, and geo-location
readings in multiple ways with different confidence lev-
els. Based on these, Table 1 summarizes six alternative
models to estimate thermal state together with the sensors
they are using. TSkin Model is a simplified version of
the Threshold Model, using only the skin temperature sen-
sor. The Threshold Model additionally uses the heart rate
sensor. Models 1-3 represent variants of the first princi-
ples model where metabolic rate is derived using differ-
ent sets of sensors: Modell uses just actigraphy; Model2
uses both actigraphy and geo-location; Model3 uses actig-
raphy, geo-location, heart rate and respiration rate. Finally,
TCore Model uses the core temperature pill. Each alterna-
tive model has complex algorithms that map sensor values
to physiologic states with certain confidence levels. The
details of these algorithms are outside the scope of this pa-

26

per.
Our thermal state estimation problem consists of three

major dimensions that determine the confidence levels:

1. Model: The first factor is the model, and hence the
set of sensors, that participate in the state computa-
tion. Input from a greater number of sensors usually
increases the confidence in the state. This is not true
when the core temperature pill is used. However, the
core temperature pill is unique in that it is a consum-
able sensor, with a costly logistics and resupply train.

2. Latency: The second factor is the latency of sensor
messages. As readings get older, their relevance and
usefulness to the models and state algorithms decay.
Thus, a latency decay function or “shelf-life” is de-
fined for each sensor. This function maps latency val-
ues measured in seconds to decay coefficients. For
our example scenario, all sensors are simply assumed
to have the following exponential decay function:

o~ ([tatency/151=1) " where latency > 0

For example, a heart rate reading of age 20 seconds
has a decay coefficient of 0.5, i.e., a state computation
that uses this heart rate value would have its confi-
dence level degraded by 0.5. When multiple sensors
are involved in a model computation, we simply use
their average latency to compute the decay coefficient.
If sensors had different latency decay functions, then
we would take an average of their individual decay
coefficients.

3. State: Finally, the third determinant of confidence is
the output state. For our thermal state estimation prob-
lem, the Green state can be determined with higher
certainty than the Yellow and Red states.

Next, we present confidence assignments on two of the
dimensions, Model and State. The latency dimension is
based on the decay function provided above.

As mentioned earlier, physiologic models are also af-
fected by the physical environment. In Table 2, we il-
lustrate a detailed work environment scenario. The first
two columns of this table show nine different environment-
activity combinations. Work environment conditions are

2In general, it is more realistic to choose different decay functions for
different sensors. For example, heart rate readings would certainly age
faster than ambient temperature readings.

TSkin Threshold Modell Model2 Model3 TCore

Env. | Work | G Y R G Y R |G Y R G Y R G Y R G/Y/R
cool low 80 76 72 190 855 81 |95 9025 855 |95 9025 855 |95 9025 855 100
warm | low 80 76 72 190 855 81 |95 9025 855 |95 9025 855 |95 9025 855 100
hot low 60 57 54 | 80 76 72 195 9025 855 |95 9025 855 |95 9025 855 100
cool med | 70 66.5 63 | 90 855 81|95 9025 855 |95 9025 855 |95 90.25 855 100
warm | med | 50 475 45 |70 665 63| 80 76 72 90 855 81 95 90.25 85.5 100
hot med | 40 38 36 | 60 57 54 | 70 66.5 63 80 76 72 90 855 81 100
cool high | 40 38 36 | 60 57 54190 855 81 95 9025 855 |95 9025 855 100
warm | high | 20 19 18 | 40 38 36 | 60 57 54 70 66.5 63 80 76 72 100
hot high 5 475 45|20 19 18 | 50 475 45 60 57 54 75 7125 675 100

Table 2: Work Environment models to estimate thermal state and their confidence levels

measured independently from the soldier (e.g. through
a weather station) and they are external to the soldier’s
personal area sensor network. However, they directly af-
fect the confidence achieved by the models. For each
environment-activity combination, confidence levels for
six alternative models are shown. Note that these values are
representative values. Each model can estimate the Green
(G) state with the highest confidence. If a Yellow (Y) is
computed, this confidence degrades by 0.95; if a Red (R)
is computed, it degrades by 0.90. TCore Model is an ex-
ception as its confidence for all states is perfect due to its
being a direct measure of thermal state. Note that as the
environment moves from cool to hot, and as activity moves
from low to high, more types of sensors may be needed
to maintain a high confidence about the soldier’s thermal
state.

The application requires different confidence levels de-
pending on soldier’s state. Table 3 shows the required
thresholds for our example. If a Green state is reported,
its confidence has to be at least 50. If a Yellow state is ob-
served, a confidence value of at least 70 is required. Finally,
if soldier’s state is reported to be Red, a confidence value of
at least 80 has to be provided. In other words, the applica-
tion requires higher confidence for more important events.
The goal is to operate the sensor network in such a way
that it delivers state estimations with sufficient confidence
levels.

[State | Confidence Threshold |

Green > 50
Yellow > 170
Red >80

Table 3: Required confidence thresholds for each state

2.3 The Push-Only Transmission Scheme

We simulated the existing push-only sensor network on
CSIM [11]. We ran the alternative models of the exam-
ple scenario through the simulator, using one model and
one environment-work pair at a time. We assumed that the
soldier is in the Green state. We make the following impor-
tant observation: Models requiring more sensors do not al-

27

ways achieve better confidence levels. Models periodically
compute states based on what has most recently been re-
ceived from the participating sensors. When more sensors
are present in the network, the frequency of packet colli-
sions and message drops increases. When the most recent
measurement from a sensor is missing, state computation
at the hub has to rely on a stale earlier reading from that
sensor. As mentioned before, stale data degrades the confi-
dence level associated with each instance of model output.
Figure 2 shows how each model behaves under three of the
environment-activity conditions. Model3, using four sen-
sors to estimate metabolic rate, achieves better confidence
than other models (except TCore) in the (warm, high) and
the (hot, high) cases which represent relatively high inten-
sity conditions. To generalize this notion, delivering high-
confidence for different detection goals (i.e., thermal stress,
wound detection, etc) demand different models.

Estimating Thermal State
\DTSkin W Threshold COModel1 O Model2 H Model3 EITCore[

average confidence

bl —
10 | :’_I .
0 T T —

(hot, high)

(cool, high) (warm, high)

environment-activity condition

Figure 2: Simulation of the push-only scheme

3 Confidence-based Data Management

In the WPSM context, data management largely concerns
the scheduling of data transmissions. Frequent transmis-
sion can in principle improve latency, but over zealous
transmission can waste power and increase the odds of a
collision (i.e., lost data). In what follows, we discuss tech-
niques for optimizing this tradeoff. We use confidence
modeling as the primary way to inform these decisions.

[Model [Average Confidence | % Drop |

Model 1 64.92 0

Model 2 72.73 1.98

Model 3 71.75 5.79
All Models 79.22 5.71

Table 4: Model redundancy simulation results

3.1 Exploiting Redundancy

Physiologic states can be estimated with higher certainty
by allowing redundancy at several levels.

Model Redundancy. All alternative models to estimate a
particular state can run concurrently. As we have demon-
strated, various factors like sensor values and latency
decay may cause one model to achieve higher confidence
than another. By running the models simultaneously, one
can obtain multiple state estimations at different levels of
certainty and the one with the highest confidence can be
picked. Table 4 shows preliminary results from a model
redundancy simulation for a changing work environment
scenario. We again assume that the soldier is in the Green
state. Models 1-3 are run both separately and all together.
The work environment is initially set to (cool, high) and
then gradually changed to (warm, high) and (hot, high).
When all models are redundantly run together, the average
confidence is the highest. Models 1 and 2 have fewer
drops due to fewer sensors sharing the channels. Model 3
and All Models use four sensors and they both experience
higher percent message drop due to collisions. Note that
All Models loses around the same percent of messages as
Model 3 alone, but achieves higher average confidence.

Data Redundancy. Sensor readings can be transmitted
multiple times. A sensor message not only contains the
most recent reading, but also the previous reading as well.
This type of redundancy is useful when the model to be
computed not only requires the most recent sensor value,
but a valid sensor reading every certain time period. This
increases the probability that a reading will get through.

Obviously, allowing redundancy has drawbacks in terms
of resource consumption. Running all models at the same
time increases network traffic and message loss. Similarly,
repeating readings in multiple messages increases message
lengths, thus consuming bandwidth and expending addi-
tional battery power. Therefore, the degree of redundancy
has to be adjusted based on a tradeoff between desired level
of confidence, variability of the conditions affecting confi-
dence, and resource consumption.

3.2 Adjusting Sampling Rates

In the current deployable network, sensors come with
factory-set transmission schemes. Thus, their sampling and
transmission periods are not adjustable. However, we be-
lieve that confidence levels and network lifetime could be
considerably improved by dynamically adjusting these sen-

28

sor parameters to match the requirements of the physiolog-
ical models. Thus, we foresee a need to incorporate two-
way communication into future sensor designs. Of course,
we must be able to show that the extra power needed to run
the receiver is worth it.

In general, sensors reporting with high frequency feed
low-latency values into the models, but messages are more
likely to get dropped due to collisions. In the extreme case,
high data rates can translate into high latency as well as
extensive energy consumption. On the other hand, low-
frequency transmissions seldom get dropped and use power
economically, but they may not refresh the models as often
as needed. Each sensor’s sampling rate should be adjusted
between these two extremes based on model requirements.

One thing to consider is the sharing between running
models. There are five different areas where state estima-
tion is needed. Each area may also run multiple models
concurrently. Each model requires readings from a certain
subset of the sensors. Sensors could be ranked based on
how many models they are feeding. Also, importance of a
state could be considered. For example, Wound Detection
may be more important than Cognitive State. Sensors in-
volved in Wound Detection should have higher rank. Sen-
sors of high rank should have shorter sampling and report-
ing periods.

A second consideration is the latency decay functions
of the sensors. A cumulative latency decay function could
be defined based on functions of all sensors involved in a
model computation. This function would indicate how of-
ten that model has to be refreshed to preserve its confidence
level. As mentioned before, some sensors can have stricter
latency requirements than others. For example, heart rate
readings age faster than temperature readings. This implies
that the heart rate sensor must update more often, illustrat-
ing the notion that refresh periods are application depen-
dent.

3.3 Bi-directional Data Communication

The sensor network used in the described application is de-
signed to be push-only, where data flows in a single di-
rection, from sensors to the hub. Sensors do not have any
receivers, but only transmitters. The rationale behind this
kind of a setup is threefold. First, it uses less power since
no sensor wastes battery by listening to the network. Sec-
ond, message loss is small since collisions are expected to
occur less frequently. Last but not least, push-only sen-
sors are much cheaper to build. However, this design limits
many potential optimizations that could be performed at the
receiver hub.

The receiver hub is the only point in the network that has
a complete view of all the sensors and all the physiological
models with their confidence requirements. As such, it can
make the best judgement about how to deliver high confi-
dence states in an efficient way. However, in a push-only
scheme, it has no control over sensor transmissions. The
hub must be able to ”’pull” from the sensors as needed.

With a two-way communication model, we can accumu-

late minimal sensor readings in order to populate the lower-
confidence models. Typically, the amount of data and the
latency requirements are lower for low confidence results.
In this situation, if we get an alert for a thermal stress event
with a low confidence, we can then contact the sensors to
collect more data in order to feed the higher confidence
models. Thus, we only spend bandwidth and power when
it is needed. In other words, in the normal operating case,
it is best to run lean at the expense of confidence. When an
important but low confidence event is observed, we expend
more resources to confirm or deny it. We now illustrate
this point on our work environment example presented in
Section 2.2. As shown in Table 3, our application has dif-
ferent confidence requirements depending on the soldier’s
state. These requirements can be met in multiple ways us-
ing alternative models. For example, if the soldier is in
the Green state and under the (hot, high) condition, Mod-
els 1-3 and TCore Model can deliver enough confidence
(> 50). Among these models, Modell is the most desir-
able one. First of all, Modell uses only one sensor. Thus,
network bandwidth does not have to be shared with other
sensors. The network lifetime with one sensor would be
much longer as the energy consumption at the hub is pro-
portional to the the number of sensors it is communicating
with. Finally, the actigraphy sensor used by Modell is a
much cheaper alternative than using the core temperature
pill. If we apply this heuristic of “using as few sensors as
possible” to all condition and state combinations in Table
2, we end up with model preferences shown in Table 5.

To show the performance benefit of this heuristic, we
considered a scenario where the soldier is in a (hot,
medium) environment and is initially in the Green state.
Then his state gradually changes to Yellow and Red.
Model3 delivers enough confidence for all of these states.
Therefore, we ran one simulation where only Model3 is
used. In a second simulation, we started out with Modell
and changed to Model2 only when soldier entered Yellow
state, when Modell can not deliver enough confidence.
Similarly, when the soldier’s state changed to Red, we
switched from Model2 to Model3 so that confidence is
above the required threshold. This second run simulates
the behavior of a hub pulling from sensors as necessary.
Initially, it only pulls from the actigraphy sensor; then the
geo-Location sensor is added; and finally, heart rates and
respiration rates are pulled. We further assumed that the
main determinant of network lifetime is the battery at the
hub which is about 1800 mAHrs. Additionally, we assume
that each sensor that is turned on has a current draw of
50mA; i.e, if this sensor is left on for an hour, it will con-
sume 50mAHrs of the total 1800mAHTrs battery. Then we
compared these two simulations in terms of network life-
time. The first simulation runs out of hub battery in 9 hours
whereas the second one can survive more than 14 hours.
This simple scenario clearly demonstrates how a pull-based
model could conserve energy based on model and situation-
specific confidence requirements.

In a way, bi-directional communication enables switch-

29

[Env. | Work | G | Y | R |

cool low TSkin/Modell | TSkin/Modell | Modell
warm low TSkin/Modell | TSkin/Modell | Modell
hot low TSkin/Modell Modell Modell
cool med | TSkin/Modell Modell Modell
warm | med | TSkin/Modell Modell Model2
hot med Modell Model2 Model3
cool high Modell Modell Modell
warm | high Modell Model3 TCore
hot high Modell Model3 TCore

Table 5: Model preferences based on the number of sensors

ing between alternative estimation models dynamically. As
such, it is a much more efficient alternative to the redun-
dancy approach proposed in Section 3.1.

Two-way communication is also more flexible than the
sampling rate adjustment approach discussed in Section
3.2. Sensor transmission rates can effectively be adjusted
by changing the pull frequency at the hub.

4 Related Work

There is a growing body of research on sensor network
data management. TinyDB [18] and Cougar [4] are two ex-
ample query processing systems for multi-hop sensor net-
works. These systems emphasize in-network processing of
declarative queries to reduce data communications and bat-
tery usage. TinyDB especially focuses on acquisitional as-
pects of query processing like where, when and how of-
ten data should be collected from the sensors [9]. Sen-
sor sampling rates are adjusted based on event and lifetime
specifications of queries. Cougar uses sensor update and
query occurrence probabilities for view selection and loca-
tion on top of a carefully constructed aggregation tree [4].
Scheduling techniques to overcome collisions in the sensor
network are also explored in this project. These systems
are designed to serve monitoring applications that span a
larger or difficult to reach geographical area than the per-
sonal area case, where multi-hop sensor communication is
a necessity (e.g., habitat monitoring).

More relevant to our problem are quality-driven ap-
proaches. As an example, TiNA exploits temporal co-
herency tolerance specifications of users in in-network pro-
cessing to trade off between result quality and energy con-
servation [17]. Sensor readings are reported only if they
differ from an earlier value by a certain amount. Another
example is the QUASAR project [8], which also exploits
applications’ tolerance to imprecision to minimize resource
consumption. As a more closely related work to ours, a
model-driven approach for data acquisition in sensor net-
works has been recently developed by Deshpande et al [5].
A probabilistic model of the sensor network data is cre-
ated based on a history of readings from sensors and cor-
relations between them. Queries can be approximately an-
swered based on this model. If confidence requirements
can not be met by the model alone, then the sensors in the
network need to be queried. The model is also refined as

more readings are received. In the application that we con-
sider, multiple complex models exist to estimate physio-
logical states of a soldier. Each model uses a different set
of sensors. These models and their confidence levels are
well-defined. Rather than building and refining the models,
we concentrate on efficient data acquisition from sensors to
estimate states with acceptable confidence using alternative
models.

There is some related work on data management for per-
sonal area sensor networks as well. For example, a re-
cent work proposes a query processing system for health-
care bio-sensor networks [3]. Patient heart rates are mon-
itored using electrocardiogram (ECG) and accelerometer
sensors. Multiple ECG sensors have to be worn for a com-
plete measurement of the electrical activity of the patient’s
body. Furthermore, if the patient moves, ECG signals may
be corrupted. Therefore, readings from an accelerometer
sensor have to be correlated with ECG readings for a more
reliable result. This application has similar sensor network
uncertainty concerns as ours. However, the focus of this
work is on query processing at the base station. We believe
our confidence-based approach could be used at the data ac-
quisition phases of this system to improve query results. In
the same domain, CodeBlue is a wireless communications
infrastructure for medical care applications [10]. It is based
on publish/subscribe data delivery where sensors worn by
patients publish streams of vital signs and geographic loca-
tions to which PDAs or PCs accessed by medical personnel
can subscribe. Secure and ad hoc communication, priori-
tization of critical data, and effective allocation of emer-
gency personnel in case of mass casualty events are major
emphases of this project.

Finally, wireless sensor networks are also a subject of
recent research in the networking community. Of particular
relevance to our work are MAC (Medium Access Control)
protocols that determine when and how the network nodes
coordinate to share a broadcast channel [19]. Collision
avoidance is a major concern in these protocols. S-MAC is
one such protocol where sensor nodes periodically sleep to
reduce energy consumption by avoiding idle listening [20].
While such protocols make the underlying network more
reliable in power-efficient ways, they are unaware of the
application-specific requirements, like confidence levels in
our WPSM-IC application.

5 Future Directions

In this paper, we presented a challenging sensor network
application which can highly benefit from various data
management strategies as evidenced by our initial simu-
lation results. We are currently working on making these
strategies operational on the real network. In the future, we
are planning to extend this work in several directions. A po-
tential research direction involves treating sensor readings
as continuous waveforms with integrity constraints. If sen-
sor values could be noisy or erroneous, earlier values could
verify or deny confidence of the latest value. We could
also decide when to pull from sensors based on what val-

30

ues have recently been received. If recent heart rate read-
ings suggest that the heart rate could not have gone beyond
normal threshold since the last reading, then we do not need
to receive a new heart rate report.

WPSM-IC is currently concerned with dismounted war-
riors and the management of their personal area networks.
The goal at this point is to create a summary of the soldier’s
physiological state at the hub. In the future, this state in-
formation would be disseminated to other battlefield units.
This might include mobile medics who are deployed in the
theater of operation or to advanced field hospitals that are
prepared to deal with both prevention of potential casual-
ties as well as management of known casualties of various
kinds. The information that is uploaded beyond the individ-
ual soldier would be used for some form of remote triage.

The remote triage problem, of course, comes with its
own technical challenges. Similar reports from more than
one co-located soldier might be an indication of a particu-
lar kind of attack. Physiological status reports from many
soldiers can be used to prioritize treatment. In these cases,
the medic might find that the reported confidence level is
not high-enough to warrant the deployment of an ambu-
lance. Instead, the medic may contact the soldier’s hub to
amplify the confidence to some given level. This might re-
quire a great expenditure of resource, but in an emergency,
the investment is likely worth it.

References

[1] Army Medical Surveillance Activity.
army.mil/.

L. Berglund, M. Yokota, and M. Kolka. Non-Invasive Phys-
iological Hyperthermia Warning System. Technical report,
USARIEM, 2004 (in process).

C.-M. Chen, H. Agrawal, M. Cochinwala, and D. Rosen-
bluth. Stream Query Processing for Healthcare Bio-sensor
Applications. In IEEE ICDE Conference, April 2004.

http://amsa.

(2]

(3]

[4] A. Demers, J. Gehrke, R. Rajaraman, N. Trigoni, and
Y. Yao. The Cougar Project: A Work-In-Progress Report.

Sigmod Record, 32(4), December 2003.

A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and
W. Hong. Model-Driven Data Acquisition in Sensor Net-
works. In VLDB Conference, Toronto, Canada, September
2004.

A. P. Gagge, A. P. Fobelets, and L. G. Berglund. A standard
predictive index of human response to the thermal environ-
ment. ASHRAE Transactions, 92(2B):709-731, 1986.

R. Hoyt, M. Buller, J. DeLaney, D. Stultz, K. Warren,
M. Hamlet, D. Schantz, W. Matthew, W. Tharion, P. Smith,
and B. Smith. Warfighter Physiologic Status Monitoring
(WPSM): Energy Balance and Thermal Status During a 10-
Day Cold Weather US Marine Corps Infantry Officer Course
Field Exercise. Technical Report T-02/02, DTIC Number
A396133, USARIEM, October 2001.

I. Lazaridis, Q. Han, X. Yu, S. Mehrotra, N. Venkatasub-
ramanian, D. V. Kalashnikov, and W. Yang. QUASAR:
Quality-Aware Sensing Architecture. Sigmod Record, 33(1),
March 2004.

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

S. R. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. The Design of an Acquisitional Query Proces-
sor for Sensor Networks. In ACM SIGMOD Conference,
San Diego, CA, June 2003.

D. Malan, T. Fulford-Jones, M. Welsh, and S. Moulton.
CodeBlue: An Ad Hoc Sensor Network Infrastructure for
Emergency Medical Care. In International Workshop on
Wearable and Implantable Body Sensor Networks, April
2004.

Mesquite Software, Inc. CSIMI18 Simulation Engine.
http://www.mesquite.com/.

Mini Mitter, Inc. Physiological and Behavioral Monitoring
for Humans and Animals. http://www.minimitter.
com/.

R. F. Bellamy. The Causes of Death in Conventional Land
Warfare: Implication for Combat Casualty Care Research.
Military Medicine, 149:55-62, 1984.

S. J. Montain and E. F. Coyle. Fluid ingestion during ex-
ercise increases skin blood flow independent of increases in
blood volume. Journal of Applied Physiology, 73(3):903—
910, 1992.

S. J. Montain and E. F. Coyle. Influence of graded dehy-
dration on hyperthermia and cardiovascular drift during ex-
ercise. Journal of Applied Physiology, 73(4):1340-1350,
1992.

S.J. Montain and M. N. Sawka and W. A. Latzka and C. R.
Valeri. Thermal and cardiovascular strain from hypohydra-
tion: Influence of exercise intensity. International Journal
of Sports Medicine, 19(2):87-91, 1998.

M. A. Sharaf, J. Beaver, A. Labrinidis, and P. K. Chrysan-
this. TiNA: A Scheme for Temporal Coherency-Aware in-
Network Aggregation. In 3rd ACM MobiDE Workshop,
September 2003.

TinyDB: A Declarative Database for Sensor Net-
works. http://telegraph.cs.berkeley.edu/
tinydb/.

W. Ye and J. Heidemann. Medium Access Control in
Wireless Sensor Networks. In C. S. Raghavendra, K. M.
Sivalingam, and T. Znati, editors, Wireless Sensor Networks.
Kluwer Academic Publishers, 2004.

W. Ye, J. Heidemann, and D. Estrin. An Energy-Efficient
MAC Protocol for Wireless Sensor Networks. In 21st In-
ternational Annual Joint Conference of the IEEE Computer
and Communications Societies (INFOCOMM 2002), New
York, NY, September 2002.

31

Approximately Uniform Random Sampling
in Sensor Networks

Boulat A. Bash

John W. Byers

Jeffrey Considine

Computer Science Department
Boston University
{boulat, byers, jconsidi}@cs.bu.edu

Abstract

Recent work in sensor databases has focused ex-
tensively on distributed query problems, notably
distributed computation of aggregates. Exist-
ing methods for computing aggregates broadcast
queries to all sensors and use in-network aggre-
gation of responses to minimize messaging costs.
In this work, we focus on uniform random sam-
pling across nodes, which can serve both as an
alternative building block for aggregation and as
an integral component of many other useful ran-
domized algorithms. Prior to our work, the best
existing proposals for uniform random sampling
of sensors involve contacting all nodes in the net-
work. We propose a practical method which is
only approximately uniform, but contacts a num-
ber of sensors proportional to the diameter of
the network instead of its size. The approxi-
mation achieved is tunably close to exact uni-
form sampling, and only relies on well-known
existing primitives, namely geographic routing,
distributed computation of Voronoi regions and
von Neumann’s rejection method. Ultimately,
our sampling algorithm has the same worst-case
asymptotic cost as routing a point-to-point mes-
sage, and thus it is asymptotically optimal among
request/reply-based sampling methods. We pro-
vide experimental results demonstrating the effec-
tiveness of our algorithm on both synthetic and
real sensor topologies.

1

In the emerging research area of sensor databases, a
central challenge is to develop cost-effective methods
to extract answers to queries about conditions inside

Introduction

The authors were supported in part by NSF grants ANI-
9986397, ANI-0093296, ANI-0205294, and EIA-0202067.

Copyright 2004, held by the author(s)

Proceedings of the First Workshop on Data Mana-
gement for Sensor Networks (DMSN 2004),
Toronto, Canada, August 30th, 2004.
http://db.cs.pitt.edu/dmsn04/

32

the sensor network. One typical sensor database sce-
nario involves sensor elements that are prone to failure,
are highly resource-constrained, and must communi-
cate across a lossy network. Sensor networks com-
prised of small battery-powered motes are a represen-
tative instantiation of this scenario [7]. In such an
environment, aggregation queries are particularly ef-
fective, as they are robust to node and link failures,
can be resilient to incorrect or outlying responses, and
are amenable to the use of in-network processing to
minimize messaging cost. For these queries, approxi-
mate answers typically suffice, especially in light of the
very high cost of ensuring 100% reliability in commu-
nications in sensor networks. Recent work has focused
on computation of aggregates using a request/reply
model in which a query is broadcast to a region of in-
terest, individual sensors make best-effort replies, and
responses are aggregated in-network en route to the
origin of the query [3, 11, 20].

In this paper, we argue that there is a rich and rela-
tively under-explored set of classic statistical methods
that have not yet been extensively studied in the do-
main of sensor databases. In particular, we propose
a more careful study of random sampling methods,
which have long been used in other domains to approx-
imately compute aggregates such as MEDIAN, AVG,
and MODE [2, 12, 13]. Random sampling is a par-
ticularly good fit for approximate aggregation queries
in the sensor network domain in light of the poten-
tially modest messaging cost. While we view random
sampling as especially useful in the context of data
management and data aggregation problems, we also
note that it is an integral component of other useful
randomized algorithms that are potentially applicable
to sensor networks, including randomized routing [18].

In the context of sensor networks, a natural abstrac-
tion is spatial sampling, i.e. sampling from geographi-
cal locations within the network uniformly at random.
On a 2-D network with bounded spatial extent, such
an objective can easily be realized by picking an (x,y)
coordinate from within the space at random and us-
ing geographical routing to route to the node closest

to that point. While this is desirable for many appli-
cations, such as computing spatial averages [6], many
other applications and database queries prefer to ig-
nore geometry and instead wish to sample uniformly
from the set of nodes. Examples include querying av-
erage sensor battery life, counting the number of nodes
that are currently capable of executing a given sens-
ing task, determining the 95th quantile of sensor CPU
utilization, or estimating the number of sensors that
will fail within the next day. Our focus is to develop
practical algorithms for uniformly sampling from a set
of sensor nodes with low messaging cost.

Since it is well-known that nodes in a sensor net-
work often have highly irregular placements, spatial
sampling will produce non-uniform samples of the
nodes [5]. Our work relies on spatial sampling as a
starting point, but uses practical methods for smooth-
ing, or regularizing, the non-uniform samples to pro-
duce approximately uniform node samples. The key
idea is to have each sensor node compute and maintain
the area of its Voronoi cell. A uniform node sample is
then realized by sending a sequence of spatial samples
until one is “accepted”. A targeted node in the net-
work “accepts” by responding to a given spatial sam-
ple with an appropriate probability normalized by its
Voronoi cell size, otherwise it “rejects”. The specifics
of this normalization depend on global statistics on the
number of nodes in the network and on an appropri-
ate k-quantile of Voronoi cell sizes across the network.
We argue that these statistics can be updated infre-
quently and consistently. Ultimately, this application
of von Neumann’s rejection method [19] results in ap-
proximately uniform node samples.

As sketched above, our algorithm for generating a
random sample has a messaging cost that is typically
bounded by the messaging cost of a small constant
number of spatial samples in the expectation. This
cost is low since the messaging cost of computing a spa-
tial sample is akin to routing a point-to-point message
using a geographic routing method such as GPSR [8].
In the worst case, such a message traverses the di-
ameter of the network. In contrast, the best existing
methods for node sampling, which can compute an ex-
actly uniform sample, necessitate contacting all nodes
in the network [13]. We note that the additional infre-
quent global update costs incurred by our algorithm
can be amortized by the potentially vast number of
samples that can be taken between updates.

The remainder of the paper is organized as follows:
Section 2 formalizes the uniform sampling problem and
the limitations of existing methods. We summarize the
building blocks of our proposed method in Section 3.
Our rejection-based sensor sampling algorithm is pre-
sented in Section 4. Then in Section 5 we describe
the practical implementation issues, and Section 6 con-
cludes with the broader implications and applications
of our work.

33

2 Sampling: Problems and Methods

We now formally define our sampling problems.

Definition 1 (Uniform random sampling) An
algorithm samples uniformly at random from a set of
reachable sensors S if and only if it outputs a sensor
ID s € S with probability ﬁ

Uniform random sampling is simple if the set of sen-
sor IDs is known in advance and sensors neither fail nor
move. However, it is much more challenging in the re-
alistic case where the set of IDs may not be known and
the set of reachable sensors dynamically changes over
time. For these reasons, we will be content with the
following close approximation to uniform sampling.

Definition 2 ((¢,d)-sampling) An algorithm per-
forms (e, 6)-sampling of a reachable set S if and only
if it returns a sample s € S such that no element of
S is returned with probability greater than % and at

least (1 —6)|S| elements are output with probability at
least ‘—é‘

By this definition, our goal is to sample from almost
all sensors nearly uniformly with tunable parameters
€ and 6. Our definition allows us to under-sample a
small fraction ¢ of the nodes.

In a sensor network scenario, we typically wish to
sample from a set of pairs (k,v) where k identifies a
particular sensor and is unique within the set, and v
is some value associated with the sensor. This value
might be a measurement by the sensor, such as the
local temperature, or an internal statistic such as the
remaining battery life. As motivated earlier, sampling
in sensor networks is more challenging since neither a
full list of sensors nor direct communication with them
is available.

Prior to this work, the following two methods for
near-uniform sampling were proposed in the context
of sensor and other overlay networks.

Min-wise sampling: In [13], the use of min-wise
samples [1] was proposed for sampling a sensor net-
work uniformly at random. Given a hash function h
on sensor IDs, they returned the value associated with
the ID s such that h(s) is minimal (i.e. Vyes(h(s) <
h(s’))). Each sensor would then propagate the value
associated with the smallest observed h(s’). With
careful control of the transmissions, this scheme can
be implemented with each node in the sensor network
sending a constant number of messages, for a total of
O(]S|) transmissions. However, since the entire net-
work is involved, this is an expensive operation.

Random walks: Another natural method for sam-
pling is the use of random walks. In the sensor network
domain, one could generate a random sample by prop-
agating a request message along a randomly chosen k-
hop path starting from the query sink, and sampling

the kth sensor reached. Unfortunately, this procedure
would both need to use a large value of k, and would
need to compensate for the fact that the method is
biased toward drawing samples from near the center
of the spatial region where sensors are located, as we
demonstrate in Section 5.1.

Our methods follow a rather different line. Like the
random walk method, we ultimately seek out a single
sensor, but our choice of the route to the sensor avoids
many of the dependencies and complications of the
random walk approach.

3 Prerequisites

Instead of choosing a path at random, we choose a lo-
cation in the sensor coordinate space at random and
route a probe to its closest sensor using geographic
routing techniques. When we partition the coordi-
nate space into regions of ownership by mapping the
nearest neighbor regions (Voronoi cells) to sensors, we
note that these regions are irregularly sized in most
instances. Thus, this naive spatial sampling method is
very likely to generate a biased sample. Therefore, our
last key step is to use von Neumann’s rejection method
to normalize the samples. We now briefly summarize
these three prerequisite ideas.

Geographic routing: If every node in a network is
aware of its own coordinates (e.g. via GPS), then it is
possible to route to a particular position using entirely
local decisions. Most of these local routing decisions
can be made in a greedy fashion, simply choosing the
neighboring node which has the closest coordinates to
the destination. This greedy routing fails when there
is an obstruction, or “void”, which must be circumnav-
igated to reach the destination. GPSR [8] provides an
elegant solution to this problem with just two states.
The default state of GPSR is greedy routing, while the
other state follows the perimeters of voids until greedy
routing can resume. When a packet reaches its target
point, another round of perimeter routing is run to
visit each of the immediately surrounding sensors so
that it can find the sensor nearest to the target point.
For typical topologies in 2-D, geographic routing takes

O(+/S]) steps.

Voronoi diagrams: Once routing to an arbitrary
point is possible, we must also quantify the size of the
region of points that are closest to a particular sensor
s. Formally, the set of points closer to sensor s than
any other sensor is called the Voronoi cell of s [4]. In
the planar case which we consider, the Voronoi cell of
s is a convex polygon containing s, where each edge of
this polygon lies on a perpendicular bisector between
s and another sensor. The exact boundaries of this
Voronoi cell are easily determined exactly by locating
all of the sensors in the immediate vicinity of s. The
areas of these Voronoi cells have been used previously

34

to weight sensor readings for spatial aggregates [6] and
they are easily computable, but it is well known that
these areas vary widely when the sensors are placed
randomly [16]. This variation leads to a bias in spatial
sampling — each sensor is chosen with probability in
proportion to A(s), the area of its Voronoi cell. For
convenience, we assume the areas are normalized so
that they sum to one, and thus A(s) can also be in-
terpreted as the probability a randomly chosen point
is closest to s.

von Neumann’s rejection method: Much of the
early work on random sampling focused on sampling
complex distributions, assuming the ability to sample
simpler distributions. A well known example of this
is von Neumann’s rejection method [10, 19]. Suppose
we wish to sample from a distribution with probabil-
ity density function f (i.e. an event ¢ has probability
f()). If we can sample from a distribution with prob-
ability density function g, then we can sample from
f as follows. First generate a sample ¢ using g, but

only accept and return sample ¢ with probability Cfg ((tt)) ,
where c¢ is a positive constant. If ¢ is not accepted, it

is rejected and the process repeats for a new sample
t. Assuming that c is chosen so that % < 1, then
the probability of picking a particular event ¢ on the
first attempt is g(t) - cfg ((tt)) = 1f(t). It then follows that

after ¢ expected samples from g, we have one sample
from f.

4 Rejection-based Sensor Sampling

We now describe our method to combine ideas of spa-
tial sampling with von Neumann’s rejection method to
flatten out an irregular probability distribution into a
nearly uniform one. For our application, the desired
density function is uniform, i.e. f(t) = ﬁ, and the
distribution which we can sample from, g¢(t), is the
distribution of Voronoi cell areas. One weakness in
von Neumann’s method for ezactly reproducing a dis-
tribution f is that the constant ¢ must be chosen so
that for all events t, o)

T

there exists a very smafl(\)/'oronoi cell, then ¢, and hence
the expected messaging cost, can be very large. Since
we cannot rule out this possibility, we content our-
selves for now with generating approximately uniform
samples. Later, in Section 5.2, we consider strategies
to boost sampling probabilities for the smallest cells to
significantly reduce residual sampling bias. We employ
the following basic algorithm.

< c¢. In our application, if

Algorithm 1 (Rejection-based Sampling)
1 The random sampler picks a random location in
the sensor field and routes a message to the sensor
s closest to this point, using geographic routing
and pre-computation of Voronoi cells.

(a) MIT sensor testbed. Reproduced with permission
from [17]

i
S I 1
\W\gsgnamaj

iomcliarid with
Dead Tregs

£ Continuous
o] Meourement
System Ares

(b) James Reserve sensor network. Reproduced with
permission from [5]

Figure 1: Maps of real sensor deployments used in our experiments.

2 With probability %, s accepts and Te-
ports its value, where T is a threshold to be defined

shortly.

8 Otherwise, s rejects and the random sampler re-
peats Steps 1-3. The random sampler also returns
to Step 1 if it times out waiting for a response.

Intuitively, 7 can be thought of as a threshold on
Voronoi cell areas, in which we think of any Voronoi
cell of area at least 7 as large and any area less than
7 as small. By our procedure, all large cells will
be selected equiprobably, but small cells will be se-
lected with smaller probability, in proportion to their
area. To ensure that Algorithm 1 results in (e, §) sam-
pling, we must guarantee that the fraction of small
cells (sampled non-uniformly) is less than ¢, and that
the bias introduced by under-sampling small cells re-
sults in at most (1 + €)-oversampling of large cells. In
practice, we set 7 to be the area of the cell that is

the k-quantile, where & = min (5), and prove the

€
’ 1+4e
following main result.

Theorem 1 Running Algorithm 1 with k
min (5, Tre
that is the k-quantile results in (e, §)-sensor sampling.

and setting T to be the cell area

Proof: By our problem definition, it suffices to show
that the method ensures that no element of S is sam-

pled with probability greater than l‘gf and at least

35

(1 — 8)|S| elements are sampled with probability at
least ‘—é‘ First, we show that all large cells, i.e. cells
with area at least 7, are sampled in a given iteration
of the sampling algorithm with probability at least
ﬁ. The probability that a given sensor s is sampled
in a particular probe is ps = min(A(s),7), and thus
the probability that a particular probe is successful is
> osPs < |S|7. Now let E, denote the event that the
algorithm ultimately samples from a large cell £.

be T 1

Zsps B Zsps o E

Now since large cells are at least a (1 — §) fraction of
all cells by the setting of k < §, we have that at least
(1 — §)|S| elements are sampled with probability at
least ﬁ

Next we show that no element is sampled with prob-
ability greater than l‘gf By construction, large cells
are sampled with highest probability, so we restrict
attention to those cells. Starting from the same prob-
ability bound as before:

PI‘[E@] =

T

2s)A(s)<r Ps 2sja(s) 27 Ps
T

Zs|A(s)<7‘ ps + Zs|A(s)27‘ T
T

Zs|A(s)27‘ T

T

(1=K)|S|T

Pr[E,] = Epfp

IN

IN

(1= 12)ISI

1+e€
1

IN

1+
(1+E -

1

(5218
1+e€

S|

)IS|

€
1+e

Thus the theorem follows. []

Relating this result back to von Neumann’s method,
this corresponds to a situation in which ¢ = ﬁ As
with the rejection method, the probability that a par-
ticular sensor s is picked and accepted on the first at-
tempt is A(s)%&i)ﬁ) = min(A(s), 7). It remains to

select an appropriate threshold 7 for our algorithm.

4.1 Threshold Management

Given user-specified values of € and 4, the threshold 7
should be set to the k-quantile of the Voronoi cell ar-
k-quantile can be computed during an initial prepro-
cessing step using recent techniques developed in the
sensor database community. In particular, work such
as [3, 11] shows how to efficiently count the number
of sensors matching some criteria (e.g. with a cell area
below a specified threshold) and deriving other simple
statistics such as the average cell area. We note that
while these values need to be updated to account for
dynamic changes within the sensor network, they need
not be exact, as bounds on the values suffice for our
methods. Therefore, only infrequent updating of these
global statistics is needed to maintain consistent and
approximately correct values. Updating these statis-
tics can easily be performed either by piggybacking
them on the random probes or on various control and
maintenance messages. Either way, once these statis-
tics are available, the sampler recomputes 7, and sends
it with each probe. Since the sampler’s value of 7 is
included in the query, each sensor deciding to accept
or reject a probe acts consistently.

eas, where £ = min (5) as discussed earlier. The

5 Practical Implementation Issues

We now discuss the details of a practical implementa-
tion of Algorithm 1. We begin in Section 5.1 present-
ing experimental results using the basic implementa-
tion outlined in Section 4, and then discuss various
refinements to improve the uniformity of sampling in
Section 5.2.

5.1 Experiments

We experimentally validated our proposed sampling
algorithm using three topologies: two from real sen-
sor deployments and one synthetic topology with 2'°

36

Figure 2: Sample distribution using long random walks
along adjacent Voronoi cells. Each sensor’s cell is la-
beled with its probability relative to the mean. For
example, a sensor labeled 1.3 is picked with probabil-
ity 1.3/]5].

sensors placed uniformly at random on a unit square.
The first real network, illustrated in Figure 1(a), is
a testbed deployed at MIT [17]. These sensors were
heuristically placed according to expected quality as a
vantage point, and proximity to available power out-
lets. The second real deployment, illustrated in Fig-
ure 1(b), is a sensor network for micro-climate mon-
itoring at the James Reserve [5]. These sensors are
more concentrated in the lower left, where there is
thick foliage.

The objective of these experiments was to demon-
strate that we can cheaply obtain a close approxima-
tion to uniform sampling. Thus, besides examining
e and ¢ at for various choices of 7, we also examine
the expected value of the random variable Y, which is
the number of probes sent before a sample is returned.
The actual energy costs of our method depend heav-
ily upon the geographic routing protocol in use. Since
testing the performance of various geographical rout-
ing protocols is beyond the scope of this work, we do
not implement geographic routing in our simulation.

First, we confirm our intuition that random walks
are unsuitable for near-uniform random sampling. We
consider the following random process. Starting at any
sensor in the network, a query repeatedly considers the
sensors with adjacent Voronoi cells and moves to one
chosen uniformly at random. After a sufficient num-

5.0/|S| o
naive
c=1
aols | S23
g c=4 -
3
< 3.0/[S|
(2]
R
(]
g 2.0/[S| -
k=N
a
LO/|S| proerrzzes s
Oollsl ! ! ! ! ! !
0 5 10 15 20 25 30 35 40
Node Rank

(a) MIT sensor testbed

5.0/|S| —
naive
c=1
aols | S23
g c=4 -
3
< 3.0/[S|
1)
R
(]
g 2.0/[S| -
s A
a L
1.0/|S| O *
Oollsl L L L L L
0 10 20 30 40 50
Node Rank

(b) James Reserve sensor network

Figure 3: Resulting distributions for real testbeds. Nodes are in increasing order of Voronoi cell area.

c € 0 | E[Y] c €] E[Y] c €] E[Y]
naive 1.9 0.6 1.00 naive 4.3 0.69 1.00 naive 3.8 0.57 1.00
1 0.34 | 0.45| 1.34 1 0.48 0.46 1.48 1 0.27 0.41 1.27
2 0.047 | 0.25 | 2.09 2 0.12 0.23 2.24 2 0.051 0.15 2.10
3 0 0 3.00 3 0.041 0.15 3.12 3 0.017 0.06 3.05
4 0 0 4.00 4 0.012 | 0.038 | 4.05 4 0.0079 | 0.029 | 4.03
5 0 0 5.00 5 0.0072 | 0.019 | 5.04 5 0.0042 | 0.017 | 5.02

(a) MIT sensor testbed

(b) James Reserve sensor network

(c) 215 randomly placed points

Table 1: Summary of experimental results

ber of steps to converge on the stationary distribution,
the query outputs its current location. Figure 2 shows
the Voronoi diagram of the MIT sensor testbed and
the relative sampling probabilities of each sensor. As
expected, the sensors most likely to be chosen are in
the middle of the network, and the sensors least likely
to be chosen are on the edges of the network. Suffi-
ciently long random walks on this topology can achieve
(0.71,0.52)-sampling. This is better than naive spatial
sampling, which would achieve (1.90,0.60)-sampling
on the same topology, but our rejection-based methods
will give much better results.

Figure 3 shows the results of Algorithm 1 on the
real topologies assuming that there are no faults and
each sensor knows the area of its own Voronoi cell.
The areas of both networks are the areas of their min-
imum bounding boxes. The threshold 7 was set to
ﬁ for c = 1,2,3,4,5, and the naive spatial sampling
method is included as a baseline. As ¢ increases and 7
decreases, the distribution becomes more uniform and
improvements in both € and ¢ are clearly visible.

Tables 1(a) and 1(b) summarize the parameters of
the resulting sampling distributions, along with the
expected number of probes for each sample. With the
MIT sensor testbed, setting ¢ = 3 (equiv. 7 = ﬁ)
results in uniform sampling — this is because there are

37

no sensors with less than a third of the average cell
area in their Voronoi cell. With the James Reserve
network, one sensor has a cell area of slightly more
than one tenth of the average, so ¢ > 10 is necessary
for uniform sampling. However, this is the only sensor
which is under-sampled for ¢ > 5.

For comparison, Table 1(c) summarizes the corre-
sponding results for a synthetically generated topol-
ogy of 2'% randomly placed points on a unit square.
The smallest Voronoi cell in this topology was slightly
smaller than ﬁ, so if exact sampling is desired,
an average of ¢ > 99 probes per sample are needed.
However, just setting ¢ = 5 achieves (0.0042,0.017)-
sampling.

Figure 4 shows the cell size distributions of our test
topologies where the impact of human choices on sen-
sor placement is present. First, humans are prone to
favor interesting or easily accessible points, resulting
in sensors being clustered together, each with below-
average area. This is evident in Figure 4: the two
real sensor networks have a larger fraction of sensors
with below-average Voronoi cell areas than a randomly
generated topology. At the same time, humans are un-
likely to choose very poor placements where many sen-
sors are extremely close together. Figure 4 also hints
at this point, as the smallest Voronoi cells in syntheti-

1 T +

0.9 | James Reserve +

MIT x
| random -
0.7 + o

0.6
05 ¢
04 r
03
0.2 r
0.1

Cumulative Probability

Rl L L L L L

o L
0.0/|S| 1.0/|S| 2.0/|S| 3.0/|S| 4.0/|S| 5.0/|S| 6.0/|S|
Voronoi Cell Size

Figure 4: Cell size distributions for random and real
testbeds

cally generated networks are significantly smaller than
the ones in real topologies.

5.2 Algorithmic Modifications

We now consider a variety of heuristics for improving
our baseline algorithm by reducing the impact of small
Voronoi cells on the (¢, §)-approximation.

Sleeping: Perhaps the simplest method for handling
sensors with very small Voronoi cells is for some of
these sensors to sleep. Sleeping sensors are deacti-
vated, and sampling from them is thus rendered impos-
sible. Putting one small cell to sleep will increase the
size of adjacent cells (which are also likely to be small),
so it is not necessary to put all small cells to sleep to
remove their impact. We note that this approach is
similar in spirit to some routing schemes which use
sleep for power management, particularly in crowded
areas [21]. Because the sensed values from the sleep-
ing nodes are unavailable, this approach may not be
appropriate for some applications.

Pointers: Another method for increasing the sam-
pling probability of small cells is for larger cells to
keep pointers to nearby small cells and forward some
rejected probes to those small cells. That is, when-
ever a large cell would reject a probe, it may instead
redirect the probe to a nearby small cell. The proba-
bility of forwarding a probe can be negotiated between
the cells based on their respective sizes. Essentially, a
large cell would donate part of its “unused” area to its

small neighbor.

Virtual coordinates: Instead of using real-world ge-
ographic coordinates to map points to sensors, we can
use virtual coordinates [14, 15], modified to include ei-
ther a repulsive force between close sensors, or a hard
lower bound on the inter-sensor distances. Virtual co-
ordinate spaces also allow the boundaries of the sensor
network to be pre-defined, instead of explored via pe-

riodic probing [5].

6 Future Work and Conclusions

Uniform random sampling is a standard and useful
primitive underlying many algorithmic and statisti-
cal methods. Our work focused on the unique con-
straints imposed by sensor networks, and the problem
of cheaply selecting one sensor node uniformly at ran-
dom. In future work, there are numerous generaliza-
tions to consider. Our methods immediately general-
ize to queries that wish to sample nodes satisfying a
geometric predicate, such as those within a region of
interest, but we have not yet studied how to efficiently
sample from nodes satisfying a non-geometric predi-
cate. Another interesting question is how best to take
advantage of parallelism when the number of samples
needed or the expected number of attempts is high.
Here, distinct probes may traverse common network
links, so clever strategies may be able to reduce total
transmission costs. We also plan to consider how to op-
timize sampling for queries which do not fall into a re-
quest/reply paradigm. For example, if query patterns
are known in advance, such as periodic fixed queries,
a more streamlined method for sampling that avoids
explicit requests could be implemented in a decentral-
ized fashion. However, our methods may still find use
in answering such queries since their “on-demand” na-
ture allows quick responses to unexpected events or
failures.

Finally, we note that variants of our sampling meth-
ods can be applied much more broadly, outside the
context of sensor networks. For example, uniform node
sampling is also an important problem in structured
P2P networks based on coordinate systems [9]. Vari-
ants of our methods apply to these P2P scenarios and
provide a simpler and more topology-agnostic alterna-
tive to existing methods.

Acknowledgments

We are grateful to Deepak Ganesan and Stanislav Rost
for the use of their sensor deployment maps and al-
lowing them to be reproduced here. We thank Phil
Gibbons, Kanishka Gupta, and Niky Riga for helpful
conversations and feedback on earlier versions of this
manuscript.

38

References

(1]

2]

(11]

(12]

(15]

(16]

(17]

A. Broder, M. Charikar, A. Frieze, and M. Mitzen-
macher. Min-wise independent permutations. Journal
of Computer and System Sciences, 60:630-659, 2000.

S. Chaudhuri, R. Motwani, and V. Narasayya. Ran-
dom sampling for histogram construction: how much
is enough? In Proc. of ACM SIGMOD ’98, pages
436447, 1998.

J. Considine, F. Li, G. Kollios, and J. Byers. Approx-
imate aggregation techniques for sensor databases. In
Proc. of the IEEE Int’l Conf. on Data Engineering,
March 2004.

M. de Berg, O. Schwarzkopf, M. van Kreveld, and
M. Overmars. Computational Geometry: Algorithms
and Applications. Springer-Verlag, 2nd edition, 2000.

D. Ganesan, S. Ratnasamy, H. Wang, and D. Es-
trin. Coping with irregular spatio-temporal sampling
in sensor networks. In Proc. of HotNets-1I, November
2003.

C.-C. Han, S. Ganeriwal, A. Boulis, and M. Srivas-
tava. Going beyond nodal aggregates: Spatial aver-
age of a physical process in sensor networks. Poster
in ACM SenSys, Nov. 2003.

J. Hill and D. Culler. Mica: A Wireless Platform for
Deeply Embedded Networks. IEEE Micro, 22(6):12—
24, Nov/Dec 2002.

B. Karp and H. Kung. GPSR: Greedy perimeter state-
less routing for wireless networks. In ACM MobiCom,
Aug. 2000.

V. King and J. Saia. Choosing a random peer.
Proc. of ACM PODC’04, July 2004.

D. E. Knuth. The Art of Computer Programming, Vol-
ume 2: Seminumerical Algorithms. Addison-Wesley,
Reading, MA, 2nd. edition, 1981.

S. Madden, M. Franklin, J. Hellerstein, and W. Hong.
TAG: a Tiny AGgregation Service for Ad-Hoc Sensor
Networks. In USENIX OSDI, 2002.

G. S. Manku, S. Rajagopalan, and B. G. Lindsay. Ap-
proximate medians and other quantiles in one pass
and with limited memory. In Proc. of ACM SIGMOD
’98, pages 426435, 1998.

S. Nath and P. Gibbons. Synopsis diffusion for ro-
bust aggregation in sensor networks. Technical Report
ITR-03-08, Intel Research, Aug. 2003.

J. Newsome and D. Song. GEM: Graph EMbedding
for routing and data-centric storage in sensor networks
without geographic information. In ACM SenSys ’03,
pages 76-88, 2003.

A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker,
and I. Stoica. Geographic routing without location
information. In ACM MobiCom, Sept. 2003.

S. Ratnasamy, B. Karp, S. Shenker, D. Estrin,
R. Govindan, L. Yin, and F. Yu. Data-centric storage
in sensornets with GHT, a geographic hash table. Mo-
bile Networks and Applications, 8(4):427-442, 2003.
S. Rost and H. Balakrishnan. Lobcast: Reliable Data
Dissemination in Wireless Sensor Networks. Under
submission.

In

39

(18]

(19]

(20]

21]

L. G. Valiant and G. J. Brebner. Universal schemes
for parallel communication. In Proceedings of the 13th
Annual ACM Symposium on Theory of Computing,
pages 263-277. ACM Press, 1981.

J. von Neumann. Various techniques used in con-
nection with random digits. U.S. National Bureau
of Standards Applied Mathematics Series, 12:36-38,
1951.

Y. Yao and J. Gehrke. The Cougar approach to in-

network query processing in sensor networks. ACM
SIGMOD Record, 31(3):9-18, 2002.
W. Ye, J. Heidemann, and D. Estrin. An energy-

efficient MAC protocol for wireless sensor networks. In
Proc. of IEEE Infocom, pages 1567-1576, June 2002.

Optimization of In-Network Data Reduction

Joseph M. Hellerstein*

Wei Wang*

*UC Berkeley and T Intel Research Berkeley
{jmh,wangwei } @eecs.berkel ey.edu

Abstract

We consider the in-network computation of approximate
“big picture” summaries in bandwidth-constrained sen-
sor networks. First we review early work on comput-
ing the Haar wavelet decomposition as a User-Defined
Aggregate in a sensor query engine. We argue that this
technique can be significantly improved by choosing a
function-specific network topology. We generalize this
discussion to aloose definition of a 2-level optimization
problem that maps from afunction to what we call asup-
port graph for the function, and from there to an aggre-
gation tree that is chosen from possible subgraphs of the
physical network connectivity. Thiswork isfrankly quite
preliminary: we raise a number of questions but provide
relatively few answers. The intent of the paper isto lay
groundwork for discussion and further research.

1

Wireless sensor networks must operate with significant
constraints on energy and bandwidth consumption. This
presents challenges for interactive analysis of data in
sensornets, since data analysts tend to desire a big-
picture view of the data before “drilling down” to spe-
cific queries. The big-picture queries can range over al
the data in the network, but fortunately approximate an-
swers are often sufficient for these purposes. Techniques
to provide approximate answers to resource-intensive
queries of this sort were explored by a variety of re-
searchersin traditional database scenarios (e.g., [6, 8]).

I ntroduction

Copyright 2004, held by the author(s)

Proceedings of the First Workshop on Data Management
for Sensor Networks (DM SN 2004),

Toronto, Canada, August 30th, 2004.
http://db.cs.pitt. edu/ dnsn04/

40

In this paper we explore some initial ideas and chal-
lenges in performing online, in-network data reduction
in sensor networks. Data reduction techniques can be
used to provide synopses or “sketches’ that can be used
to approximately answer queries. Our main contribution
here is not to present specific results, but to rough out
a set of ideas and research challenges that we hope the
community can explore and define further.

We begin by describing in some detail two tech-
niquesfor in-network computation of Haar Wavelets. We
hinge this discussion on the Haar support tree, alogical
dataflow specification that describes the ordering con-
straints on combining data values. We show that an ear-
lier ideafor in-network computation of the Haar does not
observe the constraints of the support tree, and instead
produces biased results. We then consider constraining
the network topology to generate a physical communi-
cation tree that observes the constraints of the logical
Haar support tree. We present the surprising observation
that a correct communication pattern for the Haar sup-
port tree results in a binomial communication tree at the
network layer. Thisinsight leads to some relatively crisp
questions surrounding the optimization of communica-
tion topologies for computing Haar wavel ets in-network.

Given this specific example as background, we pose a
more generic (albeit vaguely defined) family of optimiza
tion problemsfor doing in-network data reduction, by fo-
cusing on the genera problem of mapping from support
graphs to communication graphs for various computa-
tions. We also raise various challenges in transferring
this algorithmic work to practice.

2 Case Study: Wavelets

Wavelets have been widely used in the database litera
ture as a data reduction technique (atutorial is presented

Figure 1. A column of atable and its Haar wavelet sup-
port tree (sometimes called an “error tree”). The output
of the wavelet transform in this exampleis[35, -1, 3, §,
-4,3,3,3].

in [11]). Aggregate queries can be answered approxi-
mately by running them over compressed wavelets of a
raw dataset. Wavel ets have a number of attractive prop-
erties, including their mathematical simplicity, and their
ability to provide“multi-resolution” results by incremen-
tally fetching more of thewavelet from adisk or network.

2.1 ABrief Primer on Haar Wavelets

The Haar wavelet is the simplest and most popular ex-
ample of the wavelet family. The Haar is also easy to ex-
plain; we give abrief sketch here. Given an array of num-
bers (e.g., one column of a database table), it pairs up
the neighboring numbers in odd and even positions (e.g.
rows of thetable), and transformsthem into two different
numbers: their sum and their difference. The differences
are stored, and the sums are passed into arecursive appli-
cation of the procedure. The recursion can be visualized
asatree, asin Figure 11. The numbers (“coefficients’)
stored at each internal node in the tree represent the dif-
ferences between the overall sum of leavesin theleft and
right subtrees of the node; the edges are labeled with the
sums that are passed up. The root represents the sum
of al the entries in the original array. We call this tree
the support tree of the Haar wavelet: edges in the tree
represent data dependencies, where each internal node
is computed as a function of its children, and the leaves
underneath a node represent the support of the value in
that node. The output of the Haar transform can be pro-
duced by a breadth-first traversal of the (non-leaf) nodes
of the support tree, though in practicethereare coding a-
gorithms that do not require constructing and traversing

1The example builds a 1-d wavelet. Multi-d wavelets are analo-

gously built with trees of fan-in 2¢.

41

such atree[16].

Thedecoding of the transformed datacan be doneina
straightforward fashion starting from the root and recurs-
ing downwards: given the overall sum s at the root, and
the difference d at the node below, the overall sums of
the left and right subtrees are calculated as (s + d) /2 and
(s — d)/2 respectively, and the process can then recurse
to the leaves.

As described, the output of the Haar transform is ex-
actly the same size as the input. However, a simple
scheme can be used to lossily compress the wavelet by
truncating the list of coefficients. The basic idea is to
only keep coefficients with high absolute values?, and
“round” the remaining coefficients to zero. In our ex-
ample of Figure 1, truncating to the top 3 coefficients
gives[35,0, 0, 8, -4, 0, 0,0]. The resulting output array
has mostly zero-valued entries, and can be represented
compactly viaa number of well-known techniques (e.g.,
via (position, value) pairs for the non-zero entries, or
run-length encoding.) Decoding our truncated example
wavelet reconstructs the input as [2, 6.75, 4.375, 4.375,
6.125, 6.125, 2.125, 2.125]. Note that wherever a node
in the support tree was rounded to zero, the reconstructed
leaves in the corresponding subtree moved closer to-
gether in value. Dropping coefficients “smooths’ differ-
encesin the original data.

If the full wavelet encoding is available somewhere
—eg. onadisk, or across a network — then the num-
ber of “unrounded” coefficients fetched locally can be
increased incrementally in a “multi-resolution” manner,
to remove these smoothing effects. Each new coefficient
fixes a more subtle smoothing than the previous. This
incremental improvement in the reconstruction is one at-
tractive feature of wavelets.

A final side-noteis merited regarding the treatment of
set-valued datalike columns of databasetables. Wavelets
are a sequence-encoding scheme, preserving the ordering
of valuesin the input. In databases, this input ordering
is arbitrary by definition. Given that any ordering is ac-
ceptable, an open question isto choose an ordering of the
input data for which a wavel et truncated to the top & co-
efficientsis most effective. For numeric data, sorting the
tableisanatural option; an extension of thisideafor inte-

2Typically the values are normalized by dividing byv/2¢ where i is
the height of the node above the leaves. Normalization does not affect
the examples or algorithms here.

7

4
L 3

_/\

A

~

10 7 13

»_\
{3

1
I
4 4

oo

L

=
-4

N

~
13
_
(13
>
13

_ 7/

0

»_\
L0

|
/

f,_,\
l3

Figure 2: Given support subtrees of differing sizes, the PM technique zero-pads the smaller subtree before combining

them.

ger datais the Wavelet Histogram, which run-length en-
codesthe sorted columninto (value, frequency) pairsand
performs awavel et transform on the resulting sorted fre-
guencies [13]. For categorial attributes, the best choice
of sort-order is an open question; it is likely to be depen-
dent on the wavelet basis functions chosen (e.g. Haar,
Daubechies-4, Mexican Hat, etc.)

2.2 Haar Waveletsas a Distributed UDA

Earlier work based on the TinyDB system presented a
User-Defined Aggregation (UDA) technique to compute
a Haar wavelet over readings gathered in a sensor net-
work [10]. We refer to this as the Pad-Merge or PM
technique, and briefly review it here.

Asin extensible databases, UDAs in TinyDB are rep-
resented by atriplet of functions: a merging function f,
an initializer 4, and an evaluator e. The initializer con-
verts a scalar input value into an opague partial state
record (PSR), the merging function takes two PSRs and
combines them into a new PSR, and the evaluator takes
a PSR and produces an output scalar value. In sensor-
net query systems like TinyDB, an aggregation query is
disseminated to participating sensor nodes, which call
the initializer function on their local reading and then
communicate PSRs up a communication tree of network
links to the query node. When anode N receives a PSR
from a child in the treeg, it calls the merging function to
merge the incoming PSR into N’s current PSR; when
N has merged in all of its children’'s PSRs, N sends the
merged PSR to its own parent. Details of this aggrega-
tion scheme, including the dissemination of queries and
construction of communication trees, can be found in the

42

literature [12].

The PM technique uses a distributed, bottom-up
scheme to construct a Haar support tree like that of Fig-
ure 1. It has a total communication cost that is linear
in the number of nodes of the network (one fixed-size
message per node). The PSRs in the PM technique are
essentially arraysof k& wavelet coefficientsrepresented as
(position, value) pairs. Each PSR correspondsto a sub-
tree of a complete Haar support tree. The main logicin
the PM techniqueisin the merging function, which takes
two arrays of wavel et coefficients (representing two Haar
subtrees), generates anew set of wavel et coefficientsrep-
resenting the two trees connected by a new root, and
keeps the top k of those coefficients as the new PSR3.
Upon completion, the PM technique produces k large
wavelet coefficients that can be used to lossily recon-
struct the input data.

A Haar support tree is a balanced binary tree. But
aggregationin TinyDB imposes no structure on the com-
munication tree, and henceit does not control theorder in
which PSRs are merged. The merging function can bein-
voked on two arbitrary PSRs, which may represent Haar
subtrees of differing heights. To handle this, the PM ap-
proach proposes a zero-padding technique to “promote”
the smaller of the two input PSRs to a tree of the same
height as the larger: it pads the smaller PSR with an ap-
propriate number of zero-valued leaves until it becomes

3The order in which PSRs are combined recursively determines the
left-to-right ordering of the leaves of the Haar tree. In our discussion
here we focus on set-oriented query scenarios where this order — or,
equivalently, IDs of the nodes — is insignificant. Preserving the order
or node IDs can be done in a number of different ways that would
complicate our discussion here unnecessarily.

(t]

Figure 3: An in-network computation of the Haar wavelet of Figure 1. The left side annotates the (logical) support
tree with dark arrows representing physical message-passing between the sensor nodes. The right side of the figure
shows just the (physical) communicationtree, i.e., the leaf level of the left side. Each edge on the right is labeled with

the wavel et coefficients sent.

a balanced binary tree of the same height as the larger
PSR (Figure 2). This guarantees that the PM technique
always merges two PSRs of the same size, and hence al-
ways constructs balanced binary Haar support trees.

If the PM technique never truncates any coefficients,
it can reconstruct the data perfectly: the extra zeros in-
troduced by padding can be correctly accounted for and
deleted in the decoding process. However, in the practi-
cal caseswherethe PSR is much smaller than the number
of nodes in the network, each merging step has to trun-
cateto thetop & coefficients. When zero-paddingis used,
the truncating can smooth the spurious zeros across the
true data. In the end, the PM technique will produce a
k-coefficient wavelet that is not as accurate as the one
that would be produced in a centralized implementation
of the Haar encoding — the PM wavelet will incorrectly
bias the reconstructed data toward zero, in many casesin
a significant way.

2.3 Haar-Specific Network Topologies

The PM technique introduces bias when padding Haar
support subtrees of unequal size. Imagine that one could
guarantee that only equal-sized subtrees were merged.
Then no zero-padding would be needed, and the correct
top-k wavelet coefficients would be produced as a re-

43

sult. In this section we explore the possibility of achiev-
ing such an invariant by controlling the sensor network
topology used for aggregation in the network.

For purposes of illustration, assume for amoment that
we have a fully-connected communication network with
nodes numbered 1 through 2¢. Our god is to construct
the Haar support tree bottom-up by passing messages be-
tween nodes. By convention, we will assume that lower-
numbered nodes will pass messages to higher-numbered
nodes. The process begins at the leaves of the support
tree: node 1 passes its value to node 2, node 3 passes
its value to node 4, etc. The even-numbered recipients
pass along PSRs that contain their top & difference co-
efficients as well as their sum: node 2 passes its PSR
to node 4, node 6 passes its PSR to node 8, etc. At the
end of this process, the contents of the Haar support tree
would be distributed throughout the network, with the
top-k coefficients and the overall sum residing at node
2!, This communication pattern is depicted by the di-
rected arrowsin the left side of Figure 3.

Given our assumption of afully connected sensor net-
work graph, this distributed algorithm employs a very
stylized subgraph that comes from the data structureslit-
erature: the binomial tree [4] (right hand side of Fig-

Figure5: A binomial tree embedded in aradius-1 grid.

ure 3). In a binomial tree of 2! nodes, the root has
[children, which are binomial trees of 2 nodes for
i1 €0,...,l —1. Thedepth and maximum fan-in of a bi-
nomial tree are both logarithmic in the number of nodes.

We can now relax our unrealistic requirement of full
connectivity in the sensor network, and ask whether this
techniqueisfeasible in practice. This reducesto two ba
sic questions: (1) do binomial trees naturally occur as
subgraphs of practical sensornet communication graphs,
and if so, then (2) can an efficient, distributed topol ogy-
selection algorithm be devised to find and maintain a bi-
nomial subtree topology in a sensor network?

It would be interesting to study this question empir-
icaly, and/or to analyze it formally for random graphs
from typical distributions. Here we simply provide a
bit of intuition from the canonical simplistic sensornet
model of an equally-spaced 2-d grid of nodes with com-
munication radius of 1 grid-sguare per node. Ina4 x 4
grid, it is certainly possible to find binomial trees (Fig-
ure 5). Note however that in two dimensions each node
has only 8 neighbors, and the root of a binomial tree of
size 2! has children. Hence clearly any 2-d grid topol-
ogy of morethan 256 nodeswill not have a binomial tree
embedding unless its communication radius is greater
than 1. Similarly, since the corner of a grid has only 3
neighbors, there is no binomial tree rooted at a corner of
our 4 x 4 grid of Figure 5.

3 Generalizing the Haar Example

Haar wavelets are only one of many non-trivial aggre-
gation functions that may be of use in sensor networks.
The discussion aboveillustrates a number of interesting,
general problems that arise in computing such complex
aggregates efficiently. In this section we briefly sketch a
set of research problemsthat arise in this space.

44

3.1 A Static Optimization Problem

Section 2.3 raises the challenge of finding communica-
tion trees that match the Haar wavelet support tree. This
is an example of a more general optimization problem
in sensornet aggregation. The challenge is to take any
aggregation function and map it onto the graph of radio
connectivity in the network. This can be viewed as a
multi-layer optimization problem: asillustrated in Fig-
ure 4: (a) a support graph must be chosen for the ag-
gregation function, and (b) the support graph must be
mapped onto a communication tree; the communication
treeinturnisconstrained to be asubgraph of (c) theradio
connectivity graph of the sensornet. Note that depending
on the aggregation function, there may be more than one
satisfying support graph for step (a). Similarly, in step
(b) there are multiple communication trees correspond-
ing to a chosen support graph, more than one of which
may be a subgraph of the radio connectivity.

In the case of the Haar wavelet, the mapping from
support graph to communication graph was quite ele-
gant: a balanced binary support tree became a binomial
communication tree. Since the properties of binomial
trees are well known, they are amenable to analysis and
(hopefully) simple construction and maintenance algo-
rithms. It is unclear whether the mappings of other sup-
port graphs into communication graphs will be as ele-
gant. The curious reader is encouraged to play with the
Daubechies-4 wavel et as a more complex example, since
it has a support DAG rather than a support tree. The gen-
eral mapping problem itself is of interest, asis the ques-
tion of characterizing the communication graphs at the
output.

Asnoted in the previous section, it may in some cases
be impossible to find a communication graph in the net-
work to match a particular support graph for a func-
tion. In such cases, two options are available. Oneisto
achieve such a topology as an overlay network, by hav-
ing some sensorsforward PSR messages directly to other
nodes without applying the merging function. This of
course causes overheads that spoil the ideal linear com-
munication cost of many aggregates. The second op-
tion is to aways apply the merging function on arriv-
ing PSRs regardless of data dependenciesin the support
graph; logically this reshapes the support graph that gets
computed. Thisis exactly the approach taken by the PM
technique for Haar wavelets. Ideally this latter approach

ﬂ%'
-
> -
e

—d
A7\
'3

P —

Support Graph
pp p 5

Communication Tree

d m -
kﬁﬂ—— &’ i - /

= I

/ "-
s 7 £
™~
h Y = ol
= %L
b 4 £ - 5
~ P -~ ™
- - - -
e s

Radio Connectivity Graph

Figure 4: The general optimization problem needs to choose a Support Graph, and map it to a Communication Graph

that is a subgraph of the Radio Connectivity Graph.

should include a technique to quantify the error intro-
duced by such inappropriate merging.

The general optimization problem is as follows.
Given an aggregation function, a connectivity graph, and
acost function to minimize, the challengeisto choose a
min-cost communication graph in the network that is a
subgraph of the connectivity graph. The communication
graph must be annotated to differentiate between cases of
PSR forwarding and PSR merging. The cost functionis
likely to be a multi-objective metric, incorporating per-
haps such issues as bandwidth, latency, power consump-
tion, and bounds on errorsin the result.

3.2 Real-World Complications

This optimization problem is relatively well-defined, but
not entirely realistic. Here we highlight additional chal-
lengesthat arelikely to arisein practice.

The first is the very real issue of packet loss in sen-
sor networks. Loss probabilities on radio links can be
estimated, and added as inputs to the optimization prob-
lem. But this leaves the question of how to dea with
loss. A natural option is to implement network retries;
the expected number and cost of retries can be trandated
in the cost metric to bandwidth, latency and power con-
sumption. A second optionis simply to tolerate loss, and
estimate the loss in accuracy of the answer. A third, in-
triguing direction is the use of forward error correction.
Naive application of error-correcting codes seems like a
bad idea, since the codes are traditionally used to pre-
serve opague packets. Given our knowledge of applica-
tion semantics, it is interesting to explore the joint de-

sign of error-correcting aggregation functions. The re-
cent work on duplicate-insensitive distinct count sketch-
ing [3] may seen as an example of thisidea. A generic
challenge with any of these schemesis to minimize wak-
ing time: if a node chooses not to propagate any data
(e.g., because its coefficients are below a threshhold) it
should be able to power down. This is complicated by
the problem of loss, sinceit is unclear how receivers dif-
ferentiate between lost packets and unsent packets.

A second critical challenge is that of network dy-
namism. Experience shows that connectivity in a sen-
sornet changes over time as a function of many factors.
Given that the physical graph will change over time, a
dynamic reoptimization techniqueis needed for the prob-
lems sketched above, and preferably one that works in
a distributed fashion with minimal communication re-
quirements.

An additional, fundamental challenge arises at the ar-
chitectural level. This paper advocates algorithmic op-
timizations that collapse traditional boundaries between
application-level logic and various parts of the network
stack (e.g. topology construction, loss handling, etc.)
This raises the challenge of architecting a system that
allows users defining new aggregation functions to de-
scribe acceptabl e networking choices with aminimum of
fuss. Thisisan extensibility interface that is not well un-
derstood. A better understanding of this interface might
also provide guidance in choosing data reduction func-
tions to compute. For example, the support graphs of
various wavelet variants (Haar, Daubechies-4, etc.) are

45

quite different. Understanding how to describe these dif-
ferences compactly to a system might also provide ana-
Iytical insight into their relative merits in terms of map-
pability to communication graphs.

Finally, this discussion raises the question of what one
does with multiple concurrent functions with competing
desires—e.g. aquery that requests the simultaneous com-
putation of two very different aggregates.

4 Open Issuesand Alternatives

This paper describes arelatively focused family of opti-
mization challenges. In this section we briefly touch on
some broader issues and alternative approaches.

An important challenge in this context is to handle
changes in the data while the aggregation protocol is
running. Multi-resolution schemes like wavelets can let
users watch detail accumulate as coefficients are passed
up in multiple rounds of communication, in the spirit of
Online Aggregation [9]. However, during the multiple
rounds of communication, the data itself may be chang-
ing, and it may be more beneficial to send newer, coarse-
grained data rather than increasing refinements on stale
data. In thisvein, it might be beneficial look at spatio-
temporal wavelet encoding, and consider which coeffi-
cients of the spatio-tempora wavelet to communicate at
each timestep. This tradeoff emcompasses data proper-
ties and user desires, and it inherently a mix of systems,
coding, and HCI issues.

The traditional database approach to aggregation has
aunidirectional dataflow that resultsin the one-way com-
munication trees we have discussed here. A broad class
of data analysis techniques can be more efficiently com-
puted in two communication rounds. one up atree and
the other back down. This includes multi-dimensional
regression, Fast Fourier Transforms, and Bayesian be-
lief propagation, all of which can be computed via the
Junction Tree agorithm [1]. These techniques have been
mapped into the sensornet domainin recent years[7, 195].
But current sensornet query engines have yet to incor-
porate these approaches into their architectures or lan-
guages, and the integration may require a new architec-
ture beyond analogies to Object-Relational UDAs. It is
worth noting that many of the problems suggested here
are related to work being studied in the Junction Tree
context [15].

Another fruitful vein of exploration is to design data

46

reduction techniques whose merging function is fully
commutative and associative. The network optimization
for these aggregates is therefore unconstrained by the
choice of support tree. AMS sketches [2] are one ex-
ample that may be a good alternative to wavelets. Nath
and Gibbons propose a scheme to additionally intro-
duce duplicate insensitivity to aggregates in a general
way [14]. Duplicate insensitivity removes the constraint
of the communication graph being a tree, alowing for
arbitrary “diffusion” or “gossip” of messages.

Wavelets have been proposed for sensor networks in
the work of Ganesan, et al. on DIMENSIONS [5]. DI-
MENSIONS does not perform any distributed wavel et
computation. Instead it has two main components. (a)
it uses local wavelets to lossily compress archival stor-
age of readings over time at each node in the network,
and (b) it embeds a geographic quad-tree in the network
to provide distributed, hierarchical spatia summariza-
tion. Each node of the quad tree receives the (wavel et-
encoded) data from the nodes below, decodes it to form
a 2-d array, and re-encodes the array into (threshhol ded)
2-d wavelet coefficients used both for lossy local stor-
age and for communication further up the quad-tree.
DIMENSIONS blends two approaches to hierarchical
datareduction: local wavelets and distributed quad trees.
An interesting question is whether a distributed muilti-
dimensional wavelet of the form described in this paper
could be extended appropriately to achieve the function-
aity of DIMENSIONS in a unified fashion.

5 Conclusion

If sensornet query engines are to succeed, they need to
either provide a wide range of useful built-in function-
ality, or be easily extended to incorporate new function-
dities. Given the relative immaturity of the area, it is
unlikely that we will anticipate many of the important
features in advance. The traditional User-Defined Ag-
gregation functionality of extensible databases should be
a key feature in sensornet query systems, and optimiza-
tion of UDAs over networkswill be akey challenge. Per-
haps the most critical aspect of the work described here
is architectural challenge raised: how do users define the
merging rules for complex UDAS to the system, and are
there general optimization techniques to take such rules
and use them to achieve good performance?

Acknowledgments

Thanks for conversation and feedback to Amol Desh-
pande, Christos Faloutsos, Minos Garofaakis, Phil Gib-
bons, Carlos Guestrin, Sam Madden, Yossi Matias, Mark
Paskin, Kannan Ramchandran, and Mehul Shah. Mark
Paskin devised the visualization of the layered optimiza-
tion problem for his work on distributed inference [15].

References

[1]

(2]

(3]

[4]

(5]

6]

8]

S. M. Aji and R. J. McEliece. The generalized
distributive law. 1EEE Trans. Info. Theory, 46(2),
2000.

N. Alon, Y. Matias, and M. Szegedy. The space
complexity of approximating the frequency mo-
ments. In Proc. 28th Annual ACM Symposium
on Theory of Computing (STOC), pages 2029,
Philadelphia, PA, 1996.

J. Considine, F. Li, G. Kollios, and J. Byers.
Approximate aggregation techniques for sensor
databases. In Proc. International Conference on
Data Engineering (ICDE), Mar. 2004.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms, Second Edi-
tion. MIT Press, 2001.

D. Ganesan, B. Greenstein, D. Perelyubskiy, D. Es-
trin, and J. Heidemann. An evaluation of muilti-
resolution storage for sensor networks. In Proc.
First ACM Conference on Embedded Networked
Sensor Systems (SenSys), 2003.

P. B. Gibbons, V. Poosala, S. Acharya, Y. Bartal,
Y. M. andf S. Muthukrishnan, S. Ramaswamy, and
T. Suel. AQUA: System and techniquesfor approx-
imate query answering. Technical report, Bell Lab-
oratories, Murray Hill, NJ, Feb. 1998.

C. Guestrin, R. Thibaux, P. Bodik, M. A. Paskin,
and S. Madden. Distributed regression: An efficient
framework for modeling sensor network data. In
Proc. 3rd International Symposium on Information
Processing in Sensor Networks (IPSN), 2004.

J. M. Hellerstein, R. Avnur, A. Chou, C. Hidber,
C. Olston, V. Raman, T. Roth, and P. J. Haas. Inter-
active data analysis with CONTROL. |EEE Com-
puter, 32(8), August 1999.

47

(9]

(10]

(11]

(12]

(13]

[14]

[15]

(16]

J. M. Hellerstein, P. J. Haas, and H. Wang. Online
aggregation. In Proceedings of the ACM SGMOD,
pages 171-182, Tucson, AZ, May 1997.

J. M. Hdlerstein, W. Hong, S. Madden, and
K. Stanek. Beyond average: Towards sophisticated
sensing with queries. In 2nd International Work-
shop on Information Processing in Sensor Net-
works (IPSN), 2003.

D. Keim and M. Heczko. Wavelets and their appli-
cations in databases. In Proc. International Con-
ference on Data Engineering (ICDE), Heidelberg,
Germany, 2001.

S. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. TAG: A Tiny AGgregation Service for
Ad-Hoc Sensor Networks. In Symp. Operating Sys-
tems Design and Implementation (OSDI), 2002.

Y. Matias, J. S. Vitter, and M. Wang. Wavel et-based
histograms for selectivity estimation. In SGMOD,
pages 448-459, Seattle, Washington, 1998.

S. Nath and P. B. Gibbons. Synopsis diffusion for
robust aggregation in sensor networks. Technical
Report IRP-TR-03-08, Intel Research, 2003.

M. A. Paskin and C. E. Guestrin. A robust archi-
tecture for distributed inference in sensor networks.
Technical Report IRB-TR-03-039, Intel Research,
2003. Submitted for publication.

W. Sweldens. The lifting scheme: A construc-
tion of second generation wavelets. SSAM J. Math.
Anal., 29(2):511-546, 1997.

WaveScheduling: Energy-Efficient Data Dissemination
for Sensor Networks

Niki Trigoni, Yong Yao, Alan Demers, Johannes Gehrke

Cornell University
Ithaca, New York 14850

{niki,yao,ademers, johannes}.cs.cornell.edu

Abstract

Sensor networks are being increasingly deployed
for diverse monitoring applications. Event data
are collected at various sensors and sent to select-
ed storage nodes for further in-network process-
ing. Since sensor nodes have strong constraints
on their energy usage, this data transfer needs to
be energy-efficient to maximize network lifetime.
In this paper, we propose a novel methodology for
trading energy versus latency in sensor database
systems. We propose a new protocol that careful-
ly schedules message transmissions so as to avoid
collisions at the MAC layer. Since all nodes ad-
here to the schedule, their radios can be off most
of the time and they only wake up during well-
defined time intervals. We show how routing pro-
tocols can be optimized to interact symbiotically
with the scheduling decisions, resulting in signifi-
cant energy savings at the cost of higher latency.
We demonstrate the effectiveness of our approach
by means of a thorough simulation study.

1 Introduction

Sensor networks consisting of small nodes with sensing,
computation and communication capabilities are becom-
ing ubiquitous. A powerful paradigm that has emerged
recently views a sensor network as a distributed Sensor-
DBMS and allows users to extract information by inject-
ing declarative queries in a variant of SQL. In deploying a
SensorDBMS one should consider important limitations of
sensor nodes on computation, communication and power
consumption. Energy is the most valuable resource for u-
nattended battery-powered nodes. Since radio communica-
tion consumes most of the available power, SensorDBMSs
need energy-efficient data-dissemination techniques in or-
der to extend their lifetime.

An important communication pattern within sensor net-
works is the sending of sensor readings to a designated

Copyright 2004, held by the author(s)

Proceedings of the First Workshop on Data Mana-
gement for Sensor Networks (DMSN 2004),
Toronto, Canada, August 30th, 2004.
http://db.cs.pitt.edu/dmsn04/

48

Rajmohan Rajaraman
Northeastern University
Boston, Massachusetts 02115
rraj@ccs.neu.edu

sensor node. Let us give two examples where this pattern
arises. First, consider a heterogeneous sensor network with
two types of sensor nodes: many small-scale source nodes
with low-power multi-hop communication capabilities, and
a few powerful gateway nodes connected to the Internet. In
this setup, data flows from the sources to the gateway n-
odes. Our second example is motivated by resource savings
through in-network processing. In-network processing al-
gorithms coordinate data collection and processing in the
network at designated nodes called view nodes [1, 2]. Data
flows from sources to relevant view nodes for further pro-
cessing. For example, in a sensor network that monitors a
remote island and records the movements of different types
of animals, each view node could be responsible for storing
the detection records (and computing tracks) for a given
type of animal.

Since power is a major resource constraint, we would
like this data flow between sources and view nodes to be
as power-efficient as possible; in particular, for non-time-
critical applications, we would like to trade message latency
versus power usage as events are routed from the sensor
nodes where they originated to the respective view nodes.

In order to achieve energy-efficient data flows between
sources and view nodes, we address several challenges in-
trinsic to ad hoc network communication: minimizing col-
lisions at the MAC layer, managing radios in a power-
efficient manner, and selecting energy-efficient routes. In
this paper we consider data dissemination strategies that
avoid collisions (and message retransmissions) at the cost
of higher message latency. We carefully coordinate trans-
missions between nodes, allowing them to turn their ra-
dios off most of the time. Current generation radios con-
sume nearly as much power when listening or receiving as
when transmitting (typical idle:receive:transmit ratios are
1:1.2:1.7 [3], 1:2:2.5 [4], and 1:1.05:1.4 [5]). Thus, the a-
bility to turn them off when not needed yields significant
energy savings.

The remainder of this paper is organized as follows. Sec-
tion 2 enumerates several variants of scheduling problem-
s and discusses their complexity. Section 3 presents our
scheduling algorithm and highlights its close interaction
with the routing layer. A thorough experimental evalua-
tion of the proposed algorithm and competing approaches
is presented in Section 4. We discuss related work in Sec-
tion 5 and draw our conclusions in Section 6.

2 Problem space

With coordinated scheduling, a data dissemination proto-
col in a sensor network has two components: a scheduling
algorithm that activates network edges so that their trans-
missions do not interfere with one another, and a routing
algorithm that selects routes for individual messages. T-
wo important performance metrics are energy consumption
and message latency. In this section, we consider each of
these metrics and sketch complexity results for the follow-
ing optimization problems: (i) finding an optimal pair of
routing and scheduling algorithms; (ii) finding an optimal
routing algorithm for a given schedule; (iii) finding an op-
timal schedule for a given collection of routes. Full proofs
of these results can be found in an extended version of the
paper [6].

The underlying framework for our optimization prob-
lems is as follows. We assume the sensor nodes form a
multi-hop wireless network embedded in the plane. For
simplicity, we assume the node radios have identical ranges
of one unit. Thus, the nodes form a unit disk graph: two
nodes are connected by an edge iff the Euclidean distance
between them is at most 1. We represent the communi-
cation workload by the rate of message generation at each
node 4, given by r;, together with a probability distribu-
tion p;;, giving the probability that a message generated
at node ¢ is destined for node j.

Energy minimization. In the energy minimization
problem, we are given a communication workload among
the sensor nodes and view servers, and our goal is to deter-
mine a data dissemination scheme that minimizes the en-
ergy consumed in delivering all messages within a bounded
delay. In our model, we assume that the energy consumed
when a network edge is activated is (a + fm), where «
is a fixed start-up cost for turning the radio on, 3 is the
per-message transmission and reception cost, and m is the
number of messages sent during the activation.

Theorem 2.1 For any a > 0 and 8 > 0, finding an opti-
mal routing-scheduling pair to minimize energy is NP-hard,
even when there is only one view server. It is also NP-hard
to determine an energy-optimal activation schedule given a
fized set of routes. The problem of finding a set of energy-
optimal routes given an activation schedule can be solved
in polynomial time.

Latency minimization. In the latency minimization
problem, we are given a communication workload and seek
a data dissemination protocol that minimizes average mes-
sage propagation latency. It is already known that min-
imizing latency in an ad-hoc wireless network is NP-hard
even for the special case where nodes exchange messages
only with their neighbors [7]. This reduction can be ex-
tended to unit disk graphs.

Theorem 2.2 Finding a routing-scheduling pair that min-
imizes latency is NP-hard. It is also NP-hard to determine
an optimal activation schedule given a fized set of routes. A
set of latency-optimal routes for a given activation schedule
can be obtained in polynomsial time.

These results indicate that the general problem of de-
signing an optimal data dissemination protocol, given an
arbitrary sensor workload, is intractable. In this paper, we
focus on one element of the design space, namely that of

49

first developing an interference-free schedule for edge acti-
vation, and then designing delay- or energy- optimal routes
given this schedule.

3 Wave Scheduling and Routing

In this section, we focus on developing a schedule for edge
activations, and then designing optimal routes given this
schedule. Our scheduling mechanism is defined over a sim-
ple partitioning of the network, which we first describe in
Section 3.1. We then select a class of periodic schedules,
presented in Section 3.2, which are aimed at avoiding colli-
sions at the MAC layer. Finally, in Section 3.3, we present
energy-based and delay-based routing protocols that opti-
mize the relevant metric for a given schedule.

3.1 Partitioning

Our scheduling mechanism is layered on top of a protocol
like GAF [8], which partitions nodes into cells and period-
ically elects a single leader node for each nonempty cell.
Nodes determine the cell that they belong to by using dis-
tributed localization techniques [9, 10]; experiments have
shown that GAF is robust to somewhat inaccurate position
information [8]. The size of each cell is set so that a node
anywhere in a cell can communicate directly with nodes in
any of its four horizontal and vertical neighbor cells. This
constrains the side of a cell to have length L at most R/+/5,
where R is the transmission range of a node. Since only
leaders are engaged in inter-cell message routing, the re-
maining nodes may turn off their radios most of the time,
achieving significant energy savings. The schedules that
we will propose in this section exploit the GAF topology
control scheme in order to achieve further energy savings.
They leverage the abstraction of partitioning irregularly
positioned nodes into cells organized in a rectilinear grid
and focus on coordinating inter-cell communication. In
what follows, we will refer to cells as supernodes or simply
nodes.

For convenience of exposition, we assume here that the
rectilinear grid is a square. Let N denote the number of
supernodes along an edge of the grid. We identify the
supernodes by their coordinates (4, j); for example (0, 0)
refers to the node at the southwest corner of the network.
Thus, (¢ +1,5), (¢,7 + 1), (¢ —1,5), and (¢,j — 1) are the
east, north, west, and south neighbors, respectively, of n-
ode (1, 7), for 1,5 € [0, N).

3.2 Wave Scheduling: Algorithms

Given a set of supernodes arranged in a rectilinear grid,
we propose a class of periodic activation schedules that
conserves energy by (i) avoiding interference at the MAC
layer and (ii) allowing supernodes to turn off their radios
whenever they are not sending or receiving messages. In
these schedules, which we call wave schedules, every (di-
rected) edge of the rectilinear grid is activated periodi-
cally at well-defined communication intervals, called send-
receive intervals. For any two neighboring supernodes A
and B, the edge A — B is activated in the send-receive
intervals [t + ¢P,t + iP +], for every ¢ > 0, where ¢ is
the first time the edge is activated and P is the period
of the schedule. We now elaborate on the edge activation

lOOOOOOOOOO %OOOOOOOOO“%OOOOOOOOOSOOOOOOOOOO

O

O

o

00000000
00000000
00000000 0000000000
o O@000000 @0
O
(o]
[©]

1
0000000000

a o
d°>0000000000 0000000

@]
[4
(e]e]e)e] Yele] g
O

O 00
@]
(0]
[¢]
(@]
[©]
@]
o]
[©]

0000000000000
00000000 0000
00000000 0000
00000000 0000
00000000 0000

0000000 @0
O000000000

000000000

0000000000 000000000
0000000000 0OOO0OOOOOOO

O
5%OOOOOOOOO"S%OOOOOOOOOGOO
0000000000 O
O®@00000000 (o]
0000000000
0000000000
0000000000
0000000000
O@00000000

0000000000
(o] Joleleleleleele]
[oJelejelelelele] lo]

Figure 1: SimpleWave
step and then present two wave schedules: SimpleWave
and PipelinedWave.

Edge activation. An edge activation A — B consists of
a contention-based and a collision-free period. During the
contention-based period, all nodes within the cell A turn
on their radios in order to run the GAF protocol (GAF
only runs locally in cell A). They check whether the leader
has enough energy reserves to continue assuming the lead-
ership role. If the leader is energy-drained, a re-election
protocol selects the new leader. Messages in the queue of
the old leader, as well as inter-cell routing information, are
transfered to the new leader. The remaining nodes then
send their sensor readings, which were generated since the
previous GAF period, to the leader of the cell. Contention
resolution MAC protocols work very well in avoiding intra-
cell contention, since all nodes in the cell are within com-
munication range and there are no occurences of the hidden
terminal problem. This adapted version of the GAF proto-
col is more energy-efficient than the original GAF scheme,
because it avoids interference caused by concurrent leader
reelection in consecutive cells.

The collision-free period of an edge activation A — B
is used in order to route messages from the leader of A
to the leader of B. During that period both leaders of
A and B (referred to simply as A and B) turn on their
radios preparing for message transmission and reception
respectively. If A has no data messages to send, it sends a
special NothingToSend (NTS) message to node B, which
allows both nodes to turn off their radios without having to
wait until the end of the send-receive interval. As we will
show in the experimental section, the use of NTS messages
offers significant energy savings since it adjusts the node
duty cycle to its local traffic. Since in the collision-free
periods there is no interference at the wireless medium, it
is not necessary to exchange RTS and CTS messages prior
to sending a regular data message (or an NTS message).
A data (or NTS) message is simply followed by an ACK.
The first data or NTS message that A sends to B (and
its ACK) can be used in order to resynchronize the clocks
of the two nodes for the next activation of edge A — B.
If the synchronization error between two neighbor nodes
at the beginning of the collision-free period is bound by e
msecs, we set the receiver B to wake up e msecs earlier

50

than scheduled according to its local clock. Synchroniza-
tion issues are discussed in more detail in the end of this
section.

In the remainder of the paper, by edge activation we
mainly refer to the collision-free period of the edge ac-
tivation used for inter-cell communication. The ratio of
the collision-free period to the contention-based period de-
pends on the traffic patterns of the application. For in-
stance, for traffic workloads with messages following mul-
tiple hops before reaching the destination, the collision-
free (inter-cell communication) period should dominate the
contention-based (GAF) period.

SimpleWave. The intuition behind wave schedules is to
coordinate message propagation in north, east, south and
west phases. For instance, during the east phase, only
edges of the form (i,5) — (¢ + 1,j) are activated send-
ing messages along the east direction. Owing to interfer-
ence, however, we cannot schedule all of the edges along
the east direction. If A denotes the ratio of the interference
range to the transmission range, then a sufficient condition
for transmissions from two supernodes (¢, j) and (¢1, j1) to
avoid interference is the following:

Vi—i -1 +(G-n-1?L>AR

In particular, if we consider two supernodes (¢,j) and
(41,7), then their transmissions do not interfere it ¢ — 31 —
1 > AR/L. Since i — 41 — 1 is an integer, we obtain
that the two supernodes can transmit simultaneously if
t—11 > [A-R/L] +1, which we denote by g. If we adopt
the IEEE 802.11 settings of R = 250m and A = 550/250,
and set L to its minimum value R/+/5, we obtain that
g=6.

In the SimpleWave schedule, we schedule together edges
that are g positions apart. Figure 1 illustrates the Simple-
Wave schedule on a 10 x 10 network, with R = 250m,
A = 550/250, setting L to a round number of 100m (in-
stead of its minimum value R/+/5), yielding g = 7. The
north phase starts at time 1 and it lasts for 51 send-receive
intervals during which every north edge is activated exact-
ly once. The following east phase starts at time 52. Notice
that only two nodes of the first column ((0,0) and (0,7))
are sending concurrently to the east, which are spaced a-
part by 7 hops. In the next interval (time 53) the pattern
shifts east by one cell. Only when the wave has propagated
to the eighth column (time 59) does it no longer interfere
with node communication in the first two columns. Note
that at time 59 it becomes possible to schedule concurrent-
ly four edges: (7,0) — (8,0), (7,7) — (8,7), (0,1) — (1,1)
and (0,8) — (1,8).

There are variants of the Simple Wave algorithm de-
fined above, differing by the order in which wave direc-
tions are scheduled. We refer to these as the (N, E, S, W),
(N,W,S,E), (N,S,E,W), and so forth. The variants are
logically equivalent, but the choice of scheduling variant
affects the choice of routes, as will be explained in detail in
section 3.3. The period of a Simple Wave depends on the
size of the network. Each phase takes (N —1)+ (g—1)-g
send-receive intervals and the entire wave period lasts for
4% ((N—1)+(g—1)-g) intervals. This is not a desirable
property, because it prevents the distributed deployment
of the algorithm in a dynamic network. When a new su-
pernode (cell) joins (or leaves) the network, it affects the

00000000 OOOOOOOOOO0OO0
00000000 0OOOOOOOOOOOO
0000000000000 0OO00OO000
00000000 0OOOOOOOOOOOOO
0000000000000 0Ce000000
O000000e000000O000O000
0000000000000 00000000
0000000000000 OO0O0OO000
0000000000000 0OO000000
0000000000000 0OO0O0OO00O0
0000000000000 0OOOOO00
0000000000000 0CeO000000
'oJololololeje; Jolelolelole ololelolelofe.
9000000000000000000000
0000000000000 0OO0OO0O00
0000000000000 0OOOO0O00
0000000000000 0OOOO000
0000000000000 0OOOO000
0000000000000 0OeO000000
0000000 @0000000000000
9000000000000 O00O0000

Figure 2: PipelinedWave

wave period and therefore the activation times of all the
other supernodes. In addition, in order to identify the acti-
vation time of its adjacent edges a supernode should know
its location within the network, as well as the size of the
network. Another important downside of the Simple Wave
algorithm is that it underutilizes the capacity of the net-
work. For instance notice in Figure 1 that at time 1, it
activates only two north going edges, whereas one could
identify two additional edges that could be activated con-
currently without causing any interference.

PipelinedWave. This algorithm is motivated by the need
for schedules that can be deployed in a distributed and s-
calable manner, and that make a good use of the network
capacity. Conceptually, a network can be divided in a num-
ber of fixed-size (gx g) squares of g> supernodes each, where
all squares have identical schedules. In such a network, the
schedule of the incident edges of a node is determined by its
relative location in the square. Since all edges within the
same square interfere with one another, we can only sched-
ule one edge at a time. In effect, we partition all the edges
of the network into a collection of mazimal independent
sets, each independent set corresponding to a set of edges
that can be simultaneously activated without interference.
The period of the resultant schedule is 4g% send-receive in-
tervals. This means that for pipelined waves, new nodes
can join the network and schedule themselves without af-
fecting the schedules of existing nodes. If a supernode joins
an existing square, it waits for at most one period in or-
der to interact with its neighbors and locally determine its
location with respect to them and therefore its local coor-
dinates within the square. By overhearing the schedules of
its immediate neighbors it determines the time at which
it should schedule itself in each direction. A similar local
interaction occurs when a new supernode joins the network
initializing a new square. When a node leaves the network,
the schedules of the remaining supernodes do not change.

Note that in the Pipelined Wave algorithm two edges are
scheduled concurrently if they have the same direction and
the sender nodes (and the receiver nodes) have exactly the
same local coordinates within a g x g square. This implies
that the algorithm avoids all interference at the MAC layer.
It schedules a maximum number of non-interfering edges
at each send-receive interval thus increasing the network
capacity with respect to the Simple Wave algorithm. It is

51

easily deployable in a distributed manner, since local coor-
dination suffices for scheduling a new supernode. Finally,
it is scalable because the node schedules are not affected
by the size of the network.

A modified version of the Pipelined Wave algorithm does
not define identical schedules for each square, but schedules
shifted by g positions with respect to the schedules of the
four neighbor squares. More specifically, the east wave of a
square is shifted g positions (send-receive intervals) earlier
than the east wave of the west neighbor square, the north
wave is shifted g positions earlier than the north wave of
the south neighbor square etc. A snapshot of the modified
Pipelined Wave algorithm (during the east phase) is shown
in Figure 2. The east phase in a given (dotted) square
proceeds by shifting one edge to the right and moving to
the row below when the entire row of the square is tra-
versed. Notice that by the time an entire row is traversed
in a given square, the respective row of the right neighbor
square just starts being traversed. The new pipelined al-
gorithm decreases the latency of message delivery at the
square boundaries; this will become evident when we de-
scribe delay-based routing in Section 3.3. The south, west
and north phases are scheduled in a similar manner. This
improved Pipelined Wave is the schedule evaluated in our
experiments in Section 4.

Another tunable parameter in Pipelined Wave is the
number of send-receive intervals for each direction (phase)
before the wave switches to another direction. Our experi-
ments show that this parameter, referred to as step, has no
noticeable impact on the performance of the wave sched-
ule [6]. In Section 4, we evaluate the variant of Pipelined-
Wave with step=1.

Synchronization. We briefly discuss two synchronization
requirements imposed by wave schedules: i) neighbor nodes
must have the same notion of time regarding their commu-
nication slot and ii) nodes in the close neighborhood must
be well synchronized so that only edges at least g position-
s away are scheduled simultaneously. Acknowledging that
perfect time synchronization is hard to achieve, we relax
the initial requirements and propose a fault-tolerant ver-
sion of wave schedules. If the drift between two neighbor
clocks does not exceed €, nodes that are g positions away
from each other are synchronized within ge. In every edge
activation, we schedule the receiver to turn on the radio €
time units earlier than the scheduled time according to its
local clock. In order to ensure that there is going to be
no interference due to the clock errors, we can increase the
distance between two non-interfering edge activations (e.g.
from 7 to 8). Notice that although a perfectly aligned wave
schedule implies global synchronization, a reasonable im-
plementation of waves is achievable by ensuring that nodes
are well-synchronized with neighbors within interference
range.

Recently proposed synchronization protocols for sensor
networks (e.g., RBS [11] and TPSN [12]) provide tight syn-
chronization bounds (e.g., 0.02ms for neighbor nodes [12])
and exhibit good multi-hop behavior. Their performance
however is bound to decay for very large networks (an open
problem that we discuss in Section 4); in this case we as-
sume that a few GPS-equipped nodes will undertake the
synchronization task for their local regions.

3.3 Routing

The proposed wave schedules are TDMA-based MAC pro-
tocols that assign periodic transmission slots to inter-
cell communication. Wave schedules are general-purpose
energy-efficient MAC protocols that can potentially be
combined with arbitrary routing protocols. In this sec-
tion we consider two important metrics for evaluating the
efficiency of a routing algorithm, namely node energy con-
sumption and message propagation latency. Note that
energy-optimal routes do not depend on the underlying
wave schedule, whereas latency-optimal routes are intrin-
sically coupled with it.

Energy-based routing. As noted in Section 2, minimum
energy routing is achieved by routing along shortest hop
paths. We adopt a simple flooding approach that evaluates
minimum-hop paths from all nodes in the network to a
given view node. Flooding initiated at a view node results
in the construction of a tree connecting all supernodes to
the root (view) node, as described in [13]. Since we consider
more than one view, the minimum-hop routes form a forest
of trees built on top of the grid overlay.

Each node maintains an in-memory routing table of size
proportional to the number of view servers. For each view
server, the routing table includes a 2-bit entry giving the
direction of the next hop towards the view. This simple
approach works even in the presence of ”holes” (empty
cells), as is shown by Madden et al. [13]. Dynamic node
failures (which manifest themselves as the appearance of
new holes) can be dealt with by a local flooding phase to
repair affected routes, as in AODV, or by introduction of
a greedy face-routing mode as in GPSR [14, 15]. Alterna-
tively, a node that fails to deliver a message may store it
in memory until the next flooding phase that reconstructs
the tree.

Delay-based routing. We propose a delay-based routing
algorithm that, given a certain wave schedule, minimizes
message latency between a pair of source and view nodes.
Each node C maintains a routing table, that contains for
each view V and each neighbor N a triple (V, N, d), where
d is the latency of the minimum-latency path from C to
V among all paths with the next-hop being N that C is
presently aware of. On updating a routing entry, node C
also sends the information (V, N,d) to its neighbors. On
the receipt of such a message, neighbor N* of C does the
following: i) it evaluates the time dt that a message sent
over N* — C remains at C before being forwarded with
the next wave via C — N towards view V; ii) if an entry
(V,C,d’) with d' < d + dt exists in the routing table of
N*, then the routing message is dropped - otherwise, the
routing entry is replaced by (V, C,d + dt).

‘When the above distributed algorithm converges, every
node has determined the minimum-latency paths to each
view. Routing messages can be piggy-backed on regular
or NothingToSend messages as in the case of energy-based
routes. Local repairs can be performed as in the case of
energy-based routing, but by considering latency as the
primary metric for evaluating the goodness of a route.

4 Experimental Evaluation

We implemented a prototype of wave scheduling in the NS-
2 Network Simulator [16] and compared its performance

52

Average Message Delay Evaluated From Routing Tables

140 ‘ ‘ ‘ :
PipelinedWaveDelay_stepl_views1l0 —+—
120 | PipelinedWaveEnergy_stepl_views10]
100
R
@ 80
")
T 60
[}
©
402
20 1
O 1 1 1 1
0 20 40 60 80 100
EmptyCells

Figure 3: Delay vs energy routing

with other approaches. In Section 4.1, we test the be-
haviour of wave schedules under different routing metrics,
as well as varying the number of views and empty cell-
s. Section 4.2 presents the performance of two competing
tree-based scheduling approaches and Section 4.3 shows
the behavior of IEEE 802.11 with various duty cycles. A
comparison of wave schedules with the other approaches is
presented in section 4.4.

4.1 Wave Scheduling

We simulate a network of 20 by 20 grid cells of size 100m?
each. The ratio of interference to communication range
is 550/250 and the ratios between radio idle, receive and
transmit power are 1:1.2:1.6. Every edge activation be-
tween two consecutive cells lasts for 200ms. In the wave
schedules, all routing happens at the level of the grid over-
lay network. A node can send about 10 packets during an
edge activation given a link bandwidth of 20kbps. The re-
ceiver wakes up 30ms before the sender to avoid message
loss when clocks are subject to small drifts.

The size of a square in a pipelined wave is set to 8 by 8
grid cells (instead of 7 by 7) in order to avoid interference
as a result of small synchronization errors. Experiments
run for 1000 seconds and the traffic workload varies from 0
to 2500 messages. The time that a message is generated is
selected at random, uniformly over the simulation period.
The source location of a message is randomly selected to
be any of the non-empty cells, and the destination to be
any of the views. Cells containing views and empty cells
are randomly distributed in the network.

Energy- vs. delay-based routing. We first compare the
behavior of the PipelinedWave schedule under two wave
routing metrics: minimum hop-count and minimum-delay.
Recall from Section 3.2 that due to the scheduling of the
waves, the path with minimum delay is not necessarily the
path of minimum hop count. Figure 3 shows the aver-
age path delay under light load for the two metrics, i.e.
it shows the time between generation of a message at it-
s source and delivery of the message at its destination.
This delay is computed by deriving information from the
routing tables of the nodes. It coincides with the real mes-
sage propagation delay when the traffic is low and nodes
can completely drain their buffer during an edge activa-
tion. The minimum-energy routing metric defines paths

Average Message Delay

300 : ‘ : ‘
PipelinedWaveDelay_stepl_viewsl —+—
PipelinedWaveDelay_stepl_views5 —<—

250 - pipelinedWaveDelay stepl_views10 —x—

PipelinedWaveDelay_stepl_views20 r
o 200 |
[8]
3
— 150 |
8
Q
° 100 |
3
50 H
O 1 1 1 1
0 500 1000 1500 2000 2500
Messages
Figure 4: Effect of views on delay
Average Energy Consumption

12 T T T T
PipelinedWaveDelay_stepl_viewsl —+—
PipelinedWaveDelay_stepl_views5 —x—

10 ¢ PipelinedWaveDelay_stepl_views1l0 —x—

e PipelinedWaveDelay_stepl_views20 —&—
g 8y '
=}
)
~ 6 L
>
2
2 af
[0}
2 L 4
0 1 1 1 1
0 500 1000 1500 2000 2500
Messages

Figure 5: Effect of views on energy

with higher delay than the minimum-delay metric and the
gap increases as we increase the number of holes from 0 to
100 (25% of all cells). For 100 holes (or empty cells), the
minimum-energy metric yields paths that are 30% slower
than the minimum-delay metric. The energy overhead of
the minimum-delay metric was observed to be negligible.
In the remainder of the section, we use minimum-delay as
the default routing metric.

Scalability with the number of views. Our second
experiment shows the scalability of our scheme with respect
to the number of view nodes. Figure 4 shows the average
observed message delay, which captures queueing delay due
to traffic. We set the number of empty cells to be 0. With
more view nodes, the load is better balanced across the
network, the average message propagation delay is smaller
and the overall capacity of the network increases. With
more than 200 messages for a single view the network is
overloaded, and the queues in the network start to grow,
and they would continue to grow without bounds if we
would not have limited the length of the experiment to 1000
seconds. Figure 5 shows that the energy usage of the wave
does not increase with the number of views, for a given
number of messages. This confirms the nice behavior
of wave routing which makes it exceptionally suitable for
sensor networks with multiple gateway (or view) nodes.
Effect of empty cells. We also examine the impact of

53

Average Message Delay

PipélinedWavéDelay_ste‘pl_holeso‘ —t
PipelinedWaveDelay_stepl_holes20 —>—
200 - pipelinedWaveDelay stepl_holes40 —x—
PipelinedWaveDelay_stepl_holes80 —&—
w150 | 1
Q
L
8 100})
Q
©
50 1
O 1 1 1 1
0 500 1000 1500 2000 2500
Messages
Figure 6: Effect of holes on delay
Average Energy Consumption
16 T T T T
PipelinedWaveDelay_stepl_holesO —+—
14 |+ PipelinedWaveDelay_stepl_holes20 —<— 1
PipelinedWaveDelay_stepl_holes4d0 —*—
.12 ¢ PipelinedWaveDelay_stepl_holes80 —&— 1
[%]
< 10t)
)
~ 8 b 4
>
[
@ 6 1
&
4 i
2 L 4
0 1 1 1 1
0 500 1000 1500 2000 2500
Messages
Figure 7: Effect of holes on energy
empty cells on the performance of wave schedules. The

number of views is 10 and a randomly selected set of 0 to
80 cells are set to be holes. Figure 6 shows that the mes-
sage latency increases with the number of holes: messages
wait longer in order to make a turn to bypass a hole. The
capacity of the network is only 500 messages for 20% (80)
holes (the message delay increases considerably after that
point), whereas it rises to more than 1500 for networks
without holes. Interestingly, the average energy consump-
tion per non-empty cell (per node) increases with the num-
ber of empty cells, as shown in Figure 7. Although fewer
messages are delivered per time unit, these messages fol-
low longer paths. Thus every node ends up routing more
messages and spending more energy.

4.2 Tree Scheduling

We compare wave scheduling with an existing tree-based
scheduling and routing scheme [13]. Trees are generated
using a flooding mechanism initiated at each view node.
Every node selects as its parent the neighbor on the short-
est path to the root (view). It is therefore expected that
the paths used in tree schedules are shorter than paths
used in waves, since the latter are built on top of the grid
overlay. Routing in a tree is trivial: each non-view node
forwards every message it receives to its parent. In a tree-

Average Message Delay

350 . : .
Tag_Consec_Every 30 —+—
300 | Tag_Consec_Every_ 40 —x— |
Tag_Consec_Every 50 ——
250 | Tag_Consec_Every 60 —&— |
= Tag_Consec_Every 70 —=—
o Tag_Consec_Every 80 —&—
@ 200
— n
g 150 A
()
©
100
50 |
O L L L L
0 500 1000 1500 2000 2500
Messages
Figure 8: Delay: consecutive trees
Average Energy Consumption
80 T ‘ ;
Tag_Consec_Every 30 —+—
70 Tag_Consec_Every_40 —<— +
Tag_Consec_Every 50 —*—
_. 60 r Tag_Consec_Every_ 60 —5— A
2 Tag_Consec_Every 70 —&—
g 50 r Tag_Consec_Every_80 —&—
2 40t
>
o
o 30+
g X
20
10 1
0 L L L L
0 500 1000 1500 2000 2500
Messages

Figure 9: Energy: consecutive trees

based schedule, we activate edges in reverse order of their
distance from the root, enabling a message to propagate
from any leaf of the tree to the view node in a single tree
activation period. Every tree edge is activated for 200ms,
as in the case of the wave.

To generalize tree scheduling to handle multiple views,
we construct a collection of spanning trees, one tree rooted
at each view server. An edge activation schedule can then
be derived in several ways. At one extreme is a conserva-
tive schedule, which is simply a concatenation of schedules
for the individual trees. The simplest conservative sched-
ule is to activate tree rooted at view ¢ + 1 immediately
after all edges of tree rooted at view ¢ have been activated.
In this simple conservative schedule, latency grows linearly
with the number of views. In our experiments we study
energy-efficient variants of this simple schedule: We define
a period p of repeating the activation of every tree. If we
have m views, the first tree is activated at times {0, p, ...},
the second at {p/m,p + p/m,...}, and so on. We assume
that the interval p/m is long enough to activate all edges
of a single tree, so that consecutive activations do not over-
lap. In Figures 8 and 9, these schedules are referred to as
Tag-Consec_Every_p, where p is the period between two
activations of the same tree.

At the other extreme, we consider aggressive schedules
that activate all trees in parallel. In the simplest aggres-

54

Average Message Delay

200 ; :
Tag_Parall —+—
Tag_Parall_Every 6 —x—
Tag_Parall_Every 8 —%—
150 Tag_Parall_Every 12 —&5—
— Tag_Parall_Every 20 —=&—
8 Tag_Parall_Every 30 —o&—
@ Tag_Parall_Every 40 —e—
— 100 |
>
o
Q
©
50
O e + |
0 500 1000 1500 2000 2500
Messages
Figure 10: Delay: parallel trees
Average Energy Consumption
500 ‘ ‘
Tag_Parall —+—
450 | Tag_Parall_Every 6 —<—
400 | Tag_Parall_Every 8 —*%— |
- Tag_Parall_Every 12 —&5—
g 30 . Tag Rarall Every 20 —m— 1
S 300} ‘ Tag_Parall Every 30 —o— |
S Tag_Parall_Every 40 —e—
—~ 250 | 1
B
5 200 -]
& 150 - 1
X
100 [NN &) N N }/ 7<
O 1 1 1 1
0 500 1000 1500 2000 2500
Messages

Figure 11: Energy: parallel trees

sive schedule, which is called T'ag_Parall, consecutive ac-
tivations of the same tree follow one another immediately
after completion. In order to study power-saving variants
of the aggressive schedules, we consider periodic activa-
tions of the same tree. In our experiments, we use the
name Tag_Parall_Every_p to refer to aggressive schedules
in which all trees are activated concurrently every p sec-
onds (Figures 10 and 11).

In both consecutive and parallel schedules, we observe
a graceful tradeoff between energy and delay. As the ac-
tivation period increases, the energy decreases at the ex-
pense of higher message latency and smaller network ca-
pacity. Applications aiming at energy preservation should
take into consideration the traffic load in order to deter-
mine an energy-efficient tree schedule. For instance, the
most energy-efficient consecutive schedule that achieves a
capacity of 1000 messages has period 60 seconds (Figure 8).
Likewise, the most energy-efficient parallel schedule that
achieves a capacity of 1000 messages is activated approx-
imately every 12 seconds (Figure 10). Beyond 1000 mes-
sages (per 1000 seconds), the delay for these two schedules
starts increasing and it would increase without bounds had
we continued to generate messages with the same rate for
longer periods.

Average Message Delay

350 ‘ :
DutyCycle_1 —+—
300 | DutyCycle_2 —>— |
DutyCycle_3 —*—
250 | DutyCycle_5 —&— |
- DutyCycle_8 —=—
é 200 | DutyCycle_10 |
g 150 |)
[} 1
©
100
50
O 1
0 500 1000 1500 2000 2500
Messages
Figure 12: Delay: 802.11
Average Energy Consumption
200 ‘ ‘
DutyCycle_1 —+—
DutyCycle_2 —x—
DutyCycle_3 —*—
. 150 DutyCycle 5 —&— 1
2 DutyCycle_8 —=—
g DutyCycle_1
2 100
>
2 .H/'W
2
N
5] 50 | BH/H—E—B—B—B—E
KK
0 —— 1 1 : : : :
0 500 1000 1500 2000 2500
Messages

Figure 13: Energy: 802.11

4.3 IEEE 802.11 with Different Duty Cycles

Besides tree scheduling, in which edges are activated in
reverse order of their distance to the root, we also study
power-conserving variants of the IEEE 802.11 protocol. We
vary the duty cycle of the protocol, by turning off the ra-
dio regularly and allowing communication only 1 to 10%
of the time. The performance of the resulting schemes,
named Duty_Cycle_z, is shown in Figures 12 and 13. Rout-
ing is performed as in tree-scheduling, i.e. messages follow
the shortest paths to the views. Notice that for a load of
1000 messages we can only select duty cycles greater than
8%, otherwise the traffic exceeds network capacity and the
queues increase without bound. The reader can see trends
in energy and delay similar to those observed in the tree-
scheduling schemes. As the duty cycle decreaases, the av-
erage message delay decreases significantly at the expense
of higher energy usage.

4.4 Comparison with Other Schemes

In order to compare different protocols we first selec-
t a traffic load and then consider only protocols that
can serve this load without exceeding capacity (the point
at which average delay begins to increase). We com-
pare the most energy-efficient versions of different pro-

55

Average Message Delay

90 ‘ ‘ ‘ :
Tag_Consec_Every 60 —+—
80 Tag_Parall_Every 12 —<—
70 | DutyCycle_8 —*— |
PipelinedWaveDelay_stepl —5—
7 o] M |
(8]
E;;/ 50]
F 40|]
]
°S 30t 1
20 1
10 + M]
0 D S— T N | 1 |
0 200 400 600 800 1000 1200 1400
Messages
Figure 14: Comparing schemes
Average Energy Consumption
120 - Tag‘_Conse‘c,_Ever)‘/_GO 4 |
Tag_Parall_Every 12 —x—
DutyCycle_8 —x—
. 100 r PipelinedWaveDelay_stepl —5—]
[%]
2 80]
o
2
> B0F v x—x—H—X |
2
2
5 40]
—t : 1 1 —+
20]
oL B8 T ——— ——
0 200 400 600 800 1000 1200 1400

Messages
Figure 15: Comparing schemes

tocols (with 10 views and 10% empty cells): for 1000
messages, we select the variants T'ag_Consec_Every_60,
Tag_Parall_Every 12, Duty Cycle 8 and the pipelined
wave with step 1. From the previous graphs, the reader
can see that these are the variants of different protocol-
s that accomodate the given traffic with the least energy
consumption.

Figure 14 shows that the wave protocol has the longest
delay, followed by the consecutive tree schedule, the par-
allel tree schedule and the 802.11 (with duty cycle 8%).
The reverse pattern is observed with respect to node en-
ergy consumption in Figure 15. The wave protocol is at
one extreme, offering the most energy savings (better by
an order of magnitude than any other scheme) at the cost
of higher delay. The 802.11 protocol with duty cycle 8%
is at the other extreme offering very small message delays
at the cost of higher energy. The energy-delay tradeoff of
the two tree scheduling algorithms is also worth observing:
activating trees consecutively (as opposed to concurrently)
saves energy because it avoids interference among different
trees, but it incurs higher message latencies.

5 Related Work

The advent of sensor network technology has recently at-
tracted a lot of attention to MAC and routing protocols

that are specifically tailored for energy-constrained ad-hoc
wireless systems.

MAC protocols: Medium access protocols are divided
into two main categories, contention-based and schedule-
based protocols, depending on whether they resolve or
completely avoid collisions at the wireless medium. IEEE
802.11 [17] is the most widely used contention-based pro-
tocol; although nodes can periodically switch to a power
saving mode, in the active periods they suffer from inter-
ference and overhearing. The PAMAS MAC-level protocol
turns radios off when nodes are not communicating [18],
but it requires a second channel for RTS-CTS messages.
PicoNet also allows nodes to turn off their radios [19]; a
node wishing to communicate must stay awake listening
for a broadcast message announcing its neighbor’s reacti-
vation. In S-MAC [20, 21], nodes are locally synchronized
to follow a periodic listen and sleep scheme. S-MAC does
not explicitly avoid contention for the medium, but reduces
the period of overhearing by sending long DATA packets
annotated with their lengths. Sift [22] is a randomized C-
SMA protocol that aims at reducing latency, rather than
energy, in case of spatially-correlated contention.

Schedule-based MAC protocols conserve energy by
avoiding message retransmissions or idle listening [23, 24,
25]. NAMA [24] and TRAMA [25] avoid all collisions at
the MAC layer by announcing the schedules of nodes in
the 2-hop neighborhood and electing nodes to transmit in
a given time slot. Our waves avoid schedule propagation
overhead, at the expense of having fixed slots for every
edge activation. Fixed assignment of communication slots
affects message latency, but not the energy consumption at
the nodes. TRAMA does not consider interference due to
ACK messages, since it assumes that nodes that are three
hops away can schedule transmissions cuncurrently.

GAF (Geographical Adaptive Fidelity) [8, 26] is a topol-
ogy control scheme that conserves energy by identifying
nodes that are equivalent from a routing perspective (be-
long to the same cell) and then turning off unnecessary
nodes. The proposed wave algorithms are tightly integrat-
ed with the GAF protocol. Unlike S-MAC (a contention-
based scheme) and TRAMA (a schedule-based scheme),
under low traffic, the propagation delay of messages from
a source to a destination over a multi-hop path is almost
constant. It depends only on the topology of the network,
i.e. which cells are empty, which does not change very
rapidly. This desirable property stems from the fact that
wave schedules coordinate radio usage across the sensor
network.

Routing algorithms: Several routing protocols for ad-
hoc networks have been proposed in the literature [27].
There has also been a plethora of work on energy-aware
routing [18, 28, 29] but without considering the interplay of
routing and scheduling. The TinyDB Project at Berkeley
investigates tree-based routing and scheduling techniques
for sensor networks [13, 30]. Tree-based routing is tightly
combined with node scheduling; all nodes in the same level
of the tree are scheduled to send messages to their parents
concurrently at a time interval that depends on their dis-
tance from the root. Tree-based routing and scheduling is
a representative example of the tight coupling between the
MAC and routing layers in sensor networks. In this paper
we have shown a different kind of interaction, namely how
given a certain schedule of edge activations, we can identify

56

routes that yield minimum message delays.

An energy-efficient aggregation tree using data-centric
reinforcement strategies is proposed in [31]. A two-tier ap-
proach for data dissemination to multiple mobile sinks is
discussed in [32]. Pearlman et al. [33] propose an energy
dependent participation scheme, where a node periodical-
ly re-evaluates its participation in the network based on
the residual energy in its battery. GEAR [29] uses energy-
aware neighbor selection to route a packet towards a tar-
get region and restricted flooding to disseminate the pack-
et inside the destination region; it addresses the problem
of energy conservation from a routing perspective without
considering the interplay of routing and node scheduling.

6 Conclusions and Future Work

In this paper, we have presented a class of algorithms that
allow us to trade energy versus delay for data dissemina-
tion in sensor networks. Our approach is based on carefully
scheduling the sensor nodes so that each node can stay idle
most of the time, turning on its radio only at scheduled in-
tervals during which it can receive or send a message. Our
experiments show that the proposed wave scheduling algo-
rithm results in significant energy savings at the expense
of increased message latency.

In the future, we plan to study irregular wave schedules,
in which we relax the current assumption that every direct-
ed edge in the network is scheduled regularly once per peri-
od, and thus has the same capacity. In practice, incoming
edges to view nodes are expected to be more heavily loaded
than edges at the border of the network. We believe that
better network utilization can be achieved by considering
a more general class of wave schedules in which different
edges are activated with different rates. For instance, the
network can be divided into highways (frequently-activated
edges) and driveways (low-capacity edges). It would be in-
teresting to study the tradeoff between energy and delay
in such an irregular model.

Another interesting direction is to investigate the prob-
lem of time synchronization for wave schedules. Existing
approaches, like RBS [11] and TPSN [12], provide tight
synchronization bounds and exhibit good multi-hop behav-
ior — with high probability, the error is less than linear in
the number of hops. Using a tree-based approach, they
aim at providing a global timescale exceeding the more re-
laxed requirements of wave schedules. Their performance
is therefore bound to decay for very large networks. We
intend to investigate highly distributed and scalable algo-
rithms that are specifically tailored to achieve good time
synchronization among nodes within interference range, in-
stead of achieving global synchronization.

References

[1] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin,
R. Govindan, and S. Shenker, “Ght: A geographic
hash table for data-centric storage,” in WSNA, 2002.

A. Ghose, J. Grossklags, and J. Chuang, “Resilien-
t data-centric storage in wireless ad-hoc sensor net-
works,” in MDM, 2003, pp. 45-62.

B. Chen, K. Jamieson, H. Balakrishnan, and R. Mor-
ris, “Span: A energy-efficient coordination algorithm

2]

(3]

[4]

[7]

(8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

for topology maintenance in ad hoc wireless network-
s,” ACM Wireless Networks, vol. 8, no. 5, September
2002.

O. Kasten, “Energy consumption,” Tech. Rep., ETH-
Zurich, 2001.

M. Stemm and R. Katz, “Measuring and reducing en-
ergy consumption of network interfaces in hand-held
devices,” IEICE Transactions on Communications,
vol. E80-B, pp. 1125-1131, 1997.

N. Trigoni, Y. Yao, A. Demers, J. Gehrke and
R. Rajaraman, “WaveScheduling: Energy-Efficient
Data Dissemination for Sensor Networks,” 2004
cougar.cs.cornell.edu.

A. Sen and M. Huson, “A new model for schedul-
ing packet radio networks,” in INFOCOM, 1996, pp.
1116-1124.

Y. Xu, J. Heidemann, and D Estrin, “Geography-
informed energy conservation for ad hoc routing,” in
MOBICOM, 2001, pp. 70-84.

P Bahl and V.N. Padmanabhan, “RADAR: An in-
building RF-based user location and tracking system,”
in INFOCOM (2), 2000, pp. 775-784.

N. Bulusu, J. Heidemann, and D. Estrin, “Gps-less
low cost outdoor localization for very small devices,”
2000.

J. Elson, L. Girod, and D. Estrin, “Fine-grained net-
work time synchronization using reference broadcast-
s, ACM SIGOPS Operating Systems Review, SI:
Physical Interface, vol. 36, pp. 147-163, 2002.

S. Ganeriwal, R. Kumar, and M.B. Srivastava,
“Timing-sync protocol for sensor networks,” in SEN-
SYS, 2003, pp. 138-149.

Samuel R. Madden, Michael J. Franklin, Joseph M.
Hellerstein, and Wei Hong, “Tag: A tiny aggregation
service for ad-hoc sensor networks,” in OSDI, 2002.

P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia,
“Routing with guaranteed delivery in ad hoc wireless
networks,” Wireless Networks, vol. 7, no. 6, pp. 609—
616, 2001.

B. Karp and H.T. Kung, “GPSR: greedy perimeter s-
tateless routing for wireless networks,” in MOBICOM,
2000, pp. 243-254.

L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann,
A. Helmy, P. Huang, S. McCanne, K. Varadhan, Y.
Xu, and H. Yu, “Advances in network simulation,”
IEEE Computer, vol. 33, no. 5, pp. 59-67, May 2000.

IEEE Computer Society, “Wireless LAN medium ac-
cess control (mac) and physical layer specification,”
IEEE Std 802.11, 1999.

S. Singh, M. Woo, and C.S. Raghavendra, “Power-
aware routing in mobile ad hoc networks,” ACM SIG-
MOBILE, 1998, pp. 181-190, ACM Press.

F. Bennett, D. Clarke, J. Evans, A. Hopper, A. Jones,
and D. Leask, “Piconet: Embedded Mobile Network-
ing,” IEEFE Personal Communications, vol. 4, no. 5,
pp- 815, Oct. 1997.

[20]

[21]

[22]

(23]

(24]

25]

[26]

27]

28]

[29]

[30]

[31]

32]

[33]

W. Ye, J. Heidemann, and D. Estrin, “An energy-
efficient MAC protocol for wireless sensor networks,”
in INFOCOM, 2002, pp. 1567-1576.

W. Ye, J. Heidemann, and D. Estrin, “Medium ac-
cess control with coordinated, adaptive sleeping for
wireless sensor networks,” Tech. Rep. ISI-TR-567,
USC/Information Sciences Institute, January 2003.

K. Jamieson, H. Balakrishnan, and Y.C. Tay, “Sift:
A mac protocol for event-driven wireless sensor net-
works,” Tech. Rep., MIT, May 2003.

G. J. Pottie and W. J. Kaiser, “Embedding the In-
ternet: wireless integrated network sensors,” Commu-
nications of the ACM, vol. 43, no. 5, pp. 51-51, May
2000.

L. Bao and J.J. Garcia-Luna-Aceves, “A new ap-
proach to channel access scheduling for ad hoc net-
works,” in MOBICOM, 2001, pp. 210-221.

V. Rajendran, K. Obraczka, and J.J. Garcia-Luna-
Aceves, “Energy-efficient collision-free medium access
control for wireless sensor networks,” in SENSYS,
2003, pp. 181-192.

Y. Xu, S. Bien, Y. Mori, J. Heidemann, and D. Es-
trin, “Topology control protocols to conserve energy
inwireless ad hoc networks,” Tech. Rep. 6, Universi-
ty of California, Los Angeles, Center for Embedded
Networked Computing, January 2003, submitted for
publication.

C.E. Perkins, Ad hoc networking,
Longman Publishing Co., Inc., 2001.

J.-H. Chang and L. Tassiulas, “Energy conserving
routing in wireless ad-hoc networks,” in INFOCOM,
2000, pp. 22-31.

Y. Yu, R. Govindan, and D. Estrin, “Geographical
and energy aware routing: A recursive data dissemi-
nation protocol for wireless sensor networks,” Tech.
Rep. UCLA/CSD-TR~01-0023, University of Southern
California, May 2001.

J.M. Hellerstein, W. Hong, S. Madden, and K. Stanek,
“Beyond average: Towards sophisticated sensing with
queries,” in IPSN, 2003.

C. Intanagonwiwat, R. Govindan, and D. Estrin, “Di-
rected diffusion: A scalable and robust communica-
tion paradigm for sensor networks,” ACM SIGMO-
BILE, 2000, pp. 56-67, ACM Press.

F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang, “A two-
tier data dissemination model for large-scale wireless
sensor networks,” in MOBICOM, 2002.

M.R. Pearlman, J. Deng, B. Liang, and Z.J. Haas,
“Elective participation in ad hoc networks based on
energy consumption,” in IEEE GLOBECOM, 2002,
pp. 17-21.

Addison-Wesley

MEADOWS: Modeling, Emulation, and Analysis of Data of
Wireless Sensor Networks

Qiong Luo, Lionel M. Ni, Bingsheng He, Hgjun Wu, and Wenwei Xue

Department of Computer Science
The Hong Kong University of Science and Technology
Clear Water Bay, Kowloon
Hong Kong, China
{luo, ni, saven, whjnn, wwxue} @cs.ust.hk

Abstract

In this position paper, we present MEADOWS, a
software framework that we are building at
HKUST for modeling, emulation, and analysis of
data of wireless sensor networks. This project is
motivated by the unique need of intertwining
modeling, emulation, and data analysis in
studying sensor databases. We describe our
design of basic data anaysis tools aong with an
initial case study on HKUST campus. We also
report our progress on modeling power
consumption for sensor databases and on
wireless sensor network emulation for query
processing. Additionally, we outline our future
directions on MEADOWS for discussion and
feedback at the workshop.

1. Introduction

Sensor networks have created exciting opportunities for
data management [2], especially for in-network query
processing [1][5][11][18], because these networked
sensor nodes form a large-scale, dynamic, and distributed
database with each node acquiring, processing and
transmitting data simultaneously. However, studying in-
network sensor query processing is a challenging task due
to the unique features of sensor networks. These unique
features of sensor networks include: (1) each sensor node
has limited computation, communication, and storage
capabilities as well as limited power supply; (2) sensory
units and communication channels are lossy and error-
prone; and (3) deployed sensor nodes are embedded in the
physical world, are scattered geographically, and may be
mobile. In order to facilitate studying sensor databases in
general and in-network query processing in specific, we

Copyright 2004, held by the author (s)

Proceedings of the First Workshop on Data M anagement for
Sensor Networks (DM SN 2004),

Toronto, Canada, 2004

propose MEADOWS, a software framework that we are
building a8 HKUST (The Hong Kong University of
Science and Technology) for modeling, emulation, and
analysis of data of wireless sensor networks.

Modeling, emulation, and data anaysis for sensor
networks is essentia for studying in-network query
processing systematically. On one hand, studying query
processing techniques in rea sensor networks with real
applications has been fruitful and has a high practical
impact [11]. On the other hand, the tight integration of
sensor networks with the physical world, the high
uncertainty in sensory data, and the high deployment cost
make it hard to produce general and complete results
through field studies only. Consequently, it is highly
desirable to perform in-depth analysis of sensory data
from field studies and to model and emulate sensor
networks in controlled environments.

Let us give a rea-world example to illustrate the
usefulness of MEADOWS. This example is an
experimental monitoring application that we deployed
near a frog pond on HKUST campus in the spring of
2004. We used the MICA2 Motes made by Crosshow [4]
for the sensor nodes and TinyDB [15] as well as other
software running on the motes for collecting sensory data.
In TinyDB, the data collection processis the execution of
declarative, SQL-like queries, which eases application
development and allows for optimization for performance.
However, if we would like to answer some important
questions about the query processor for the application,
we find it is difficult or infeasible to obtain the answers
through a simple field study. Specificdly, some of the
questions are as follows:

(1) We have only ten sensor nodes available for the
application. How many do we really need and what
geographical deployment topology do we use in order to
observe important phenomena such as trends in
temperature, humidity, and frog croaks around the frog
pond?

58

(2) If we collect sensor readings every 30 seconds,
what will be the status of power consumption a each
node as time goes and when will the batteries run out?

(3) If we change the type of sensor nodes (e.g., CPU,
radio channel, sensing units), the routing scheme of the
sensor network, or the data collection queries, what will
be the new answers to questions (1) and (2)?

In MEADOWS, we attempt to answer these questions
through data analysis, modeling, and emulation. We
show that we can determine the number of sensor nodes
needed and the geographical deployment scheme by
performing data analysis (Section 2). We also show that
we can estimate power consumption in various scenarios
realisticaly by including real-world factors into modeling
and emulation (Sections 3 and 4). In addition, the
integration of data anaysis, modeling, and emulation
helps answer the questions better than merely employing
one of the three approaches in isolation. Our ultimate
goal is to enable various studies on sensor databases and
Sensor query processing.

To date, modeling, emulation, and data analysis of
sensor networks for query processing is still at an early
stage. Our work in MEADOWS isonly initial stepsin this
direction. In this early report, we present a case study of
preliminary sensor network data anaysis in Section 2, a
hierarchical power consumption mode for sensor
databases in Section 3, and a sensor network emulator for
query processing in Section 4. We draw some
conclusions and list future directionsin Section 5.

2. Analysis of Sensor Network Data

In this section, we focus on real-world sensory data and
discuss a case study of collecting and anayzing the data
from asmall network of sensors deployed outdoors on the
HKUST campus. The purpose of this case study is to
explore how data andysis can help answer questions
about sensor query processors. In addition, we aim to
gain insights for data analysistool design.

2.1 Overview

Analysis of rea-world data provides redlistic basis for
modeling and emulation. Because sensor networks are
designed to be tightly embedded in the physica world,
collecting and analyzing real-world sensor network dataiis
both chalenging and worthwhile. Even though there have
been a few projects on outdoor deployment of sensor
networks [14], we have not yet seen previous studies with
a goa of answering questions about query processors.
Therefore, as a first step of our framework development,
we conducted afield study with this specific goal in mind.
The scale of the study was small due to our resource limit.
However, it is sufficient for the purpose of producing an
initial design of data analysistools.

The case study is the frog pond monitoring application
we briefly described in the Introduction. The frog pond is
located a the northeastern corner of the campus.

Throughout the late spring, the frogs in the pond croak
loudly al day long. We chose the frog pond as it has this
interesting phenomenon as well as other outdoor
microclimate characteristics (e.g., close to the sea and two
pagodas).

We deployed a small number of sensor nodes in two
groups near the frog pond. We collected one-day of
sensory data during four two-hour periods. We pre-
processed the data by adding labels (e.g., timestamps) and
converting data formats (e.g., from raw sensor readings to
more human-friendly engineering units). We analyzed
the data by examining patterns, exceptions (outliers), and
correlations. Finaly, we discuss our design of data
analysis tools as well as the insights gained from the case
study.

2.2 The Case Study

We deployed two groups of MICA2 motes in the two
pagodas near the frog pond (Figures 1 and 2). Mote 0's of
both groups were sink nodes connected with a |laptop
through a serial cable. Group 1's Motes 1-5 used the
MTS310CA sensor boards, which detect temperature,
light, noise level, acceleration and magnetic value.
Group2's Motes 1-2 used the MTS420CA weather sensor
boards, which measure temperature, light, acceleration,
humidity and barometric pressure. We used TinyDB [15]
to collect data from Group 1 and a modified Xlisten
program from the TinyOS Sourceforge CVS directory
[17] to collect data from Group 2, due to the applicability
of the software to different types of sensor boards. In
addition, we logged battery voltage of both groups for
data conversion and andysis.

Figure 1. Deployment of Group 1 Motes

It was a cloudy day and rained intermittently. We
collected data during the following four 2-hour periods:
6:30-8:30, 12:30-14:30, 17:30-19:30, and 22:00-24:00.
We set the sampling period of each reading to be 30
seconds and collected thousands of readings per group.

59

We show three figures (Figures 3-5) as representative
examples.

The noise readings of all sensor nodes of Group 1
were similar to one ancther at a point of time. We picked
two motes that differed most in the readings, Motes 1 and
5, to show in Figure 3. These readings captured frog
croaks mainly. They indicate that frogs croaked most
actively in the early morning and were most quiet during
noon time. There is a gap of a few minutes in the
morning readings, which was due to a crash of our data
logging program and its subsequent recovery.

Pillar
Pagoda 2
E “ 0 2]@]

Fence

Enfrance !

- 0

Figure 2: Deployment of Group 2 Motes

Noise (ADC counts)
1000

900 : " .

A
800 Yoa
a
700 A

a
¢
a
. %
+ Iy .
600 . £
P a
500
.
400 4 Group 1 Mote 1
+ Group 1 Mote 5
300
448 712 9:36 12:00 14:24 16:48 19:12 21:36

*”

33
¥,

0:00 2:24

Figure 3: Group 1 Noise Readings

The humidity readings of Group 2 remained at the
level of around 90% most of the time (Figure 4). There
were some readings of abnormally high humidity (larger
than 130%) of Mote 1 at the beginning of the morning
period. These abnormal readings were because some rain
drops splashed onto Mote 1 by accident when we took it
out of a box and deployed it. The water made the
humidity sensor of Mote 1 malfunction and to return
abnormally high readings. Thiskind of physica problems
for motes is common and recoverable [14]. After being
dried, the humidity sensor returned to normal operation.

The temperature readings of the two groups varied
slightly within each group (21-24°C in Group 1 and 21-
23°C in Group 2). As illustrated in Figure 5, the
temperature measured by Group 2 motes was often

slightly higher than that measured by Group 1 motes
(except around noontime), even though the two pagodas
were close to each other (within a distance of 20 meters).
We think there are two possible reasons for this
difference: (1) the temperature sensors of the two groups
have different hardware characteristics since they are
made by different companies, and (2) the microclimatesin
the two pagodas had a dlight difference due to their
different geographica locations.

i idi 0,
150 - Relative Humidity (%)

140 +

e oep

130
120 +
110
100

w0 Sy sl - P o

80 -

70 4 * Group 2 Mote 1
= Group 2 Mote 2

60 T T T T T T

4:48 7:12 9:36 12:00 14:24 16:48

19:12 21:36 0:00 2:24

Figure4: Group 2 Humidity Readings

\.

Temperature (°C)

/ \
215 | k % h
21 4 A Group 1 Mote 1
= Group 2 Mote 2
20.5

4:48 7:12 9:36 12:00 14:24 16:48 19:12 21:36 0:00 2:24

24 4
235
23 4

225 4

|

Figure5: Temperature Readings of Two Groups

2.3 Discussion

From our data analysis, we suggest that the application
just use one Mote per pagoda for a small-scale case study
around the frog pond, since the readings within each
group were similar and there were slight differences
between the two groups that were deployed in different
geographical locations (pagodas). Moreover, if the
application scenario changes and more questions about
the query processor are asked, we need to have a set of
general data analysistools to answer these questions.

Based on our experience with the frog pond case
study, we propose the following three requirements for a
sensory data analyzer.

(1) The andyzer should have data acquisition
functions that are fault-tolerant and adaptive, since the
sensory data collection process determines the quality of
sensory data. The fault-tolerance requirement is because
hardware malfunctioning is common in field studies, as

60

we have already experienced. It is thus desirable that a
data collector is able to recover, to migrate the work from
a failed node to a normal node, and to resume the work.
The adaptivity requirement is to take advantage of the
patterns and regularities captured in sensor readings. For
instance, continuous quantities such as temperature can be
measured with a sampling frequency adapted to the
changes in the temperature readings in order to improve
power efficiency while keeping the quality of sensory
data unaffected.

(2) The analyzer should have a set of basic functions
for data pre-processing and post-processing operations.
Data pre-processing is to further ensure the quality of data
for analysis. Data post-processing is mainly for the
presentation of analytical results. For example, the
function convert() converts sensor readings from raw
ADC counts to human-friendly engineering units, the
function cdlibrate) performs hard-ware-specific
calibration of the readings, and the function plot() plots
data points and curves together with analytical summaries
following user-defined criteria.

(3) As the core of the andyzer, the sensory data
analysis functions include pattern and outlier detection,
and correation of multiple sensory attributes or multiple
sensor nodes. We further discuss these two kinds of
functions as follows.

First, detecting patterns and outliers in single-node
single-attribute sensory data is the basic analytica
operation. For instance, given the temperature readings of
one sensor node, the basic analytical information about
these readings must include a summary of the range, the
trend, and the outliers of the data. As a result of
measuring natural phenomena, sensory data has inherent
patterns as well as outliers. Moreover, outliers sometimes
are due to real eventsin the environments and sometimes
due to system errors. It is necessary to pay specia
attention to outlier analysis.

Second, correlation analysis gives insight into sensory
data, because each sensor node has multiple sensory
attributes and multiple sensor nodes work concurrently in
a geographical region. The inherent correlations between
natura phenomena as well as the temporal and spatial
correlations of sensor nodes will be useful for both sensor
query processing and application deployment. For
example, when an application is detecting transient
changes such as a sudden increase in the noise levd, it
can utilize the spatia correlation of a cluster of adjacent
nodes to detect the noise with a high fidelity. In other
words, if one sensor node detects a sudden increase of
noise level, it might be a real event as well as a system
error. But if multiple nearby nodes report the same event,
the probability of a system error is much lower than that
of areal event.

In summary, analytical results from real-world sensory
data, such as patterns, outliers, and correlations, can help
answer questions about query processors as well as
improve query processing. In addition, data analysis can

interact with modeling and emulation to better serve the
purpose of studying query processing. On one hand,
analytical results serve as a redlistic basis for modeling
and emulation; on the other hand, modeling and emulation
can be used for guiding and cross-validating data anaysis.

3 Modeling Power Consumption

Having presented a case study of sensory data analysis,
next we turn to modeling of sensor databases. Due to the
short time period (eight hours) and resource constraints
(no oscilloscope on site) of the field study, we were
unable to obtain detailed power consumption statistics.
Since power efficiency is a maor issue in sensor query
processing, we examine this issue by modeling and
emulation.

3.1 Overview

Power efficiency is a major issue in sensor networks,
since sensor nodes are battery-powered and it is difficult
or infeasible to recharge deployed sensor nodes in
practice. There has been work on power efficiency of
sensor nodes [6][13], sensor networks [8][10], and senor
query processing techniques [1][3][11][18]. However, it
remains unclear how to evaluate power efficiency of
sensor databases systematically. The main reason is that
there are many intertwined factors that affect power
consumption in a sensor database system, for instance,
sensor node computation, wireless transmission, and
various query processing techniques. Therefore, we
propose to represent these factors in a general model for
studying power consumption of sensor databases.

We group these factors into a three-level hierarchy
(Figure 6): the sensor database, the sensor network, and
the sensor node. The sensor node model captures power
consumption characteristics of a single sensor node and
provides a quantitative approach to estimate the power
consumption of a single sensor node by the operations of
the node. The sensor network model groups main factors
in wireless communication that affect power consumption
in a sensor network. It adapts the quantitative approach
provided by the sensor node model to a network
environment. The sensor database model formalizes main
factors of database workloads that affect power
consumption in a sensor network and further improves the
accuracy of power consumption estimation for database
workloads.

As a result, our hierarchica model can estimate the
power consumption of a sensor query processing
workload in a unified and genera way. We can
instantiate each level of model with specific rea-world
factors and estimate power consumption of query
workloads redistically. For instance, we can use the
MICA2 hardware specification for the sensor node, a
typical network routing scheme for the sensor network,
and a monitoring query used in our frog pond application
for the database workload.

61

In the remainder of this modeling section, we use
UML (Unified Modeling Language) style illustrations for
modeling (Figures 6-9). A big box with a small square on
top represents a package, e.g., “ Sensor Database Modd”.
A package can contain other packages. A dashed line
with an arrow stands for the “uses’ relationship. A solid
line with an arrow stands for the “has” rel ationship.

[]

Sensor Database Model

«uses»
\

1

Sensor Network Model

I

Sensor Node Model

Figure 6: Model Hierarchy

3.2 TheModd

We show our hierarchical power consumption model in
Figures 7, 8, and 9 and describe them briefly. For brevity,
all formulas are omitted and will be avalable in a
technical report.

In Figure 7, we represent the configuration of a smart
sensor node as a package of six types of units: the
processor, the RAM, the flash memory, the wireless
transmission unit, the battery, and the sensing data units.
A configuration contains the important units (in terms of
power consumption) of a sensor node and the parameters
for power consumption estimation of the units. The
parameters starting with “pc” represent the unit power
consumption, e.g., “pclnstruction” of the processor stands
for power consumption per instruction. We define several
operations in a sensor node (not shown in Figure 7):
sensing (sampling), listening, sending (transmitting),
receiving, discarding, and processing. We estimate the
power consumption of a sensor node during a period of
time by summing up the power consumption of all
operations occurred during this period. For each
operation, the power consumption is calculated using a
linear battery model [13]. Clearly, our sensor node model
accommodates a wide range of sensor nodes with various
hardware characteristics.

In Figure 8, we model a sensor network with the
canonical topology, the routing scheme, and the model
metrics. The canonica topology is represented as an
undirected graph with its k-ary spanning tree. The routing
scheme is responsible for building the spanning tree on
the graph. For instance, in the flooding scheme, we can

build the spanning tree by traversing the graph via
Breadth-First Search. Findly, the model metrics include
per-node metrics (the number of neighbors per node and
the number of children per node in the spanning tree) as
well as network-wide metrics (expansion, resilience, and
distortion). Note that a node's neighborhood is
determined by the wireless signal transmission range in
the deployment whereas a node’ s children are determined
by the routing tree. Obviously, different routing schemes
have different power consumption characteristics. Our
sensor network mode aims to provide insights for
designing power-efficient routing schemes.

Sensor Node Model
Processor RAM Flash
+speed +capacity +capacity
+pcinstruction +pcAccess +pcAccess
+bandwidth +bandwidth
Wireless Unit
+transRadius
+bandwidth SensingData
+pcSendByBit
+pcRevByBit Battery ::iazt:gory
+pcListenByTime rcapacit
-pcDiscardByTime pacty *pcSense

Figure 7. Sensor Node Package

Sensor Network Model

1

Model Metrics

1

Routing Scheme

1

Canonical Topology

,,,,,,,,,,

Figure 8: Sensor Network Package

Sensor Database Model |
Model
Metrics Data Model
N N
1 |
Workload F-----—--—-——— Query
Model Plans
T
1
Query
Model

Figure 9: Sensor Database Package

62

In Figure 9, the sensor database model consists of the
data model, the query model, the query plans, the
workload model, and the model metrics. Our data model
is relationa and our query moded is TinySQL-style
extended SQL [11] with clauses specifying sampling rate
EPOCH and query lifetime LIFETIME. The query plans
describe the execution plans of queries with selection,
projection, and aggregation operators. The model metrics
include the number of tuples, the size of each tuple, and
the reduction factor of each operation (selection,
projection, or aggregation). A reduction factor is defined
to be the ratio of the output data size to the input data size
of the operator. Finadly, the workload modd estimates
power consumption of the query workload in the sensor
network.

To estimate the power consumption of a query
workload, we consider both the local computation cost
and the network traffic cost, which depend on the
complexity of the handling and the volume of data
handled. We have developed algorithms for estimation of
sensor network lifetime in terms of power consumption in
the static (the routing tree does not change as long as the
network topology does not change) and dynamic (the
routing tree changes dynamicaly) deployment
respectively. The agorithms estimate the power
consumption for each node and identify the weak pointsin
the sensor network. A weak point is a node whose power
consumption is higher than others in the sensor network.
The algorithm for the static deployment works in the
following steps:

(1) Generate a k-ary spanning tree based on the
selected routing scheme. If it fails, the agorithm stops.

(2) Generate the query plan of the query workload
on the sensor network and estimate the reduction factors
for selection, projection and aggregation as needed.

(3) Estimate the power consumption of each node
for this query workload as time goes, and identify the
weakest point until it runs out of power.

(49) Remove the dead weak point from the network
and repeat the previous steps starting from step (1).

For the dynamic deployment, we modify the algorithm
for the static deployment by adding a time period round.
At the end of each round, even though there are no nodes
run out of battery, there will still be arouter reassignment
process. Similar to the agorithm for the static
deployment, the algorithm for the dynamic deployment
estimates the lifetime of the deployment until the sensor
network is disconnected.

3.3 Initial Validation Results

We have validated our model using a typical sensor node
configuration, two representative routing schemes, and a
simple query workload. The sensor node configuration
followed the MICA2 [4] Motes hardware specification.
The two representative routing schemes we compared
were LEACH [8] and flooding (Figure 10). LEACH

identifies clusters of nodes and selects leader nodes of
clusters in a round-robin fashion for packet merging (or
caled “partial aggregation” in networking terms, but not
the “aggregation”, e.g., SUM(), in database terms). The
query workload we tested was a simple aggregation
query: “SELECT MAX(temperature), humidity FROM
sensors GROUP BY humidity EPOCH 30 seconds’ .

The “sensors” virtua table had a schema of {humidity,
temperature, timestamp} with afixed length of 4 bytes per
attribute. We assumed each packet contained a header of
20 bytes. With the temperature and humidity attributesin
the query result, each packet contained 28 bytes. We also
assumed that each sensor node covered an area of acircle
with aradius of 20 feet. The average distance between a
sensor node and the sink node (Mote 0) was assumed to
be 500 feet. We used LEACH’s assumption that the unit
power consumed in sending is proportiona to the
distance.

Figure 10: LEACH (left) versus Flooding (right)

Figure 11 shows the predicted average node lifetimein
anetwork of N (ranging from 6 to 24) nodes resulted from
our model. Our model predicts that LEACH resultsin 5-
times improvement on power efficiency over flooding
whereas in the origina LEACH paper this factor was 8.
One major reason for this difference is that we considered
power consumption of database workloads as well as
individual sensor nodes in addition to networking.

LEACH vs Flooding

3 ——LEACH
—8— Flooding

Node Life Time(month)

Figure 11: Predicted Average Node Lifetime

Since the number of nodes was small and there were at
most two hops in LEACH in our study, the effect of
database-style in-network aggregation (e.g., executing
MAX() at a leader node) was insignificant. We are

63

considering more complex and larger-scale cases for
validation, in which in-network aggregation makes a
difference [1][11][18].

3.4 Discussion

As shown in the preliminary results, our modeling can
estimate power consumption of query processing
workloads fairly realistically by using real-world factors
such as sensor node hardware configuration,
representative routing schemes, and typical queries in
monitoring applications. In order to further improve our
model, we consider the following three extensions:

(1) Extend the estimation of reduction factors for
power-aware query processing. For example, our data
analysis shows that patterns and correlations are common
in sensory data. If a query processor takes advantage of
these patterns and correlations and performs pattern-
aware or correlaion-aware data acquisition, we can
extend the estimation method of reduction factors for
these techniques.

(2) Extend the estimation of node neighborhood in the
sensor network model by considering synchronization
characteristics of transmission. A neighborhood of a node
is a basic topology element in a multi-hop networking
environment and transmission between nodes can be
synchronous or asynchronous. We have modeled
transmission to be synchronous as commonly assumed by
existing work. In order to achieve more accurate
estimation, we plan to cover asynchronous transmission
aswell.

(3) Extend the database workload model to handle
joins. Joins are a complex operation in sensor databases,
which involves factors such as where and how to perform
the join. Using the reduction factor only seems to be
insufficient for modeling the power consumption
characteristics of ajoin operation.

4 Emulation for Query Processing

Modeling is useful for defining the problem space and
quantifying the effects of multiple factors, as shown in
our hierarchical power consumption model in Section 3.
Nevertheless, dynamic behaviors of programs, for
instance, parallel execution of query processing code on
multiple sensor nodes, sometimes are hard to abstract and
to model. Under such situations, emulation is useful for
observing the execution process. In this section, we
present an emulator for sensor query processing.

4.1 Overview

Currently, it is difficult to study in-network query
processing on rea sensor networks, not only because the
deployment is expensive and hard to maintain, but also
because the resource constraints in a sensor network limit
the collection of detailed statistics about the system
running status. Both simulation and emulation can ease

these problems, either by representing the logica views
and actions of the target system (simulation) or by
executing the code with the same control flow as that of
the target system (emulation).

We propose an emulation environment, VMN (Virtua
Mote Network), for studying sensor query processing. It
is a mix of simulation and emulation. We use TinyOS
[16] modules to emulate the application execution
environment in each VM (Virtual Mote). We simulate the
radio channel and the sensing units of each VM following
the MICA2 [4] hardware specification. The sensory data,
which is fed into the virtual sensing units as the input of
VMN, is generated from rea-life data such as data
collected in our frog pond monitoring application (Section
2). Findly, the execution of query processing code on
each VM and the network topology are emulated on
networked PCs.

Our VMN is different from the two existing sensor
network simulators, TOSSIM [9] and EMStar [7], in that
VMN utilizes networked PCs to emul ate networked motes
in paralel and has execution time and power consumption
models for query processing applications. Other
simulators such as ns-2 [12] and Sensorsm [13] or
emulators such as EMPOWER [19] lack the execution
environment of smart sensor nodes.

4.2 The Emulator

Our VMN (Figure 12) emulates area network of MICA2
motes running TinyOS. PC 0 acts as the virtua base
station, which runs VM 0 to emulate the sink node (Mote
0) in the rea sensor network and runs the real application
client (in this case, the TinyDB GUI) to communicate
with VM 0. Each of the PCs 1 to n emulates multiple
virtual motes except VM 0. Virtua motes communicate
with one other through the virtua channel, which is
implemented on top of UDP (User Datagram Protocol) on
a LAN (Loca Area Network) and simulates a real radio
channe with bit errors and delays.

PCO
VM,
Application VMN
Client Manager
| B
: @]
PCn g
VMm VMWI VMWZ a
[Application | | Application | [Application
| Tinyos | | Tinyos TinyoS
Virtual Virtual Virtual
Hardware Hardware Hardware

Figure 12: Architectureof aVMN

Each VM (Figure 13) emulates a MICA2 mote
running TinyOS. We partition a VM into the upper layer

64

and the lower layer. The upper layer includes (i) the
application, (ii) the senders and receivers of Active
Messages (AM), UART (Universal Asynchronous
Receiver/Transmitter, or RS232 seriad communication)
packets and radio packets, and (iii) the VM manager for
emulation control and statistics collection on the node.
The lower layer consists of (i) various types of virtua
sensors, the virtua UART (for Mote O only), and the
virtual RFM (Radio Frequency Monoalithic), (ii) the
virtual drivers for (a), and (iii) the virtual clock. This
partitioning scheme is to identify the components that are
pertinent to program execution and then to put these
components into the upper layer. Consequently, it is
solely the task of the upper layer to emulate the
environment such that the real code of a query processing
application for a real sensor mote runs on a VM as if it
runs on the real mote.

Virtua Mote
‘ Application }—>
Tinyos |

‘ Active Message Sender / Receiver F»

<
<
g T g
X

UART Packet
Sender /Receiver

Radio Packet |
Sender /Receiver
L s 1
Virtual Sensor Virtua || Virtual Radio
Driver UART Driver
Driver

S S
_ _ Layer
Virtual virtud | Vit [Virva Vit
Temperature Light UART RFM Clock
Sensor Sensor

Figure 13: Architectureof aVM

Connecting multiple VMs, the virtua channel
simulates wireless network effects using three software
modules: the bit error module, the collision module and
the delay module (shown in Figure 14).

The bit error module uses an experientia radio signa
error data model to generate the bit error rate. The error
rate is defined as (number of error bits received by the
receiver) / (number of total bits sent by the sender). The
module maintains a table of two attributes: distance and
bit error rate, and generates bit errors randomly at a rate
that the table specifies.

The collison module simulates radio signal collision
by performing two operations: carrier sense and collision.
Both operations need information about the virtual time
(the time in the emulated world) and the data transmission
status of al VMs. This information is kept in the VMN
Manager.

In the carrier sense operation, the collison module
asks the network manager whether if a sending VM can
hear any VMs that are transmitting data If so, the
sending VM will wait a period of time whose length is
defined by the network protocols. In the collision
operation, the collision module destroys the current bit to
be sent on one of the two conditions: (1) another VM is

transmitting and the sender of this current bit can hear that
transmitting VM, or (2) another VM is sending to the
same destination as this sender.

Finaly, the transmission delay module adds a delay to
the virtual time of each packet to be sent.

Having described the three network effect modules,
we then describe the transmission process of data on a
virtual channd from/to a VM: When outgoing bits are
sent from the Virtual Radio Frequency Module (VRFM)
of the VM to the virtual channel, they pass through the
three modules and stay in a buffer for wrapping (in the
lower right corner of Figure 14). When al bits of a packet
arrive in the buffer, the virtua channel wraps them into a
packet and sends out the packet via UDP. When an
incoming UDP packet arrives at the virtua channdl, it is
put into a queue (lower left of Figure 14) and is
decomposed into bits to be sent to the VRFM of the VM
viaanother buffer (on theleft of Figure 14).

ToVRFM FromVRFM Callision signal
Bits/ﬂ toVRFM

1
\ |

Bit error Collision , Delay
Module Module Module

UDP packet to other
VMsviaLAN

Control messages To/From

UDP packet froru other Network Manager (NM)

VMsviaLAN
Figure 14. Virtual Channel

Because VMSs run simultaneously, synchronization is
needed to ensure that the messages and the operations of
VMs are in the same order with that of the target sensor
network. The synchronization procedure is as follows: at
the startup time, the network manager initiaizes its table
of network status information including the total number
of VMs n and the value of the virtual clock of each VM:
vt0, vtl... vin-1. Whenever the VMs run for a predefined
interval T, which is called the synchronization interval,
they pause and report to the network manager. After
every VM has reported to the network manager that its
virtual clock has advanced by T, the network manager
sends out a broadcast message to inform the VMs to
resume running. In addition, the UDP packets on the
virtual channel are put in a queue and sorted by their
virtual time in the ascending order. With the queue and
the synchronization interval, the order of operations and
messages are ensured to be the same as that on the real
network.

4.3 Preliminary Evaluation Results

We have done preliminary evaluation of the VMN with a
small number of nodes running a simple query on TinyDB
and validated the results of running the query on real
MICA2 motes. The query was to report temperature

65

readings of all motes for every epoch of 960ms. This
short sampling rate was used to measure the electric
currents on real motes at a fine granularity, because the
HP 4155A oscilloscope we used was able to measure
electric currents a a scale of milliseconds for a period of
time of up to 2 seconds. The 2 seconds were sufficient for
studying the processing of the query, because we
observed two epochsin each measurement.

We measured the power consumption of this query on
a 4-node real mote network using an oscilloscope (HP
4155A) during the query execution (Figure 15). We then
ran the query on a 4-node VMN and estimated the power
consumption of the query (Figure 16). In our power
consumption emulation, we divided the query execution
time into several power modes with different operations.
These operations are: “Sleeping”, “Processing”,
“Listening”, “Sampling” and “Transmitting”. Two
different operations can occur in one mode, e.qg.,
Processing & Transmitting. The measured electric current
in a mode was nearly constant (the range was within +/-
0.3 mA in our experiments).

Figure 15 shows our measurements of four power
modes during the query processing in the 4-node real
mote network, which were “Listening”, “Processing &

Transmitting”, “Processing & Listening”, and
“Sampling”. Because the sampling rate was short

(960ms), the motes did not run into sleeping. In other
experiments with a longer sampling rate (>10s), we
measured that the average current in sleeping was about
0.0162 mA. All of these results are consistent with the
data sheet of MICA2 Motes [4]. These results are aso
similar to those reported by Madden et a. [11] except one
difference is that we did not get the “Snoozing” mode
with an average electric current of 4 mA. We are
investigating this issue further.

26 ~ .
L ocessin

25 & Listenin

<24

237

S99 | Listening / Processing&

3 91 Transmitting

Q

§20 4

mlg | |
0 0.2 04 06 08 1 1.2 1.4 1.6

Running Time(second)

Figure 15: Measured Power Consumption of aMICA2
Mote

Figure 16 shows the estimated power consumption
and the estimated query execution time in the 4-node
VMN. Compared with the results in Figure 15, the error
on query execution time estimation was 1.4-1.34 = 0.06
seconds or 0.06/1.34 = 4.4%. We calculated the power

consumption by the sum of (current * running-time),
because the number of measurement points was different
in the rea mote network than in the VMN. The sum of
the real measurement was 27.38 mA* seconds, and that of
VMN was 28.68 mA*seconds, which resulted in an error
rate of 4.72%.

26
325 - Prqc&s_in
323
g 22 [Listening Processing &
% 21 + i Transmitting
£20 ¢ Samplin
B 19 1 1 1 1
0 0.2 04 0.6 0.8 1 1.2 1.4 1.6
Running Time(second)

Figure 16: Estimated Power Consumption of a VM

5 Conclusion and Future Work

We have proposed a software framework, MEADOWS,
for modeling, emulation, and data anaysis of wireless
sensor networks. We have reported a case study of real-
world data collection and anadysis and proposed a
preliminary design of data analysis functions for detecting
patterns, outliers, and correlations. We have aso
presented our initid work on a hierarchica power
consumption model for sensor databases and on a sensor
network emulator using networked PCs. We find that this
framework is useful for answering questions about sensor
query processing. In addition, the integration of
modeling, emulation, and data analysis creates synergy
for studying sensor query processing.

Our future work on MEADOWS include (1)
implementing our proposed data analysis functions and
using the results to cross-validate with our modeling and
emulation work, (2) conducting extensive, more complex
case studies for our sensor database power consumption
model and extending the model, and (3) increasing the
scale of sensor network emulation and adding node
mobility emulation.

Acknowledgement

We collaborated with Pei Zheng at Arcadia University,
USA on sensor network emulation. The design of data
analysis functions was influenced by discussions with our
collaborators at Peking University, China. We thank Jeff
Naughton for his helpful comments on the paper.
Funding for this work was from Grants HKUST6158/03E,
HKUST6161/03E provided by the Hong Kong Research
Grant Council (RGC).

66

References

(1]

(2]

(3]

(4]
(5]

(6]

(7]

(8]

Jonathan Beaver, Mohamed A. Sharaf, Alexandros
Labrinidis, and Panos K. Chrysanthis. Power-
Aware In-Network Query Processing for Sensor
Data. The 2nd Hellenic Data Management
Symposium, 2003.

Philippe Bonnet, Johannes Gehrke, and Praveen
Seshadri. Towards Sensor Database Systems. The
2nd International Conference on Mobile Data
Management (MDM), 2001.

Ugur Cetintemel, Andrew Flinders, and Ye Sun.
Power-Aware Data Dissemination in Wireless
Sensor Networks. The 3rd ACM Internationa
Workshop on Data Engineering for Wireless and
Mobile Access, 2003.

Crosshow Corp. http://www.xbow.com

Amol Deshpande, Suman Nath, Phillip B.
Gibbons, and Srinivasan Seshan. Cache-and-Query
for Wide Area Sensor Network. SIGMOD
Conference 2003.

Laura Marie Feeney. An Energy Consumption
Model for Performance Analysis of Routing
Protocols for Mobile Ad-hoc Networks. Mobile
Networks and Applications, 2001.

Lewis Girod, Jeremy Elson, Alberto Cerpa,
Thanos Stathopoulos, Nithya Ramanathan, and
Deborah Estrin. EmStar: a Software Environment
for Developing and Deploying Wireless Sensor
Networks. USENIX 2004.

Wendi Heinzelman, Anantha Chandrakasan, and
Hari Balakrishnan. Energy-fficient
Communication Protocol for Wireless Microsensor
Networks. The 33rd hawaii International
Conference on System Sciences, 2000.

(9]

(10]

(11]

[12]
(13]

(14]

[15]

[16]
[17]

(18]

(19]

67

Philip Levis, Nelson Lee, Matt Welsh, David
Culler. TOSSIM: Accurate and Scalable
Simulation of Entire TinyOS Applications. The 1st
International Conference on Embedded Networked
Sensor Systems, 2003.

Erran Li and Joseph Halpern. Mimimum-Energy
Mobile Wireless Networks Revisited. 1CC 2001.

Samuel Madden, Michael J. Franklin, Joseph M.
Hellerstein, and Wei Hong. The Design of an
Acquisitional Query Processor for Sensor
Networks. SIGMOD Conference 2003.

NS2. http://www.isi.edu/nsnam/ng/.

Sung Park, Andreas SAwvides, and Mani B.
Srivstava. Sensorsim; A Simulation Framework
for Sensor Networks. MSWIM, 2000.

Robert Szewczyk, Joseph Polastre, Alan
Mainwaring, and David Culler. Lessons from a
Sensor Network Expedition. In Proceedings of the
1st European Workshop on Wireless Sensor
Networks (EWSN), 2004,

TinyDB. http://telegraph.cs.berkel ey.edu/tinydb/.
TinyOS. http://www.tinyos.net.

Xlisten Program.
http://cvs.sourceforge.net/viewcvs.py/tinyos/tinyos
-1.x/contrib/xbow/tool g/src/xlisten/.

Yong Y ao and Johannes Gehrke. Query Processing
for Sensor Networks. CIDR 2003.

Pel Zheng and Lione M. Ni. EMPOWER: A
Network Emulator for Wiredess and Wired
Networks. INFOCOM 2003.

A Framework for Extending the Synergy between MAC
Layer and Query Optimization in Sensor Networks*

Vladimir I. Zadorozhny

Info Science & Tele Dept.
University of Pittsburgh
Pittsburgh, PA 15260

vladimir@sis.pitt.edu

Abstract

Queries in sensor networks are expected to
produce results in a timely manner and for
long periods, as needed. This impliesthat sen-
sor queries need to be optimized with respect
to both response time and energy consump-
tion. With these requirements in mind, we
develop novel cross-layer optimization tech-
niques that utilize information about how the
medium access control (MAC) layer operates
while processing queries in large scale sensor
network environments. The central frame-
work of our approach is a Data Transmission
Algebra that uniformly captures the structure
of data transmissions along with their con-
straints and requirements. Our framework en-
ables both qualitative analysis and quantita-
tive cost-based optimization of sensor queries.
We illustrate the effectiveness of our frame-
work by developing a collision-aware scheduler
and evaluating it experimentally.

1 Introduction

We are rapidly moving towards a world that is net-
worked to an unprecedented scale where every device
and appliance will have computing and communica-
tions capabilities and smart sensor networks will be de-
ployed widely. A large part of the information infras-
tructure is evolving towards large-scale wireless sensor
networks, e.g., information tracking systems such as

*This research was partially supported by NSF awards
1150219909, ANI-0123705, and a University of Pittsburgh CRDF
award.

Copyright 2004, held by the author(s)

Proceedings of the First Workshop on Data Mana-
gement for Sensor Networks (DMSN 2004),
Toronto, Canada, August 30th, 2004.
http://db.cs.pitt.edu/dmsn04/

Panos K. Chrysanthis

Computer Science Dept.
University of Pittsburgh
Pittsburgh, PA 15260

panos@cs.pitt.edu

68

Prashant Krishnamurthy

Info Science & Tele Dept.
University of Pittsburgh
Pittsburgh, PA 15260
prashant@sis.pitt.edu

airport security infrastructure, monitoring of children
in metropolitan areas, product transition in warehouse
networks, fine-grained weather measurements, etc. All
of these tasks require efficient mechanisms for query-
ing the sensor data and getting the result of the query
in a timely manner. Typical sensor query execution
maps into a tree-like data delivery pattern where a
responding sensor node sends its data to a neighbor
node which transmits it further to the next node to-
wards the requesting node (the root). The data com-
bined from all relevant sensors may be quite large and
will require very high data transmission rates to sat-
isfy time constraints. Meanwhile, limitations on sensor
node resources like battery power imply that excessive
transmissions in response to sensor queries can lead to
premature network death.

Several techniques have been proposed to alleviate
the problem of limited power at the network level such
as energy-efficient routing, clustering and transmission
scheduling [12, 25, 11, 6]. Sensor database research
has also looked into sensor query processing strate-
gies to minimize the query response time and reduce
energy consumption that include sampling [16], pre-
diction [10], approximation [5], and in-network query
processing (or aggregation) [2, 15, 21]. With the same
goal in mind, our research makes an effort to fuse the
techniques and methods currently used in the two dif-
ferent areas of databases and networking. We believe
that there is a natural convergence towards combining
sensor query processing and lower layer network pro-
tocols that can systematically be explored in order to
enable efficient operation of sensor networks.

In this paper we introduce an integrated approach
to sensor query processing that utilizes performance
and functional trade-offs between the query process-
ing schemes, and the medium access control (MAC)
layer. An examination of the reasons that affect both
energy consumption and response time reveals that (a)
data transmission collisions represent a major source
of energy waste in wireless communication; (b) unnec-

essary amounts of active time for the sensors, due to
lack of synchronization among data transmissions, is
another major source of wasted energy in sensor net-
works; and (c) multi-rate data transmissions can have
a considerable impact on the energy versus time trade-
off.

We propose a Data Transmission Algebra (DTA)
that can capture the information about how the MAC
layer operates while processing sensor queries. That
is, the DTA can uniformly capture the structure of
data transmissions, their constraints and their require-
ments. Our framework enables both qualitative analy-
sis and quantitative cost-based optimization of sensor
queries. Further, it allows the automatic generation
and evaluation of alternative routing trees for a given
set of queries and network configurations.

Using our framework, we have been able to develop
novel cross-layer optimization techniques. An exam-
ple of such an optimization discussed in this paper is
collision-aware query scheduling that minimizes simul-
taneous transmissions that interfere with each other.
As opposed to other schemes which assume that the
MAC layer handles collisions in an appropriate man-
ner, our collision-aware query scheduling reduce the
amount of retransmissions and thus saves energy by
explicitly considering data transmission collisions.

In realizing the DTA within an efficient query pro-
cessor and optimizer, we are implementing a novel
structure, a pervasive catalog that maintains highly
available and accurate query statistics and other rel-
evant network run-time information (i.e., meta-data).
Such information includes current network topology,
processing and transmission delays, collision domains,
data rates, and current distribution of already aggre-
gated and materialized data. We evaluate the effec-
tiveness of our framework and the efficiency of the op-
timization algorithms experimentally.

In Section 2, we set the stage for our framework
and overview closely related work. In Section 3, we in-
troduce DTA and its application to cost-based query
scheduling. In Section 4, we discuss the challenges
in building a pervasive catalog infrastructure. We
present the results of our experimental evaluation in
Section 5 and discuss the applicability of our approach
in Section 6.

2 Background and Related Work

Packet collisions are a major source of energy waste
in wireless local communications [14]. Collisions occur
when two or more nodes transmit at the same time
in an area where both transmissions will have suffi-
cient signal strength at the receiver node. When a
collision occurs packets are corrupted and discarded
unless there is some sort of capture [18].

Figure 1 elaborates on the concept of the Collision
Domain (CD)in typical wireless systems such as TEEE
802.11. Assume that a sensor nl wishes to initiate

69

n5
. n3
@}
Rix
@0
né Ctx
. n4
@}

Figure 1: Collision domain of two communicating

nodes

transmission to sensor n2. Initially, nl sends a request
for transmission (Rtx) (called request to send or RTS
in 802.11) to n2. All other nodes in its transmission
range (nb and n6 in Figure 1) become aware of the re-
quest and remain silent until n1 ends the transmission
to n2. The period of silence is based on virtual carrier
sensing where information in the Rtx is used to deter-
mine how long they should back off. Note that sensors
n3 and n4 do not sense the Rtx and could potentially
transmit at the same time either to n2 or to each other
resulting in collisions. To prevent this from happen-
ing, sensor n2 replies to nl with a confirmation (Ctx)
(called clear-to-send or CTS in 802.11). This time,
the nodes in the transmission range of n2 (n3 and n4
in Figure 1) hear the Ctx and do not transmit until
the end of the transmission from nl to n2. In this sce-
nario, the nodes n3, n4, n5, and n6 belong to the same
collision domain. In general, any two communicating
nodes ni and nj specify a collision domain CD(ni,nj)
that can be defined as the union of transmission ranges
of ni and nj.

Another way of eliminating collisions is to create
an orthogonal transmission mechanism whereby a cen-
tral authority, such as a base station allocates spe-
cific time slots for nodes to transmit based on reser-
vation or polling [19] that will be similar to time divi-
sion multiple access (TDMA). This however requires a
centralized synchronization mechanism that could be
fairly complex to implement, consume significant over-
head for signaling and be difficult to implement in a
multi-hop scenario. Although collisions, overhearing,
and idle listening are major sources of energy waste
in wireless multi-hop network, control traffic overhead
is a significant factor in the energy consumption that
should also be taken into account [24]. This can be
achieved by efficient methods of wireless meta-data
management [7, 26].

An important open research direction related to
our work is developing intelligent cost-based strate-
gies for switching nodes to sleep mode to minimize
energy consumption [27, 22, 24, 4]. In [28] the authors
proposed a cross-layer design for power management.
The term “cross layer” here refers to a power manage-

ment layer utilizing knowledge about route setup and
packet forwarding. In-network aggregation has also
been proposed to save energy by reducing the amount
of communications at the expense of extra computa-
tion [15, 23]. TAG [15] and Cougar [23] generate query
routing trees in a way similar to what we consider
in this paper. TiNA [21] is a middleware layer sit-
ting on top of either TAG or Cougar. TiNA employs
query semantics (and in particular, Quality of Data)
and can reduce energy consumption significantly, by
eliminating redundant data transmissions. However,
none of these schemes considered data transmission
collisions to reduce the amount of retransmissions and
thus save energy. All of these schemes assume that the
MAC layer handles collisions. Unlike TAG, Cougar,
and techniques similar to TINA or GaNC [3], our ap-
proach employs query and network metadata to gener-
ate query plans and routing trees that avoid collisions
and maximize sleep time, while balancing response
time and energy consumption.

3 Query Scheduling using DTA

We develop an algebraic framework that allows a sen-
sor query optimizer to arrange concurrent data trans-
missions in the query tree so as to avoid collisions. The
idea is that the query optimizer generates a schedule
for data transmissions that is disseminated to each
node in the query evaluation tree. As opposed to
TDMA-like policies, the schedule is a suggested strat-
egy that avoids collisions but it is up to individual node
to decide how to behave within a set of constraint in-
tervals specified by the schedule. In the event that a
node cannot follow the schedule to avoid collisions, col-
lisions are handled by the MAC layer. Thus, instead of
delegating the collision resolution solely to the MAC
layer, our framework utilizes query semantics to coor-
dinate transmissions between sensor nodes.

3.1 Data Transmission Algebra

We define a Data Transmission Algebra (DTA) that
efficiently enables such query scheduling. The DTA
consists of a set of operations that take transmissions
between wireless sensor nodes as input and produce a
schedule of transmissions as the result. We call a one-
hop transmission from sensor node ni to node nj an
elementary transmission (denoted ni ~ nj). We also
use a special symbol, null, that denotes a completed
(or empty) transmission. Each transmission nj ~ nj,
which is not empty is associated with a collision do-
main CD(ni, nj) as defined in Section 2. A transmis-
sion schedule is either an elementary transmission, or
a composition of elementary transmissions using oper-
ations of the DTA as described below. The DTA in-
cludes three basic operations that combine two trans-
mission schedules A and B:

70

1. order(A,B) = o(A, B). This is a strict order
operation, that is, schedule A must be executed
before B.

2. any(A,B) = a(A, B). This is an overlap opera-
tion that allows schedules A and B to be executed
concurrently.

3. choice(A,B) = ¢(A, B). This is a non-strict or-
der operation that either schedules A before B,
or puts B before A. Thus, ¢(A4, B) = (o(A4, B) V
o(B, A)).

As an example of DTA operations consider the
query tree in Figure 2 which was generated for some
query Q. This shows an initial DTA specification that
reflects the basic constraints of the query tree. The cir-
cles represent the ranges of the sensor nodes. For the
purposes of this example, we assume that the trans-
mission power is constant and the nodes are station-
ary. The initial specification consists of a set of strict
order and overlap operations. For instance, opera-
tion O1 specifies that transmission n2 ~ nl occurs
after n4 ~ n2 is completed. This constraint reflects
the query tree topology. Operation Al specifies that
n4 ~ n2 can be executed concurrently with n6 ~ n3,
since neither n3 nor n6 belong to CD(n4,n2), and nei-
ther n4 nor n2 are in CD(n6,n3).

O1: o(n4~n2, n2~n1)
02: o(n5~n2, n2~nl)
03: o(n6~n3, n3~nl)
0O4: o(n7~n3, n3~nl)

Initial DTA
specification:

A2: a(nd~n2, n7~n3)
A3: a(nd~n2, n3~nl)
A4: a(n5~n2, n6~n3)
A5: a(n5~n2, n7~n3)
Ab6: a(n5~n2, n3~nl)
A7: a(n6~n3, n2~nl)
A8: a(n7~n3, n2~nl)

Figure 2: Query tree and initial DTA Specification

Each operation of the initial specifications defines
a simple transmission schedule consisting of two el-
ementary transmissions. The DTA introduces a set
of transformation rules that can be used to generate
more complex schedules from the initial specification.
Figure 3 shows examples of DTA transformation rules
R1-R6, and illustrates how these rules apply towards
generating more complex schedules A9, A10 and A11
from the initial specification in Figure 2. A9 schedules

Example DTA transformation rules:

RL: 0(A,B)#0(B,A)

R2: a(A,B) =aB,A)

R3: ¢(A,B) =c(A,B)

R4: a(A,B) & a(A,C)=a(A,c(B,C))

R5: ¢(A, ¢(B,C)) & o(A,B) =c(0o(A,B),C)

R6: ¢(¢(B,C), A) & o(B,A) & o(C,A) = o(c(B,C), A)

Example of DTA transformations:

ALA2,R4 imply:

A9: a(n4-n2, ¢(n6~n3, n7~n3));
A3, A9, Raimply:

A10: a(n4-n2, ¢(c(n6~n3, n7~n3), n3~n1));
A10,03,04,R6 imply:

ALL: a(n4-n2, o(c(n6~n3, n7~n3), n3~nl));

Figure 3: Example of DTA transformations

schedule cost
ni~nj Tp(ni)+Ttx(ni~nj)+Tp(Nnj)
o(A,B) cost(A)+cost(B)
a(A,B) max(cost(A),cost(B))
c(A,B) cost(A)+cost(B) — Tf

Figure 4: Estimating costs of schedules

three elementary transmissions, while each of A10 and
A1l schedules four elementary transmissions.

None of the simple or complex transmission sched-
ules considered so far include all elementary transmis-
sions of the query tree, so we call them partial sched-
ules. Our goal is to generate DTA expressions for com-
plete schedules. A complete schedule includes all ele-
mentary transmissions of the query tree. Below we in-
troduce a cost model for optimizing data transmissions
in order to generate complete and efficient schedules.

Figure 4 shows simple cost estimation expressions
for each of the DTA expressions. In this case, the
cost corresponds to the execution time associated with
a particular schedule. For clarity of presentation we
ignore energy consumption at this point. For example,
the execution time of elementary transmission ni ~ nj
consists of local processing times Tp at nodes ni and
nj plus the time Ttx required for transmitting data
from ni to nj.

The execution time of strict order of schedules A
and B is the sum of execution times of A and B. For
overlapping schedules A and B, the execution time
would be the maximum of the execution times of A
and B. Finally, the execution time of the choice be-
tween A and B is the same as the execution time of the
strict order minus a predefined time factor Tf. Tf indi-
cates that in general, the optimizer prefers the choice
operation over strict order, since the latter restricts
flexibility of the optimizer in query scheduling. We ig-
nore propagation times as they are negligible in this
case.

3.2 Scalable DTA Scheduling

Basic DTA scheduling may be expensive due to its
combinatorial nature. The number of alternative
schedules grows at least exponentially with the num-
ber of sensor nodes and elementary transmissions par-

71

M1. Choice commutativity c(X,Y) < c(Y,X)

M2. Overlap commutativity a(X,Y) < a(Y,X)

M3. Choice associativity c(c(X,Y),Z) « c(X,c(Y,2))
M4. Overlap associativity — a(a(X,Y),Z) « a(X,a(Y,Z))
M5. Order associativity o(o(X,Y),Z) « o(X,o(Y,2))
M6. A/C exchange a(X,c(Y,2)) — c(aX,Y),2)
M7. Left A/O exchange a(X,0(Y,2)) — o(a(X,Y),2)
M8. Right A/O exchange a(X,0(Z,Y)) — o(Z, a(X,Y)
M9. CJ/A exchange c(aX,Y),2) — a(X,c(Y,2)),

provided any(X,Z) holds
o(a(X,Y),Z) — a(X,0(Y,2)),

provided any(X,Z) holds
o(Z, a(X,Y) — a(X,0(Z,Y)),

provided any(X,Z) holds

M10. Left O/A exchange

M11. Right O/A Exchange

Figure 5: Valid moves between DTA Schedules

ticipating in a query. In order to decrease this com-
plexity, we developed heuristic-based pruning meth-
ods that eliminate suboptimal alternatives. We also
explored randomized algorithms to cope with the ex-
pected complexity of queries in large scale sensor net-
works. Randomized algorithms [13] are scalable tech-
niques to solve complex combinatorial optimization
problems that search for a solution in a large space of
all possible solutions. Each solution is associated with
application-specific costs. Randomized algorithms will
search for a solution with the minimal cost by perform-
ing random walks in the solution space via a series of
valid moves. In our case possible solutions are DTA
schedules.

Figure 5 represents valid moves between DTA
schedules. Here any(51,52) is relation between two
DTA schedules S1 and 52 defined recursively as fol-
lows:

any(X,Y) if a(X,Y) or a(Y, X).

any(X,a(Y,Z)) if any(X,Y) and any(X,Z).
any(X,e(Y, 7)) if any(X,Y) and any(X,7).
any(X,0(Y,Z)) if any(X,Y) and any(X,Z).

Different randomized algorithms employ different
moving strategies and stopping conditions. Some of
the most well-known randomized optimization algo-
rithms are Tterative Improvement (IT), Simulated An-
nealing and Two-Phase Optimization [13]. We explore
performance of each of them for the purpose of scal-
able DTA scheduling. In Figure 6, we illustrate how
DTA scheduling can utilize II algorithm.

Explanation of variables and parameters:
minS - current DTA schedule with
minimal cost;
Sser - random serial DTA schedule;
S - random initial DTA schedule;

Wshl If (O(Eal_ml:l)r:nllzum(hSé) ?0 { neighbors(S) - a set of schedules that can be
= random Schedule generated from S via one valid

in neighbors(S) move:
if cost(S”) < cost(S) then S=S° stopping_condition - number of considered
initial schedules;
local_minimum(S) - a number of neighbors of
S to be tested, of which none has lower cost
than S. If the test is successful, S is considered
to be a local minimum

Procedurell () {
minS = Sser ;
while (not stopping_condition) do {
S = random DTA schedule

if cost(S) < cost(minS) then minS=S

return(minS)
1

Figure 6: IT Algorithm for DTA Scheduling

3.3 Impact of multi-rate transmissions

Multi-rate transmission is supported in the new gen-
eration of standards for wireless local communications
(such as 802.11a/b/g) as well as in evolving future
technologies. Under these standards, it is possible for
nodes to transmit at different data rates depending on
signal quality. Usually, signal quality degrades with
distance (although this is not the only reason) [18].
The path loss (that is dependent on the environment
and frequency), the modulation scheme, the transmis-
sion power and the receiver sensitivity influence the
data rates that can be provided for a given quality (bit
error rate or packet error rate). For instance, consider
phase shift keying (PSK) based modulation schemes.
In the case of PSK, the number of bits/symbol will af-
fect the bit error rate. Consider binary PSK (BPSK),
quaternary PSK (QPSK), 8-PSK and 16-PSK that
transmit 1, 2, 3 and 4 bits per symbol respectively.
The energy per bit to the noise power spectral den-
sity ratios required by these modulation schemes to
achieve a bit error rate of 107° are respectively 10,
10, 13.5 and 18 dB [20]. Note also that compared to
BPSK, QPSK, 8-PSK and 16-PSK can transmit data
at 2, 3 and 4 times higher rates in the same bandwidth.
For actual products based on 802.11, similar proper-
ties apply. Assuming a constant standard transmission
power, an 802.11 based node may be able to transmit
data at 11 Mbps to another node that is 90 ft away, but
only at 5.5 Mbps to another node that is 150 ft away'
or 2 Mbps to a node that is 210 ft away using 802.11b
technology. If the transmission power is increased or
the environment is open space, the range of transmis-
sion at 11 Mbps could be increased. In outdoor areas,
the distances up to which certain data rates can be
achieved will be different. For example, a data rate of
11 Mbps can be achieved if the nodes are separated by
200m, 5.5 Mbps if the separation is between 200 and
300 m, and 2 Mbps if it is between 300 and 600m?.
Alternatively, by reducing the transmission power,
the range can be reduced while keeping the data rate
at say 2 Mbps. Reducing the range also implies that

I These numbers are based on measurements in indoor areas
by Atheros [1].

2These numbers are based on product information by Fire-
tide [9].

the collision domain is shrunk allowing the possibility
of concurrent transmissions between different sensor
nodes. This brings up interesting opportunities for
creating minimal cost query schedules. Our query op-
timizer estimates the transmission power, data rates,
and order of transmission of sensor nodes that mini-
mizes costs in multiple ways. We discuss such scenar-
ios next.

Certain sensor nodes may be low on battery power
and if this information is known, it would be advanta-
geous to reduce their transmission power and range to
prolong the network life. There may be sensor nodes
that have sufficient energy and could increase their
transmission power for a certain period of time to by-
pass some hops and directly reach the node that initi-
ated the query. In this case the DTA will utilize a cost
model that takes into account both response time and
energy consumption while trading certain degree of
concurrency (i.e., number of operations/transmissions
that can overlap in the initial specification) for increas-
ing the speed of some transmissions.

Figure 7 illustrates this idea with two simple trans-
mission scenarios. In scenario (a), transmissions n4 ~
n2 and nd ~ n3 can occur concurrently, which is re-
flected by the overlap operations Al in the correspond-
ing initial DTA specification. By increasing transmis-
sion power of sensor n4 (scenario (b)), the opportunity
of transmitting n4 ~ n2 and nd ~ n3 concurrently
disappears, which results in a more restricted DTA
specification. However, the gain in n4 ~ n2 transmis-
sion speed, as well as a possibility for n4 to transmit
directly to nl can overcome the lack of concurrency
in scenario (b) under certain circumstances. Appar-
ently, in this case n4 would spend more energy to com-
plete its transmission. We are extending the DTA cost
model to capture the tradeoffs between transmission
speed, transmission power and degrees of concurrency
in sensor query processing. Assuming general modula-
tion schemes and suitable ranges of transmit powers we
plan to compare the results with measurements with
real products like 802.11 and Bluetooth.

(€) (b)

nl

[}
/nz./ \. n3 nl.
M
/ n4./n02/ \o 3
o n5
® n5

Initial DTA Specification: Initial DTA Specification:
O1: o(n4~n2, n2~nl)
02: o(n3~n2, n2~nl)
Al: a(n4~n2, n5~n3)

O1: o(n4~n2, n2~nl)
02: o(n3~n2, n2~nl)

Figure 7: Explanation of the tradeoff between power,
speed and concurrency

4 Pervasive Catalog for DTA Query
Scheduling

In order to support DTA query scheduling the op-
timizer should rely upon highly available and accu-
rate query statistics and other relevant network meta-
data including current network topology, processing
and transmission delays, collision domains and current
distribution of pre-aggregated and materialized data.
Such query statistics and network meta-data should be
stored in a highly available distributed repository with
varying freshness, precision and availability require-
ments. Design and implementation of such a repos-
itory together with an appropriate signaling system
is a considerable challenge. In this section we report
our on-going research on designing a pervasive cata-
log system (PCat) that implements such a meta-data
repository.

We are considering three basic catalog implementa-
tion alternatives: (1) centralized scheme, where all the
statistics metadata is maintained in a central node ac-
cessible through a base station (2) distributed scheme,
where each node maintains its own metadata statis-
tics, and (3) hybrid scheme, where some sensor nodes
maintain their own statistics and host statistics about
other nodes and sub-networks.

Centralized Scheme. In a centralized scheme, the
root node is a base station (BS) with a large broad-
cast area and unlimited power supply since it is pre-
sumably a fixed node and located in an opportunis-
tic location. The BS maintains the statistics on pro-
cessing and transmission delays, the network topol-
ogy, and collision domains. The synchronization of
the participating nodes can be easily achieved, since
every node listens to the same BS. The BS performs
query scheduling using DTA and broadcasts the re-
sulting schedule to every node in the network. For
this purpose, out-of band signaling or periodic bea-
cons can be employed. Note that sensor nodes need to
only receive this information, but need not transmit in-
formation directly to the BS as this may require large
transmit powers and incur large energy consumption.

Distributed Scheme. In this scheme, each wireless
node maintains statistics meta-data about itself. We
consider only local sensor processing times (Tp), and
the transmission time to a parent node (Ttx). A query
can be submitted at a root node of a routing tree and
then it can propagate down the tree to every node.
After receiving a query, each child node in the lowest
level provides its statistics, i.e., processing and trans-
mission times (delays) to their parent (Figure 8 - top).
Then, the parent node performs query scheduling for
each child node using the DTA in order to minimize
collisions and the active time for the parent’s receiver.
The parent node returns this schedule to its children
(Figure 8 - bottom). After scheduling its children, the
parent node estimates and sends its own processing

73

and transmission delay information to an upper level
parent node. Then the same process propagates up the
routing tree until it reaches the root node. The above
process can vary depending on actual query and net-
work statistics. For example, the transmission time
of the latest node can be fixed and transmissions for
the remaining nodes should be scheduled ahead of the
latest node.

P
0 c ot

delay informatMI\ c2
o o

C1l c2 Cc3
(8.1) Delay information from child nodes

Tp2
C3 Tp3
time

delay info to upper node

p Process Transmit

c S
;
Ttx3

(8.2) Scheduling information from parent to child nodes

delay information| p

schety \

e o o
ct c2 c3

Sleep

c3 Sleep

time

Figure 8: Distributed Query Scheduling

Hybrid Scheme. Under the hybrid scheme, ev-
ery node in the sensor network is associated with its
own statistics metadata, and some of the nodes can
additionally host statistics meta-data (perhaps more
summarized) about a subnet of devices in their lo-
cal meta-data repository. Hybrid PCat implements
adaptive distribution granularity that minimizes con-
trol and meta-data traffic, as well as energy consump-
tion while providing certain level of meta-data accu-
racy and freshness. It can be tuned for either maxi-
mum lookup or update performance and levels in be-
tween. In this way PCat is implementing different
tradeoffs between data availability, freshness and pre-
cision, ranging from purely distributed schemes to a
purely centralized scheme.

5 Experiments and Analysis

In this section, we discuss the first results of the eval-
uation of our framework. First, we show the poten-
tial performance gains of DTA schedules. These are
generated by a basic DTA scheduler that enumerates
all possible schedules exhaustively. Second, given that
such a DTA scheduler does not scale, we evaluated
the performance of an Tterative Tmprovement (IT) al-
gorithm for DTA scheduling that is capable of handling
large query trees. Finally, we compared DTA schedul-
ing with 802.11 MAC in order to put our results in a
better perspective.

5.1 Behavior of the DTA schedules.

In order to evaluate our approach, we implemented a
basic DTA scheduler in Arity Prolog. Here, we report

on the behavior of the DTA scheduler for a medium
complexity query tree involving ten sensor nodes with
overlapping collision domains. Processing and trans-
mission costs were generated randomly using Gaussian
distributions.

The basic DTA scheduler generated schedules stage
by stage starting from initial schedules with two el-
ementary transmissions (stage 1). Stage 2, 3 and 4
represent schedules with 3, 4 and 5 scheduled trans-
missions. Stage 5 includes complete schedules covering
all elementary transmissions of the query tree.

@ Avg Cost
g 4000 lAng ial Ci
g 3000 vg Serial Cost
£ 2000
=

1 2 3 4 5
Scheduling Stage

Figure 9: Comparison of DTA scheduling with serial
scheduling

Figure 9 shows the average query execution time
for different scheduling stages. We compare the DTA
scheduling with a serial scheduling strategy that per-
forms elementary transmissions sequentially. For each
scheduling stage we report the average execution time
of all its schedules. We observe that at each schedul-
ing stage, the approach that uses DTA considerably
outperforms serial scheduling.

Figure 10 reports on the average benefit that each
scheduling stages gains from concurrent transmissions.
Intuitively, the benefit is part of the time cost that
the DTA scheduler is able to “hide” scheduling some
transmissions concurrently. The benefit is defined re-
cursively for each of DTA operations. The benefit
of a(X,Y) is equal to minimum of costs cost(X) and
cost(Y). For the rest of the DTA operations the ben-
efit is equal to zero. Thus, any serial schedule has a
zero benefit.

@ (b)
—8000 o !
< Z 08
26000 1 WA Berefl| | == 0
24000 | DA Cost || T2~
S o204
<200] 5 02
= 0 T T T T < 9
1 2 3 4 5 1 2 3 4 5
Scheduling Stage Scheduling Stage

Figure 10: Time cost (a) and relative benefit (b) of
DTA scheduling

74

Il Performance
(local_minimum condition=10)
£ 4000

10000

8000

6000

4000

2000
0 0

= 2000
1 5 10 15 1 5 10 15
Il Stopping Condition

D ser_cost Mavg_cost Owin_cost

Il Performance
(local_minimum condition=10)

8000
6000

Time

Il Stopping Condition

\ Ewin_cost Mwin_benefit Davg_Im_gains

Local Minimum Performance
(stopping_condition=5)

I

100
local_minimum condition

Local Minimum Performance
(stopping_condition=5)

8000 8000
6000 6000
£ 4000 £ 4000
= 2000 = 2000
0 0

10 100 1000 10
local_minimum condition

[T

1000

‘D avg_cost Mwin_cost Oavg_Im_gains ‘ ‘D avg_cost Mavg_benefit Owin_cost Owin_benefit ‘

Figure 11: Performance of II-based DTA Scheduler

Figure 10(a) compares values of average time cost
and average benefit for each scheduling stage. With
the increase of the number of transmissions the bene-
fit grows, but not as fast as the time cost. Figure 10(b)
plots the average relative benefit as a percentage of the
overall average time cost per scheduling stage. We ob-
serve that for simple initial concurrent schedules the
benefit is almost equal to the time cost. This is an ex-
pected behavior. Elementary transmissions have com-
parable time costs. By scheduling them concurrently,
DTA hides on average one half of the time cost of
their serial execution. However, for complete schedules
(stage 5) the average relative benefit is as low as 0.2,
which means that only 20% of the total serial cost has
been hidden. This is also an expected behavior, since
complete schedules are composed of non-elementary
transmissions (sub-schedules) with higher variance in
their time cost. Thus, it is more challenging for the
DTA scheduler to hide time costs of non-elementary
sub-schedules.

5.2 Evaluation of the II-based DTA Scheduler

Figure 11 shows some of our experiments that eval-
uated the performance of the Iterative Improvement
(IT) algorithm for DTA scheduling. Tt reports aver-
age time cost and benefit of all considered schedules
(avg_cost and avg_benefit) and time cost and benefit of
the winner schedule chosen by IT algorithm (win_cost
and win_benefit). In addition to costs and benefits of
the schedules, we also report a value of average gain re-
ceived from the local minimum phase of the algorithm
(avg-lm_gains). The local minimum gain occurs when
IT algorithm improves a random initial schedule via
given number of random moves. This number should
be no greater than the local minimum condition.

The upper left graph in Figure 11 illustrates a con-
sistent improvement of Il performance as we increase
the values of the stopping condition with fixed local
minimum condition of 10. We also provide a time cost

Sensor Nooe Backs O - -

n Detected |

Figure 12: Back-off in 802.11 MAC

of a serial schedule (ser_cost) as a reference point and
a worst case scenario.

The upper right graph also reports on benefit and
local minimum gains of the winner schedule. While we
observe steady increase of the benefit value, the local
minimum gain behaves quite sporadically. This is an
expected behavior, since for each value of II stopping
condition we set the same local minimum condition.
Thus, in general we should expect a random value of
avg_lm_gains.

In order to explore the performance of the local
mimimum phase we plot the cost, benefits and local
minimum gains for different values of the local mini-
mum conditions (lower two graphs of the Figure 11).
We observe that the performance of the II algorithm
consistently improves as we increase the values of the
the local minimum conditions.

In summary, our experiments showed that II al-
gorithm scales well for large query trees and demon-
strates reasonable performance with proper parameter
settings.

5.3 Comparison of DTA
802.11 MAC

scheduling with

We note that 802.11-like transmissions may be faster
than simple serial schedules considered above under
lightly loaded conditions, but would still be slower
than DTA. For example, in Figure 2, let us assume
that the MAC layer independently operates and the
query optimizer creates no schedule. For this topol-
ogy, there could be concurrent transmissions n4d ~ n2
or nb ~ n2 and n6 ~ n3 or n7 ~ n3. However, there is
no guarantee which of these will occur first. Consider
the contention between n4 ~ n2 and nb ~ n2. Sup-
pose the medium is idle and both n4 and nb sense it as
idle at the same time upon receiving the query. They
will both wait for a time called distributed inter-frame
space (DIFS) and transmit the packet simultaneously,
resulting in a collision. If they sense the channel at
slightly different times, one of the nodes will transmit
first resulting in the second node backing off as shown
in Figure 12.

Suppose node n4 was able to transmit first. Node
nd will back-off and wait till node n4 completes its
transmission. After node n4 completes its transmis-
sion, n) will wait for an additional time equal to DIFS
and anywhere between 1 and 7 slots each of duration
20 us before it attempts transmission. The number of

75

slots (called the back-off interval - BT) will be selected
randomly in a window (called the contention window
- CW). In case there is a collision, the CW is doubled.
This doubling occurs each time there is a collision (re-
sulting in up to an increase of 1024 times). If there
are several sensor nodes in the same collision domain,
that need to transmit data, the process would result
in some collisions and considerable additional waiting
time. A similar scenario happens between nodes n6
and n7. The number of collisions would also depend
upon network topology and the type of queries (how
large the traffic will be at given points in the sensor
network).

We believe DTA scheduling would reduce collisions
and improve the energy savings. Collisions result in
completely wasted energy. In addition, during the
backoff slots, sensor nodes will be continuously mon-
itoring the medium resulting in wasted energy con-
sumption. We have also ignored the acknowledgment
process at the MAC layer in this preliminary analysis.
Currently we are implementing simulations in OPNET
Modeler [17] to test the degree of time and energy sav-
ings that DTA would provide over regular 802.11-like
transmissions

T 80211 MA
| Senal
| Scheduling
(=3
O
2| DTA
E| b
|._= = Scheduling
! - -
Load n the Sensor Network
Figure 13: Time Costs with different scheduling
schemes

Figure 13 represents the expected relationship be-
tween 802.11-MAC, serial and DTA-based transmis-
sions. As discussed above 802.11-like transmissions
may be faster than simple serial schedules consid-
ered above under lightly loaded conditions, but would
still be slower than DTA. For higher network loads
and more complex sensor queries the performance of
802.11-MAC considerably degrades comparing to se-
rial and DTA scheduling. DTA will always outperform
serial scheduling. Our preliminary simulation results
support this assumption. Currently we are undertak-
ing a comprehensive study of different query schedul-
ing options.

6 Discussion on DTA Applicability

In this paper, we use the IEEE 802.11 standard as the
basis for the medium access control mechanism as we

are considering large scale sensor networks that may
need to transmit large amounts of data over fairly long
distances. For lower data rates (on the order of a few
kbps) and smaller ranges, a more suitable mechanism
is the newly proposed IEEE 802.15.4 standard [29] for
low-rate wireless personal area networks. We note that
this mechanism also employs CSMA/CA for medium
access although the details are different.

In explaining the DTA and in the simulations, we
use a circular coverage area for each node. In reality,
the radio propagation conditions determine the shape
of the coverage area and this will be irregular. We do
note that circular coverage areas are commonly used as
approximations and also for mathematical tractability.
They do provide us with insights as to how a proposed
mechanism may perform. Moreover, the DTA does
not depend on the shape of the collision domains, but
rather on the knowledge of what transmissions from
what nodes are likely to collide. For this, it is suffi-
cient if the interference characteristics of sensor nodes
are known a priori. In a fixed topology with a small
number of nodes, it is easy to determine such char-
acteristics and obtain knowledge of the collision do-
mains. In a dense network, this could be a problem.
While we do not address this problem, there have been
research attempts to provide location information of
sensor nodes. For routing purposes, nodes need to de-
termine what their neighbors are and the number of
hops required to reach a sensor node can provide us
with equivalent information.

Finally, it is worth pointing out that our frame-
work is not limited to tree-like data patterns, but is
also capable of capturing broader data dissemination
paradigms such as wave scheduling [8].

7 Conclusions

We introduced a novel algebraic framework for specify-
ing and analyzing data transmissions along with con-
straints imposed by a query in wireless sensor net-
works. Qur framework enables flexible cross-layer
query optimization techniques that utilize information
about the MAC layer. The query optimization results
in reduction in energy consumption, which increases
the lifetime and effectiveness of the network, to pro-
duce the expected Quality of Data in a timely man-
ner. We also introduced the necessary infrastructure,
a pervasive catalog that provides our framework with
highly available and accurate query statistics and rel-
evant network meta-data.

Currently we are undertaking a comprehensive ex-
perimental and theoretical study of our framework. It
includes the implementation and testing of our frame-
work in simulated and real-world settings, as well as
exploring its completeness and complexity character-
istics.

76

Acknowledgments

We would like to thank our students Mohamed Sharaf,
Divyasheel Sharma and Chih-kuang Lin as well as the
anonymous reviewers for their thoughtful comments.
Special thanks to Alexandros Labrinidis whose con-
structive and insightful suggestions significantly im-
proved the DTA framework.

References
[1] Atheros Communications. Whitepaper: 802.11
Wireless LAN Performance. (available at

http://atheros.com/), April 2003.
[2] P. Bonnet, J. Gehrke and P. Seshadri. Towards
Sensor Database Systems. Proc. of MDM Conf.,

2001

J. Beaver, M. A. Sharaf, A. Labrinidis, and P. K.
Chrysanthis. Location-Aware Routing for Data

Aggregation for Sensor Networks. Proc. of Geo
Sensor Networks Workshop, 2003

B. Chen, K. Jamieson, H. Balakrishnan, and
R. Morris. SPAN: An Energy-Efficient Coordina-
tion Algorithm for Topology Maintenance in Ad
Hoc Wireless Networks. Proc. of ACM MobiCom
Conf., 2001

J. Considine, F. Li, G. Kollios and J. Byers.
Approximate Aggregation Techniques for Sensor

Databases. Proc. of IEEE ICDE Conf., 2004

U. Cetintemel, A. Flinders, Y. Sun. Power-
Efficient Data Dissemination in Wireless Sen-
sor Networks. Proc. of ACM MobiDE Workshop,
2003

P. K. Chrysanthis and V. Zadorozhny. From Lo-
cation Databases to Pervasive Catalog. Proc. of

MDDS Workshop, 2002

A. Demers, J. Gehrke, R. Rajaraman, N. Trigoni
and Y. Yao. Energy-Efficient Data Management
for Sensor Networks: A Work-In-Progress Report.
Proc. of 2nd IEEFE Upstate New York Workshop
on Sensor Networks, 2003.

Firetide Inc. Specifications of the HotPoint 10005
Wireless Mesh Router, Datasheet. (available at:

http://www.firetide.com/images/User_FilesImages/
documents/HP1000S_DS_a104.pdf)

S. Goel and T. Imielinski. Prediction-based mon-
itoring in sensor networks: Taking lessons from
MPEG. Computer Comm. Review, 31(5), 2001.

W. R. Heinzelman, A. Chandrakasan, and H. Bal-
akrishnan. Energy-efficient communication proto-
col for wireless microsensor networks. Proc. of

HICSS Conf., 2000

[12]

[13]

[14]

[15]

[16]

[20]

[21]

J. Heidemann, F. Silva, C. Intanagonwiwat,
R.Govindan, D. Estrin and D. Ganesan. Building
efficient wireless sensor networks with low-level

naming. Proc. of ACM SOSP, 2001

Y. E. Toannidis and Y. Kang. Randomized algo-
rithms for optimizing large join queries. Proc. of

ACM SIGMOD Conf., 1990

C. E. Jones, K. M. Sivalingam, P. Agrawal, and
J. C. Chen. A Survey of Energy Efficient Net-
work Protocols for Wireless Networks. Wireless

Networks, 7(4), 2001

S. Madden, M.J. Franklin, J.M. Hellerstein, and
W. Hong. TAG: A tiny aggregation service for ad
hoc sensor networks. Proc. of OSDI, 2002

S. Madden, M.J. Franklin, J.M. Hellerstein, and
W. Hong. The Design of an Acquisitional Query
Processor for Sensor Networks. Proc. of ACM
SIGMOD Conf., 2003

www.opnet.com

K. Pahlavan and A. Levesque. Wireless Informa-
tion Networks. John Wiley and Sons, 1995

K. Pahlavan and P. Krishnamurthy. Principles of
Wireless Networks: A Unified Approach. Prentice
Hall, 2002

J. Proakis. Digital Communications. McGraw

Hill, 2001

M. A. Sharaf, J. Beaver, A. Labrinidis, and P.
K. Chrysanthis. TiNA: A Scheme for Temporal

Coherency-Aware in-Network Aggregation. Proc.
of ACM MobiDE Workshop, 2003

77

[22]

[23]

[24]

C. Schurgers, V. Tsiatsis and M. Srivastava.
STEM: Topology Management for Energy Effi-
cient Sensor Network. Prov. of IEEE Aerospace
Conf., 2002

Y.Yao and J.E. Gehrke. The Cougar approach to
in-network query processing in sensor networks.

SIGMOD Record, 31(3), 2002

W. Ye, J. Heidemann and D. Estrin. An Energy-
Efficient MAC Protocol for Wireless Sensor Net-
works. Proc. of IEEE INFOCOM, 2002

M. Younis, M. Youssef and K. Arisha. Energy-
aware routing in cluster-based sensor networks.

Proc. of MASCOTS, 2002

V. Zadorozhny and P. K. Chrysanthis. Location-
Based Computing. In Telegeoinformatics:
Location-Based Computing and Services, Taylor
and Francis Books, 2003

R. Zheng, J. Hou and L. Sha. Asynchronous
Wakeup for Ad Hoc Networks: Theory and Pro-
tocol Design. Proc. of ACM MobiHoc, 2003

R. Zheng and R. Kravets. On-demand Power
Management for Ad-Hoc Networks. Proc. of IEEE
INFOCOM Conf., 2003

IEEE Std 802.15.4. Wireless Medium Access Con-
trol (MAC) and Physical Layer (PHY) Specifica-
tions for Low-Rate Wireless Personal Area Net-
works (LR-WPANs). TEEE Computer Society,
October 2003

Region Streams: Functional Macroprogramming
for Sensor Networks

Ryan Newton

Matt Welsh

MIT & Harvard
Cambridge, MA
U.S.A.
newton @mit.edu & mdw @eecs.harvard.edu

Abstract

Sensor networks present a number of novel pro-
gramming challenges for application develop-
ers. Their inherent limitations of computational
power, communication bandwidth, and energy de-
mand new approaches to programming that shield
the developer from low-level details of resource
management, concurrency, and in-network pro-
cessing. We argue that sensor networks should be
programmed at the global level, allowing the com-
piler to automatically generate nodal behaviors
from a high-level specification of the network’s
global behavior.

This paper presents the design of a functional
macroprogramming language for sensor net-
works, called Regiment. The essential data model
in Regiment is based on region streams, which
represent spatially distributed, time-varying col-
lections of node state. A region stream might rep-
resent the set of sensor values across all nodes in
an area or the aggregation of sensor values within
that area. Regiment is a purely functional lan-
guage, which gives the compiler considerable lee-
way in terms of realizing region stream opera-
tions across sensor nodes and exploiting redun-
dancy within the network.

We describe the initial design and implementation
of Regiment, including a compiler that transforms
a macroprogram into an efficient nodal program
based on a token machine. We present a progress-
sion of simple programs that illustrate the power
of Regiment to succinctly represent robust, adap-
tive sensor network applications.

Copyright 2004, held by the author(s)

Proceedings of the First Workshop on Data Management for
Sensor Networks (DMSN 2004),

Toronto, Canada, August 30th, 2004.
http://db.cs.pitt.edu/dmsn04/

78

1 Introduction

A sensor network represents a complex, volatile, resource-
constrained cloud of sensors capable of collaborative sens-
ing and computing. Programming such an entity requires
new approaches to managing energy usage, performing dis-
tributed computation, and realizing robust behavior despite
message and node loss.

One approach is to program the sensor network as a
whole, rather than writing low-level software to drive in-
dividual nodes. Not only does such an approach raise the
level of abstraction for developing novel programs, we ar-
gue that the only way to address the complexity of the un-
derlying substrate is through automatic compilation from a
high-level language. Today, few computer scientists would
doubt the value of high-level languages for programming
individual computers, or even groups of machines con-
nected in a traditional network. We wish to take this ap-
proach to the next level and provide a macroprogramming
environment for a network of sensors that automates the
process of decomposing global programs into complex lo-
cal behaviors.

This paper presents a functional macroprogramming
language for sensor networks, called Regiment. The es-
sential data model in Regiment is based on region streams,
which represent spatially distributed, time-varying collec-
tions of node state. The programmer uses these to express
interest in a group of nodes with some geographic, logical,
or topological relationship, such as all nodes within k ra-
dio hops of some anchor node. The corresponding region
stream represents the set of sensor values across the nodes
in question. The operations permitted on region streams
include fold, which aggregates values across nodes in the
region to a particular anchor, and map, which applies a
function over all values within a single region stream. Op-
erationally, map requires no communication between ele-
ments, whereas fold requires the collapse of data to a single
physical point.

Regiment is a purely functional language that does not
permit input, output, or direct manipulation of program
state. Regiment uses monads [19] to indirectly deal time-

varying values. As in other functional language designs,
this approach gives the compiler considerable leeway in
terms of realizing region stream operations across sensor
nodes and exploiting redundancy within the network. The
Regiment compiler transforms a network-wide macropro-
gram into an efficient nodal program based on a token ma-
chine. A token machine is a simple distributed state ma-
chine model in which nodes perform local sensing and
computation in response to the arrival of named tokens,
which may be received as radio messages or generated in-
ternally.

2 Related Work

We use the term macroprogramming to refer to program-
ming the sensor network as a whole, rather than at the
level of individual nodes. We argue that programming at
this level leads to more concise and robust programs, since
global behavior is specified directly. As an intuition, con-
sider that matrix multiply algorithms are far simpler to state
in terms of matrices and vectors than as parallel programs
implemented in MPI.

For sensor networks, progress in macroprogramming
has largely been domain specific. We have seen: languages
for global-to-local compilation of spatial pattern formation
[21, 17, 8]; Envirotrack [1], which exposes tracked objects
as language objects (analogous to the way we expose re-
gions); and, of course, database systems for querying sen-
sor data [32, 18].

2.1 Middleware

There have been many attempts to design programming
paradigms or run-time services to make application pro-
gramming for sensor networks easier. These need not nec-
essarily take a “macro” approach. In fact, many of these
middleware developments are complementary to macro-
programming, and perhaps usable by a macroprogramming
compiler backend. Spatial Programming [7] uses Smart
Messages to provide content-based spatial references to
embedded resources. For example, the programmer may
refer to the first available camera in a given (predefined)
spatial region. Other communication abstractions include
GHT [25], DIFS [12], SPIN [13], DIMENSIONS [11], and
HOOD [31]. Regiment draws on the Abstract Regions [30]
model, which provides efficient communication primitives
within local regions of the network.

2.2 Amorphous Computing

The Amorphous Computing research effort has pursued the
broad goal of engineering aggregate behaviors for dense
ad-hoc networks (paintable computers, Turing substrates).
Their work focuses on pattern formation, taking inspira-
tion from developmental biology. They demonstrate how
to form coordinate systems [20], arbitrary two and three
dimensional shapes [17], arbitrary graphs of “wires” [8],
and origami-like folding patterns [21]. Yet the Amorphous

79

Computing effort has not to date provided a model for pro-
gramming rather than pattern formation. In addition, the
target platforms envisioned by the Amorphous Computing
effort differ significantly from existing wireless sensor net-
works.

2.3 Database approaches

The database community has long taken the view that
declarative programming through a query language pro-
vides the right level of abstraction for accessing, filter-
ing, and processing relational data. Recently, query lan-
guages have been applied to sensor networks, including
TinyDB [18], Cougar [32], and IrisNet [22]. While these
systems provide a valuable interface for efficient data col-
lection, they do not focus on providing general-purpose dis-
tributed computation within a sensor network. For exam-
ple, it is cumbersome to implement arbitrary aggregation
and filtering operators and arbitrary communication pat-
terns using such a query language. We argue that a more
general language is required to fully realize the potential
for global network programming.

There has also been a body of work on extending pro-
gramming languages to deal with database access: database
programming languages or DBPLs. Many types of lan-
guages have been used in this work, including functional
ones. Functional DBPLs include FAD [5] and TPL [2].
Regiment differs from these languages in being explicitely
concerned with: distributed processing, spatial processing,
streaming data, and with the volatility of its substrate—
sensor networks.

2.4 Stream processing languages

Stream processing is an old subject in the study of pro-
gramming languages. Functional Reactive Programming
(FRP) is a recent formulation which uses modern program-
ming language technology (including monads [19] and
type classes [28]) to allow purely functional languages to
be able to deal comfortably with real time events and time-
varying streams. FRP is the inspiration for Regiment’s ba-
sic type system.

Regiment’s problem domain also overlaps with re-
cent work in extending databases to deal with continuous
queries over streaming data, such as STREAM [3], Au-
rora [33], and Medusa [33]. Regiment aims to utilize many
optimization techniques developed in this body of work,
but at the same time Regiment occupies a slightly different
niche—it is not only intrinsically distributed (on a volatile
substrate) but explicitely spatial.

3 The functional macroprogramming ap-
proach

The traditional method of programming sensor networks
is to write a low-level program that is compiled and in-
stalled in each individual sensor. This amounts to a pro-
gramming model consisting of access to sensor data on the

local node, coupled with a message-passing interface to ra-
dio neighbors. In contrast, our macroprogramming model
captures the entirety of the sensor network state as a global
data structure. The changing state of each sensor originates
a stream of data at some point in space. Collectively they
form a global data structure.

To express sensing and communication within local
groups of nodes, region streams encapsulate subsets of the
global network state that can be manipulated by the pro-
grammer as single units. They represent the time-varying
state of a time-varying group of nodes with some geo-
graphic or topological relationship. Communication pat-
terns for data sharing and aggregation can be efficiently
implemented within such local regions [30, 31].

3.1 Why a functional language?

We propose that functional languages are intrinsically more
compatible with distributed implementation over volatile
substrates than are imperative languages. Prominent (call-
by-value) functional languages include Lisp, Scheme and
OCaml. Functional languages have been used to ex-
plore high-level programming for parallel machines—such
as NESL [6] and *LISP [26]—and for distributed ma-
chines [24]. In our system, we get the most benefit from re-
stricting ourselves to a purely functional (effect free), call-
by-need language similar to Haskell [16].

Purely functional languages essentially hide the direct
manipulation of program state from the programmer. In
particular, the program cannot directly modify the value
of variables; rather, all operations must be represented as
functions. Monads [19] allow mutable state to be repre-
sented in a purely functional form. For sensor network ap-
plications, abstracting away the manipulation of state al-
lows the compiler to determine how and where program
state is stored on the volatile mesh of sensor nodes. For
example, to store a piece of data reliably, it may be nec-
essary to replicate it across multiple nodes in some consis-
tent fashion. Using a functional language makes consis-
tency moot; immutable values can be freely replicated and
cached.

Because functions are deterministic and produce no out-
put, computation can be readily migrated or replicated
without affecting program semantics. Another way to state
this is that functional programs support equational rea-
soning. Program optimization in such a framework can
be cast as semantics-preserving application of general pro-
gram transformations [23].

Regiment has a host of algebraic properties which can
be used together with a static cost model or dynamic profil-
ing information to optimize performance and resource us-
age.

Another advantage of the functional programs is that it
is straightforward to extract parallelism from their manipu-
lation of data. For example, a function that combines data
streams from multiple sensors can be compiled into a form
that efficiently aggregates each data stream within the net-
work. In addition to such data parallel operations, func-

80

tional programs are implicitly parallel in their evaluation of
function arguments [4]. The compiler can automatically
extract this parallelism and implement it in a variety of
ways, distributing operations across different sensor nodes.

4 The Regiment language

The goal of Regiment is to write complex sensor network
applications with just a few lines of code. In this section
we describe the Regiment language through several exam-
ples. A common application driver for complex coordi-
nation within sensor networks is that of tracking moving
vehicles through a field of sensors each equipped with a
proximity sensor of some kind (e.g., a magnetometer). We
start by showing a simple Regiment program that returns a
series of locations tracking a single vehicle moving through
such a network.

let aboveThresh (p,x) = p > threshold
read node =
(read_sensor PROXIMITY node,
get_-location node)
in centroid (afilter aboveThresh
(amap read world))

We use a syntax similar to Haskell. Function applica-
tions are written as f x y; for example, amap read world
represents the application of the amap function with two
arguments: read and world. One important characteristic
of functional languages is that they allow functions to be
passed as arguments. Here, amap takes the function read
as argument, and applies it to every value of the region
stream world; we will discuss the details shortly. afilter
filters out elements from a region stream that do not match
a given predicate, in this case the aboveThresh function.
And centroid is a function that computes the spatial cen-
ter of mass of a set of sensor readings (where each reading
is a scalar value coupled with the (x,y) location of the sen-
sor that generated the reading). We assume that every node
has access to an approximation of its Euclidean location in
real space, though this assumption is not essential to the
Regiment language.

So, this program can be interpreted as follows: a region
stream is created that represents the value of the proximity
sensor on every node in the network; each value is also an-
notated with the location of the corresponding sensor. Data
items that fall below a certain threshold are filtered out.
Finally, the spatial centroid of the remaining collection of
sensor values is computed to determine the approximate lo-
cation of the object that generated the readings.

4.1 Fundamentals: space and time

Regiment is founded on three abstract polymorphic data
types. Polymorphic types are also called generics, and are
similar in use to C++ templates; they enable generic data
structures to be specialized for use with any particular type
of data element. Below, the o argument to each type con-
structor signifies the particular type that it is specialized to
hold.

e Stream o — represents a value of type « that changes
continuously over time

e Space o — represents a physical space with values of
type a suspended in it

e Event o — represents a discrete event that occurs at a
particular point in time and that carries a value o when
it occurs

The notion of Streams and Events is based on Functional
Reactive Programming [10]. In this model, programs op-
erate on a set of time-varying signals. A signal can change
its behavior on the arrival of an event. In Regiment, signals
become Streams and are used to represent changing sensor
state or network status, Spaces represent the physical distri-
bution of information across a network, and Events notify
the program of meaningful changes to Streams, allowing
triggers.

Because Regiment is a purely functional language, the
Stream, Space, and Event types all describe first-class im-
mutable values. This means that values of these types can
themselves be passed as arguments, returned from func-
tions, and combined in various ways. Semantically, we can
think of each of the three types as having the following
meanings:

e Stream o =~ Time — «
e Space a =~ Location — MultiSet o
e Event o =~ (Time , o)

That is, Streams may be formalized as abstract functions
that map a time to the value at that time. This is not to
say that we would ever implement a Stream object as such.
Similarly, Spaces may be formalized as functions mapping
a location to a set of values existing at that location. Events
simply become tuples containing values paired with the as-
sociated time of their occurrence.

4.2 Areas, Regions, and Anchors

Until now, we have used “region stream” as an umbrella
concept for a changing, distributed chunk of network state.
Now we formalize this notion by introducing Regiment’s
Area and Region types. An Area is a generic data structure
for representing volatile, distributed collections of data. A
Region is a specific kind of Area used to represent the state
of the real, physical network.

We saw before that a Space represents a “snapshot” of
values distributed in space at a particular point in time. But
we would like for those values—as well as the membership
of values in that space—to change over time. To accom-
plish this we introduce the concept of an Area. If we vi-
sualize a space Int as a volume with integers suspended
throughout, then an area Int would be an animated ver-
sion of the same thing. The Area data type is built by using
Stream and Space together:

81

Area o = Stream (Space «)

Note that, with this type, an Area’s membership and physi-
cal extent may change over time. In fact, this type would al-
low the Area to become an entirely different Space at each
point in time. (But the instability would cripple our im-
plementation.) On the other hand, if Area were defined as
a Space of Streams rather than Stream of Spaces, then its
membership and spatial extent would be fixed but its values
varying. Instead, both vary.

Areas are useful constructs, but they don’t by them-
selves provide an initial foothold into the real world. How
do we make that first Area? In order to refer to the state of
specific sets of nodes in the real world, we define a Region,
which is an Area of Nodes. A Node, in turn, is a datatype
representing the state of a sensor node in the network at
some point in time. It allows access to the node’s state,
such as its sensor readings, real world location, and the set
of other nodes that are part of its communication neighbor-
hood. The precise definition of the Node type, along with
its basic operations, are shown in figure 1.

A Region is created as a group of nodes with some re-
lationship to one another such as“all nodes within k radio
hops of node N,” or “all nodes within a circle of radius r
around position X.” Regions may be formed in arbitrarily
complex ways: using spatial coordinates, network topol-
ogy, or by arbitrary predicates applied to individual nodes.
Hence, Regions may be non-contiguous in space, and their
membership may vary over time. The goal of a Region is
to get a handle on a group of sensor nodes of interest for
the purpose of localizing sensing, computation, and com-
munication within the network. The special region wor1ld
represents all nodes in the network.

One can form a Region by identifying a particular node
that acts as the reference point for determining member-
ship in the region: an Anchor. The Anchor also acts as the
“leader” for aggregate operations in a Region, such as com-
bining values from multiple sensors. Note that the specific
node that fulfills the role of Anchor may change over time,
for example, if a node fails or loses connectivity to others
in the Region. Regiment guarantees that the Anchor object
persists across node failures, which may require periodic
leader elections.

Examples of Regiment code for forming various Re-
gions:

e radio_neighborhood hops anch:
Forms a Region consisting of all nodes within hops
radio hops of the given anchor.

e circle radius anch:
Forms a Region consisting of all nodes whose geo-
graphical coordinates are within radius of anch.

e knearest k anch:
Forms a Region consisting of the k nodes that are
nearest anch.

4.3 Basic operations

Regiment defines a number of basic operations on Streams
and Areas.

smap f stream
amap f area

smap applies a function f to every data sample within a
Stream (across time), returning a new Stream. Similarly,
amap applies a function f across every datum in the Area
(across space and time).

afold f init area

An Area fold, or afold, is used to aggregate the samples
from each location in the Area to a single value. The func-
tion f is used to combine the values in the Area, with an
initial value of init used to seed the aggregation. afold re-
turns a new Stream representing the aggregated values of
the Area over time. For example, afold (+) 0 area gen-
erates a Stream of the time-varying sum of all values in
area.

afilter p area

An Area filter, or afilter, pares down the elements of area
to only those satisfying the predicate function p. This fil-
tration must be updates dynamically as the values in area
change over time.

Regiment also has operations for defining and handling
events:

when p stream
whenAny p area
whenPercent per p area

when constructs an Event which fires when the current
value of a stream satisfies the predicate p. whenAny, on
the other hand, constructs an Event that fires whenever any
single node in an Area matches a predicate p. whenPer-
cent is similar to whenAny but the Event returned only fires
when above a certain percentage of elements in the area
meet the criteria—potentially an expensive (and difficult to
implement) operation.

Using Events, two Streams can be sequenced into a sin-
gle Stream using the until function:

until event startstream handler

until switches between Streams. The above call to until will
produce values from startstream until such a time as event
occurs. At that point, the handler (a function) is called on
the value attached to the Event occurrence. This handler
function must return a new Stream, that takes over produc-
ing values where startstream left off.

82

type Area a =

type Region = Area Node

type Anchor = Stream Node
— Node: represents a physical mote in the context of a
— communication network. Provides access to the node
— state as well as the states of “neighbors”.

type Node = (NodeState, [NodeState])

Stream (Space a)

— NodeState: all the relevent information for a

—node: id, location, and a set of sensor values

— (one for each sensor type supported by the node).
type NodeState = (Id, Location, [Sensor])

— Sensor: force all sensor readings to be floats:
type Sensor = (SensorType, Float)

— SensorType: predefined enumeration of sensor kinds.
type SensorType =

PROXIMITY | LIGHT | TEMPERATURE ...

— Function that returns the NodeState of a Node
get.nstate :: Node —> NodeState
— Returns the reading for a given SensorType. For
—now we assume all nodes support all SensorTypes.
read-nstate ::
SensorType —> NodeState -> Float

— And here are two convenient short-hands:
— Sensing function for Nodes
read_sensor typ nd =
read-nstate typ (get_nstate nd)
— Shorthand for reading location (via GPS, etc)
get_-location nd =
read_.sensor LOCATION node

Figure 1: Regiment’s basic data types (along with some
helpful functions.)

4.4 Spatial operations

Along with these basic operators, Regiment provides sev-
eral explicitly spatial operations on Areas. For example:

o sparsify percent area:

Make area more sparse. Each value in the Area flips
a biased coin, and stays in the Area with the given
probability. This randomization is only done the first
time a value enters the Area. The sparse Area is not
chaotically recomputed at every time step. sparsify
can be used, for example, to “weed out” nodes from
an overly dense Region.

o cluster area:
Cluster a fragmented Area into multiple Areas, each
of which is guaranteed to be spatially contiguous. The
return type is an Area of Areas.

e flatten area:
Flatten takes an Area of Areas and returns a single
combined Area. This is the inverse of cluster.

e border area:
Return a Region representing the set of nodes that
form a boundary around the given area.

4.5 Example programs

Now we will return to our original example program and
examine it in greater detail. Let us start by defining
centroid using basic Regiment constructs.

— This calcs a weighted avg of vectors.
— Used to find center of sensor readings.
centroid area
divide (afold accum (0,0)

area)

— ’accum’ produces a weighted sum.
= "wsum’ - sum of weights.
— "xsum’ - sum of scaled locations.
accum (wsum, xsum) (w,Xx)
(w + wsum, x*w + xsum)

— 'divide’ the stream of scaled location
—values by the sum of the weights.
— Backslash defines a function.
divide stream
smap (\ (w, x)

-> x/w) stream

The centroid function takes an area as an input and uses
the accum function to fold that area down to a stream of
sums of sensor readings paired with the scaled locations
of each sensor in the region. The divide function divides
the sum of scaled locations by the sum of the sensor read-
ings. This effectively calculates the center of mass of the
locations of those sensors, in a way that recomputes auto-
matically over time.

4.5.1 Tracking multiple targets

Using the cluster operation, we can track the location of
multiple targets, assuming that the set of nodes near a given
target do not overlap:

let aboveThresh

read node

(read_sensor PROXIMITY node,
get_-location node)

(p,x) = p > threshold

selected = afilter aboveThresh
(amap read world)
globs = cluster selected

in amap centroid globs

This program returns an Area providing approximate tar-
get locations for each target being tracked. Note that the
number of targets in the Area will vary over time.

4.5.2 Resource efficiency with sentries

As a further refinement, consider a program that only initi-
ates target tracking within the network if any of the nodes
on the periphery of the network initially detect the presence
of a target. This technique can be used to save energy on
the interior nodes of the network, which only need to be
activated once a target enters the boundary.

let aboveThresh
read node

(p,x) = p > threshold
(read_sensor PROXIMITY node,
get_coords node)

selected = afilter aboveThresh
(amap read world)
targets = amap centroid (cluster selected)

83

sentries = amap read (border world)
event whenAny aboveThresh sentries
handler ev = targets

in until event nullArea handler

The last line of the program initiates computation using the
until primitive. Until event fires, the program returns an
empty Area (nullArea). Once a target is detected by any of
the sentries, the nullArea is supplanted by targets, the
evaluation of which yields a stream of approximate target
locations.

The reader might reasonably be worried that the above
program produces a fragile implementation. If even one
node in the sentry-border dies, might that let a target
through? This depends on the quality of the implementa-
tion of the border operator. A high quality implementation
will respond to failures and have the border sealed again
in a bounded amount of time. Also, the programmer may
self-insure by making a two layer border as follows:

let sentl = border world
sent2 = border (subtract world sentl)
thickborder = union sentl sent2

4.5.3 Contour finding

The following program computes the contour between ad-
jacent areas of the network. Sensor readings on one side of
the contour are above a certain threshold, and readings on
the other side are below. The contour is returned as a list of
points lying along the contour.

let mesh = planarize world
nodesAbove =
afilter ((>= threshold)

(read_-sensor SENSTYP))
mesh
midpoint nstl nst2
(read-nstate LOCATION nstl +
read-nstate LOCATION nst2)
contourpoints node
let neighborsBelow
filter ((< threshold)
(read_.nstate SENSTYP))
(get_-neighbors node)
in map (midpoint (get_nstate node))
neighborsBelow
all_contourpoints
amap contourpoints nodesAbove

/ 2

in
afold append all_contourpoints

This program works by pruning the communication
graph of the network into an approximately planar form.
It then filters out a region of nodes—abovethresh—with
SENSTYP reading above the threshold; this would be all the
nodes to one side of the contour. The contourpoints func-
tion takes a node above the threshold and returns a list of
midpoints between that node and each of its neighbors be-
low the threshold (on the other side of the contour). Fi-
nally, all_countourpoints is aggregated by appending to-
gether all the individual lists of midpoints, thus yeilding
the final countour-line—a Stream of lists of coordinates.

Handlers are atomic tasks

‘—I» form_a: @
Lu» memb_a: (wander)
+ form_r: m
b memb_r: m

G
& =®
0

Token enters

° o

locally or 4 .

from neighbo L____j Token Cache
Machine

Figure 2: The Regiment Token Machine model.

4.6 Feedback and exception handling

Because behavior of the sensor network is stochastic, the
response from a region during any time period will involve
only a subset of all the nodes that “should” be in that re-
gion. The programmer needs feedback on the quality of
communication with the region in question. Thus the fi-
delity operator.

fidelity area

This operator returns a Stream representing the fidelity of
an area as a number between zero and one (an approxi-
mation based on the number of nodes responding, spatial
density, and estimated message loss).

The programmer will also want feedback about (and
eventually control over) the frequency of a Stream.

get_frequency stream

allows the programmer to monitor the actual frequency of
a Stream of values.

Thus, by using these two diagnostic streams, the pro-
grammer may set up “exception handlers”. This is accom-
plished by constructing events which fire when fidelity or
frequency falls out of the acceptable range. For example, if
fidelity drops below a certain level, one may want to switch
to a different algorithm.

5 Token Machines

Compiling a global program into node-level code requires
an abstract machine model for the compiler to target. The
goal of this model is to capture only the essential operations
supported by sensor nodes. For this purpose we provide
the Token Machine (depicted in figure 5). It can be thought
of as an intermediate language (IL) between Regiment and
the native language and runtime environment supported by
individual sensor nodes.

5.1 Tokens and Handlers

A program in the Token Machine model consists of a col-
lection of foken handlers coupled with local state defi-
nitions. Each token handler is associated with a token

84

name and is attached to an atomic task to be executed
by a sensor node upon receiving a token matching that
name. The Token Machine’s concurrency model is similar
to TinyOS [14] in that handler tasks may not be blocked or
preempted, and run to completion. In many ways, the token
machine model is similar to that of Active Messages [27]

Tokens are generated by a node either internally (in re-
sponse to internal state changes, e.g., a timer interrupt) or
by reception of a radio message containing the token iden-
tifier and parameters. The most recently received token of
each name is cached by the machine. Token handlers can
emit new tokens by broadcasting a radio message, or call
local token handlers. Nodes can also count the number of
times a given token has been received and clear the recep-
tion count for a given token. Thus Token Machines provide
a simple mechanism providing local function calls, remote
invocation, and data storage.

One use of tokens is to implement gradients [9]. A gra-
dient emanates from a specific origin node with an associ-
ated gradient value, which is initialized to zero. Each node
receiving a gradient token rebroadcasts the token after in-
crementing the gradient value; each node retains only the
lowest-numbered gradient value it has received. A gradient
may have an associated time-to-live that limits the range
of its propagation. Gradients can be used to implement a
range of interesting communication patterns, for example,
allowing a root node to collect information from all nodes
within some communication radius, or allowing nodes to
estimate their distance from a set of origin points.

In practice, gradients must be refreshed continuously to
maintain themselves in the presence of node and link fail-
ures. The epoch frequency for gradient-refresh drives the
looping behavior of the system. Every epoch, a wave of
tokens moves outward, activating the next step of compu-
tation. Gradients can be seen as a more general form of the
communication model used by directed diffusion [15] and
spanning trees in systems such as TinyDB [18].

5.2 Gradient example: implementing folds

As an example of the use of tokens and gradients, consider
aggregating the values of a k-radio-neighborhood group of
sensors to an anchor node in its center (the Regiment afold
operator). This operation proceeds in two steps: region for-
mation (which may be amortized over multiple afold oper-
ations) and data aggregation. To form the region, the an-
chor emits a member gradient with an initial hopcount of
0 and a time-to-live of %k radio hops. The token handler
for member evaluates whether the receiving node is within
the region defined by the afold operator; in this case, if the
gradient hopcount is less than k&, then that node considers
itself part of the region. Receiving nodes also remember the
node from which they received the lowest hopcount version
of the member token; call this the node’s parent. Receiving
nodes then increment the gradient hopcount and relay the
gradient as long as the hopcount is less than the time-to-
live.

Aggregating results back to the anchor is performed

with a second gradient operation, called return. return
takes as arguments a local value to aggregate, as well as
a token naming an aggregation function that combines val-
ues as they travel upwards toward the root of the member
gradient. Each interior node attempts to keep track of the
number of children it has. The handler for return checks
whether all of the node’s children have responded with their
own return token (using the token’s reception count), up
to some maximum timeout period. Once this condition is
met, the return handler combines received values from the
node’s children using the aggregation function and issues a
return to its own parent with the combined value. These re-
turn messages include the node’s parent ID so that all other
nodes will ignore its reception.

5.3 Gradient example: leader election

Gradients also make it straightforward to implement dis-
tributed leader election among a group of nodes. All of the
nodes participating in the election emit a gradient named
elect, which includes its local node ID. The token han-
dler on each node remembers the lowest-valued node ID
received so far. When the token is received, if the received
ID is smaller than the previously stored value, the new ID is
remembered and the gradient token is relayed. Therefore,
all nodes participating in the election initiate gradients, but
only the gradient of the lowest-numbered node will con-
tinue to propagate. The root of this gradient is the leader.

6 Current status

Regiment poses implementation challenges that are both
deep and broad. Presently, we are exploring the feasibility
of the basic Regiment primitives through a highly restricted
subset of the language. This subset eliminates general pur-
pose function application, and forbids free variables within
functions (disallowing closures). Functions may still be de-
fined, but they may only be applied by using the Regiment
primitives afilter, afold, amap, and smap. We have also
postponed typing issues by making our prototype dynami-
cally typed. We have implemented a prototype of the com-
piler and have demonstrated several example applications
running in simulation; we intend to implement a back end
compiler to generate TinyOS code from the Token Machine
representation, allowing us to test the system on real sensor
nodes.

6.1 Compilation strategy

A program in the restricted language is best visualized as
a dataflow graph; Figure 3 depicts the graph for a simple
program that computes the smap of a function g over the
afold of f over a region of nodes defined by a circle around
the point (30, 40). Our compiler generates code for such
a data-flow graph by directly translating each edge in the
graph into some number of token handlers.

Values in the system are divided into distributed and
local. Every distributed value corresponds to some phe-
nomena happening in space. Regions and Anchors are dis-

85

[smap g (afold f (0,0) (circle 50 (anchor _at (30.40)))) |

(30,40)

result

Figure 3: A Regiment program represented as a dataflow
graph. Network-distributed values flow along solid edges, and lo-
cal constant values (including functions) flow along dotted edges.

tributed, whereas numbers and functions are local. In fig-
ure 3, edges are either solid or dotted depending on whether
they carry distributed values or local ones.

We standardize an interface among distributed values
such that every distributed value (solid edge) produces at
least a formation token handler and a membership token
handler. The former represents an onus to create that Re-
gion or Anchor—form the circle, do the filtration, elect the
leader—and the latter is a notice that the Area/Anchor is
active and the current node is participating in it.

6.1.1 Example walk-through

The example portrayed in figure 3 has four distributed val-
ues (a, r, s, result) and several local values (f and g and
several numeric constants). Each of the distributed values
generates both a formation and membership token, for ex-
ample, form_a and memb_a.

Because a is the only distributed value produced by a
leaf node, form_a tokens are seeded into the network ini-
tially. They cause nodes to check their distance from the
targeted Euclidean coordinate, (30,40). Nodes that are
close enough to that location initiate and participate in a
leader election. The token memb_a is fired when a node
becomes leader.

Because r is the next step in the chain beyond a, the han-
dler for the memb_a token immediately calls form_r. Form-
ing r is simple; it just requires emitting a single gradient
with the token memb_r. As nodes receive the memb_r token
they call the form_s token. (Again, simply because it’s next
in line.) The form_s handler begins returning values along
the back-trail of the memb_r gradient. When they arrive

back at the root, the special return handler calls memb_s.
The value s has successfully been formed. memb_s in turn
calls form_result, which simply applies the function g lo-
cally to the stream s, and we have our result.

This example was simple—at no point did a primitive
depend on more than one distributed value. But we hope
that it conveys a feeling for the process. It is important to
note also that this simple example uses only a push model
for the data-flow graph. (Leaf nodes push their results
down to the root.) The until primitive makes necessary
use of the pull communication model because it waits for
an Event before starting a Stream. The latter stream must
have some kind of pull exerted on it to prompt it to begin
execution.

7 Future work and Conclusion

Future work will proceed in several directions. Because of
the large gap between Regiment’s semantics and target ar-
chitecture, compiling it is a challenge. We will explore the
possibility of loosening the restrictions on our initial ver-
sion of Regiment, providing more general purpose func-
tionality. We plan to investigate both static and dynamic
optimizations in terms of resource usage and communica-
tion bandwidth requirements for a range of Regiment appli-
cations. We believe that the Token Machine model and the
use of gradients makes it straightforward to realize good
communication locality. We intend to introduce primitives
that allow the user to control tradeoffs between energy, la-
tency, and accuracy [29], which are critical for sensor net-
work application designers to consider.

Our vision is that sensor network applications can be ex-
pressed in a very high-level macroprogramming language
that abstracts away the low-level details of sensing, com-
munication, and energy management. We argue that the use
of functional programming languages is essential for cap-
turing data parallelism and enabling the compiler to make
informed decisions about the scheduling and placement of
computation in the sensor network. We have demonstrated
some interesting first steps in this direction through the de-
sign of Regiment and its underlying runtime model, Token
Machines. Regiment provides the ability to programmati-
cally build spatial regions within the network, and use them
for localized sensing, computation, and communication.

References

[1] T. Abdelzaher, B. Blum, Q. Cao, D. Evans, J. George,
S. George, T. He, L. Luo, S. Son, R. Stoleru,
J. Stankovic, and A. Wood. Envirotrack: Towards
an environmental computing paradigm for distributed
sensor networks.

[2] J. Annevelik. Database programming languages: A
functional approach. In Proc. of the ACM Conf. on
Management of Data, pages 318-327, 1991.

[3] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz,
M. Datar, K. Ito, R. Motwani, U. Srivastava, and

86

[4]

[5]

[10]

(11]

[12]

[13]

[14]

J. Widom. STREAM: The Stanford Data Stream Man-
agement System. 2004,

Arvind and Rishiyur Nikhil. Implicit Parallel Pro-
gramming in pH. Morgan Kaufman, 2001.

F. Bancilhon, T. Briggs, S. Khoshafian, and P. Val-
duriez. Fad, a powerful and simple database language.
In Proc. Conf. on Very Large Data Bases (VLDB),
1987.

Guy E. Blelloch. NESL: A Nested Data-Parallel
Language. Technical Report CMU-CS-93-129, April
1993.

Cristian Borcea, Chalermek Intanagonwiwat, Porlin
Kang, Ulrich Kremer, and Liviu Iftode. Spatial pro-
gramming using smart messages: Design and imple-
mentation. In 24th International Conference on Dis-
tributed Computing Systems (ICDCS 2004), March
2004.

Daniel Coore. Botanical Computing: A Developmen-
tal Approach to Generating Interconnect Topologies
on an Amorphous Computer. PhD thesis, MIT De-
partment of Electrical Engineering and Computer Sci-
ence, February 1999.

Daniel Coore, Radhika Nagpal, and Ron Weiss.
Paradigms for structure in an amorphous computer.
Technical Report AIM-1614, MIT, 6, 1997.

Conal Elliott and Paul Hudak. Functional reactive an-
imation. In Proceedings of the ACM SIGPLAN In-
ternational Conference on Functional Programming
(ICFP ’97), volume 32(8), pages 263-273, 1997.

Deepak Ganesan, Ben Greenstein, Denis Perelyub-
skiy, Deborah Estrin, and John Heidemann. An
evaluation of multi-resolution search and storage in
resource-constrained sensor networks. In Proc. the
First ACM Conference on Embedded Networked Sen-
sor Systems (SenSys 2003), November 2003.

Benjamin Greenstein, Deborah Estrin, Ramesh
Govindan, Sylvia Ratnasamy, and Scott Shenker.
DIFS: A distributed index for features in sensor net-
works. In Proc. the First IEEE International Work-
shop on Sensor Network Protocols and Applications,
May 2003.

Wendi Heinzelman, Joanna Kulik, and Hari Balakr-
ishnan. Adaptive protocols for information dissemi-
nation in wireless sensor networks. In Proc. the 5th
ACM/IEEE Mobicom Conference, August 1999.

Jason Hill, Robert Szewczyk, Alec Woo, Seth Hol-
lar, David E. Culler, and Kristofer S. J. Pister. Sys-
tem architecture directions for networked sensors. In

[15]

[16]

[17]

(18]

[19]

(20]

[21]

[22]

(23]

[24]

[25]

Proc. the 9th International Conference on Architec-
tural Support for Programming Languages and Op-
erating Systems, pages 93—-104, Boston, MA, USA,
November 2000.

Chalermek Intanagonwiwat, Ramesh Govindan, and
Deborah Estrin. Directed diffusion: A scalable and
robust communication paradigm for sensor networks.
In Proc. International Conference on Mobile Comput-
ing and Networking, August 2000.

S. P. Jones and J. Hughes. Report on the programming
language haskell 98., 1999.

Attila Kondacs. Biologically-inspired self-assembly
of 2d shapes, using global-to-local compilation. In In-
ternational Joint Conference on Artificial Intelligence

(IJCAI), 2003.

Samuel Madden, Michael J. Franklin, Joseph M.
Hellerstein, and Wei Hong. TAG: A Tiny AGgrega-
tion Service for Ad-Hoc Sensor Networks. In Proc.
the 5th OSDI, December 2002.

Eugenio Moggi. Computational lambda-calculus and
monads. In Proceedings 4th Annual IEEE Symp. on
Logic in Computer Science, LICS’89, Pacific Grove,
CA, USA, 5-8 June 1989, pages 14-23. IEEE Com-
puter Society Press, Washington, DC, 1989.

Nagpal, Shrobe, and Bachrach. Organizing a global
coordinate system from local information on an ad
hoc sensor network. In 2nd International Workshop
on Information Processing in Sensor Networks (IPSN
’03), April 2003.

Radhika Nagpal. Programmable Self-Assembly: Con-
structing Global Shape using Biologically-inspired
Local Interactions and Origami Mathematics. PhD
thesis, MIT Department of Electrical Engineering and
Computer Science, June 2001.

Suman Nath, Yan Ke, Phillip B. Gibbons, Brad Karp,
and Srinivasan Seshan. IrisNet: An architecture for
enabling sensor-enriched Internet service. Techni-
cal Report IRP-TR-03-04, Intel Research Pittsburgh,
June 2003.

Simon L. Peyton Jones and André L. M. Santos.
A transformation-based optimiser for Haskell. vol-
ume 32, pages 3—47, 1998.

Pointon, Trinder, and Loidl. The design and imple-
mentation of Glasgow Distributed Haskell. Lecture
Notes in Computer Science, 2001.

S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin,
R. Govindan, and S. Shenker. GHT: A geographic
hash table for data-centric storage in sensornets. In
Proc. the First ACM International Workshop on Wire-
less Sensor Networks and Applications (WSNA), At-
lanta, Georgia, September 2002.

87

[26]

[27]

(28]

[29]

[30]

(31]

(32]

(33]

G. L. Steele and W. D. Hillis. Connection machine
lisp: Fine grained parallel symbolic programming.
pages 279-297.

Thorsten von Eicken, David E. Culler, Seth Copen
Goldstein, and Klaus Erik Schauser. Active mes-
sages: a mechanism for integrating communication
and computation. In Proc. the 19th Annual Interna-

tional Symposium on Computer Architecture, pages
256-266, May 1992.

P. Wadler and S. Blott. How to make ad-hoc polymor-
phism less ad-hoc. In Conference Record of the 16th
Annual ACM Symposium on Principles of Program-
ming Languages, pages 60—76. ACM, January 1989.

Matt Welsh. Exposing resource tradeoffs in region-
based communication abstractions for sensor net-
works. In Proc. the 2nd ACM Workshop on Hot Topics
in Networks (HotNets-11), November 2003.

Matt Welsh and Geoff Mainland. Programming sen-
sor networks using abstract regions. In Proc. the First
USENIX/ACM Symposium on Networked Systems De-
sign and Implementation (NSDI "04), March 2004.

Kamin Whitehouse, Cory Sharp, Eric Brewer, and
David Culler. Hood: A neighborhood abstraction for
sensor networks. In Proc. the International Confer-
ence on Mobile Systems, Applications, and Services
(MOBISYS ‘04), June 2004.

Yong Yao and J. E. Gehrke. The Cougar approach
to in-network query processing in sensor networks.
ACM Sigmod Record, 31(3), September 2002.

S. Zdonik, M. Stonebraker, M. Cherniack,
U. Cetintemel, M. Balazinska, and H. Balakr-
ishnan. The aurora and medusa projects. Bulletin of
the Technical Committee on Data Engineering, 2001.

1

StreamGlobe: Adaptive Query Processing and Optimization in
Streaming P2P Environments

Bernhard Stegmaier

Richard Kuntschke

Alfons Kemper

TU Minchen - Lehrstuhl Informatik 1l
BoltzmannstralRe 3
D-85748 Garching bei Mnchen
Germany
<first. name.lasname>@in.tum.de

Abstract

Recent research and development efforts show the
increasing importance of processing data streams,
not only in the context of sensor networks, but also
in information retrieval networks. With the ad-
vent of various mobile devices being able to par-
ticipate in ubiquitous (wireless) networks, a major
challenge is to develop data stream management
systems (DSMS) for information retrieval in such
networks. In this paper, we present the architec-
ture of ourStreamGlobeystem, which is focused
on meeting the challenges of efficiently querying
data streams in an ad-hoc network environment.
StreamGlobe is based on a federation of hetero-
geneous peers ranging from small, possibly mo-
bile devices to stationary servers. On this foun-
dation, self-organizing network optimization and
expressive in-network query processing capabili-
ties enable powerful information processing and
retrieval. Data streams in StreamGlobe are rep-
resented in XML and queried using XQuery. We
report on our ongoing implementation effort and
briefly show our research agenda.

Introduction

time, e.g., while moving across the area covered by the re-
spective network. Of course, this does not only hold for
the data delivering sensors, but also for the network nodes
that query the data streams within the ad-hoc network. In
the past, various approaches for finding information, i.e.,
documents, files, etc., in P2P networks have been stud-
ied, which has led to a number of topologies for P2P net-
works, one example being super-peer networks [28]. Deal-
ing with data streams, finding peers which deliver the re-
quired information is not the only task. Additionally, a
continuous data flow from data sources to consumers in
the network has to be established. An interesting challenge
arising in this highly dynamic environment is to develop
a distributed, self-organizing system for efficient routing
and in-network query processing. We pursue this goal with
our StreamGlobesystem which is based on its predeces-
sor ObjectGlobe [3]. StreamGlobe extends ObjectGlobe—
which is mainly focused on distributed query processing
for persistent data on the internet—by introducing query
processing capabilities on data streams in the network.
In our context, data streams are represented in XML and
queried (i.e., subscribed) using XQuery. While Stream-
Globe is not restricted to sensor networks, we use them as
a motivating example in the following.

Consider Figure 1 as an abstract example of a possible
application scenario for StreamGlobe. The depicted net-

In recent years, Peer-to-Peer (P2P) networks have gaina®ork contains four so-calleduper-peerSF, to SPs),

huge attention both in the media and the computer sciforming a stationary super-peer backbone network, and five
ence community. This is, on the one hand, due to thd0ssibly mobilethin-peers or peers for short,/ to F4)
stunning success of filesharing systems like, e.g., Napst@ionnected to the backbone. Peg¥s P, and P’; are a cell

and Gnutella. But on the other hand, it is also caused byphone, a laptop, and a PDA, respectively. These peers are
the degree of flexibility these networks provide. For ex-meant to register queries in the network and are therefore
ample, they can be used for setting up ad-hoc sensor nedt the receiving end of data streams. In contrast to that,
works where sensors can join and leave the network at anj€ersP’ and P, are sensors delivering their sensor data to

Copyright 2004, held by the author(s)

Proceedings of the First Workshop on Data Management for
Sensor Networks (DMSN 2004),

Toronto, Canada, August 30th, 2004.
http://db.cs.pitt.edu/dmsn04/

88

the network in the form of XML data streams. Two ex-
amples for applications of similar real-life networks would
be satellite communication and weather observation. In
the former case, orbiting satellites would be the moving
sensors—or rather collections of sensors—streaming their
data to various receiving stations on the ground for evalu-

ation. In the latter case, the sensors would be attached to SP,
weather balloons or observation planes, delivering data like =
temperature, humidity, etc. to enable weather forecasts for s SP
different regions.

To illustrate some of the difficulties of query process-
ing in such networks and to motivate our approach, we P,
now introduce a rather simplified real-world example in a
little more detail. Let us assume th&j in Figure 1 de-
livers a data stream produced by special sensor suits worn
by firefighters in action. The sensors continuously deliver
sensor readings containing the corresponding firefighter’s
identity (id), a timestampt{ime), and the GPS coordinates
of the sensory, y), as well as information about the fire-
fighter's vital statistics and the environmental conditions. Figure 1: Example Scenario

We have exemplarily chosen to monitor body temperature)) .
(bt), pulse ratedr), and oxygen saturationg), as well needed (i.e. not subscribed) anywhere else in the network,

as environmental temperatuge §, carbon dioxide concen- €ading to a smaller data stream and reducing network traf-
tration (CO32, and sulfur dioxide concentratios©2). For fic. _The resul_tmg_ stream, containing the C(_)mblned infor-
brevity, we use the following simplified DTD to describe Mation for satisfying the queries ¢} and P, is routed to

the data stream, although StreamGlobe actually employS - Note that up to now, data needed by béthand P

I

XML Schema. has been routed as one single stream through the netw_ork.
At SP,, however, the stream has to be split into the—in
<IELEMENT reading (id, time, X, vy, our case—non-disjoint parts for the two receiving peers.
bt, pr, os, This involves replicating the stream and again filtering the
_ et, CO2, SO2)> two new streams, resulting in two streams which constitute
<!IELEMENT id (#PCDATA)> the final results for the two queries. These are eventually

routed toFP, and P, via S P, andS Py, respectively.

The remaining elements have analogous DTD entries. Let Decisions such as where to execute which operators in
us now further assume th& and P, are devices used by the network and how to route the data streams are made

an emergency physician and the fire department, respeey the. StreamGlobe query optimizer. Additional difficu_l-
tively. The former should receive a notification on a cell fies arise by the fact that the network can change over time
phone whenever a firefighter’'s oxygen saturation reaches @y adding or deleting queries and data streams which re-
critical level. Therefore, the peer represented by the physidUires a strategy for continuous or periodic reoptimization.

cian’s cell phone registers the following XQuery. The distinguishing features (_)f StreamGIo_bt_a compared to
related systems are thereby its self-organizing network, in
for $m in stream("firefighters")/reading terms of continuous reactions to dynamic changes in reg-
where $m/os < 92 or $m/os > 98 istered data streams and queries, and its routing and op-
return timization approaches for query and network traffic opti-
<alert> _ mization in P2P networks.
gm;‘c‘g} {$m/time} {$m/x} {$mly} ~ The remainder of the paper is organized as follows. Sec-
<Jalert> tion 2 presents some related work. In Section 3 we give

an overview of the StreamGlobe system architecture. Sec-
The fire department wants to monitor the environmentation 4 deals with optimization and query processing in
conditions, e.g., to be able to issue a warning if the condiStreamGlobe. In Section 5 we present a brief report on
tions get critical for the firefighters on site or the residentsthe currentimplementation status of our StreamGlobe pro-

living nearby. Thus, it registers the following XQuery. totype. Finally, Section 6 concludes the paper and gives an
outlook on future work.
for $m in stream("firefighters")/reading

return 2 Related Work
<gas> . .
{$m/id} {$m/time} {$m/x} {$mly} In the following, we present an overview of some work re-
{$m/CO2} {$m/SO2} lated to our StreamGlobe system. In particular, we deal
<lgas> with work in the fields of data stream systems, query pro-

cessing, network architecture, and grid computing.
StreamGlobe will handle this scenario as follows. Suppos
we want to reduce network traffic. The dataZf will be
sent toS P; where it will be filtered, leaving only the ele- With StreamGlobe being a system that handles and pro-
mentsid , time , x, y, os, CO2andS0Oz2in the stream. The cesses data streams, it is worthwhile to take a look at other
elementsbt , pr andet can be removed as they are not recent approaches to building data stream systems.

%.1 Data Stream Systems

89

One important project is TelegraphCQ [7]. This is a sys-or documents, our system is able to perform expressive in-
tem that deals with continuously adaptive query processingetwork transformations of data streams. Therefore, it can
in a data stream environment. Cougar [30] tasks sensatynamically create appropriate data streams that best fit the
networks through declarative queries. Aurora [6] is a newqueries to be answered while at the same time reducing net-
DBMS for monitoring applications and constitutes a cen-work traffic.
tralized stream processor for dealing with streaming data. To achieve this goal, StreamGlobe uses clustering tech-
In [10] two complementary large-scale distributed streammiques to identify reusable existing data streams in the net-
processing systems, Aurora* and Medusa, are describedvork that fit newly registered queries. This approach has
Aurora* is a distributed version of Aurora with nodes be- similarly been applied in the world of persistent data where
longing to a common administrative domain. Medusaview materialization and view selection are used to im-
supports the federated operation of several Aurora nodgsrove the efficiency of query processing [21]. In [29], fur-
across administrative boundaries. STREAM [2] incorpo-ther algorithms for solving the view materialization prob-
rates its own declarative query language for continuousem are devised. Materialized view selection and mainte-
queries over data streams and relations. It handles streamance have also been examined using techniques of multi-
by converting them into relations using special windowingquery optimization [23].
operators and converting the query result back into a data As already mentioned, StreamGlobe uses XQuery to
stream if necessary. PIPES [20] is a recent public domaimuery XML data streams. In [11] an XQuery engine called
infrastructure for processing and exploring data streams. XQRL for processing XQueries on streaming XML data

All of these systems—more or less—focus on speciais introduced. In StreamGlobe, we use FluX [19], an-
aspects of (adaptive) query processing, load balancing, ather XQuery engine for efficiently processing XML data
quality-of-service management. The major contribution ofstreams. The query containment problem in the context of
StreamGlobe is that it does not only efficiently locate andXML queries, which is relevant for multi-query optimiza-
query data streams, but also employs in-network query prokion, has been addressed in [27].
cessing for adaptively optimizing data flow within the net- 23 Network Architecture
work. Thus, StreamGlobe pushes query processing from
subscribing clients towards data sources in the networkConsidering network architecture, a lot of work has been
The optimization is based on data stream clustering derivedone with respect to P2P, Publish&Subscribe, and ad-hoc
from clustering the queries in the system. NiagaraCQ [8networks.
intends to achieve a high level of scalability in continuous P-Grid [1] is a self-organizing, structured P2P system.
query processing by grouping continuous queries accordfhe notion of self-organization with respect to stream pro-
ing to similar structures. In StreamGlobe, we employ acessing and stream routing is also central to StreamGlobe.
similar multi-query optimization approach to reduce net-In [28] the concept of super-peer networks is introduced.
work traffic and to enable efficient query evaluation. These networks are meant to improve the scalability of
P2P networks by using a super-peer backbone network.
The super-peers usually are powerful servers. Less power-
With respect to query processing, works in the fields offul, possibly mobile thin-peers can register and deregister
multi-query optimization, as pointed out above, and conthemselves in the network via the super-peers.
tinuous queries are related to StreamGlobe. Multi-query HyperCuP [25] is an approach that uses hypercubes as
optimization (MQO) has been addressed in [26]. It pur-a network topology in P2P networks. It thereby achieves a
sues the goal of processing multiple queries all at once intogarithmic upper bound for the number of hops needed to
stead of one query at a time. The main optimization poget from one super-peer in the network to any other super-
tential lies in the fact that queries may share a considerablgeer. This topology is used in [5] to deal with distributed
amount of common—or at least similar—input data thatqueries and query optimization in P2P systems.
can be reused for more than one query. Obviously, Strearrb—
Globe in general has to deal with a set of queries simul-™
taneously, thus rendering multi-query optimization an ap-StreamGlobe builds on and extends the Open Grid Services
plicable and suitable optimization approach. Also, queriesArchitecture (OGSA) and its reference implementation, the
in StreamGlobe are usually continuous queries over dat&lobus Toolkit [14] by adding data stream processing capa-
streams. Efficient processing of such queries has been ekilities to the grid computing domain. A related approach,
amined in [22]. Query processing in sensor networks haslso building on Globus, is described in [9]. However, this
been explicitly addressed in [31]. alternative approach concentrates mainly on data stream

Multicast in IP, ad-hoc and sensor networks, describedinalysis and quality-of-service aspects in data stream de-
for example in [15], routes data towards receiving ends idivery whereas we primarily focus on self-organization, dis-
a way that reduces network traffic by transmitting the samdributed in-network query processing and optimization.
message or document only once for all recipients instead of Another system building on the Open Grid Services Ar-
multiple transmissions, one for each recipient. It is impor-chitecture is OGSA-DAI (Open Grid Services Architecture
tant to point out that our work differs from these approachedata Access and Integration) [24]. As the name suggests,
in a major way. Instead of only reusing existing messageshis project is concerned with constructing a middleware to

2.2 Query Processing

4 Grid Computing

90

enable the access and integration of data from distributed XQuery

- . : L Subscriptions Data Sources
data sources via the grid. It also contains a distributed
query processor called OGSA-DQP. In contrast to Stream-
Globe, OGSA-DAI has no special focus on data streams. 5

3 StreamGlobe Architecture Overview SRR OEEEETELEELEEEE:
' Data Stream Processing

StreamGlobe

=

Q
StreamGlobe constitutes a federation of servers (i.e., peers) oI s &
which carry out query processing tasks according to their . 1 XSAG: | FluX "c% §°
capabilities. The basic architecture of a peer is depicted P2P Overlay Network gg
in Figure 2. The various layers of this architecture will be
sketched in the following. Dashed lines mark layers whose OGSA (Globus Toolkit)
presence depends on the capabilities of the respective peer.
3.1 Open Grid Services Architecture Figure 2: Architecture Overview

The StreamGlobe architecture is based on grid standards.
Grid computing [13] and the associated Open Grid Serneighbors. A peer only interacts with its neighbors, i.e., no
vices Architecture (OGSA) [12] have gained considerabledirect communication takes place between two peers not
attention recently. Grid computing denotes a distributedoeing neighbors. If data has to be transferred between two
computing infrastructure where computers can exchanggndom peers, eute between these two peers has to be
data and perform large-scale resource sharing over the grig@stablished such that two successive peers on this route are
To achieve this, an architecture for integrating heterogeneighbors and the starting point and the end point of the
neous dynamic services while guaranteeing certain qualityroute are the source peer and the destination peer, respec-
of-service requirements is needed. For this purpose, thévely. For the implementation of this overlay network, pre-
Open Grid Services Architecture has been developed. ~ vious work on P2P network topologies can be employed,
Despite the growing importance of the grid standards€.9-, @ structured approach based on Cayley graphs as used
data stream processing in the grid computing context hai the HyperCuP [25] topology. Since a major goal is build-
hardly been investigated so far. We have decided to iming a network with highly heterogeneous peers with respect
plement our StreamGlobe prototype as an extension of thé® computing power—ranging from small, mobile devices
Globus Toolkit for grid computing [14]. Globus is a refer- to stationary workstations or servers—, we have to classify
ence implementation of the Open Grid Services ArchitecPeers according to their capabiliti€ghin-peersare devices
ture. Our goal is to use existing Globus techniques for ouwith low computational power, like sensor devices, PDAs,
purposes where possible and to integrate the StreamGlots€ll phones, etc., which are not able to carry out complex
system and its functionality into the toolkit as an extensionquery processing tasks. In contrastper-peersre station-
of Globus for data stream processing. ary workstations or servers providing enough resources for
The main aspects of Globus that will be used in StreameXtensive query processing. These super-peers establish a
Globe are communication mechanisms aatvice datael- backbone taking over query processing tasks which cannot
ements Service data elements can be associated with anfye performed by other peers. Thus, they constitute a super-
service in the grid. They are essentially XML documentsPeer backbone network similar to that in [28].
satisfying a given XML Schema and_ describing properties; 3 client Interface
of the service they are associated with. In our context, ser-
vice data elements will be used for describing data streamdser interaction in StreamGlobe is depicted at the top layer

and properties like bandwith of network connections, pro-of Figure 2. StreamGlobe enables clients to spesif-
cessing capabilities of peers, etc. scription rulesfor information processing and retrieval us-

ing the XQuery language. Subscription rules are registered
3.2 Network Topology at certain peers, i.e., normally at the devices users are work-
In the OGSA framework, direct communication betweening with, e.g., their laptops, PDAs, cell phones, etc. In our
all participating grid services is allowed. However, this be-context, subscriptions are transforming queries and not just
havior is not the normal way of communication in networks queries for retrieving matching files or documents. In fact,
including mobile devices. It might not even be desirableStreamGlobe enables expressive transformations of data
in a scenario that tries to reduce network traffic as in ourstreams according to registered subscription rules. Thus,
case. For instance, mobile sensors will normally commuit allows clients to flexibly tailor data streams to their indi-
nicate via some kind of access point they are connected tidual requirements.
Hence, in StreamGlobe we establish a logical P2P overlay Similarly, data sources also register the provided data
network constituting a federation of heterogeneous peerstreams at a certain peer within the StreamGlobe system.
Developing a research platform, we do not restrict our-Data streams can be registered in two ways. A data source
selves to employing a special P2P network topology formay register its data stream as an individual stream, which
StreamGlobe at the moment. The P2P network consisthen is published using a unique identifier. Another possi-
of a set ofpeers Each peer has a set of other peers adility is registering a data stream as part ofigual data

91

stream which again is accessible using a unique identi- £

fier and multiplexes all the data of the participating data%)<

sources into one single stream. This technique is used i
the introductory example to merge the sensor data of aIE
firefighters. The schema of the data streams is specified us-
ing XML Schema. Streams are fed into StreamGlobe using
wrappers which are running on corresponding peers and
transform the data into a suitable format, e.g., by convert-
ing raw sensor data to XML.

3.4 Peer Architecture

A more detailed view of the peer architecture is depicted
in Figure 3. It basically reflects the structure sitting on top
of the P2P network layer of Figure 2. The various com-
ponents are implemented as cooperating grid services in
the OGSA framework. The individual peers exchange con-
trol information, e.g., registration of new neighbors, sub-
scriptions, etc., via a top-level interface service, which dis-
patches the messages to corresponding subsidiary Stream-
Globe services, e.g., the optimization or the query engine
service. The communication of these services is conducted
via the RPC mechanisms of the Globus Toolkit. All ser-
vices marked by solid rectangles are mandatory for every e
peer. Dashed boxes mark services that vary between dif-
ferent peers according to their functionality, as mentioned
earlier. For example, thin-peers do not incorporate a com-
plete optimization and query execution unit, but only pro-
vide basic functionality. A cell phone might for instance
only provide functionality for receiving and displaying data
streams and a sensor device might only be able to transmit
its measurement data.

The metadata management component, which will be
discussed further in the next section, interacts with each

4
’J_‘ — 5
StreamGlobe = = =
~| RPC Interface é 3 -2
A * 15) 4 =
s A 2 8
L Optimizer ‘= &
,,,,,,,, 7 0 =
,,,,,,,,,,,,,,,, s
| : i <
' Query Engine — 2
,,,,,,,,,,,,, } g
=

to neighbors

Figure 3: Peer Architecture

Subscriptions: All subscription rules and registered
data sources are recorded. For each registered data
source, the schema of the data stream is stored.
Schemas of data streams are specified using the XML
Schema language.

Optimization: The metadata management main-
tains information needed for optimizing the network.
Among others, it maintains properties of network con-
nections, like bandwith and current amount of net-
work traffic. It also maintains the computational capa-
bilities of the peers and statistics of the data streams,
i.e., size and cardinality of the elements of a data
stream. The statistics can be provided either by the
data source itself or by computing them online as
the corresponding wrapper feeds the data stream into
StreamGlobe.

of the components and provides information needed for
network management, optimization, and query execution. All metadata is stored locally at a peer in the form of
Peers exchange XML data streams representing user da@lobus service data elements. For being able to optimize
over their data ports. The XML data streams are initiallythe network, special speaker-peers, which will be intro-
parsed by the wrappers and represented as a sequencedofced in Section 3.6, will need to have more global infor-
SAX events. Special events are interspersed within thesmation about a special set of peers (a certain subnet). In this
streams which are used for internal purposes. For examplease, those special peers maintain additional information,
synchronization marks are generated whenever the systeelg., the graph of the network topology of the respective set
restructures the data flow to synchronize all affected peersf peers, or are able to request the desired information from
for the change in query execution. Since the Globus Toolkithe corresponding peers, e.g., statistics of a certain data
currently does not provide suitable techniques for transmitstream. To maintain a consistent state, peers have to notify
ting data streams, we use our own protocol based on TCEhe speaker-peer of changes, e.g., if a peer joins or leaves
connections for this purpose. the network, new subscriptions or data streams are regis-
tered or existing subscriptions or data streams are deregis-
tered, etc. Therefore, MDVs of peers register themselves
As Figures 2 and 3 suggest, metadata is needed in all layees notification sinks or notification sources at the MDV of
of the StreamGlobe architecture. The metadata manageheir speaker-peer using the notification mechanism of the
ment (MDV) is based on the distributed metadata manageSlobus Toolkit.
ment of ObjectGlobe [16] and forms a backbone that peer
exchange metadata with. In particular, the metadata mar-
agement component records the following information: In Section 1, we have briefly introduced our approach of
optimizing the data flow in the network using in-network
e Network: The metadata management records theguery processing. In the following, we give an overview
neighborhood relationships between peers needed f@f the optimization and evaluation strategy we employ in
establishing the P2P overlay network. StreamGlobe.

3.5 Metadata Management

.6 Optimization and Evaluation Strategy

92

Optimization in a distributed architecture implies sev- using special filtering techniques such as XSAGs [18].
eral challenges. In order to perform optimization, someMore details will be presented in Section 4.
metadata about the network—as described in the previous Of course, optimization is a continuous process which
section—has to be available. In a distributed system, thereeoptimizes the system on-the-fly as peers come and go,
are basically three approaches for performing optimizatiordata sources and subscription rules are registered and
using such metadata: deregistered, and data streams change over time.

1. A single optimizing component has global knowl- 4 Optimization and Query Processing
edge of all metadata and performs optimization with a,

| In this section, we describe some of our approaches to opti-
global view of the network. PP P

mizing network traffic and performing efficient query pro-

2. Every peer has only local knowledge of its own meta-cessing in StreamGlobe. This substantiates the strategy in-
data (including that its neighbors can be asked for theitroduced in the previous section.
metadata) and tries to optimize the network by making4 1 Optimization
locally optimal decisions. ' P

3. A hybrid approach, in which special peers have globalI'St: We address the key ideas for achieving the three op-
knowledge of (small) subnets which are individually timization goals stated at the end of Section 3.6. The

optimized by the responsible peer. f!rst goal is.achieved by appropriately. pushing subscrip-
tion evaluation into the network. This is done by execut-

Since we assume a large, distributed environment, a cenrg the subscription as a whole or in part at one or more
tralized optimization component as in the first method isappropriate peers on a route from the data sources to the
infeasible. The second approach fits quite nicely into gpeer where the subscription was registered. An appropriate
distributed P2P network, but it seems unlikely that it will peer is a peer that is able to process the subscription, i.e.,
deliver acceptable results. Hence, we focus on the hybrithas sufficient computing power and is selected by the query
approach: A selected super-peer, calipdaker-peeiisre- optimizer, taking into account optimization goals such as,
sponsible for optimizing a certain subnet of the network.e.g., reducing network traffic. In order to support power-
Of course, this subnet may include other super-peers thdtl subscription rules, the concept ofobile codeis em-
will not actively participate in optimizing this part of the ployed. Besides peers providing a basic set of functionality,
network. With peers joining and leaving subnets, a speakemsers are enabled to include user-defined code in subscrip-
peer might decide that a subnet is getting too big (or todion rules, e.g., predicates, aggregation operators, etc. This
small). In this case, the subnet is split into two new sub-user-defined code is subsequently instantiated at the peer
nets and for each new subnet a responsible speaker-peerigcessing the corresponding part of the subscription.
elected among the super-peers (or analogously a subnet is The second goal is accomplished by using two tech-
merged with a neighboring subnet if it is getting too small). niques complementing each other. The first technique is
Additionally, by varying the maximum size of a subnet op- filtering of data streams. Filtering is achieved by using
timized by a speaker-peer, the approaches (1) and (2) cagither projection (called structural filtering) or selection
be simulated, which enables an evaluation of all three apfcalled content-based filtering) or both on the elements of a
proaches in terms of optimization quality. data stream—as described in the example scenario in Sec-

Basically, optimization in StreamGlobe determines thetion 1—and is performed bfjitering operators These fil-
peers at which (at least parts of) the subscriptions are exering operators are executed at peers on the route of the
ecuted and decides how to route the data streams in th#ata stream as close to the source of the stream as possi-
network. Optimization has three major goals: ble. Thus, the amount of data that has to be transmitted

)) o through the network is reduced. The second technique is

1. Enable users to register arbitrary subscriptions at anyjaia stream clustering This term denotes the combina-
(suitable) device regardiess of its processing capabilition of several similar or equal data streams in the network
ties. to form one single stream that serves multiple recipients.
2. Achieve a good distribution of data streams in the net-Data stream clustering in StreamGlobe works as follows.
work without congesting it with redundant transmis- During the registration of a new query, the system parses

sions. the query, identifies its properties and stores them in a suit-
3. Optimize the evaluation of a large number of subscrip-able data structure. In our case, this will be a Globus ser-
tion rules by means of multi-query optimization. vice data element. The properties of a query include the

data streams needed to answer the query (content aspect),

The goals (1) and (3) are accomplished by pushinghe operations, e.g., projections, selections, joins, etc., used
guery execution into the network. Subscription rules, i.e.to transform these input streams (structural aspect) and the
XQueries, are evaluated using the FluX query engine [19tonditions needed for these operations, e.g., projection at-
that was developed in cooperation with our group. The sectributes, selection and join predicates, etc. All transformed

ond goal is achieved by placirfdtering operatorson the data streams in the system, that where generated by a query,
routes of data streams. These filtering operators are also eare equally represented by their respective properties. Ini-

ecuted by FluX. They could alternatively be implementedtial data streams, registered at a super-peer by some data

93

Forwarding
Projection
Projection and Selection

FluX Subscription Evaluation

Figure 4: Query Evaluation Plan for the Example Scenario

source, are represented by a unique id. The reason faran be reused to compute more common aggregates similar
choosing this properties approach is to get one level of abto the roll up and the cube operations in data warehousing.
straction higher compared to the schema representation of Figure 4 shows the query evaluation strategy using the
data streams, thus facilitating the comparison of streamexample scenario from Section 1. The symbols at the net-
and the search for reusable data streams in the network. work connections represent groups of elements. The dia-
During the actual data stream clustering stage, thenond represents the elemenmts, pr, andet, the circle
speaker-peer of the affected subnet looks up all relerepresentss, the triangle represen@2andS0O2 and the
vant metadata (i.e. service data elements) of existing dateectangle represenis , time , x, andy. Projections cause
streams in its subnet and compares their properties to thosgymbols to disappear as their corresponding elements are
of the newly registered query. In a first simple greedy ap-iltered out of the stream. Selections remove certain in-
proach, the speaker-peer selects those data streams as inptances of elements that do not fulfill the selection predi-
streams for the new query that contain the necessary infocates which is depicted as dotted symbols. An exclamation
mation for answering the query, contain the least amounmark denotes a change in data representation, e.g., the in-
of unnecessary information, and have to be routed througtroduction of thealert element atS P, in the result for the
the minimum number of peers to get to the recipient. Ofquery atP,. In our example, the introduction of tlgas
course, the decision where to execute certain query opelement in the answer for the query /&t is supposed to
erators, e.g., joins, in the network has also to be maddake place at?, itself and therefore does not show up in
This, along with more sophisticated methods for searchthe network. The decision whether to perform the FluX
ing reusable streams and routing them to recipients, is theubscription evaluation &, SP;, or SP, is made by the
subject of future research and will be based on an approsptimizer and is based on factors like computational power
priate cost model. Furthermore, we also intend to investiand current load factor of peers.
gate strategies for reorganizing the network in order to keep The sample query evaluation plan in Figure 4 depicts
the system globally effective even if local evolutions due tothe situation after the data stream and the two queries of
network and/or subscription changes lead to a deterioratio8ection 1 have been registered in the network of Figure 1.
of global system performance. Furthermore, the query optimizer has already optimized the
Data stream clustering as described above also corgueries and integrated them into the system. First, the el-
tributes to fulfilling the third goal of effective multi-query ementsbt , pr, andet are removed from the stream by
optimization. In every subnet, the speaker-peer analyzea projection operator. To reduce network traffic, the opti-
the registered subscriptions and identifies common subexwizer chooses to install the mobile code of the appropriate
pressions. These common subexpressions are evaluatptbjection operator as close to the data source as possible.
once in this subnet by executing a subscription rule corSince the data sourcg, is a simple sensor without query
responding to a common subexpression at a suitable pegrocessing capabilities and is therefore not able to perform
Rather than individually evaluating this subexpression inthe projection by itself, the projection operator has to be
each of the original subscriptions, the subscriptions arénstalled and executed in the network at super-peEs.
rewritten to utilize the newly generated and specialized datd he resulting data stream is routed only once (as one data
stream stemming from the common subexpression. Bestream cluster) t& P, although it is needed twice in the
sides reducing the workload of the affected peers, networkystem. Therefore, the optimizer decides to replicate the
traffic might be further reduced. For instance, a commordata stream a$ P, to obtain two identical versions of the
task will be aggregating sensor data. Instead of transmitstream. The decision of how to route and where to replicate
ting the whole dataset to every peer performing the saméhe stream is simply made by pursuing the goal of mini-
aggregation, it will be executed near the data source anthizing the number of hops each stream has to go from its
only the aggregated results, which will constitute a smallersource to its recipient in the network. Of course, more so-
data volume, will be delivered to the respective peers. Furphisticated optimization goals and routing strategies can be
thermore, existing aggregated data streams in the systeemployed here. We will examine this in future work. At

94

S P, the stream with destinatioR,, which is the fire de- then split the stream & P, routing Ps’s part directly to
partment, is again reduced by a projection operator removFs. The remaining stream for pe&s could then be routed
ing element 0s. The remaining stream is forwarded@®3o to SP;, where the join processing could take place. But if
via the shortest path, in this case o¥&P;. The rest of the the join is known to produce a relatively small result com-
guery evaluation, consisting of the introduction of thees pared to the input streams, it would probably be better in
element, is performed &, itself. The stream with destina- terms of network traffic to process the join alreadysdt,
tion P, is also filtered atS P, this time using a projection and then route the result 18, via SP;. This is an exam-
and a selection as demanded by the respective query. Alsple of a more difficult decision that has to be made by the
the newalert element in the query result is already intro- StreamGlobe query optimizer.
duced e_ttSPg_. The resulting stream _is t_hen forwarded to 4 5 Query Processing
Py, again using the shortest path which is $i&;. In gen- .) .
eral, the shortest path is not unique and depends on the uk€t us now outline some basic concepts used for in-network
derlying network topology. In the case of multiple shortestduery processing. Query execution in StreamGlobe focuses
paths, one appropriate path among them is chosen. on processing streaming data and therefore empags-
Continuing our example from Section 1, we now take basgdevaluatmn strategies—in contrast to traditional query
a look at a more complicated situation. Let us assumé&ngines where data is normally “pulled” from subordinate
that peerP; represents a collection of weather sensorsoPerators, e.g., by using the iterator model.
delivering a virtual data stream registered at super-peer First, we will explain how filtering operators are exe-
SPy. Each sensor reading contains the identifier of thecuted. As outlined before, filtering operators perform a
corresponding sensoid(), a timestampt{me), the GPS Projection of a data stream on the requwed parts of the
coordinates of the sensox,(y), and measurements for €ntire schema and a selection according to predicates of
wind (wind), temperaturetémp), humidity (um), and air @ subscription rule. Smce the baS|c_ scher_na of _the origi-
pressure dp). Sensor readings for wind consist of wind Nal data stream remains the sér(imeSIdes discarding un-
strength §trength) and wind direction direction). hecessary information), projection can be done on-the-fly

DTD. forming selections is somewhat more difficult, because in
the worst case data cannot be propagated before the predi-

<IELEMENT reading (id, time, X, VY, cate is evaluated, which renders buffering inevitable. Thus,

wind, temp, hum, ap)> we restrict filtering operators to only employ predicates re-

<IELEMENT id (#PCDATA)> ferring to a single data object of the data stream. There-

with, at most the current data object has to be buffered for
being able to propagate the filtered data stream. Hence, we
can implement these operators scalably and efficiently us-
ing automata-based techniques as described in [18] or the
new FluX query engine which was developed in coopera-

We now further assume that the fire departmenateg- tion with our group and will be sketched in the remainder
isters a new query a§ P, in addition to the one already ©Of this section. o

registered in Section 1. This new query requires the data In order to evaluate subscription rules on data
from P, to be joined with data fronP,. The fire depart- Streams, we employ novel optimization techniques, called
ment is interested in finding out how strong and from whichFluX [19], for minimizing memory buffer consumption
direction the wind blew at the point in time and at the placeduring the execution of XQueries on streaming data. FluX
a gas concentration was measured. Therefore, it joins th§ an intermediate language extending the XQuery syntax
data of the gas sensors frof with that of the weather by event-based processing instructions which enables con-
sensors fromP,. The join tries to find for each measured Scious handling of main memory buffers. The key idea of
gas concentration a sensor reading for wind strength ante FIuX query language is the noyebcess-strearstate-
direction that was close to the gas measurement in terms &fent { ps $z: ¢ } for event-based (streaming) pro-
both, the point in time the respective sensor readings whergessing of a substream assigned to a variéible It pro-
created and the geographical location at which the correcesses the data stream by means of a lisiveht-handlers
sponding sensors where located. This can be achieved Ky Each event handler is of one of the two forms

using the bestmatch join operator [17].

One possibility to compute the join would be to filter
Py’s data stream accordingly &P, and route the result- @ on-first past(S) retun «
ing stream directly te5 P;, where the join processing takes
place and the result gets deliveredita This would prob-
ably be the best solution if no data from pd@ris needed
anywhere else in the network. However, whnalso re-
guests data fron’;, it might be better to route a data stream
with the data for bott, and P; from S P, to S P, first and 1in particular, the order of elements is preserved.

<IELEMENT wind (strength, direction)>
<IELEMENT strength (#PCDATA)>
<I[ELEMENT direction (#PCDATA)>

e on a as $y return «

with « being an arbitrary subexpressianbeing the la-
bel of a tag, ands' being a set of labels of XML tags. An
“on «" handler is executed if an opening tag labeled
encountered in the stream $f. The subsequent elements

95

of the data stream are labeled as a substrégand used 5 Implementation Status

to evaluate the subexpressian(which may in turn be a As of the writing of this paper, we have implemented

prosess_—strear;n stateme_nt or tradmo_nal XQuery). The la the basic infrastructure of StreamGlobe, building on the
ter “on-first handler is executed if no more elements

labeleds with s ¢ S will be encountered in the stream be- Globus Toolkit, and we are able to establish an overlay P2P

ing currently processed and triggers the evaluation.dh network between peers. We have also completed a proto-

general, an arbitrary query cannot be evaluated purely o type implementation of the FluX streaming query engine

the-fly without buffering, e.g., if the sequence of elementg‘or evaluating subscription rules. This query engine is cur-

in the query is different from that in the input data stream.rently being integrated into the StreamGlobe system. At

' : the moment, the optimization techniques of Section 4 are
Hence, a FluX query consists of a purely streaming part us-,

ing our novel syntax and of embedded traditional XQuery,deve'c’ped and implemented. A first prototype system of

e . StreamGlobe including all the basic features presented in
which is evaluated on previously buffered parts of the datelhiS paper will be operational by the end of the year
stream. The main challenge is to rewrite an XQuery into a '

corresponding FluX query which evaluates th?s queryusingg Conclusion and Future Work

as many of the event-based methods as possible and thereby i)

minimizing buffer usage. In [19], an algorithm which uti- In'this paper, we have described the ongoing development

lizes order constraints on the elements imposed by the DTH our StreamGlobe system. StreamGlobe is focused on

of the data stream is presented to achieve this goal. meeting the challenges that arise in processing data streams
Rewriting XQuery into FIuX is based on generating in an ad-hoc P2P network scenario. It differs from other

a safe FluX query. That is, an XQuery subexpression data stream systems in not only efficiently locating and

of a FluX query operating on buffered data must onlydU€'ying data streams, but also optimizing the data flow
in the network using expressive in-network query process-

reference—e.g., by path expressions or other variables— techni This is basicall hieved b hi
parts of the data stream which will not be encountered an)'/]g echniques. This IS basically achieved by pushing op-
ators for query processing into the network. Continuous

more after this expression has been evaluated. Thus, g &10rs Tor ¢) A

query engine can easily populate buffers with the neede optimization leads to an adaptive and self-opt!m|2|ng sys-
parts of the data stream and provide these buffers for th m Wh'(.:h enables USers to carry out power_ful information
execution of the buffer-based parts of the FIuX query. The’r0C€SSing and retrieval. StreamGlobe builds on and ex-

d f | : ina the qi DTI:SendS the_ Globu_s Toolkit, a reference implemenpation of the
\?v%?ﬁg bgLig\rzri(:teonuirn?ga'l:rrur;(eazcglwli\r/l/(;usmg egiven Open Grid Services Architecture (OGSA) for grid comput-

ing, and serves as a research platform for our future work.
Future research will cover further topics in query pro-
cessing on streaming data, optimization methods for dis-
tributed data stream processing, load balancing and quality-
of-service aspects [4] in a distributed data stream manage-

{ps stream(“firefighters™)
on reading as $m return
{ps $m:
on-first past() return <gas>;

on id as $id return {$id): ment system. In detail, this will include augmenting the
on x as $x return {$x}; FluX query engine to support windowing operators like ag-
on y as $y return {$y}; gregations and joins. It will also comprise improving the
on CO2 as $CO2 return {$CO2}; optimization component by taking into account reorgani-
on SO2 as $S02 return {$S02}; sation issues to keep the system effective as well as syn-
on-first past(*) return </gas>; } } chronization aspects, e.g. for distributed join processing on

various streaming inputs. Furthermore, we will continue to
This FluX query is purely event-based (outputting the val-examine routing approaches for our hierarchical network
ues of the substreams in then” handlers can be done on- organisation and conduct advanced research concerning the
the-fly) and hence needs no buffering at albn-first combination of multiple query processing operators, predi-
past(*)” is a shortcut for the se$ containing all possi- cate comparisons in the context of query clustering, and the
ble labels in this substream and is therefore executed afinimization of memory requirements during query eval-
ter all other elements have been written. More detailglation. Eventually, support for content-based query sub-
on FluX together with an experimental evaluation can bescriptions will be added to StreamGlobe.

found in [19]. Acknowledgments. Franz Hauslschmid and Angelika

Summarizing, FluX enables query evaluation on datégejser provided helpful comments on earlier revisions of
streams with very low memory consumption and thus proyhis paper. Christoph Koch, Stefanie Scherzinger, and

vides for a scalable evaluation of subscription rules. HOWNjicole Schweikardt realized together with one of the au-
ever, some subscription rules might possibly need Unsqrs the Flux [19] query engine.

bounded buffering, e.g., subscriptions containing joins or

special aggregates. In such cases, unbounded bUﬁeriqﬂeferenceS

is precluded by requiring users to specify window con-

straints. These allow for a scalable execution on infinite [1] K. Aberer, P. Cudg-Mauroux, A. Datta, Z. Despotovic,
data streams. M. Hauswirth, M. Punceva, and R. Schmidt. P-Grid: a self-

96

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]
[15]

organizing structured P2P systehCM SIGMOD Record
32(3):29-33, Sept. 2003.

A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, R. Mot-
wani, |. Nishizawa, U. Srivastava, D. Thomas, R. Varma,

[16] M. Keidl, A. Kreutz, A. Kemper, and D. Kossmann.

and J. Widom. STREAM: The Stanford Stream Data Man- [17]

ager. IEEE Data Engineering Bulletin26(1):19-26, Mar.
2003.

R. Braumandl, M. Keidl, A. Kemper, D. Kossmann, [18]

A. Kreutz, S. Seltzsam, and K. Stocker. ObjectGlobe: Ubig-
uitous query processing on the Interriehe VLDB Journal
10(1):48-71, Aug. 2001.

R. Braumandl, A. Kemper, and D. Kossmann. Quality of [19]

Service in an Information EconomyACM Transactions on
Internet Technology3(4):291-333, Nov. 2003.

I. Brunkhorst, H. Dhraief, A. Kemper, W. Nejdl, and
C. Wiesner. Distributed Queries and Query Optimization
in Schema-Based P2P-Systems.Phoc. of the Intl. Work-
shop On Databases, Information Systems and Peer-to-Peer
Computing Berlin, Germany, Sept. 2003.

D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee,

[20]

G. Seidman, M. Stonebraker, N. Tatbul, and S. B. Zdonik.[21]

Monitoring Streams - A New Class of Data Management
Applications. InProc. of the Intl. Conf. on Very Large Data
Basespages 215-226, Hong Kong, China, Aug. 2002.

S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.
Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy,
S. Madden, V. Raman, F. Reiss, and M. A. Shah. Tele-
graphCQ: Continuous Dataflow Processing for an Uncertain
World. InProc. of the Conf. on Innovative Data Systems Re-
search Asilomar, CA, USA, Jan. 2003. [
J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A
Scalable Continuous Query System for Internet Databases.
In Proc. of the ACM SIGMOD Intl. Conf. on Management of
Data, pages 379-390, Dallas, TX, USA, May 2000.

[22]

23]

L. Chen, K. Reddy, and G. Agrawal. GATES: A Grid-Based [24]

Middleware for Processing Distributed Data Streams. In
Proc. of the IEEE Intl. Symp. on High-Performance Dis-
tributed Computing Honolulu, HI, USA, June 2004. To
appear.

M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney,
U. Cetintemel, Y. Xing, and S. B. Zdonik. Scalable Dis-
tributed Stream Processing. Pmoc. of the Conf. on Innova-
tive Data Systems Reseayétsilomar, CA, USA, Jan. 2003.
D. Florescu, C. Hillery, D. Kossmann, P. Lucas, F. Ric-[
cardi, T. Westmann, M. J. Carey, A. Sundararajan, and
G. Agrawal. The BEA/XQRL Streaming XQuery Proces-
sor. InProc. of the Intl. Conf. on Very Large Data Bases
pages 997-1008, Berlin, Germany, Sept. 2003.

I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The
Physiology of the Grid: An Open Grid Services Archi-

[25]

[26]

27]

(28]

tecture for Distributed Systems Integration, June 2002.[29]

http://www.globus.org/research/papers/ogsa.pdf.

I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the
Grid: Enabling Scalable Virtual OrganizationsThe Intl.

Journal of Supercomputer Applications and High Perfor- [30]

mance Computingl5(3):200-222, Aug. 2001.
The Globus Alliance. http://www.globus.org.

Q. Huang, C. Lu, and G.-C. Roman. Spatiotemporal Mul- [31]

ticast in Sensor Networks. IRroc. of the Intl. Conf. on
Embedded Networked Sensor Systgages 205-217, Los
Angeles, CA, USA, Nov. 2003.

97

A
Publish & Subscribe Architecture for Distributed Metadata
Management. IiProc. of the IEEE Intl. Conf. on Data En-
gineering pages 309-320, San &<A, USA, Feb. 2002.

A. Kemper and B. Stegmaier. Evaluating Bestmatch-Joins
on Streaming Data. Technical Report MIP-0204, Univétsit
Passau, 2002.

C. Koch and S. Scherzinger. Attribute Grammars for Scal-
able Query Processing on XML StreamsPloc. of the Intl.
Workshop on Database Programming Languagpages
233-256, Potsdam, Germany, Sept. 2003.

C. Koch, S. Scherzinger, N. Schweikardt, and B. Stegmaier.
Schema-based Scheduling of Event Processors and Buffer
Minimization on Structured Data Streams. Pmnoc. of the

Intl. Conf. on Very Large Data BasgJoronto, Canada,
Aug. 2004. To appear.

J. Kramer and B. Seeger. PIPES - A Public Infrastructure
for Processing and Exploring Streams.Froc. of the ACM
SIGMOD Intl. Conf. on Management of Datpages 925—
926, Paris, France, June 2004.

A. Y. Levy, A. O. Mendelzon, Y. Sagiv, and D. Srivas-
tava. Answering Queries Using Views. Rroc. of the
ACM SIGACT-SIGMOD-SIGART Symp. on Principles of
Database Systempages 95-104, San &<A, USA, May
1995.

S. Madden, M. A. Shah, J. M. Hellerstein, and V. Raman.
Continuously Adaptive Continuous Queries over Streams.
In Proc. of the ACM SIGMOD Intl. Conf. on Management

of Data, pages 49-60, Madison, WI, USA, June 2002.

H. Mistry, P. Roy, S. Sudarshan, and K. Ramamritham. Ma-
terialized View Selection and Maintenance Using Multi-
Query Optimization. InProc. of the ACM SIGMOD Intl.
Conf. on Management of Datpages 307—-318, Santa Bar-
bara, CA, USA, May 2001.

OGSA-DAI. http://www.ogsadai.org.uk.

M. T. Schlosser, M. Sintek, S. Decker, and W. Nejdl. Hy-
perCuP — Hypercubes, Ontologies, and Efficient Search
on Peer-to-Peer Networks. Proc. of the Intl. Workshop
on Agents and Peer-to-Peer Computingages 112-124,
Bologna, Italy, July 2002.

T. K. Sellis. Multiple-Query OptimizationACM Trans. on
Database System$3(1):23-52, Mar. 1988.

I. Tatarinov and A. Halevy. Efficient Query Reformulation
in Peer Data Management Systems. Pioc. of the ACM
SIGMOD Intl. Conf. on Management of Datpages 539—
550, Paris, France, June 2004.

B. Yang and H. Garcia-Molina. Designing a Super-Peer Net-
work. InProc. of the IEEE Intl. Conf. on Data Engineering
pages 49-60, Bangalore, India, Mar. 2003.

Y. Yang, K. Karlapalem, and Q. Li. Algorithms for Ma-
terialized View Design in Data Warehousing Environment.
In Proc. of the Intl. Conf. on Very Large Data Baseages
136-145, Athens, Greece, Aug. 1997.

Y. Yao and J. Gehrke. The Cougar Approach to In-Network
Query Processing in Sensor NetworksACM SIGMOD
Record 31(3):9-18, Sept. 2002.

Y. Yao and J. Gehrke. Query Processing for Sensor Net-
works. InProc. of the Conf. on Innovative Data Systems
ResearchAsilomar, CA, USA, Jan. 2003.

Active Rules for Sensor Databases

M. Zoumboulakis, G. Roussos and A. Poulovassilis

Birkbeck University of London
Malet Street WC1 7THX
London UK
{mz, gr, ap}@dcs.bbk.ac.uk

Abstract

Recent years have witnessed a rapidly grow-
ing interest in query processing in sensor and
actuator networks. This is mainly due to the
increased awareness of query processing as the
most appropriate computational paradigm for
a wide range of sensor network applications,
such as environmental monitoring. In this pa-
per we propose a second database technology,
namely active rules, that provides a natural
computational paradigm for sensor network
applications which require reactive behavior,
such as security management and rapid for-
est fire response. Like query processing, effi-
cient and effective active rule execution mech-
anisms have to address several technical chal-
lenges including language design, data ag-
gregation, data verification, robustness un-
der topology changes, routing, power man-
agement and many more. Nonetheless, active
rules change the context and the requirements
of these issues and hence a new set of solutions
is appropriate. To this end, we outline the im-
plications of active rules for sensor networks
and contrast these against query processing.
We then proceed to discuss work in progress
carried out in project Asene that aims to ef-
fectively address these issues. Finally, we in-
troduce our architecture for a decentralized
event broker based on the publish/subscribe
paradigm and our early design of an ECA lan-
guage for sensor networks.

1 Introduction

Application development for sensor and actuator net-
works presents unique challenges since it has to address

Copyright 2004, held by the author(s)

Proceedings of the First Workshop on Data Mana-
gement for Sensor Networks (DMSN 2004),
Toronto, Canada, August 30th, 2004.
http://db.cs.pitt.edu/dmsn04/

98

the complexities of distributed and often decentralized
operation, the highly resource constrained nature of
network nodes and the highly transient nature of net-
work topology [4]. Moreover, applications must oper-
ate unattended for prolonged periods of time and still
maintain their integrity and quality of service.

In recent years it has become clear that the in-
vestigation of higher level computational paradigms
is necessary so as to abstract the complexity of sys-
tems development and offer application developers
with a more amenable programming framework. To
this end, query processing has attracted considerable
interest and is rapidly becoming a popular computa-
tional paradigm for a plethora of sensor network ap-
plications. This approach has been seen to address
well the complex requirements of application develop-
ment in sensor networks in a variety of applications
including environmental monitoring, distributed map-
ping and vehicle tracking [5, 12]. Prototype sensor
network query processors have been implemented in
Tiny DB [11] and Cougar [17] systems.

In this paper we argue that another database tech-
nology that may provide an appropriate computational
model for a distinct set of sensor and actuator network
applications is event-condition-action (ECA) rules [15]
(also referred to as active rules). Indeed, sensor and
actuator network applications often operate in one of
either modes:

e in event-driven applications, for example detec-
tion of forest fires, security management or prod-
uct detection in ubiquitous retailing [9], the sys-
tem remains inactive until an event is generated
in one of the nodes; then the event propagates
through the system which subsequently initiates
appropriate actions in response to this event,

e in demand-driven applications, for example envi-
ronmental monitoring [5], activity is initiated in
response to external requests, usually in the form
of queries.

While query processing matches well the character-
istics of the later class of applications, an ECA rule-

based approach offers a better fit for applications with
execution profile that corresponds to the first pattern
above. In such applications, the system needs to pro-
vide a timely response to events and although in princi-
ple this would still be possible using a sensor network
query processor, its deployment would unnecessarily
consume the limited resources by regularly checking
for events that may not have occurred.

In the following Section we discuss ECA rules as a
computational model for reactive systems with partic-
ular reference to sensor and actuator networks. We
then proceed to compare more traditional ECA tech-
nologies with the novel needs of sensor networks. In
Section 4, we discuss the requirements of ECA rules in
this context and highlight the differences to the more
well established sensor network query processors. Fi-
nally, we introduce the architecture of the Asene sys-
tem for Active SEnsor NEtworks. We conclude with
a discussion of work in progress and major challenges
ahead.

2 Active Rules as a Model for Compu-
tation in Sensor Networks

We begin by examining in more detail the structure
of a reactive sensor and actuator network application.
A reactive application must be able to detect the oc-
currence of specific events or changes in the network
state, and to respond by automatically executing the
appropriate application logic. For example, in a se-
curity monitoring scenario sensors capable of detect-
ing specific chemicals are deployed in the area under
observation, for example a customs and excise enclo-
sure in a port area. In addition to the sensor nodes,
a smaller number of actuator nodes are also deployed
with the capability to trigger alarms when activated.
In this case, there is little scope for fixed network in-
frastructure due to the transient nature of most objects
within the enclosure and the use of heavy machinery.
The aim is to program the application so that when
specific events are observed and specific conditions are
met the network reacts in a predetermined way, for ex-
ample when the concentration of particular chemical
factors are observed and their concentration exceeds a
set threshold within a small area the alarm in this and
neighboring areas are activated.

ECA rules [15] are one way of implementing this
kind of functionality. An ECA rule has the general
syntax

on event

if condition

do actions

The event part specifies when the rule is triggered.
The condition part is a query which determines if the
sensor network is in a particular state, in which case
the rule fires. The action part states the actions to be
performed if the rule fires. A side effect of these actions

99

may be that further events are generated, which may
in turn cause more ECA rules to fire.

In sensor and actuator networks in particular the
action part of an ECA rule may be either logical or
physical. For example, the action may be to signal an
actuator node to activate the alarm, or it may be a
notification for a node to initiate a particular control
sequence [16].

There are several advantages in using ECA rules
to implement this kind of functionality compared to
direct implementation in application code [2, 14]:

e ECA rules allow an application’s reactive func-
tionality to be specified and managed within a
rule base rather than being encoded in diverse
programs, thus enhancing the modularity, main-
tainability and extensibility of applications.

e ECA rules have a high-level, declarative syntax
and are thus amenable to analysis and optimiza-
tion techniques which cannot be easily applied if
the same functionality is expressed directly in ap-
plication code.

e ECA rules are a generic mechanism that can ab-
stract a wide variety of reactive behaviors, in con-
trast to application code that is typically special-
ized to a particular kind of reactive scenario.

To illustrate the use of active rules to model reac-
tive functionality we note that the application logic
described at the beginning of this section could be en-
capsulated within the following rule

ON UPDATE toxicity

IF AVG(toxicity) > thres WITHIN radius ril

DO ACTIVATE alarm WITHIN radius r2

3 Sensor Networks and Traditional Ac-
tive Database Systems

ECA rules in the context of a sensor and actuator
network present a number of novel challenges against
the traditional database view [8]. In traditional active
database (and web-based) systems the condition and
action parts of an ECA rule are most often tightly cou-
pled, that is the execution model of a particular rule
is [E][CA]: a database object is monitored and when
modified in a predetermined way an event is generated.
Rules whose event parts match this event are then trig-
gered and, if their conditions hold, their actions are
scheduled for execution. In all cases, execution of the
condition query and the action part is driven by the
same application logic. Hence, ECA functionality is
tightly coupled and coordinated. Moreover, such sys-
tems are generally administered by database experts
and often implement advanced failure-tolerance fea-
tures, including clustering, power backups and repli-
cated communication channels.

Sensor and actuator networks consist of a large
number (often several hundreds) of loosely-coupled
node elements [1]. Each node operates fairly inde-
pendently and can make its own decisions about its
wake-up/sleep cycle and the data it accepts to for-
ward to nearby nodes. Nodes may also have different
capabilities, for example sensors may be able to detect
temperature, humidity, changes in the magnetic field
of the Earth, different types of biosensing and so on.
Actuators may be biomanipulators, microvalves and
micropumps or they can simply be electrical switches.
In addition to sensor and actuator nodes, nodes that
have the sole purpose of providing communications
and computational assistance may also be introduced
in the system. In all cases, nodes will have high failure
rates which may result in network fragmentation, that
is the separation of network segments into isolated is-
lands of system functionality.

Sensor and actuator networks are deployed in ad-
hoc ways and thus the resulting topologies may be
highly irregular and with highly heterogeneous density
and connectivity patterns. Furthermore, the topology
may often change rapidly during its pre-deployment,
deployment, and re-deployment phases and possibly
at very high speed. This is in stark contrast to tra-
ditional database management systems which assume
that connectivity is fairly fixed and network topology
is rarely of concern and dealt with outside the database
management system.

Last but not least, sensor and actuator nodes are
very limited in power, computational capability and
holding capacity and are normally unavailable for reg-
ular repair or frequent battery recharge. Although
Moore’s law predicts that node capabilities will in-
crease rapidly, they will always be less powerful than
other embedded, portable or hand-held computing de-
vices and most importantly battery power available for
their operation will remain limited for the foreseeable
future.

4 Challenges for Active Functionality
in Sensor Networks

In this paper we propose that ECA rules can provide
a natural computational paradigm to sensor and actu-
ator network applications that require reactive behav-
ior. While sensor network query processors (SNQP)
[3, B, 11] have proven very successful in providing ap-
propriate abstractions for user interaction, ECA rules
address the problem of unattended system behavior
and can effectively model application logic in auto-
nomic situations®. In the context of such applications,

1The scope of active functionality as described here should
not be confused with the so-called event queries supported by
Tiny DB. Event queries aim at providing user control over data
acquisition so that users can register their interest for specific
results returned by an acquisitional query and specify additional
queries that should be carried out in response. Hence, support-

the system is required to provide a timely response
to events at the lowest communications and compu-
tational cost. Although potentially a SNQP could be
used for this type of application, in practice it would
unnecessarily consume limited resources by regularly
checking for events that may not have occurred. In-
deed, SNQPs primarily address data acquisition from
a relatively small number of vantage points. ECA
rules may provide an effective and efficient mechanism
to support reactive behavior by localizing control and
by providing a mechanism to react to events rather
than proactively test whether a particular event has
occurred.

This difference in scope between SNQP and ECA
rules implies that the two systems have very different
execution profiles which also means that they also have
very different requirements. In the following para-
graphs we attempt to outline the most critical differ-
ences between the two approaches and in the following
section we discuss our current work in trying to ad-
dress the novel requirements of ECA execution within
project Asene.

e Vantage Points. SNQPs assume that queries
are initiated at a single or a relatively small num-
ber of vantage points, with data aggregation po-
tentially carried out at a few intermediate loca-
tions, the so-called storage points. In ECA rules
any sensor in the network may generate an event
which may be used by any actuator also poten-
tially placed at any network location. Thus, an
ECA rule may fire at any node location within the
network and may also activate any node within
the network.

e Communication Pattern. SNQPs collect data
in regular patterns which sensor nodes can use
to synchronize and agree on wake-up/sleep cy-
cles. ECA rules are reactive and thus rules fire at
unpredictable, irregular intervals. Hence, wake-
up/sleep schemes that can support this asyn-
chronous mode of operation are required. More-
over, this irregular pattern implies that nodes con-
sume power at different rates and for this reason
node failure is more irregular and harder to pre-
dict.

e Routing. SNQPs currently mostly use tree-
based routing mechanisms that flood the net-
work at least once, during the tree construc-
tion stage. In this context the communications
overhead placed by the route discovery stage is
justified by the relatively large amount of data
that is being collected. An ECA rule proces-
sor is characterized by small, incremental updates
rather than a single data collection step and thus

ing generic reactive functionality is well beyond the scope of
event queries.

100

the route discovery stage of tree-based algorithms
would dominate the communications cost. Con-
sequently, globally optimal routes would probably
not optimize power consumption for the network
as a whole and localized routing algorithms could
be more efficient [7].

e Data Model. SNQPs currently view the sensor
network as a single data space. ECA rules require
an alternative data model which distinguishes be-
tween the different types of objects that are being
observed and generate events. In the following
section we propose a mechanism for the construc-
tion of separate data spaces based on the so-called
topic channels.

e Aggregation. Aggregation in ECA is carried out
at the signal rather than the query layer which
is the norm for SNQP. Although the mathemat-
ical techniques used for aggregation in SNQP [6]
can also be used in ECA rule processing, this is
done at a lower layer and within a particular topic
channel in an approach akin to collaborative sig-
nal processing in distributed environments.

e In-network storage. Although both systems
clearly benefit from in-network storage, SNQP de-
velops hierarchical-directional mechanisms based
on the tree-based routing algorithms employed,
whereas ECA rules benefit from decentralized-flat
and schemes at the topic channel level.

e Network Segmentation. ECA rules execute
within the a specific network locality and thus can
be relatively resistant to network segmentation for
example due to loss of connectivity caused by in-
termediate node failure. ECA rules may still fire
despite their isolation from a sink controller.

5 A System Architecture for ECA in
Sensor Networks

One of the major challenges in implementing an ECA
rule based architecture for sensor and actuator net-
works is the distribution of events in a computation-
ally efficient manner. In this section we introduce the
Asene approach to support ECA functionality in sen-
sor and actuator networks.

Asene is built on top of event channels which are
also viewed as data object primitives. An event chan-
nel has two elements: a collection of nodes that mon-
itor the same attribute and associated algorithmic
mechanisms that coordinate node operation. Within
an event channel nodes carry out collaborative signal
processing and data aggregation and are responsible
for in-network storage and event generation. Finally,
the node components of an event channel encapsulate
internal structures that maintain shared descriptions
of the channel.

Event channels are also responsible for the distribu-
tion of events following the so-called publish/subsribe
(P/S) paradigm [13]. P/S systems are commonly used
to bring together data sources and information con-
sumers by transparently delivering events from the
first to the second. In Asene, event channels are re-
sponsible for maintaining a list of subscribers to the
particular event and for sending notifications. Thus,
subscriber nodes may move freely and re-attach to the
channel at alternative locations. Effectively, an event
channel functions as a decentralised event broker fol-
lowing the P/S jargon.

The particular characteristics of sensor and actu-
ator networks make them especially compatible with
the P/S paradigm, in particular with regard to the
need for in-network storage and processing;:

e P/S systems are characterized by the same basic
properties as sensor and actuator networks; that
is, communication is anonymous, inherently asyn-
chronous and multicasting in nature. P/S systems
are also capable of quickly adapting to changing
network topologies.

e P/S systems can support the decentralized opera-
tion of event management and delivery, transpar-
ently for both sensor and actuator nodes. This is
particularly important since computation in sen-
sor and actuator networks is highly asymmetric
and thus local adaptability and local control is of
great importance.

e The P/S anonymity property in particular im-
plies that communicating nodes are not required
to identify the party they wish to communicate
with (that is, subscribers need only describe the
characteristics of the events they want to receive
instead of naming a specific publisher to receive
events from) and thus data aggregation may be
implemented transparently for the end applica-
tion. Moreover, the anonymity property implies
that flexile wake-up/sleep cycles can be developed
since delivery of events to subscribed recipients
does not depends on a single sensor node.

e Conceptually P/S systems deliver events to mul-
ticast groups, a communications mode that is a
good fit for the provision of incremental updates
to aggregation operators constructed on top of
role-based spatial hierarchies of sensor and actua-
tor networks nodes. The power saving potential of
these multi-resolution data aggregation schemes
can be considerable and more importantly their
effectiveness increases rapidly with the number of
nodes in the system. Moreover, it is possible to
achieve relatively high performance by using the
periodic beaconing performed of most medium ac-
cess and topology control protocols for update de-
livery across a particular topic channel.

101

The properties that make P/S suitable for use in
sensor and actuator networks also suggest a natural
way to support node failures as a feature of the sys-
tem rather than as a fault. Indeed, in this context data
aggregation is performed independently by each node.
Hence, loss of updates will affect accuracy locally and
nodes will continue computation with whatever data
available, on a best effort basis. This is a distinct ad-
vantage over techniques originating from more tightly
coupled systems, where there would be a need for roll
backs and data cleansing operations which are not ap-
propriate in the case of sensor and actuator networks.

One of the expected advantages of this architecture
is that it allows for complex wake/sleep schemes while
at the same time maintaining a good quality of service
via replication of the in-network stored data and of the
subscription information.

The use of event channels as the core building block
for Asene allows for the full decoupling of the [E], [C]
and [A] components of ECA rules. Also note that
queries associated with the condition part of an active
rule can be answered locally and in some cases the
data required could be disseminated at the same step
as the event itself. It is also worth observing that new
functionality can be introduced in the system via the
simple insertion of new condition nodes, that is nodes
that are responsible for checking for specific conditions
in response to event notifications. Finally, construct-
ing activation channels is also a viable alternative al-
though often the expected number of actuator nodes
would be much smaller than the number of sensors and
it is probably not as cost efficient as an approach.

5.1 Heterogeneity

An interesting observation on the effects of the Asene
architecture is that significant operational benefits
may be achieved if heterogeneous sensor and actua-
tor networks are constructed. Heterogeneity in this
case is seen primarily in communication capability and
in terms of the range of communication. Inserting a
few nodes that have longer range capabilities (but also
higher power consumption) can significantly increase
the robustness of the event channel by increasing the
connectivity across node clusters.

5.2 Composite Events

Using event channels as the main mechanism for data
dissemination also suggests a clear way for construct-
ing rules with composite events: the condition node
needs only subscribe to all corresponding event chan-
nels. Compare this against the difficulty of dealing
with multidimensional data in the context of SNQP.

6 Discussion and Conclusions

In this paper we have argued that, in addition to query
processing, ECA rules is a database technology that

may provide an appropriate computational model for
a distinct set of sensor and actuator network appli-
cations. However, ECA rules in this context present
several challenges which we highlighted in previous
sections. We have also introduced Asene, an ongoing
research project that aims to establish ECA rules as
the common mechanism for the description of reactive
functionality in sensor and actuator networks.

The current version of Asene supports simple event
channels built on top of Tiny OS [10] primitives and
a simple ECA language. We are currently develop-
ing further our algorithms for the efficient construc-
tion of event channels in sensor networks. Our focus
is on a single-step approach that identifies all mem-
bers of all registered event channels in a particular
network and thus removes the need for duplication of
the bootstrap phase. We are also improving on the
data structures used to represent the internal state of
a particular event channel and maintain the list of ac-
tive subscriptions. Our work aims to balance the need
for low communication between nodes and the asyn-
chronous nature of event generation with regard to the
wake-up/sleep node cycles. We are planning to con-
duct extensive experiments with the prototype imple-
mentation to better understand the tradeoffs involved.

In addition to the development of efficient and effec-
tive event channel management mechanisms, a second
major objective of the Asene project is the definition
of an appropriate lightweight ECA language that sat-
isfies the requirements of the application domain. The
brief example presented in Section 2 in the context
of a security management application is taken from
the current version of Asene. Clearly, further work
in understanding the performance implications of the
different constructs is required and balanced against
language expressivity.

The next step for Asene is the integration of ad-
vanced aggregation algorithms and the study of local-
ized routing algorithms for event dissemination. In
doing so we favor a multi-resolution approach sim-
ilar to the aggregation schemes discussed in [6] but
more appropriate for the structure of our event chan-
nel construction algorithms. Finally, we intend to fur-
ther investigate the relative merits of different routing
strategies for event dissemination based on localized
network descriptions. We anticipate both approaches
to offer significant reduction in resource demands from
the network.

References

[1] LF. Akyildiz, W. Su, Y. Sankarasubramaniam
and E. Cayirci. Wireless Sensor Networks: A Sur-
vey, Computer Networks, Vol. 38, pp. 393-422,
2002.

[2] J. Bailey, G. Papamarkos, A. Poulovassilis and P.
T. Wood. An Event-Condition-Action Rule Lan-

102

guage for XML, in A. Poulovassilis and M. Levene
(eds.) Web Dynamics, Springer-Verlag, to appear,
2004.

P. Bonnet, J. Gehrke, and P. Seshadri. Towards
Sensor Database Systems, Proceedings of the
Second International Conference on Mobile Data
Management, Hong Kong, 2001.

D. Estrin, R. Govindan, J. Heidemann and S. Ku-
mar. Next Century Challenges: Scalable Coor-
dination in Sensor Networks, Proceedings of the
ACM/IEEE International Conference on Mobile
Computing and Networking, Seattle, Washington,
USA, pp. 263-270, 1999.

J. Gehrke and S. Madden. Query Processing in
Sensor Networks, IEFEFE Pervasive Computing,
Vol. 3, No. 1, pp. 46-55, 2004.

J. M. Hellerstein , W. Hong, S. Madden, K.
Stanek. Beyond Average: Toward Sophisticated
Sensing with Queries, F. Zhao and L. Guibas
(eds.) Proceedings of Second International Work-
shop Information Processing in Sensor Networks,
IPSN 2003, Palo Alto, CA, USA, April 22-23, pp.
63 - 79, 2003.

A. Helmy. Location-free Contact Assisted Poer-
Efficient Query Resolution for Sensor Networks,
Mobile COmputing and Comuunications Review,
Vol. 8, No. 1, pp. 27-47, 2004.

K. Kulkarni, N. Mattos, and R. Cochrane. Active
database features in SQL3, in N. Paton (ed.) Ac-
tive Rules in Database Systems, Springer-Verlag,
pp. 197-219, 1999.

P. Kourouthanassis and G. Roussos. Develop-
ing Consumer-Friendly Pervasive Retail Systems,
IEEE Pervasive Computing, Vol. 2, No. 2, pp. 32—
39, 2003.

P. Levis, S. Madden, D. Gay, J. Polastre, R.
Szewczyk, A. Woo, E. Brewer and D. Culler.
The Emergence of Networking Abstractions and
Techniques in TinyOS, Proceedings of the First
USENIX/ACM Symposium on Networked Sys-
tems Design and Implementation (NSDI 2004),
March 29-31, San Fransisco, CA, 2004.

S. Madden, M. Franklin, J. Hellerstein, and W.
Hong. The Design of an Acquisitional Query Pro-
cessor for Sensor Networks, SIGMOD, San Diego,
CA, 2003.

S. Madden, M. Franklin, J. Hellerstein, and W.
Hong. TAG: a tiny aggregation service for ad hoc
sensor networks, in Proceedings of the USENIX
Symposium on Operating Systems Design and Im-
plementation, 2002.

[13]

[17]

103

C. Mascolo, L. Capra, and W. Emmerich. Middle-
ware for Mobile Computing (A Survey), Lecture
Notes in Computer Science, Vol. 2497, 2003.

G. Papamarkos, A. Poulovassilis and P. T. Wood.
Event-Condition-Action Rule Languages for the
Semantic Web, Proc. VLDB’03 Workshop on Se-
mantic Web and Databases, Berlin, September
2003.

N. Paton and O. Diaz. Active Database Systems,
ACM Comp. Surveys, Vol. 31, No. 1, pp. 63-103,
1999.

Y. Yemini, A.V. Konstantinou and and D.
Florissi. NESTOR: An Architecture for Self-
Management and Organization, IEEE Journal on
Selected Areas in Communications, Vol. 18, No. 5,
pp. 758-766, 2000.

Y. Yao and J. Gehrke. The Cougar Approach to
In-Network Query Processing in Sensor Networks,
Sigmod Record, Vol. 31, No. 3, 2001.

A Framework for Spatio-Temporal Query Processing
Over Wireless Sensor Networks

Alexandru Coman

Mario A. Nascimento

Jorg Sander

Department of Computing Science
221 Athabasca Hall
University of Alberta
Edmonton, Canada
{acoman,mn,joerg}@cs.ualberta.ca

Abstract

Wireless sensor networks consist of nodes with the
ability to measure, store, and process data, as well
as to communicate wirelessly with nodes located
in their wireless range. Users can issue queries
over the network, e.g., retrieve information from
nodes within a specified region, in applications
such as environmental monitoring. Since the sen-
sors have typically only a limited power supply,
energy-efficient processing of the queries over the
network is an important issue. In this paper, we
introduce a general framework for distributed pro-
cessing of spatio-temporal queries in a sensor net-
work that has two main phases: (1) routing the
query to the spatial area specified in the query;
(2) collecting and processing the information from
the nodes relevant to the query. Within this
framework, different algorithms can be designed
independently for each of the two phases. We also
propose novel algorithms for this framework, one
for the first phase and two for the second phase. In
an extensive experimental evaluation we study the
performance of these algorithms in terms of en-
ergy consumption, under varying conditions. The
results allow us to recommend the most energy
efficient solution, given a network and a spatio-
temporal query.

1 Introduction

Recent technological advances, decreasing production costs
and increasing capabilities have made sensor networks suit-
able for many applications, including environmental moni-
toring, biological contamination detection, warehouse man-
agement, traffic organization and battlefield surveillance.
Today’s sensors are no longer just simple sensing de-
vices wired to a central monitoring site, but they have

Copyright 2004, held by the author(s)

Proceedings of the First Workshop on Data Mana-
gement for Sensor Networks (DMSN 2004),
Toronto, Canada, August 30th, 2004.
http://db.cs.pitt.edu/dmsn04/

computation, storage and wireless communication capabil-
ities. Most of these devices are battery operated, which
highly constrains their life-span, and it is often not pos-
sible to replace the power source of thousands of sensors.
Energy efficient data processing and networking protocols
must therefore be developed to make the long-term use of
such devices possible. While the network research commu-
nity has studied energy efficient protocols in the context of
ah-hoc networks, the database community has been con-
fronted mostly with time and size constraints, but rarely
with energy limitations. Therefore, the ability to apply
traditional data processing techniques in sensor networks
is limited, and different solutions must be found.

In this paper we focus on energy efficient query pro-
cessing in sensor networks. In particular, we are inter-
ested in answering historical spatio-temporal queries such
as “What was the humidity yesterday morning in Lake An-
nete area?”’. We study this problem in a sensor network
where each sensor is only aware of the existence of the
other sensors located within its communication range, and
the query can be initiated locally at any sensor. There
are two main reasons for allowing query initiation at any
node. First, using only designated sensors as query origina-
tors causes an unbalanced energy use among sensor nodes,
leading to faster energy depletion at the designated sensors,
as well as the sensors located in their proximity, as these
nodes would participate in the processing of most queries.
Second, nodes could become unavailable for various rea-
sons, such as energy depletion, hardware failure or hos-
tile environment. To the best of our knowledge, historical
query processing in such a sensor network environment has
not been investigated before. The advantages of this envi-
ronment are network robustness, a balanced use of sensors’
energy resources and a wide range of application scenarios
that can take advantage of the proposed solutions.

An application where such a sensor network enviroment
can be used is micro-climate monitoring in national parks.
The sensor nodes could be deployed from a plane over a
forest area. Upon activation, each node would start ob-
serving periodically various physical phenomenons, such as
temperature and humidity of air and soil. Park rangers pa-
trolling through the forest can access the network through
any node in their proximity using a notebook or iPAQ.

104

For instance, when certain events such as forest disease or
small fires are observed, the ranger could query the net-
work about historical observations, which may help him
understand what have caused such events or learn about
other areas that are threatened by similar events.

We propose the STWIN framework for processing
historical spatio-temporal queries in sensor networks,
i.e., queries that specify the spatial area and temporal
range the answers must belong to. As sensor nodes spend
most of their energy supply during communication [1], we
alm at minimizing the amount of data exchanged among
nodes during query processing. Our framework has two
phases. First, we search for a path from the query origi-
nator node to a sensor located within the query’s spatial
window. Second, the located sensor assumes query coor-
dinator role, gathers the answers from all query relevant
sensors and ships them back to the query originator. We
use a greedy routing algorithm in the first phase, while for
the second phase we propose two algorithms, one based on
parallel flooding, the other using a depth first strategy.

In summary, the contributions of this paper are:

e we study the processing of spatio-temporal queries in
a sensor network where each node only knows about
the network nodes located within its wireless range;

e we introduce the STWIN query processing framework;

e we propose three algorithms to be used within the
STWIN framework;

e we evaluate experimentally the performance of these
algorithms and discuss their benefits and drawbacks.

The remainder of this paper is organized as follows. Sec-
tion 2 describes some of the research work related to ours.
Section 3 presents the sensor network settings as well as the
characteristics of the query and data. Section 4 details our
solution for spatio-temporal query processing. Section 5
presents the experimental evaluation of the proposed algo-
rithms, and Section 6 concludes the paper.

2 Related Work

In this section we discuss a few works related to our current
investigations. As sensor networks research lays at the in-
tersection of networks, systems and databases, we describe
a few projects addressing data management issues in the
sensor environment from the plethora of publications ad-
dressing various aspects of sensor networks.

The Cougar project [22] is one of the most related to
ours as it also investigates techniques for query process-
ing over sensor data. However, unlike ours, their research
focuses on a sensor networks environment where there is
a central administration that knows the location of all
sensors. In [4] the authors focus on defining a sensor
database model for processing long-running queries, which
are modelled as persistent views over the distributed sen-
sor database. A central optimizer has the tasks of building
a query plan and disseminating it to the relevant sensor
nodes. In a similar environment but with emphasis on en-
ergy efficient query processing, they extend their work in
[23] and analyze a wider range of problems, such as rout-
ing and crash recovery, basic query plans and in-network
aggregation.

In [13], Madden et al. focus on query processing in a
sensor environment where the information about the exist-
ing sensors is available in a catalog. Sensor nodes simply
collect and transmit the raw data to the powered sensor
proxies that are in charge of further processing and routing
the answers to the users. The authors focus on minimiz-
ing the used energy by adapting the sensors’ sampling and
data package transmission rates. They introduce the Fjord
architecture for management of multiple queries. Designed
for Berkley Mica motes and running on top of TinyOS,
TinyDB [15] is a distributed query processor that runs on
each of the sensor nodes. The authors focus remains on op-
timizing data acquisition for long-running queries, no data
being stored locally at the nodes. To reduce the energy
consumption, they also propose TAG [14], an aggregation
service for networks of TinyOS motes.

Beaver et al. [2] propose a solution for in-network ag-
gregation, which exploits the temporal correlation in a se-
quence of sensor readings to reduces the energy used during
query processing. Their solution, called TiNA, also allows
the user to specify a temporal coherency tolerance when
an approximate answer is sufficient, which lowers the en-
ergy costs. Similar to TinyDB and Cougar, TiNA is de-
signed for a sensor environment where sensors simply for-
ward their measurements to answer a long-running query,
without storing any historical data.

Directed Diffusion [12] proposes a data-centric frame-
work for query processing. Their sensor network environ-
ment is similar to ours in the sense that the query can be
originated at any node, and nodes are only aware of their
neighborhood. Different from us, nodes do not store his-
torical data and sensing is only performed in response to a
query request. In Diffusion, nodes request data by sending
interests for specific data, which is then collected by the
source nodes and shipped to the originator node. Interme-
diate nodes can cache and aggregate data, as well as di-
rect new interests based on the cached data. The Directed
Diffusion uses flooding to find paths from the query origi-
nator node to the data source nodes. Path reinforcements
are used for selecting a small number of “good-paths” over
which sensed data is returned. This scheme creates mul-
tiple paths for delivery, which increases the robustness of
delivery at increased energy costs.

A system that focuses on query processing over his-
torical data is DIMENSIONS [8, 9]. The authors focus
on multi-resolution summarization of data using wavelet
transform and construct a sensor hierarchy over the net-
work. While temporal summarization is performed in each
node, each level in the sensor hierarchy deals with another
resolution of summarization. Their solution is suitable for
data-mining, where a query can first look at the data at
a coarse resolution and then focus on a region of interest
at a finer resolution. The hierarchical scheme is applied
in a grid sensor network where clusterheads (nodes storing
coarser resolution in the sensor hierarchy) are dynamically
selected based on their location in the grid.

The authors in [11] focus on sensor data processing, and
propose solutions for data stream joins over the sensor data
in tracking or monitoring application. The performance of
their solution decreases sharply with increasing number of
sensors, with more evaluation being required to establish
the validity of their methods for large scale sensor deploy-
ments. In [6], the authors propose one of the first index

105

structures for sensor networks. The solution is based on
the R-tree and it seems to be energy and time efficient,
but no evaluation is presented. Xu and Lee [21] propose
a window-based query processing technique in a network
of moving sensors, where sensors only take measurements
and provide data upon users’ request. Though interesting,
their solution has no experimental evaluation.

In the area of networks research, much work has been
done in ad-hoc wireless networks. One of the most relevant
issues for efficient query processing in sensor networks is
position based routing, that is, network routing when the
destination node is known and addressed by means of its
location. We refer the reader to several surveys [16, 20, 10]
on techniques for position based routing in ad-hoc net-
works. In our scenario, a sensor node is only aware of the
network nodes located within its wireless communication
range, which complicates the routing decisions. In such
a case position based routing algorithms with guaranteed
delivery cannot be readily re-used.

3 Background and Settings

We assume a sensor network with fixed nodes that have
equal roles in the network’s functionality. Each node has
a CPU, long term storage, its own energy source and it is
connected to other members of the network through wire-
less communication. All sensor’s components have limited
capabilities and the power source can be depleted quickly
if not used efficiently.

Due to the wireless network characteristics, a node can
communicate directly only with the sensors located within
its wireless range, which form its neighborhood. A node
can send a message individually to one of its neighbors, or
it can use broadcasting to send the message simultaneously
to all of its neighbors. When a message has to be sent
to all or most neighbors, it is cheaper to broadcast the
message than to send it individually to the neighbors. A
sensor communicates with nodes other than its neighbors
using a multi-hop routing protocol over the network. There
are two main types of messages in query processing: query
messages (which transport the query) and answer messages
(which transport the query answers).

Each node knows its location (e.g., it may use GPS dur-
ing node activation), as well as the location of its neighbors
(collected during network activation). Sensor nodes may
have several sensors, e.g., for temperature, humidity, mag-
netism, and light. In this paper we consider sensors that
observe the state of a measured entity at the sensor location
only. This is different from range sensing (e.g., movement
sensing used in tracking [7, 19]), which measures the state
of an entity not necessarily located at a sensor’s position,
but in its vicinity. Sensors take measurements periodically,
and the collected values are stored locally for future query-
ing. Data collection is performed continually, which can
be viewed as an infinite stream. As infinite data cannot
be fully stored, we adopt the stream storage solutions for
fixed storage space proposed in [24]. The solution uses tem-
poral aggregations over the data stream at multiple time
granularities. The aggregation level for a data record is
dependent on the age of the record, with only the most
recent data fully stored. The aggregation levels and their
granularity are decided before the network deployment and
are dependent on the measured data and the storage size.

Similar to any approximation technique, the adopted stor-
age solution may not be able to provide useful data if the
query requires high quality answers. Such stream storage
solutions need to be used only when sensor nodes use small
sampling rates or generate complex data per sample. For
instance, a sensor node with 1 megabyte of memory mea-
suring temperature once every 5 minutes could store more
than 1 year of raw data, which is beyond the expected
lifetime of some of the sensor devices currently available.

Each sensor node stores and manages locally its mea-
surements. Each measurement has attached to it a time-
stamp corresponding to the time of measurement. Each
type of sensor has associated a measurement interval,
which defines the interval between successive data collec-
tions and is identical for all sensor nodes. We consider
the data in the sensor network as a specialized distributed
database, with temporal data stored in a node’s database.
Each node has a location, which gives spatial properties
to data. Thus, on a global view, the sensor networks is a
distributed database storing spatio-temporal data.

We are interested in processing historical spatio-
temporal queries, denoted by HSTQ(qID,sw,tw), where sw
represents a spatial window, tw represents a temporal win-
dow and ¢ID uniquely identifies a query. The answer to the
HSTQ query is formed by all sensor measurements from
the given area sw during the time range tw. Sensor nodes
have equal capabilities and therefore a query can originate
at any node with query answers located in some (possibly
all) of the nodes. Some sensor network scenarios [15, 22]
consider the so-called long-running queries, where a user
wants the continuously monitor the measured entities. We
do not consider this type of query in this paper.

4 Spatio-Temporal Query Processing

Given a historical spatio-temporal query HSTQ(qID,sw,tw)
at a sensor node, the problem is to efficiently locate and re-
trieve the answers, given the limited knowledge each node
has about the overall network. As a major constraint on
sensor nodes is their limited energy supply, we focus on en-
ergy efficient techniques. It has been shown that the energy
required by sensing and computation is up to three orders
of magnitude less than the energy used for communica-
tion [17]. Therefore we use the energy cost of communica-
tion as the measure of efficiency. This cost is proportional
to the number and the size of exchanged messages.

In this section we discuss first a basic query processing
algorithm for sensor networks. Next, we present an origi-
nal framework for processing spatio-temporal queries and,
within this framework, we propose three new algorithms.

4.1 Basic Query Processing Algorithm

A straightforward way to locate the query answers, which
we call FULLFLOOD, is contacting every network node. The
query originator node broadcasts the query to its neigh-
bors, which in turn broadcast the query to their neigh-
bors, and so on, until all nodes have received the query.
Due to query message broadcast, each node will receive
the same query several times. For each query, a node
processes only the first query message received, discard-
ing subsequent query messages. When a query is received,
the node first broadcasts the query, then it selects the lo-

106

sensor node
query originator
query message
answer message

query’s window
wireless range

Figure 1: The FULLFLOOD algorithm - message flow

cally stored data relevant to the query (if any), it waits
for its neighbors’ answers and merges them with its own,
and finally it returns the answer to the neighbor that it
received the query from. Once the query originator node
has received the relevant data from all nodes, it can answer
the query. The messages flow for FULLFLOOD algorithm is
shown in Figure 1.

The FULLFLOOD algorithm is guaranteed to find the
query answer for a connected sensor network, but it in-
curs high communication costs due to the large number of
messages required to contact all nodes. The algorithm is
similar to a parallel breadth first search in a network graph,
where sensor nodes are vertices and edges represent direct
communication links between sensors. Assuming there is
no communication delay, the query will reach each node on
the shortest path (with respect to number of hops) from
the query originator. As query messages are broadcast
along all paths, the first message reaching a node must
have travelled over the shortest path. After a query is pro-
cessed locally, each node returns the answer to the neighbor
it first received the query from, and therefore answers are
returned over the shortest path to the query originator.

4.2 Query Processing with STWin

If there is only one node relevant to the query, the optimal
solution is contacting the node on the shortest path from
the query originator and returning the answers over the
same path. When the query answer involves several nodes,
communicating with these nodes on the shortest path be-
tween the query originator and each of them is no longer
optimal. Figure 2 shows an example. Forwarding the query
over the shortest paths (routes (a) and (c)) requires 6 query
messages in order to reach both relevant nodes, while route
(b) requires only 5 messages. On the other hand, return-
ing the nodes’ answer over the shortest path is still opti-
mal (assuming there is no aggregation of answers). As the
energy usage is proportional to the message size and the
same amount of answer data must be transferred over any
of the possible return paths, sending the answers over the
shortest path is the cheapest. Finding an optimal solution
requires each network node to know the network layout,
as well as possibly expensive local computation for finding
the optimal route for each particular query. Due to sen-
sors’ limitations, it is not feasible for each node of a large
sensor network to find and store the full network layout,
as well as make expensive processing. On the other hand,
contacting all sensor nodes as in FULLFLOOD algorithm is
not the most energy efficient approach.

A heuristic solution for query processing is contacting
only the query relevant nodes, and a few extra nodes for
routing the query and the answer if the query originator

@
[] [/.
0 O e
o © [o

Figure 2: Query routing example

is not located inside the query’s spatial window. A heuris-
tic contacting only a subset of all network nodes should
use a lower number of messages than FULLFLOOD, which
may lead to lower energy consumption. An additional ad-
vantage of such a solution is reduced network congestion,
which improves the query response time. Also, if only a
subset of the network nodes is involved in processing each
query, then several queries could be efficiently processed
simultaneously in different parts of the network. We pro-
pose the STWIN (Spatio-Temporal WINdow) framework
for query processing in which such a heuristic can be im-
plemented. In this framework, we divide the query pro-
cessing into two phases, one for locating a path from the
query originator node to a sensor inside the query’s spatial
window, the other for gathering the query answer from the
relevant nodes and returning it to the query originator.

e Phase 1: Given a query at a node N, called query
originator, we want to find a path to a node located
in the query’s spatial window. This node will assume
query coordinator role N¢ for Phase 2.

e Phase 2: The coordinator node N¢ initiates the
query processing within the query’s spatial window.
The processing algorithm must locate all relevant
nodes, gather the results and return them to the query
coordinator N¢. The coordinator will then return the
answer to the query originator node Ng on the rout-
ing path discovered in Phase 1.

These two phases form a general query processing
framework, where various algorithms can be used in each
phase. In the following we propose one algorithm for the
first phase and two algorithms for the second phase.

4.2.1 Phase 1: GreedyDF

The GreedyDF algorithm uses a greedy technique to find
a routing path from the query originator node to a node
Nc¢ located at the center of the query’s spatial window.
Other possibilities for choosing N¢ exist, and which node
is the best to select as coordinator for a query is an open
question. Choosing the center node is a good compromise
between the likelihood of a heuristic to find at least a node
in the query area and the length of the path over which
answers from the coordinator node will be returned to the
query originator node. The query originator forwards the
query to its neighbor located closest to N¢, which in turn
forwards the query to its neighbor closest to N¢, and so
on. If node N¢ is found, then node N¢ initiates Phase 2.
The routing may reach a sensor node that is closer to N¢
than any of its neighbors, in which case the query can-
not be forwarded. If the reached node is located in the
query’s area, the node assumes coordinator role N¢ and
initiates Phase 2, else an empty answer is returned. The
GreedyDF algorithm uses a small number of messages, but

107

(a) GreedyDF

(b) WinFlood

sensor node
query originator
query coordinator
query message
answer message

O le®e

query’ s window

° ° O wireless range

(c) WinDepth

Figure 3: The algorithms within the STWIN framework - message flow

it does not guarantee that a routing path to a node in the
query’s spatial window will be found. Greedy-based rout-
ing methods for position based routing in ad-hoc networks
have been shown to nearly guarantee delivery for dense net-
work graphs, but to fail frequently for sparse graphs [20].
Variants to this heuristic would include using a different
neighbor selection method or backtracking the search when
query forwarding cannot be done. We choose to not use
backtracking solutions as they cannot guarantee answer lo-
cation within a small number of steps, while ultimately
degenerating to a slow network flood with higher commu-
nication costs due to the extra messages required for the
backtracking steps. The message flow for the GreedyDF
algorithm is depicted in Figure 3(a).

4.2.2 Phase 2: WinFlood and WinDepth

For the second phase of STWIN we propose two algorithms.
The WinFlood algorithm consists of a constrained parallel
flooding, where a node broadcasts the query to its neigh-
bors only if its own location is inside the query’s spatial
window. The constrained flooding starts at the query co-
ordinator node N¢ and stops when the query reaches nodes
outside the spatial window. Figure 3(b) show the message
flow for the WinFlood algorithm. The WinFlood algorithms
is similar to a window-constrained parallel breadth first
search in the network graph.

An alternative solution is the WinDepth algorithm,
which is based on the depth first search policy. In
WinDepth each node may forward the query only to
those neighbors located within the query’s spatial window.
When a node receives a query, it adds its node ID in the
query header so that the query path is remembered. Then
it selects a neighbor located within the spatial window that
has not received the query yet (determined based on the
query header), and forwards the query to this neighbor.
When the neighbor returns the partial query answer, the
node checks again if there is any other of its neighbors
that is relevant to the query and has not received it yet. If
there is such a neighbor, it forwards the query to this node
and waits again for the neighbor’s answer. This process
is repeated until all of a node’s neighbors located within
the window have answered the query, at which point all
the partial answers received are merged with the locally
stored answers and the new partial answer is returned to
the neighbor that the node received the query from. The
message flow for the WinDepth algorithm is shown in Fig-
ure 3(c).

The WinFlood algorithm uses broadcast messages to for-
ward the query, while in WinDepth nodes send individual

messages to neighbors located within the window. As the
cost of one broadcast message is generally lower than the
cost for a group of one-to-one messages, it may be cheaper
to use broadcasting and stop the query forwarding when
an exterior node is reached. An advantage of WinFlood
is that it is faster than WinDepth for the same number
of contacted nodes and likely more cost efficient within a
small window due to the use of broadcast messages. On the
other hand, WinDepth contacts a smaller number of nodes,
which makes more nodes available to answer other queries,
and it causes less network congestion, which helps improve
the query response time if several queries are processed
simultaneously in the network.

In the following section we evaluate experimentally the
proposed algorithms and discuss the effects of several fac-
tors on the energy used during query processing.

5 Experimental Evaluation

We implemented a sensor network simulator in order to
study the performance of the presented algorithms. The
sensors’ placement follows a uniform distribution over a
two dimensional region. We represent a historical spatio-
temporal query HSTQ by the coordinates of a spatial area
(sw), a temporal range (tw) and its query ID (gID). The
query’s spatial window covers 1% of the monitored region
(that is 10% on each spatial coordinate), unless otherwise
noted. The temporal window covers 60 measurements,
where each measurement is represented by a <walue,time-
stamp> pair. A summary of query and sensor network pa-
rameters and their default values used in our experimental
evaluation is presented in Table 1.

We compare the algorithms in terms of the average en-
ergy used per network node for communication while pro-
cessing a query. According to [18], the energy used to trans-
mit and receive one bit of information in wireless commu-
nication is given by:

Enerthransmit =o+ v X d" (1)

Energyrcccivc = ﬂ (2)
where d is the distance to which a bit is being transmit-
ted, n is the path loss index, a and (8 capture the en-
ergy dissipated by the communication electronics and ~y
represents the energy radiated by the power-amp. In our
experiments, we use the following values for these param-
eters [3]: a = 45 nJ/bit, B = 135 nJ/bit, n = 2, and
v = 10 pJ/bit/m?. As typical sensors do not have sophis-
ticated communication electronics capable of adapting the
transmission range [5], we assume all messages are trans-
mitted as far as the wireless communication range. In our

108

25 T T T
FullFlood —=—

STWinDepth ----o---

21 STWinFlood -

Avg. Energy Used per Sensor (mJ)

Avg. Energy Used per Sensor (mJ)
w

0
1000 2000 4000 8000

Number of sensors (log-scale)

(a)

Figure 4: The effect of several parameters on the

16000 5%

Default Value
1000x1000 meters

Parameter
Area covered

Wireless range 50 meters
Number of sensors 2000
Tuple size <wvalue, time-stamp> 8 bytes
Query size 24 bytes

Query (spatial window)
Query (temporal window)

1% (of area)
60 measurements

Table 1: Parameters of query and sensor network

experiments we only measure the energy used to transmit
and receive messages. We focus on the energy efficiency
of the query processing algorithms and make the measure-
ments independent of the characteristics of the MAC layer
(for instance 802.11 radios consume as much energy in idle
mode as for receive mode, while other radios may switch
to a low-energy state when idle).

For the algorithms within the STWIN framework,
we call STWINDEPTH the combination of GreedyDF
with WinDepth, and STWINFLOOD the combination of
GreedyDF with WinFlood. All experimental measurements
are averaged over 100 randomly generated sensor networks,
with 10 random queries over each network.

First, we investigated the effect of node density on the
performance of GreedyDF. For networks with 2000 or more
nodes, GreedyDF is able to find a routing path from the
query originator to a node inside the query’s spatial win-
dow for most of the tested networks. In the majority of the
successful cases, the reached node is located in the proxim-
ity of the center of query area. To have a fair comparison,
the following measurements consider the energy used by an
algorithm while processing a query only when each algo-
rithm located all answers for that query.

Figure 4(a) presents the effect of the number of sensors
on the energy usage of each algorithm. As node density
increases, FULLFLOOD sends a larger number of messages
to nodes not relevant to the query, which leads to higher
energy costs. The increase in sensor density leads to an in-
crease in the number of nodes holding relevant data, which
affects the costs of all algorithms, as a larger answer set
must be returned to the query originator. With more nodes
available for routing, the GreedyDF algorithm may be able
to find a shorter path to the query coordinator node, an
advantage for both STWINDEPTH and STWINFLOOD as
less energy will be used for locating the query coordinator
and a shorter path is used to return the answers from the
coordinator node to the query originator. On the other
hand, the coordinator node will send a larger answer set to

6 . T g 0.6 " ' ' .
/ FullFlood —=— =
/ STWinDepth -—o— | 5 o5t 1
STWinFlood e 5 FullFlood —=—
| D 04l STWinDepth -—-e-— 4
/D, g STWinFlood e
p g 03 1
3
5 02 P
] T i
- ‘ e e . . .
< 1 20 40 60 80

10%
Query size - spatial area(%)

(b)

average energy used per network sensor for the investigated algorithms

25% 100

Query size - temporal range (#measurements)

()

the query originator in both STWINDEPTH and STWIN-
FrLoop. The increase in the number of relevant nodes af-
fects more STWINDEPTH than STWINFLOOD. This is due
to the depth first policy used by WinDepth for query rout-
ing, as this policy contacts most relevant nodes on one
query forwarding path. This behavior causes the larger
answer set to be returned over a longer path to the query
coordinator, which increases the energy usage.

The negative effects of this behavior of STWINDEPTH
can be also seen in Figure 4(b), where the query size is
increased. A larger query area affects the FULLFLOOD al-
gorithm less than the other two methods as only the com-
munication cost for returning the answers increases for this
algorithm, while the energy used for locating these answers
stays constant. With the query’s spatial window increas-
ing, STWINFLOOD uses flooding over a larger set of nodes,
ultimately degenerating into the FULLFLOOD algorithm for
large query windows. In both STWINDEPTH and STWIN-
FLoOD, the answers from a larger spatial window are sent
back to the query originator over a longer path (as the
answers are first collected by the coordinator node) com-
pared to the FULLFLOOD method, which returns all an-
swers over the shortest path. For large query windows,
FULLFLOOD uses less energy per node than STWINFLOOD
for 2000 nodes, but STWINFLOOD performs better than
FuLLFLoOD for large queries in denser networks (the cor-
responding graphs are not shown due to space limitations).

Figure 4(c) shows the effect of a query’s temporal range
on the energy consumption. A variation in the query’s
temporal range only affects the size of the answer messages,
and leads to a linear variation of the energy used by these
messages. The increase in energy usage is the smallest
for FULLFLOOD as the algorithm returns the answers over
the shortest path to the query originator. STWINFLOOD
performs better than STWINDEPTH because the relevant
answers are returned on the shortest path to the query
coordinator in STWINFLOOD, and both algorithms share
the answer return path (discovered by GreedyDF) from the
query coordinator node to the query originator.

6 Conclusions

While the technological advances have lead to sensors with
reduced sizes and increased capabilities, the sensor data
management is still in its incipient stages. The challenges
are multiple, and the database research has to move its
focus from considering time as a main optimization goal
toward energy efficiency or a combination of both time and
energy. The size of the database is no longer a primary

109

challenge, with the focus moving to the distributed nature
of the database and query processing.

In this paper we made a few steps toward energy ef-
ficient query processing in a sensor network environment
where each sensor is aware of only its neighbors. In this
scenario, we proposed the STWIN query processing frame-
work, where the query is first forwarded to a query coor-
dinator node within the query’s spatial window, followed
by an efficient query processing involving only the relevant
nodes. Within this framework, we proposed the GreedyDF
algorithm for the first phase, and WinDepth and WinFlood
algorithms for the second phase.

The experimental results showed that STWINFLOOD is
more energy efficient in most situations than simple flood-
ing as well as the solution involving just depth-first based
algorithms. Only for very large query windows in networks
with low sensor densities, the FULLFLOOD algorithm per-
forms slightly better in terms of energy usage, and it is
more robust for locating all relevant answers (however, it
causes network congestion, reducing the network’s capa-
bility to process several queries simultaneously). STWIN-
FLooD performs only slightly better than STWINDEPTH
for small query windows, but the difference in performance
dramatically increases for queries over large areas. An ad-
vantage of STWINDEPTH is that there are at most two
nodes working in each query processing step, which allows
the rest of the network to process other queries or simply
sleep to save energy. For most cases, STWINFLOOD has
shown low energy usage, and therefore we recommend it for
sensor networks where each node is only aware of the other
nodes located within its wireless range. The STWINFLOOD
combines the strengths of both depth first and breadth first
techniques while limiting their drawbacks.

In this paper we introduced techniques for query
processing when the user in interested in retrieving all the
relevant information. In other situations, an aggregated
query answer may be sufficient. We are currently investi-
gating new algorithms within the STWIN framework that
would allow efficient in-network aggregation during query
processing.

Acknowledgments. This work was partially sup-
ported by NSERC. We would like to thank Ioanis Niko-
laidis for his valuable comments and fruitful discussions,
and the anonymous reviewers for their very useful sugges-
tions to improve our work.

References

[1] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and
E. Cayirci. Wireless sensor networks: A survey. Computer
Networks, 38(4):392-422, 2002.

J. Beaver, M.A. Sharaf, A. Labrinidis, and P.K. Chrysan-
this. Power-aware in-network query processing for sensor
data. In Proc. of Hellenic Data Management Symposium,
pages 1-17, 2003.

M. Bhardwaj. Power-aware systems. Master’s the-
sis, MIT, 2001. http://www-mtl.mit.edu/research/ic-
systems/uamps/pubs/theses/.

P. Bonnet, J. Gehrke, and P. Seshadri. Towards sensor
database systems. In Proc. of IEEE Conference on Mobile
Data Management, pages 3-14, 2001.

2]

3]

(4]

[5]

A. Demers, J. Gehrke, R. Rajaraman, N. Trigoni, and
Y. Yao. Energy-efficient data management for sensor net-

(9]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]
(18]

(19]

20]

21]

(22]

23]

(24]

110

works: A work-in-progress report. In Proc. of Upstate New
York Workshop on Sensor Networks, 2003.

M. Demirbas and H. Ferhatosmanoglu. Peer-to-peer spatial
queries in sensor networks. In Proc. of International Con-
ference on Peer-to-Peer Computing, pages 32-39, 2003.

Q. Fang, F. Zhao, and L. Guibas. Counting targets: Build-
ing and managing aggregates in wireless sensor networks.
Technical Report P2002-10298, Palo Alto Research Center,
2002.

D. Ganesan, D. Extrin, and J. Heidemann. DIMENSIONS:
Why do we need a new data handling architecture for sen-
sor networks. In Proc. of Workshop on Hot Topics in Net-
works, 2002.

D. Ganesan, B. Greenstein, D. Perelyubskiy, D. Extrin, and
J. Heidemann. An evaluation of multi-resoultion storage for
sensor networks. In Proc. of International Conference on
Embedded Networked Sensor Systems, 2003.

S. Giordano, I Stojmenovic, and L. Blazevic. Position based
routing algorithms for ad hoc networks: A taxonomy. In
X. Cheng, X. Huang, and D.Z. Du, editors, Ad Hoc Wire-
less Networking. Kluwer, 2003.

M.A. Hammad, W.G. Aref, and A.K. Elmagarmid. Stream
window join: Tracking moving objects in sensor-network
databases. In Proc. of International Conference on Sci-
entific and Statistical Database Management, pages 75—84,
2003.

C. Intanagonwiwat, R. Govindan, D. Extrin, and J. Hei-
demann. Directed diffusion for wireless sensor networking.
IEEE Transactions on Networking, 11(1):2-16, 2003.

S. Madden and M.J. Franklin. Fjording the stream: An
architecture for queries over streaming sensor data. In Proc.
of International Conference on Data Engineering, pages
555-566, 2002.

S. Madden, M.J. Franklin, and J.M. Hellerstein. TAG:
a tiny aggregation service for ad-hoc sensor networks. In
Proc. of Symposium on Operating Systems Design and Im-
plementation, pages 131-146, 2002.

S. Madden, M.J. Franklin, and J.M. Hellerstein. The design
of an acquisitional query processor for sensor networks. In
Proc. of SIGMOD, pages 491-502, 2003.

M. Mauve, J. Widmer, and H. Hartenstein. A survey on
position based routing in mobile ad hoc networks. IEEE
Network Magazine, 15(6):30-39, 2001.

V. Raghunathan et al. Energy aware wireless microsensor
networks. Signal Processing Magazine, 45(2):40-50, 2002.

T. Rappaport. Wireless Communications: Principles and
Practice. Prentice-Hall Inc., 1996.

S. Shakkottai, R. Srikant, and N. Shroff. Unreliable sensor
grids: Coverage, connectivity and diameter. In Proc. of
INFOCOM, 2003.

I. Stojmenovic. Position based routing in ad hoc networks.
IEEE Communications Magazine, 40(7):128-134, 2002.

Y. Xu and W.C. Lee. Window query processing in highly
dynamic sensor networks: Issues and solutions. In Proc. of
Workshop on GeoSensor Networks, 2003.

Y. Yao and J. Gehrke. The Cougar approach to in-network
query processing in sensor networks. SIGMOD Record,
31(3):9-18, 2002.

Y. Yao and J. Gehrke. Query processing in sensor net-
works. In Proc. of Conference in Innovative Data Systems
Research, 2003.

D. Zhang, D. Gunopulos, V.J. Tsotras, and B. Seeger. Tem-
poral and spatio-temporal aggregations over data streams
using multiple time granularities. Information Systems,
28:61-84, 2003.

Mission-Critical Management of Mobile Sensors (or,
How to Guide a Flock of Sensors)

Goce Trajcevski, Peter Scheuermann*

Department of ECE
Northwestern University
Evanston, Il

{goce,peters}@ece.norethwestern.edu

Abstract

This work addresses the problem of optimiz-
ing the deployment of sensors in order to en-
sure the quality of the readings of the value
of interest in a given (critical) geographic re-
gion. As usual, we assume that each sensor is
capable of reading a particular physical phe-
nomenon (e.g., concentration of toxic materi-
als in the air) and transmitting it to a server
or a peer. However, the key assumptions con-
sidered in this work are: 1. each sensor is
capable of moving (where the motion may be
remotely controlled); and 2. the spatial range
for which the individual sensor’s reading is
guaranteed to be of a desired quality is lim-
ited. In scenarios like disaster management
and homeland security, in case some of the
sensors dispersed in a larger geographic area
report a value higher than a certain threshold,
one may want to ensure a quality of the read-
ings for the affected region. This, in turn, im-
plies that one may want to ensure that there
are enough sensors there and, consequently,
guide a subset of the rest of the sensors to-
wards the affected region. In this paper we
explore variants of the problem of optimizing
the guidance of the mobile sensors towards the
affected geographic region and we present al-
gorithms for their solutions.

1 Introduction and Motivation

The management of the transient (location,time) in-
formation for a large amount of mobile users has re-

Research partially supported by NSF grant 11S-0325144
Copyright 2004, held by the author(s)
Proceedings of the First Workshop on Data Mana-
gement for Sensor Networks (DMSN 2004),
Toronto, Canada, August 30th, 2004.
http://db.cs.pitt.edu/dmsn04/

Herve Bronnimann
Department of CIS
Polytechnic University
Brooklyn, NY
hbr@poly.edu

cently spurred a lot of scientific research. It began
with the investigation of the trade-offs in updating
the information vs. minimizing the look-up time of
a particular user’s location (see [21] for a survey) and
ranges to many aspects of modeling, efficient storage
and retrieval, and processing of a novel types of spatio-
temporal queries in the field commonly known as Mov-
ing Objects Databases! (MOD).

On the other hand, a challenging research field
which recently emerged is the management of a sensor-
generated data. Sensors are low-cost devices which are
capable of measuring a value of a particular physical
phenomenon and, eventually, transmitting it within a
limited range. They may also have some limited pro-
cessing power and can be mobile and deployed in a
certain geographical area. Networks of sensors have
already been deployed in the real world [13] and very
active research efforts are being undertaken both in
industry and academia [14]. Various aspects of inter-
est for managing the sensor-generated data have been
investigated (e.g., battery-life management, commu-
nication management of ad-hoc networks, stream-like
management of the sensor-generated data, etc.) and
a recent collection reporting the status of different re-
search works is presented in [17] and [18].

Although mobility in sensor networks has been ad-
dressed in the context of communication protocols for
ad-hoc and peer-to-peer networks (e.g., [16, 22]), we
believe that the mobility dimension plays an additional
important and unexplored role in the overall topic of
the sensor data management, which is the basic moti-
vation for our research. This particular work is based
on the fact that the spatial range for which the quality
of the readings that a sensor can guarantee is limited
and we tackle the problem of how to deploy a suffi-
cient number of sensors in a given region. The moti-
vational scenario is the one of disaster management in
a homeland security setting and can be described as
follows. Assume that a set S of mobile sensors is de-

! An recent collection of results is presented in [15]

111

ployed in a large geographic area in order to monitor
particular value(s) of interest, e.g., the temperature
and the concentration of toxic materials in the air. In
case a certain subset Sj of the sensors, co-located in
a given region, report readings which exceed a given
(pre-defined) tolerance threshold, we would like to en-
sure the quality of readings of the sensors’ data for
the critical region. In order to do so, we would like
to ensure that there are enough many sensors inside
that particular critical region and our goal is to opti-
mize the guidance of a subset of m sensors from S\ S,
towards the interior of the critical geographic region.

Throughout this work, we investigate few variations
of the problem of optimizing the guidance of the set
of sensors towards the critical region, in order of their
increasing difficulty. In some way, our work can be
viewed as a step towards adding spatio-temporal con-
text awareness in managing sensor data.

The rest of this paper is organized as follows. Sec-
tion 2 formally introduces the terminology used. In
Section 3 we introduce the concept of critical times
with respect to the guidance of mobile sensors and we
present three variants of the problem of reachability
with respect to the critical region. These variants are
used as a basis for the problems addressed in Section
4, where we have more realistic requirements of the
placement of the sensors within some optimal time-
frame and we also consider the spatial limit on the
validity of the data read by a particular sensor. Sec-
tion 5 presents yet another variation of the problem
of optimizing the guidance of the set of mobile sensors
with respect to a critical geographical region which, in
a sense, is the “opposite” of the problems presented
in Sections 3 and 4. Section 6 gives a brief overview
of the relevant literature and in Section 7 we present
concluding remarks and we outline some areas for the
future research work.

2 Preliminaries

In this section we formally introduce the terminology
used in the rest of the paper.

We assume that we are given a set of distributed
mobile sensors S = {si1,82,...5}, where each s;
is represented as an ordered pair s; = ((x;,¥;),v;)-
(x4, y:) denotes the location of the sensor s; and v; de-
notes its speed. Typically, the sensors motion plan for
the future (future trajectory) or the past completed
motion (past trajectory) can be represented as a poly-
line in 3D space: (milayilatil)a ey (wznaylnatzn) [24]7
however, without loss of generality, we omit this mod-
eling aspect from the paper.

Each sensor s; periodically reports the reading val;
of the value of the physical phenomenon that it is ob-
serving. Let C, to denote a value which is a tolerance-
threshold for the monitored physical value.

Definition 2.1 A sensor s; is called hot if it reads a
value val; > C,.

Assuming that, at a certain time instance, a subset
of the set of the sensors have read values greater then
Cy, we have the following definition:

Definition 2.2 Given o subset Sy C S of sensors
St = {sj1,8j2,...,8jx} such that (Vi)(valj; > C,),
the critical region Cr of S (also denoted as Cr(Sk))
is defined as the convex hull of the set of 2D points

{(leayj1)7 (%2:1/;’2); ceey (x]kay]k)}

Defining the critical region as a convex hull of the
locations of the hot sensors is justified by several “nat-
ural” properties (c.f. [20]):

e The convex hull is the convex polygon with the
smallest area which encloses a set of (planar)
points.

e The convex hull is the convex polygon with the
smallest perimeter. which encloses a set of (pla-
nar) points.

e The concept of the convex hull and the algorithms
for its computation are very well studied topics in
the field of Computational Geometry.

The concepts introduced in Definition 2.1 and 2.2
are illustrated in Figure 1. The hot sensors are in-
dicated by the dark disks and the white disks indi-
cate the sensors which not hot. As mentioned in Sec-
tion 1, for the purpose of ensuring certain quality of
the readings of the sensor-data, we would like to en-
sure that there are “enough many” (application spe-
cific) sensors in the critical region and we are focusing
on minimizing the time that it takes to deploy them.
In the rest of the paper, we present the algorithms
which handle different variants (due to different con-
straints/requirements) of the problem of optimal de-
ployment of mobile sensors in a given critical region.

o

o]

Figure 1: Guiding the sensors towards the critical area

112

3 Critical Times

Now we proceed with a few variations of the first cate-
gory of problems of optimizing the deployment of sen-
sors in a given critical region. In this section we ad-
dress issues related to arrival of mobile sensors in the
interior of the critical region which, as it turns out, are
important for the settings of the problem(s) that we
consider in Section 4.

3.1 Minimizing the Arrival Time

The simplest variation of the problem is the one which
assumes that in order to ensure the desired quality of
the sensor data (i.e., the desired coverage of the critical
region) it suffices to have m sensors in the interior (or,
on the boundary) of Cg. For this case, we would like
to ensure that the time it takes for a desired number
of sensors to arrive inside Cgr is minimized. Figure
1 illustrates a scenario where we have six hot sensors
and, in order to ensure the desired coverage of Cr we
need a total of ten sensors. Thus, we need to bring four
more sensors inside Cg, in a quickest possible manner.
The problem can be formally stated as follows:

Problem 3.1 Minimal Arrival Times (MAT):
Given: An integer m; a set of sensors S; and a subset
S CS;

Goal: Minimize the time for which it can be guaran-
teed that there are m sensors in Cr(S).

Let k£ =| Sk, | and observe that if m < k we have al-
ready satisfied the quality requirements. Let t,; denote
the minimal time-value for which the sensor s; € S can
reach the boundary of C'r, which we will call its critical
arrival time — cat;. Obviously, if (z;,y;) € Cg, then
cat; = 0. The minimal time for a particular sensor
s; € 8, which is outside Cg, to reach the boundaries
of Cg, is actually equivalent to the time it takes for
a circle centered at (z;,y;) and with radius v; - ¢; to
intersect Cg.

Clearly, after constructing the convex hull for the
location-points of the hot sensors (the ones in Sg), one
only needs to determine the set of m closest points to
Cr(Sk) and get their arrival times cat,; < catqe <
... < catym- In order to achieve our goal, we need at
least cat = catyy, time units. The asymptotic com-
plexity of this approach is bounded by O(nlogk), since
the determination of the minimal distance from a point
to a given convex region with k edges? can be achieved
in O(logk) [20]. Observe that cat is the lower bound
on the time that we need to ensure that there are m
sensors anywhere inside Cr(Sk).

Let us point out that in case the critical region
Cr(Sk) is defined as a circle, the diameter of which

2The convex hull of the set of k points is a polygon which
may have up to k edges/vertices [2, 20].

is the diameter of the set of location-points of the sen-
sor in S, the complexity of calculating cat reduces to
a linear (O(n)) time.

3.2 Minimizing the Furthest-Point Reachabil-
ity Time

The next variation of the problem of ensuring the qual-
ity of the sensors’ readings in the critical region con-
siders the upper bound on the time it takes to bring
the desired number of sensors (m) inside the critical
region. Once again, we have a problem of selecting a
subset of (S '\ Sg) of size m, except now the selection
criterion for the purpose of ensuring the quality of the
readings is different. Formally:

Problem 3.2 Minimal Furthest-Point Reacha-
bility (MFR):

Given: An integer m; a set of sensors S; and a subset
Sk g S;

Goal: Minimize the time for which it can be guaran-
teed that each of the m sensors has reached the furthest
point (with respect to its current location) in the inte-
rior of Cr(Sk).

Let ty; denote the minimum time-value for which
the sensor s; € S can reach the furthest point in Cg
with respect to its location (z;,y;). We will call it its
critical furthest-point time — cft;. In a manner similar
to the calculation of the cat time, in O(nlog k) we can
obtain the set of m sensors such that ty; <tp <... <
tym. If we set cft = ty,, then cft is, in a sense, an
upper bound on the time it takes to ensure that there
are m sensors anywhere inside Cr(Sk).

Now we proceed with the more desirable (and more
complicated) setting of optimizing the critical time.

3.3 Critical Covering Time (cct)

The formal statement of this problem is specified as
follows:

Problem 3.3 Minimal Interior Reachability
(MIR):

Given: An integer m; a set of sensors S; and a
subset S, C S;

Goal: Minimize the time cct for which it can be
guaranteed that there exists a subset S, C S of m
sensors that can be brought in the interior of Cr(Sk)
in such a manner that any point inside Cr(Sk) can
be reached by some sensor in Sy, in time < cct.

Obviously, the goal of the MIR, problem is to min-
imize the time-value for a given m — the number of
sensors which ensures the quality of the readings in a
given critical region. However, one may very naturally
be interested in the dual optimization problem, which
can be formulated as:

113

Problem 3.4 Minimal Number of Sensors
(MNS):

Given: A time-value cct; a set of sensors S; and a
subset S, C S;

Goal: Minimize m, such that a subset S,, C S with
m elements exists, for which any point within Cr(Sk)

can be reached by some sensor in S, in time < cct.

However, this is an instance of the set-cover prob-
lem, which is NP-complete [10]. Even this particu-
lar instance (disk-covering in 2D) is NP-complete, al-
though it can be approximated within a constant fac-
tor [5], as opposed to logarithmic at best for the gen-
eral set cover. Thus, the best solution one can hope
for is a heuristic solution. One possible approach is to
relax the limit of m and ask how all the sensors can
achieve the desired covering of Cg (i.e., set m = n).
In this case, the decision problem MIR amounts to
constructing the union of all the n disks and check-
ing if it covers Cg. This can be done in O(nlog®n)
time, as the union of disks (even of different radii) has
complexity O(n) [3, Ex 3.6]. Let us point out that by
applying binary searching, one can determine the S,
and cct up to any accuracy (using MIR). The exact
value can be determined in O(npolylogn) time by de-
signing a parallel version of the decision algorithm and
using parametric searching.

4 Spatial Limits on the Validity of
Readings and Sensors Placement

Based on the results presented in Section 3, in this sec-
tion we present a more stringent set of requirements,
which are more realistic for practical purposes. The
key assumption is that the readings of each sensor
are valid only within a limited area, which is repre-
sented as a disk with radius r centered at a sensor’s
location-point. Building up on the results in the pre-
vious section, first we will discuss a variation in which
we assume that there are enough sensors to cover the
critical region C'gz and, subsequently, we address the
more realistic setting of limited number of available
Sensors.

4.1 Full Coverage of Cg

Instead of having m sensors inside Cg, our goal now
is to minimize the time for which Cr can be entirely
covered by disks of radius r centered at the sensors
location-points. We assume that we have sufficient
number of disks to ensure the coverage of Cr. The
problem can now be stated as follows:

Problem 4.1 Minimal
(MFCQ):

Given: A set of sensors S and a region Cg;

Goal: Determine the minimal time (denote it mrt —

Full Coverage Time

minimal routing time), such that o subset S,,, C S ex-
ists which can be moved inside Cg in such a manner
that every point in Cr is at distance < r from the
location-point of some sensor S;,; € Sp.

Observe that the problem has some implicit require-
ments — we need to determine the trajectory of each
mobile sensor s,,; and (recall that) we do not even
have the limit for m set in advance. If we let A(CRg)
denote the area of the critical region and ¢ denote the
maximal percentage of overlap between two disks that
a user allows®, then we can have a reasonable lower
bound on m calculated as A(Cgr)/(w-(1—¢)). Clearly,
the more sensors we have available, the smaller value
of mrt we can obtain.

The formulation of the corresponding dual-like
problem can be specified as:

Problem 4.2 Time-Limited Full Coverage
(TFC): Given: A set of sensors S; a region Cg;
time-value (limit) mrt;

Goal: Determine the minimal m such that m sensors
can be placed inside Cr in such a manner that Cg
can be covered by disks of radius r centered at the
sensors location-points.

Obviously, the techniques presented in Section 3
cannot be directly applied in these settings. However,
they can still give us some useful bounds. Let (x;, ;)
denote the “current” location of the i-th sensor (which
is, before it is routed towards C'g). Then mrt must be
large enough such that the union of the disks centered
at each (x;,y;), with respective radii r +v; - mrt, covers
the entire region Cg. This is equivalent to the require-
ment that any point of Cr (interior + boundary) can
be reached by at least one sensor. Thus, a reasonable
lower bound for mrt is the critical coverage time — cct
(c.tf. Section 3).

This is illustrated in Figure 2, where for simplicity
we have assumed that the only hot sensors are on the
vertices of Cr (we do not indicate their coverage area).
White disks indicate the initial location and the area in
which the readings of a particular sensor are valid and
dashed circles indicate the boundaries that a particular
sensor can reach for a valid reading within time ¢.

We propose two heuristic solutions. The first one,
which is trying to cater the worst case, can be ex-
plained as follows. At the time ¢ = cct, at which all
points of Cr can be reached by some sensor, pick a
point that was reached (covered) last — this point takes
longest time, but will have to be covered. Remove the
corresponding covering disk(s) and repeat the proce-
dure to the leftover of Cg. This is illustrated by the

30Observe that some overlap will be inevitable, e.g., even if

we are to cover a unit disk D with disks of radius p < 1, we have

that the limit (as p — 0) of the ratio of the area of the disk D
3-v3

and the sum of the areas of all the covering disks is =52 (c.f.

2
[9D)-

114

T+ Y

Figure 2: Spatial Coverage of the Critical Region

disks A, B and C in Figure 2, where the dark disks
indicate their final positions and are to be removed
from the cover. If the sensors are well distributed, we
expect that we can cover all the other points within
time cct. This may not be the case however, since
removing the corresponding disk increases the cct of
the remaining Cr. This can happen if some point pre-
viously reached before cct by the removed sensor now
needs to be reachable by another sensor. In such cases,
if there is not close-enough sensor, the new cct will in-
crease. This heuristic is also not guaranteed to give
a optimal number of covering sensors, since it starts
from the center and works the covering towards the
boundary of Cg. In fact, we expect it to yield twice
the optimal number of sensors. Note, however, that
it will not be worse than four times the optimal num-
ber of sensors, since the centers of the disks are chosen
outside the union of the already chosen final disk posi-
tions. A standard packing/covering argument implies
that the halved circles with the same center are dis-
joint, and an area-based argument justifies the claim.

Our second heuristic tries to address precisely the
problem of minimizing m. Essentially, the above so-
lution is suboptimal because it only looks at sensors
locally, and one by one. Trying to look at the entire
picture, we can decide a priori the final location of the
sensors by computing a minimal covering in the shape,
say, of a honeycomb, or using an incremental algorithm
to add the disks one by one. Note that standard argu-
ments, similar to the one above, can be used to imply
that the number of disks in such a packing is within
a small constant ¢ from the optimal number. Next,
we compute a Euclidean minimum matching [19] be-
tween the sensors and the final positions, which tells
us which sensors go where. As a last step, in order

to “refine” the solution, we may even want to apply a
local perturbation scheme for the purpose of optimiz-
ing the critical covering time (cct), while retaining the
covering property®. All of the above can be carried
out in O(mn) time. As a last observation, let us point
out that using more sensors than the number m found
by the cover, we can expect to lower the value of mrt.

4.2 “Fair” Coverage of Cr with Limited Num-
ber of Sensors

The last variant of the problem of covering the critical
region corresponds to the realistic settings of having
limited resources available. The initial assumption for
this section was that there are enough sensors available
for the coverage of Cg. In other words, depending on
the value of the valid coverage area r of an individ-
ual sensor’s readings, we assumed that the value of
m is large enough so that Cg is fully covered with m
(partially overlapping) disks. However, similar to the
scenarios considered in Section 3, we now assume that
we have a limit on m — the number of sensors that can
be deployed inside Cg, each with some valid area of
its readings. In this case, the question becomes how
to select the locations for each of the m sensors inside
CR so that we can guarantee that, whenever needed,
any point within Cr can be reached by one of the m
sensors within “reasonable time”. Again, we will have
a subsequent step to handle, which is, which of the n
sensors in S should be the ones to be placed in the
chosen m locations inside C'g. More formally, now we
have to solve:

Problem 4.3 Fair Coverage Problem (FC):
Given: A critical region Cr and an integer m;
Goal: determine the locations of a set of m points
P = { p1, p2, ..., Pm} in the interior of Cr such
that the time for which every point on inside or on the
boundary of Cr can be reached by a sensor located at
some p; is minimized;

Plus, its “next stage” of selecting which m sensors
should be guided in each p; so that the mrt is mini-
mized too (Euclidean minimum matching [19] again).

To handle FC we obtain a fair distribution by find-
ing a value ' (' > r) such that Cg can be covered
with at most m disks of radius r’. Once we have de-
termined the locations of the centers of the m disks,
placing a sensor in each center ensures that even Cpr
is not entirely covered, any point not covered can be
covered by moving one of the sensors by the smallest
amount possible (i.e., in minimal time). Again, we
need O(mn) time to carry out the solution.

40Observe that in this solution the number m of sensors
needed to cover is essentially dictated by the value of r — the
radius of validity of sensors’ readings.

115

5 “Potpourri”: Escape From the Crit-
ical Region

Now we briefly turn our attention to the “inverse-
image” of the problems considered in the previous two
sections. Namely, instead of optimizing the deploy-
ment of a sufficient number of sensors inside the critical
region, we analyze the case when one would actually
want to ensure that the sensors from the interior of
the Cr (both hot and non-hot ones) are guided out-
side Cr as soon as possible. Such setting is of interest
for scenarios like, for example, when the values read
by the hot sensors could indicate that there may be a
fire in a certain geographic area.

Again, we assume that the readings of each sensor
are valid within a disk-like area with radius r, cen-
tered at the sensor’s location-point. In order to ensure
some quality of the monitoring of the values along the
critical region’s boundary, we would like to guide each
individual sensor at distance r from the boundary of
Cgr. Formally, the problem that we address in this
section can be stated as follows:

Problem 5.1 Minimal Escape Time (ET):
Given: A critical region C, and a subset of sensors
Scr C S such that each s, € Scr has its location-
point inside (or, on the boundary of) Cr.

Goal: Minimize the time that it takes to move all the
sensors from Scr at distance r from Cg.

ICK
- \\
~ ~
/ \ ~

Figure 3: Escaping from the critical region

The illustration is provided in Figure 3. Solid disks
indicate the initial locations of the (hot and non-hot)
sensors inside Cg. Since the quality of the readings
of each sensor is guaranteed within a disk of radius r,
for safety, we want to guide the sensors at distance r
from Cg’s boundary. For that, we first need to deter-
mine, what is commonly called, the Minkowski Sum
of the region C'g with a disk with radius r. We will

use C'g @ r to denote the operation of Minkowski Sum
and informally® it can be described as the region ob-
tained when the disk with radius r is “swept” along the
boundary of C,.. The empty disks in Figure 3 indicate
the final locations of the sensors which were initially
the vertices of Cg.

Since the construction of the convex hull (Cg) is as-
sumed to yield a polygon with O(k) edges/vertices (in
time linear in k), the construction of the Minkowski
Sum of a convex polygon (Cg) with a disk with radius
r can be done in O(k) (c.f. [2]). Similarly to the dis-
cussion in Section 3 (M AT problem), for each sensor’s
location-point in Cg, we can find the closest point on
the boundary of Cg @ r in O(logk). Assuming that
(worst case) initially all the sensors from S were in
CR, the time-complexity of the algorithm for solving
the ET problem is O(nlogk).

In case certain quality of the sensor’s readings needs
to be ensured by placing a given number of sensors
on the boundary of C'g @ r, we can apply some of the
variations of the guidance problems that we considered
in Section 3 and 4, respectively.

6 Related Literature

MOD researchers have addressed many aspects of
interest for management of spatio-temporal data.
Largest efforts were made in the area of indexing
a collection of moving objects for a purpose of effi-
cient query processing, however, MOD-related prob-
lems turned out to have many challenging aspects:
modeling/representation based on different ontologies
and algebraic types; linguistic aspects; novel query
types and their processing algorithms [15]. In this
work, we addressed a novel aspect of a “semantic-
based” management of moving objects were the se-
mantics of the problem was motivated by the settings
of sensor data management.

Mobility aspects in a data-motivated settings have
been addressed from perspective of ad-hoc and P2P
networks. However, most of the works are targeted
towards organizing structures which would ensure a
dissemination of information (communication) and
effectiveness of routing [22]. Some Computational
Geometry techniques (dual space transformation)
have been employed for efficient tracking of mobile
sensors, which enable efficient communication and
power management [16]. Our work is, in a sense,
orthogonal to the existing results because we focused
on the guidance of a set of mobile sensors for the
purpose of quality assurance of the data read by those
sensors in a given geographic region.

Two works which are close in spirit to ours are pre-
sented in [11] and [23]. In [11] the authors consider

5Formally, the Minkowski Sum of two sets of points P; and
P» can be specified as Py & P» = {p1 + p2 | p1 € P1,p2 € P>},
where the summation is of vector p1 with vector p2 (c.f. [2]).

116

some spatio-temporal correlation with the quality of
the data read. They introduce the notion of swarms,
which are nodes with higher processing capabilities
than the regular sensor nodes and address the prob-
lem of efficient guidance of the swarms towards the
location(s) of a hot static sensor(s). Our work is, in
a sense, complementary to the one in [11] — we ad-
dress the problem of ensuring that there are enough
many sensors brought in a given critical region. On
the other hand, [23] considers the problem of limited
transmission range and arrangements of the nodes in
ad-hoc network which will ensure probabilistic bound
on connectedness. However, we consider the aspect of
limited range of the sensor readings for the purpose of
ensuring different quality criteria.

7 Concluding Remarks and Future

Work

We have addressed the problem of the efficiency of en-
suring some quality of data-readings by a set of mobile
sensors in a given critical geographic region . We pre-
sented different variations of the problem and derived
algorithms for their solution. Currently we are focus-
ing on obtaining comparative experimental results for
our heuristics.

The work that we presented here is part of a larger
research effort that we are currently undertaking in the
area of context-aware MOD. Our MOD database con-
sists of information about mobile users (e.g.,their mo-
tion plan, preferences, etc.), information about static
objects of interest, as well as the information collected
by the various sensors. This database is maintained
in a distributed fashion, with the current sensor data
being kept by various sensor nodes and the historical
sensor data being accumulated at some sensor servers
which can be mobile themselves, in a similar spirit to
the concept of swarms (c.f. [11]). Our system han-
dles continuous queries and notifications which need
to be re-evaluated when there are some changes in
the motion plans of the users or in the environmental
context. The sensor data falls into the environmental
context dimension and this data is used in order to
detect which objects in the users’ database need to be
notified of the changes in the environment or which
objects’ trajectories need to be modified accordingly.
For example, some unusually high temperatures and
low winds detected by the sensors are used to detect
a fire. The system will then check if there are any
outstanding requests for user notifications that need
to be triggered. In this case, only the users who have
requested to be notified of a fire within a certain geo-
graphic area are notified. We observe here that the in-
dividual readings of the sensor nodes need to be aggre-
gated at the coordinating sensor servers, so that some
intelligent reasoning can be performed there, such as
the fact that a fire has been detected. Thus, the sensor
data can be viewed as consisting of a number of data

cubes, each having at minimum the time and location
dimensions.

The “correlation” we considered in this paper was
between the (critical) geographic region determined by
the set of sensors which simply report a value past
certain threshold and the number of sensors in that
region. However, one may observe that we did not
consider the issues of the limited communication range
and the limited mobility (e.g., a road-map in an urban
environment), which are parts of our ongoing work.

We envision a lot of interesting topics in the field
of sensor data management which can benefit from
the extensions of some of the existing works in the
database research and can, in turn, pose challenges
for database researchers:

e Uncertainty — The problem of imprecision of the
values in the MOD with respect to the real-world
values of the entities represented has been addressed
both in the context of modeling and processing
nearest-neighbor and range queries [7, 24]. The
problem of imprecision of sensor data has also been
tackled in [8]. What are the consequences when
the uncertainties in both context dimensions (lo-
cation,time) and data values are brought together?
What are the queries that can be posed and how can
they be processed?

e Data reduction — Although not explicitly, the prob-
lem of data reduction can be viewed as a “flip-side
of the coin” of uncertainty management. Reducing
the size of the data set with deterministic bounds on
the query error has been addressed independently in
the MOD settings [6] and the stream-like database
settings where the number of passes over the data
should be minimized and yet the sample retained
should exhibit a bound on the query-errors [4].
What is the impact of the difference of the context
dimensions (semantics of the data read vs. location
and time of the sensor) on the algorithms which could
reduce the total size of the data kept in a database?
e Computational Geometry Techniques — In this
work we have already utilized some results from CG
literature. Is there are room for more collaborative
results between the database and the CG researchers
in the context of sensor data management? We
believe so — to a large extent. In particular, one of
the immediate challenges of our results is the efficient
management of mobile critical regions (e.g., the fire is
spreading dynamically). The MOD researchers have
already addressed the issue of algebraic modeling of
moving polygons (c.f. [12]) and the CG researchers
have already addressed the issue of incrementally
computing the convex hull of a set of moving points
with known motion plans (c.f. [1]). Another extension
of our work is how to manage the mobile swarms (c.f.
[11]) and mobile sensors in the context of quality
of reading and processing of sensor-generated data,
which can readily be categorized as a “mobile version”

117

of the clustering problem.

References

[1]

[2]

[3]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

P. Agarwal, L. Guibas, J. Hershberger, and
E. Veach. Maintaining the extent of a moving
point set. In WADS, 1997.

P. K. Agarwal, E. Flato, and D. Halperin. Poly-
gon decomposition for efficient construction of

minkowski sums. Computational Geometry, 21(1-
2), 2002.

J.D. Boissonat and M. Yvinec. Algorithmic Ge-
ometry. Cambridge University Press, 1998.

H. Bronnimann, B. Chen, M. Dash, and Peter
Scheuermann. Efficient data reduction with ease.
In SIGKDD, 2003.

H. Bronnimann and M.T. Goodrich. Almost op-
timal set covers in finite VC-dimension. Discrete
and Computational Geometry, 14, 1995.

H. Cao, O. Wolfson, and G. Trajcevski. Spatio-
temporal data reduction with deterministic error
bounds. In DIAL-POMC, 2003.

R. Cheng, D.V. Khalashnikov, and S. Prabhakar.
Querying imprecise data in moving objects envi-
ronments. IEEE-TKDE, 16(7), 2004. (to appear).

R. Cheng and S. Prabhakar.
tainty in sensor databases.
32(4), 2003.

Managing uncer-
SIGMOD Record,

S. R. Finch. Circular Coverage Constants. Cam-
bridge University Press, 2003.

M.R. Garey and D.S. Johnson. Computers
and Intractability: o Guide to Theory of NP-
Completeness. W.H.Freeman, 1979.

M. Gerla and K. Xu. Multimedia streaming in
large-scale sensor networks with mobile swarms.
SIGMOD Record, 32(4), 2003.

R. H. Giiting, M. H. Bohlen, M. Erwig, C. S.
Jensen, N. Lorentzos, E. Nardeli, M. Schneider,
and J. R. R. Viqueira. Spatio-temporal models
and languages: An approach based on data types.
In Spatio-Temporal Databases: the Chorochronos
Approach. 2003.

J. Hellerstein, W. Hong, and S. Madden. The sen-
sore spectrum: Technology, trends and require-
ments. SIGMOD Record, 32(4), 2003.

J. Hill, R. Sczeczyk, A. Woo, S. Hollar, and
D.C.K. Pister. System architecture directions for
networked sensors. In ASPLOS, 2000.

[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]

118

M. Koubarakis and T. Sellis et al., editors. Spatio-
Temporal Databases: The CHOROCHRONOS
Approach. Springer (LNCS 2520), 2003.

J. Liu, P. Cheung, L. Guibas, and F. Zhao. A
dual-space approach to tracking and sensor man-
agement in wireless sensor networks. In WSNA,
2002.

L. Liu, editor. SIGMOD Record, volume 32. ACM
Press, 2003.

L. Liu, editor. SIGMOD Record, volume 33. ACM
Press, 2004.

J. O’Rourke. http://cs.smith.edu/ orourke/TOPP /P6.html.

J. O’Rourke. Computational Geometry in C.
Cambridge University Press, 2000.

E. Pitoura and G. Samaras. Locating objects in
mobile computing. IEEE Transactions on Knowl-
edge and Data Engineering (TKDE), 13(4), 2001.

V. Ramasubramanian, Z.J. Haas, and E.G. Sirer.
Sharp: A hybrid adaptive routing protocol for
mobile ad hoc networks. In MobiHOC, 2003.

P. Santi, D.M. Blough, and F. Vainstein. A proba-
bilistic analysis for the range assignment problem
in ad hoc networks. In MobiHOC, 2001.

G. Trajcevski, O. Wolfson, K. Hinrichs, and
S. Chamberlain. Managing uncertainty in mov-
ing objects databases. ACM Transactions on
Database Systems (TODS), 2004. (to appear in
29(3)).

KPT: A Dynamic KNN Query Processing Algorithm for
L ocation-aware Sensor Networks

Julian Winter ~ Wang-Chien Lee
Department of Computer Science and Engineering
Pennsylvania State University
University Park, PA 16802
Email: {jwinter, wlee} @cse.psu.edu

Abstract

An important type of spatial queries for sensor
networks are K Nearest Neighbor (KNN) queries.
Currently, research proposals for KNN query pro-
cessing is based on index structures, which are
typically expensive in terms of energy consump-
tion. In addition, they are vulnerable to node fail-
ure and are difficult to maintain in dynamic sensor
networks. In this paper, we propose KPT, an a-
gorithm for dynamically processing KNN queries
in location-aware sensor networks. KPT shows
great potential for energy savings and improved
guery latency. Sincethe tree infrastructure is con-
structed only temporarily, KPT is less vulnerable
to sensor node failure.

1 Introduction

Recent research on accessing data available in sensor net-
works has been focused on index structures, data stor-
age, routing algorithms, data dissemination and aggrega
tion techniques [2, 4, 6, 8, 7, 9, 15]. A major goal of these
proposals is to support various types of queries posed to a
sensor network from any location. A query is transmitted
from the query source to the sensor nodes or network loca-
tions that contain the data needed to satisfy the query. The
results (i.e., data collected at the sensor nodes) are then ag-
gregated (if allowed) and returned back to the query source.
The main requirement for query processing is to incur as
little energy expenditure as possible without dropping the
gueries or sacrificing execution latency.

Spatial queries such as window/range queries and &
nearest neighbors (KNN) search are particularly relevant

Copyright 2004, held by the author(s)

Proceedings of the First Workshop on Data M anagement for
Sensor Networ ks (DM SN 2004),

Toronto, Canada, August 30th, 2004.
http://db.cs.pitt.edu/dmsn04/

to sensor network applications because the data needed
for these applicationsis often geographically distributed in
the network. Several approaches have been proposed that
support window/range queries in sensor networks [5, 14],
while a preliminary study of the KNN queries in sensor
networks, called Peer-Tree, hasjust started [1]. Peer-tree, a
distributed index structure based on the design principle of
R-trees, ignores the fact that sensor nodes are susceptible
to radio interference, signal attenuation, and fading. Asa
result of these radio problems index structures are difficult
to implement in sensor networks and expensive to main-
tain in terms of energy consumption. This paper introduces
the KNN Perimeter Tree (KPT) Algorithm for supporting
KNN queries. KPT exploits the fact that KNN queries
are geographically-based to achieve energy savingsand in-
creased fault tolerance. A preliminary performance evalua-
tion isgiven to demonstrate the capabilities of KPT. For this
paper we are assuming a stationary, |ocation-aware sensor
network. KPT assumes that sensors are aware of their ge-
ographical neighbors needed to support geographical rout-
ing. Sensor datais stored using local storage which can be
organized as cache lines based on sensing event types. A
given sensor can aggregate data over a period of time; for
example aline in the cache may represent the sensing data
of aminute.

This paper is organized as follows. In Section 2 we in-
troduce KNN queries in sensor networks and review rele-
vant research efforts. Then weintroducethe KPT agorithm
in Section 3 and itsanalysisin Section 4. Finally, Section 5
concludes this study and discusses the future work.

2 Reéated Work

In this section we describe the background of sensor net-
works, KNN queries and related research contributions.

2.1 KNN Query in Sensor Networks

k-Nearest Neighbor (KNN) queries of spatial data have
been an interesting research topic for sometime[10, 11]. A
KNN query isinitiated by aquery source node and involves
finding the k spatially nearest objectsto agiven query point

119

within the sensor network. Centralized or distributed in-
dex structures such as the R-tree have provided support for
KNN queries [3]. However, in the context of sensor net-
works, technical issues such as node failures (caused by de-
pleted energy resources or communication problems) make
such index structures unwieldy and inefficient for executing
KNN queries.

KNN queries can be classified into two types for sensor
networks. For Type 1 queries, we assume that all sensor
nodeslocally store sensor dataand are able to answer a spe-
cific query constrained by a geographical query condition.
For example, assumethat aquery desiresthe k nearest tem-
perature readings to some query point and all sensor nodes
have a sensing component to measure temperature. In this
case, the query needs to be transmitted to the k& geograph-
icaly nearest sensor nodes to the desired query point. The
KNN nodes sample the temperature data and return it back
to the query source node.

For Type 2 KNN queries, we assume that some addi-
tiona query condition precludes the ability of all sensorsto
satisfy a query despite being located inside the desired ge-
ographic region. Type 2 queries request sensor data about
the k£ nearest events to some given query point. These
event locations are unpredictable and therefore determin-
ing which & sensors to transmit the query to for execution
is more complicated than Type 1. In this paper, we con-
sider only Type 1 KNN queries and leave support of Type
2 KNN queries as future work.

2.2 Geographical Routing

We assume for this research that sensor networks are sta-
tionary and location aware and that sensor nodes are knowl-
edgeable about neighbor nodes within their radio range.
Given these assumptions, several algorithms exist that can
route messages towards geographic locations.

The Greedy Perimeter Stateless Routing (GPSR) ago-
rithm is a geographical routing algorithm which operates
in two modes in location-aware sensor networks: greedy
mode and perimeter mode [4]. In greedy mode, the for-
warding node forwards the message to the neighbor near-
est the destination. If no such neighbor exists, the al-
gorithm switches to perimeter mode, which, given a pla-
narized graph of the network topology, routes messages
around voids in the network. GPSR can be employed for
routing Nearest Neighbor (NN) queriesin sensor networks.
Given a desired location, GPSR can continue to route the
guery message until the NN to the query point is reached.
The nearest neighbor sensor node can be confirmed by rout-
ing in perimeter mode around the query point. Due to this
nice property, GPSR was selected as the routing protocol
for implementing KPT.

2.3 Peer-Tree

To the best of our knowledge, Peer-Tree (PT) is the only
other proposal in the literature that is able to support KNN
queries. Peer-tree applies the decentralized R-tree index

structure to ad-hoc sensor networks in order to support
location-based queries[1].

Like with the R-tree, the sensor network is partitioned
into Minimum Bounding Rectangles (MBRs). Each MBR
covers ageographical region and includes as a member any
sensor node inside that area. The clusters are then orga-
nized in a hierarchical fashion until one overall cluster ge-
ographically spans the entire network. For each cluster, a
specific node is designated as a clusterhead, which knows
the location and 1D of al sensors that belong to the MBR
cluster. Furthermore, it knows the location and ID of the
clusterheads of any child clusters and its parent cluster-
head. Although the authors do not discuss the physical
layer of the network topology directly, it islogical that that
the authors assume the clusterhead can communicate with
all nodeswithinits MBR aswell asits parent.

In Peer-Tree, queries do not originate at the root of the
tree, but come up from the level 0 child nodes since it is
desirable to allow queries to be spawned from random lo-
cationsin the network. NN queries can belocally scoped to
include only the largest MBR necessary for satisfying the
query. For handling NN queries, the source node routes the
guery message to its clusterhead. The clusterhead deter-
mines whether the query point iswithinits MBR. If so, the
clusterhead then begins the agorithm for finding the NN. If
it isnot, the clusterhead forwards the query to its parent for
processing. Eventualy a clusterhead is reached that cov-
ers the area that contains both the query source and query
point. This clusterhead becomes the Peer-Tree root node
for processing the query.

The traditional branch-and-bound algorithm [10] is ex-
ecuted by the root node. Beginning with the child MBRs
of the root, the partition list is sorted by MINDIST and
the Peer-Treeisrecursively traversed while aNN leaf node
candidate is maintained and used for pruning MBRs. Sup-
porting KNN queries with Peer-Tree is more complicated
and not discussed by the Peer-Tree authors. For Peer-Tree
to execute the query, it must be sent to the parent of the
highest clusterhead required for finding the NN in order to
guarantee that all candidate nodes will be evaluated (unless
the query is already at the root clusterhead). At this point,
the same branch-and-bound technique is employed except
that a sorted buffer of at most k nearest neighborsis main-
tained and pruning is done according to the distance of the
furthest nearest neighbor in this buffer.

There are several problemswith the Peer-Tree approach.
First, query messages must typically be routed through sev-
erd layers of clusterheads. Transmission between clus-
terheads is executed largely independently of the physical
geographic direction and distance. Depending on the net-
work topology and the locations of clusterheads, it is possi-
ble that many unnecessary hops are included when routing
messages towards query points. Furthermore, the cluster-
heads become communication bottlenecks where network
congestion is likely (depending on the rate of submitted
queries) especially if the distances between clusterheads is
large and additional transmitting power is required. Ad-

120

ditionally, adding hierarchical infrastructure to sensor net-
works is inherently problematic since sensor networks are
highly unstable. To handle the issue of fault tolerance,
the authors propose using a lease period for all clusterhead
nodes so that the hierarchical infrastructure is re-evaluated
periodically.

3 KNN Perimeter Tree

Our hypothesis is that geographical routing agorithms
such as GPSR can be used to approach shortest-path rout-
ing such that overall improved performance and fault toler-
anceis possible for KNN queries. Minimizing the individ-
ual responsibilities of sensor nodes makes the network less
vulnerable to failure since there are no critical nodesin the
network. Furthermore, less communication is necessary to
maintain index or topology information in the network.

The KNN Perimeter Tree (KPT) builds upon GPSR [4]
for processing KNN queries. KPT is deployed at all sensor
nodes during network deployment. GPSR can successfully
deliver messages to the nearest neighbor of any query point
in the network. Since data is only available at the sensor
nodesthat generate them, aquery need only berouted to the
sensor nodes that own the data. All nodes in the network
may participate in processing/forwarding queries.

The KPT algorithm can be broken down into phases as
follows:

1. find the nearest neighbor and a maximum KNN
boundary;

2. find k — 1 nearest neighbors;
3. disseminate and execute query;
4. return result.

3.1 Find NN and a Maximum KNN Boundary

The query messageis geographically routed from the query
source towards the query point specified in the query.
Based on GPSR, the message will eventually reach the geo-
graphically nearest neighbor to the query point. This node
is designated as the home node of the KNN query. The
home node is assigned temporary responsibilities for orga-
nizing the dissemination of the query and processing the
results. This responsibility does make the home node vul-
nerable to node failure however only for the short duration
of the time needed to process the query.

To avoid flooding a query to the whole network, a max-
imum KNN boundary is estimated to restrict the search
spacefor finding the remaining & — 1 nearest neighbors. We
consider severa approaches for determining this boundary
while the query message is being routed to the home node.
These approaches seek to determine a circular boundary in
terms of aradius distance centered at the query point which
is guaranteed to contain the KNN sensor nodes and the ap-
proaches have different tradeoffs.

An intuitive approach (called SUMDIST) for determin-
ing the boundary isto add the position of each sensor node
on the forwarding path from the query source to the home

O e}
o
o
i fﬁ\\\ O
! |
0 x\, Sﬁ(gl
O ‘&
et e, O
) ¥ o
8,
D
f_,.-"‘ @ Homenode
°© _,-@ Sﬁ(Query point
£ 0

Figure 1: KPT home node and perimeter

nodeto alist in the query message. When the home nodeis
reached, the distance between the home node position and
the k-th position in the list serves as the maximum bound-
ary. This approach has a higher communication cost since
up to & locations are transmitted along with the query at
every hop. For large values of k, this cost can be large.

A second approach (called MHD-1) includes only a
counter variable, and a maximum hop distance (MHD)
value which represents the largest distance value for any
one hop on the route between the query source node and
the home node. The counter variable is incremented at
each forwarding hop until it reaches k. MHD always main-
tains the largest hop distance visited. After the query mes-
sage reaches the home node, the maximum KNN boundary
value can be determined by multiplying the MHD value by
k. The advantage of this approach is that the cost of deter-
mining the maximum KNN boundary is less than the naive
approach since only a few values are transmitted with the
query message (independent of k). However, the search
boundary islikely to be larger (and thus less efficient) than
the boundary obtained from the naive approach.

An improvement on the second approach (called MHD-
2) isto minimize the MHD value by plotting the hop dis-
tance along the direct path between the query source and
guery destination using geometry instead of taking the di-
rect hop distance between neighbor nodes. However, the
location of the query source node has to be added to the
guery message at an additional energy cost.

An assumption that is made for all three methods is that
at least k hops occur on the route between the query source
and the home node. Therefore, it is necessary to consider
the case when fewer than & hops occur. To solve this prob-
lem we estimate the boundary by taking the MHD value
and multiplying it by & (even for the naive approach). We
believe that this estimation should be fairly good for many
cases, however in implementing the KPT algorithm, we
must consider the case when the estimation fails.

Figure 1 demonstratesthe state of the KPT algorithm af-
ter the query has been routed to the nearest neighbor home
node and the perimeter has been established. The query
point is illustrated with a star and the home node which
connects the incoming geographical route with the perime-

121

ter routeis solid.

3.2 Find k — 1 Nearest Neighbors

Given that the query is at the home node which knows the
maximal KNN boundary, the next step is to determine the
IDs and locations of the k& — 1 nearest neighbor nodes. A
naive approach is to simply flood the query to all nodes
within the circular KNN boundary centered at the query
point. However, flooding expends excess energy, particu-
larly if nodes are densely packed with much overlapping of
radio and sensing ranges.

We propose the Perimeter Tree which is designed to re-
duce the number of total messages required to determine
the (k — 1)-NN nodes and for disseminating the query to
them. The philosophy of this approach is to divide the
boundary circle into regions for each of which a minimum
spanning tree can be constructed that isrooted at a perime-
ter node. The subtrees expand in the direction away from
the destination. The individual trees are bounded by the
circular boundary and the two subtree boundaries on both
sides.

The perimeter nodes that encircle the query point each
make up a root of a minimum spanning tree that expands
away from the destination and is bounded by the circu-
lar KNN boundary. The perimeter nodes are determined
when the query message is transmitted by the home node
in GPSR perimeter mode to validate the home node as the
NN to the query point similar to the Perimeter Refresh Pro-
tocol in GHT [9]. At each hop around the perimeter, the
midpoint on the line between Perimeter nodes is computed
and by plotting aline from the query point through the mid-
point to the circular boundary the subtree boundaries are
determined, similar to a Voronoi cell [12].

The next step is to establish the spanning trees in each
of the bounded areas that are rooted at the perimeter nodes.
The goal isto build atree with as few messages transmitted
as possible and with aso the shortest possible latency. By
having multiple trees rooted at the perimeter nodes instead
of one tree rooted at the home node the maximum height
of the trees is reduced which reduces the overall query la-
tency, although in highly irregular networks balancing the
tree may not be possible which would affect the query la-
tency but not the correctness. The construction of the tree
begins with the perimeter root node which knows the query
point, the two subtree boundaries (the midpoints between
it and its two perimeter neighbors) and the circular KNN
boundary. At a minimum, this information is transmitted
to its potential children along with other information spec-
ified in Phase 3. In atree, nodes only have one parent and
belong to a certain level of the tree. Finally, a child node
responds to its parent after hearing from its children and
transmitting all node level information including node IDs
and locations. Thisinformation isforwarded to the perime-
ter root which then transmitsit to the home node. The home
node then has al the locations of all nodes within the circu-
lar KNN boundary which it can then sort by their distance
from the query point and thus determine the KNN node set.

Figure 2: KNN Perimeter Tree

The perimeter boundaries are employed in order to keep
the tree as balanced as possible and thus reduce the over-
all query latency. However, strictly enforcing this bound-
ary for construction of the tree may exclude nodes that are
within the circular boundary but are out of communication
range of all potentia parent nodes within its median bound-
ary. Therefore we alow nodes to select a parent outside its
tree boundary, but only if it does not hear a request from
another potential parent from within its tree boundary. Al-
though it may be possible for a sensor node to exist within
the circular boundary and be completely disconnected from
all other nodes within the circular boundary, it is unlikely.
Furthermore, this would tend to happen towards the edge
of the circular boundary reducing the probability that the
disconnected node belongs to the KNN set.

Figure 2 demonstrates the state of the KPT after the
Perimeter Tree has been established. The perimeter nodes
are used to construct the tree boundaries to minimize the
total height of the tree.

3.3 Disseminate and Execute Query

After Phase 2, the home node is aware of the IDs and lo-
cations of the KNN nodes. The next step is for the query
to be disseminated for execution. A naive approach is for
the home node to unicast or multicast using the Perimeter
Tree the query to the KNN nodes. In order to reduce the
overall latency, we propose combining the query dissem-
ination with the Perimeter Tree establishment from Phase
2. Asthe Perimeter Tree is constructed, the actual query
is transmitted to all tree members for automatic execution.
This approach should have drastically improved latency,
but less efficient energy performance since more than the
KNN nodes actually execute the query. Imposing a quota
system on the number of nodes to execute a query per sub-
tree can reduce the execution cost without increasing thela-
tency. The quota estimation method assigns the top ¢ nodes
of every subtree to execute the query automatically where
q isaquota estimation defined in Equation (1) and p isthe
number of perimeter nodes and ¢ is an adjustable parameter
which trades off the quota size and the number of retrans-
missions heeded when quota estimations fail.

122

¢ = Sic ®
p

The ¢ valueis set by the perimeter root node and decre-
mented asit is assigned to nodes farther down the tree. The
nodes assigned to execute the query do so and return the
results back to the home node as the tree is constructed.
The remaining nodes in the tree that are not assigned by
the quota to execute the query automatically simply return
location information.

After thetreeis constructed, the home node receives the
p x ¢ resultsalong with all the location and ID results from
all nodes within the circular KNN boundary. The home
node determines the KNN node set and whether the quota
resultsinclude al necessary datato satisfy the KNN query.
If any members of the KNN node set did not return quota
estimation results, then the quota failed and must be re-
solved. The resolution can be handled simply by unicast-
ing the query to the missing nodes and routing the results
back, adding additional overhead and latency and is thus
undesirable. The ¢ parameter can be adjusted by experi-
ment to determine the appropriate quota size. Flooding is
used to execute the query if the circular boundary is un-
derestimated using one of the MHD methods which adds
considerable energy and latency costs. However, we feel
that this situation will be rare.

3.4 Return Results

After the home node has collected the query results, it
needs to transmit them back to the query source by unicas-
ting the results geographically using GPSR. The Perime-
ter Tree can be destroyed after the location information
has been returned to the home node. We reiterate that the
Perimeter Tree only exists for a short period of time and
thereforeis only vulnerable to node failure very briefly un-
like Peer-Tree.

4 Preliminary Performance Analysis

To give an idea of the capabilities of KPT versus Peer-Tree,
we performed a mathematical analysis on both approaches
in terms of the number of messages required to execute
a query. For the analysis, we assume that nodes are uni-
formly distributed. To determine the cost processing KNN
queries with KPT and Peer-Tree, we define some parame-
terswhich are listed in Table 1.

For analyzing the performance of KNN query process-
ing, we break the execution into three phases for both KPT
and PT:

e Phase 1 consists of the number of messages required
to reach the home nodefor KPT or the Peer-Tree MBR
root node.

e Phase 2 represents the cost of executing the query by
getting the query to the KNN nodes and returning the
results back to the Phase 1 home node.

| Variable | Definition

Height of Peer-Tree

Average distance between nodes
Number of nodes in network

Number of nodesin KNN PT MBR
MBR fanout (.69 x M)

Square axis of network (s x s)
Average query distance

Number of nearest neighbors required
Minimum children per MBR
Maximum children per MBR
Probability a PT node is accessed at level 4

Table 1: Summary of Parameters for Analysis

e Phase 3 represents the cost of returning the query re-
sults back to the query source node.

Estimating the query execution cost for KPT is fairly
simple. For phases 1 and 3, we can estimate the number of
hops required to route a message to the query source node
and the home node and back by using the expression %.
For phase 2, we estimate the number of messages as two
messages per node inside the circular boundary. We can
compute the average number of nodes inside the circular
boundary by dividing the area of the circular boundary by
the average area per sensor node (density) and thus we de-
fine the number of messagesas 2 (wx (k x 1)%)/((s2/n)).

Performance analysis of Peer-Tree is more complicated.
We refer to the analysis of KNN queries for R*-Trees [13]
which issimilar to Peer-Tree except that message transmis-
sions are used instead of disk accesses when information
from a node is needed. For phases 1 and 3, the number
of messages required to transmit the query message to the
root parent node and the results back is the number of lev-
els in the tree from level 0O to the level of the root parent.
Thelevel of the root parent is one above the smallest MBR
that contains the query point and the query source node.
For estimating the size of the smallest MBR that contains
the query point and the source node we assume an average
square-shaped MBR where the query distance d makes up
half the bisecting hypotenuse with an area of 2 x d?. The
number of sensor nodes contained within the parent of the
MBR that spans the source node and query point can be
estimated asz = (h x 2 x d?)/((s%)/(n)). We can deter-
mine the height of the tree needed to execute the query as
h =1+ [log;(57)1 [13].

For computing the cost of phase 2 for Peer-Tree,
we use the same formula for node accesses defined as
S" ! (n; x P;) where h is the height of the tree, P; is
the probability that a node at level i is accessed and n; is
the total number of nodes at level i [13]. Due to the space
constraints of this paper, we leave the detailsto [13]. Two
messages are required for each node access, one to deliver
the query and one for aresponse.

For constructing experiments using the mathematical
analysis the following default parameters were used. A
network size of 100 x 100 meters® was used with a node

123

400 .

Messages
o]

200 o

100{- = 8

Figure 3: Experiment 1: Effect of k

1600

1400

1200 -

1000 -

Messages
o ®
g]
;

IS
]
3

200

OO T J o) [S o SR o} o0 o}

I L L
10 20 30 40

| i i |
50 60 70 80 90 100
Query Distance (d)

Figure 4: Experiment 2: Effect of query distance

density of 500 uniformly distributed sensors. The average
guery distance used was 30 meters with a k value of 3.
For Peer-Tree, each MBR contained between 3 and 6 chil-
dren. The metric used for analysis was simply the hum-
ber of messages required to execute the query for KPT and
Peer-Tree.

Figure 3 demonstrates the effect of k£ on the performance
of KPT and Peer-Tree. The results show that while Peer-
Tree is not affected by the value of k, KPT performs bet-
ter for lower k values, specifically with k£ smaller than 6.
This makes sense since the larger the & value, the larger the
circular query boundary which includes more nodes in the
query.

Figure 4 showsthe effect of the query distance on the ex-
ecution performance of both approaches. The effect of the
guery distance on KPT isminimal; only avery small linear
increase for KPT while Peer-Tree suffers an exponential in-
crease in the number of messages as the query distance in-
creases. Thisisdueto the fact that the size of the spanning
parent MBR grows much larger and the height of the tree
increases as well. Although not demonstrated here, Peer-
Treeis also affected by the size of the child node capacity
and the node density of the network.

We acknowledge that this analysis is primitive by sim-
ply counting the number of messages of an individual query

and does not take into account that the messages for Peer-
Tree would likely have to be transmitted at a higher power
level and are thus more expensive. The size of the mes-
sages, per-bit cost of transmission and query execution
costs are also not considered here. Most importantly, this
analysis assumes that al required infrastructure for Peer-
Treeisin place, i.e., the considerable cost for constructing
and maintaining the tree is not demonstrated. Nonetheless,
KPT is able to perform often significantly better than Peer-
Tree for executing KNN queries. Fault tolerance to node
failure is aso not demonstrated. Considering fault toler-
ance and actual energy consumption will be demonstrated
through simulation in our future work.

5 Conclusion

We believe that KPT shows potential for improving perfor-
mance in terms of energy consumption and latency for pro-
cessing KNN queriesin sensor networks. Our preliminary
analysis shows that KPT can achieve significant energy
savings over Peer-Tree in terms of the number of messages
required to execute a KNN query without even compar-
ing the costs required to construct and maintain the Peer-
Tree infrastructure when compared to the minimal neigh-
bor information required for geographical routing. Addi-
tionally, although not demonstrated through analysis, KPT
intuitively is more fault tolerant than Peer-Tree.

For the future work of this project, simulation experi-
ments are under construction that are designed to back up
the claims of this paper. Additionally, further improve-
ments of KPT may be possible if assumptions can be made
about the node distribution. Furthermore, we intend to also
investigate the use of KNN queries in mobile sensor net-
work environments by employing routing protocols for dy-
namic networks. Finally, we intend to consider supporting
Type 2 KNN queries with KPT.

References

[1] M. Demirbas and H. Ferhatosmanoglu. Peer-to-peer
spatia queries in sensor networks. In Proc. of the
3rd IEEE International Conference on Peer-to-Peer
Computing, Linkping, Sweden, September 2003.

[2] B. Greenstein, D. Estrin, R. Govindan, S. Ratnasamy,
and S. Shenker. DIFS: A distributed index for features
in sensor networks. In Proceedings of the IEEE ICC
Workshop on Sensor Network Protocols and Applica-
tions, Anchorage, AK, April 2003.

[3] Antonin Guttman. R-trees: A dynamic index struc-
ture for spatia searching. In SGMOD Conference,
pages 47-57, 1984.

[4] B. Karp and H.T. Kung. GPSR: Greedy perimeter
stateless routing for wireless networks. In Proceed-
ings of the 6th Annual International Conference on
Mobile Computing and Networking, pages 243-254,
2000.

124

