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The past few years have seen substantial amounts of computer science research on sensor networks. Other
subfields have had a number of workshops on the topic (e.g., the Workshop on Wireless Sensor Networks
and Applications (WSNA) in 2002 and 2003 and the Sensor Networks Protocols and Applications (SNPA)
Workshop in 2002 and 2003, both of which are systems/networking focused). Furthermore, there are now at
least two major conferences – the Conference on Information Processing in Sensor Networks (IPSN), started
in 2002, and the ACM Conference on Sensor Systems (SenSys), started in 2003. These conferences have
published a small number of database papers, but there is no forum for discussion on early and innovative
work on data management in sensor networks.

We believe that the Workshop on Data Management for Sensor Networks (DMSN’04) fills a significant
gap in the database community by bringing interested researchers together to identify research challenges
and opportunities. Specifically, the workshop focuses on data processing and management in networks of
remote, wireless, battery-powered sensing devices (sensor networks). The power-constrained, lossy, noisy,
distributed, and remote nature of such networks means that traditional data management techniques often
cannot be applied without significant re-tooling. Furthermore, new challenges associated with acquisition and
processing of live sensor data mean that completely new database techniques must also be developed.

The workshop represents a wide range of topics, including: data replication and consistency in noisy
and lossy environments, database languages for sensor tasking, distributed data storage and indexing, energy-
efficient data acquisition and dissemination, in-network query processing, integration of sensor network data
into traditional and streaming data management systems, networking support for data processing, techniques
for managing loss, uncertainty, and noise, query optimization, and privacy protection for sensory data.

As a response to the Call for Papers, the DMSN’04 workshop received 38 abstracts, of which 25 materi-
alized as full papers by the submission deadline. During the review process, each paper was reviewed by at
least three PC members or external reviewers, resulting in the acceptance of 15 papers.

We are grateful to many people who contributed to the content and organization of the workshop. First of
all we would like to thank the steering committee: Panos Chrysanthis, Mike Franklin, Johannes Gehrke, and
Joe Hellerstein. Their advice and support proved invaluable. We are also grateful to the Program Committee
members and the external reviewers for helping us put together a high-quality program for the workshop. Intel
Corporation’s generous donation enabled us to support activities that would not have been possible with just
the registration income, like the best paper award and student travel grants. We would also like to thank Surajit
Chaudhuri of Microsoft Research and the CMT team for allowing us to use the Conference Management
Toolkit service and for their assistance. Finally, we would like to thank the VLDB’04 organizing committee
and in particular John Mylopoulos, Alberto Mendelzon, S. Sudarshan, Mariano Consens, Grant Weddell, and
Iluju Kiringa.

Alexandros Labrinidis and Sam Madden

August 2004
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Abstract

Recent advances in hardware technology facili-
tate applications requiring a large number of sen-
sor devices, where each sensor device has com-
putational, storage, and communication capabili-
ties. However these sensors are subject to certain
constraints such as limited power, high communi-
cation cost, low computation capability, presence
of noise in readings and low bandwidth. Since
sensor devices are powered by ordinary batteries,
power is a limiting resource in sensor networks
and power consumption is dominated by commu-
nication. In order to reduce power consumption,
we propose to use a linear model of temporal, spa-
tial and spatio-temporal correlations among sen-
sor readings. With this model, readings of all
sensors can be estimated using the readings of a
few sensors by using linear observers and multiple
queries can be answered more efficiently. Since a
small set of sensors are accessed for query pro-
cessing, communication is significantly reduced.
Furthermore, the proposed technique can also be
beneficial at filtering out the noise which directly
affects the accuracy of query results.

1 Introduction
Due to advances in miniaturization, low power, and low
cost design of sensors, large-scale sensor networks are be-
ing deployed to monitor systems. Examples include en-
vironment monitoring on Great Duck Island and James
Reserve [2, 7]. In sensor networks, each sensor can be
modeled as a full fledge computer with computational,
communication, and sensing capabilities. However, these
sensors are subject to several constraints such as limited
power, high communication cost, low computation capabil-
ity, presence of noise in readings and low bandwidth. Be-

Copyright 2004, held by the author(s)
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cause of these constraints, techniques for distributed sys-
tems, databases, and data stream management cannot be
applied directly to sensor networks. In particular, any sys-
tem dealing with sensor generated data needs to pay atten-
tion to these constraints.

There have been many related research efforts in the
database and data stream management areas. Traditional
database management aims to reduce the query response
time using indexes. On the other hand, the main goal in
the context of data streams is to reduce the storage and
computational cost and give fast approximate answers to
queries. However, monitoring a system (a system can be
any measurable phenomenon in the physical world) with
queries is quite different from query processing over data
streams and database management systems. The cost of
query execution in sensor networks is not only bounded
by computational and storage costs but also bounded by
data collection cost. In data stream and database manage-
ment systems, however, data collection cost is not taken
into account explicitly; instead it is assumed that data is
already available. This assumption is quite reasonable in
database and data stream management systems which are
built on wired systems that do not have energy and band-
width constraints. This, however, is not true in sensor net-
works where each sensor is run by ordinary batteries and
has energy and bandwidth constraints which directly affect
the quality of monitoring.

Recently, there are several proposals to deal with sen-
sor generated data aiming to reduce the cost of data col-
lection to prolong the lifetime of the sensors. In [5], re-
searchers proposed the Fjords architecture for managing
multiple queries over many sensors. They collect readings
of all sensors and try to compute common subexpressions
among queries only once. There are several researches try
to compute queries in-network such as [10, 6, 11, 12]. In
general, in-network aggregation can reduce the power us-
age by pushing part of the computation into the network.
However, these works only consider aggregation queries
and do not consider multi-queries. Lazaridis and Mehro-
tra [4] proposed to compress the raw data at each sensor
node, then the compressed data is sent to the basestation
when the precision is out of bound. Goel and Imielinski [3]
proposed a prediction technique to monitor environment by
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applying MPEG techniques in prediction.
When monitoring the physical environment, there are

physical rules relating to data originating from differ-
ent data sources (there is a physical rule between read-
ings of sensors), which is different from data streams and
databases. Most of the time, these physical rules can be
discovered and modeled using correlations among sensor
readings. Once this model is known, the query processor
can use this model to observe the environment by collect-
ing data from a few sensors instead of all of them. Fur-
thermore, this model can be used to reduce the noise in the
measurements. Our main observation behind this work is
that if two sensors are close to each other, then there is a
physical rule between their measurements. And this physi-
cal rule can be discovered with temporal, spatial and spatio-
temporal correlations among sensor readings. For example,
if two sensors are ����� meters apart from each other then
their temperature measurements are correlated. Therefore,
if these correlations are determined and modeled with his-
torical data, the query processor can use that model to esti-
mate the readings of all sensors using the readings of a few
sensors. Formally, if a system is identified and modeled
using a linear model, then that linear model can be used to
observe all readings using only a subset of the sensors.

Hence, the properties of BINOCULAR can be summa-
rized as follows:

� BINOCULAR is a monitoring system where users
pose continuous queries to monitor the physical en-
vironment. Therefore, it is a multi-query processing
platform.

� BINOCULAR models the readings of sensors as a lin-
ear system to observe readings of all sensors with a
small set of sensor readings. Therefore, it is an energy
efficient monitoring system.

� BINOCULAR improves the quality of the answers of
queries by reducing the noise over sensor readings us-
ing linear observers.

� BINOCULAR balances energy consumption among
sensors while extending their lifetime.

The rest of the paper is organized as follows: Section 2
formalizes the problem of monitoring systems with queries
and gives a solution overview. Linear observers are intro-
duced in Section 3. Section 4 describes the proposed query
processing technique. Section 5 reports the results of our
preliminary experimental evaluations. Section 6 concludes
the paper, presents future work and discusses open research
problems.

2 Problem Formulation and Solution
Overview

Given a set of sensors BINOCULAR divides them into two
types: working and sleeping sensors. In order to estimate
the readings of all sensors, BINOCULAR only collects
data from the working sensors and uses a system model

to estimate the readings of the sleeping sensors. A system
model expresses an estimate based on the current readings
of the working sensors ( ��� ) and the current estimate of the
sleeping sensors ( �	� ). In a linear system model this is ex-
pressed by a linear relationship between � ��

� and ( � � , � � )
based on a linear correlation using system matrices � and�

. This can be expressed as follows:

����

��� ������� � ����� (1)

where ������� � � is the state (the estimated readings of
the sleeping sensors), �!�!��"�� � is the input (the actual
readings of the working sensors), �#�$�%� �&� is the system
matrix,

� �'�(� �)" is the input matrix, * is the number
of the working sensors and + is the number of the sleeping
sensors. Matrices � and

�
are derived using a system iden-

tification toolbox e.g, Matlab [8], which uses some histori-
cal data set to derive them. Thus, queries can be thought of
as a function of these states and inputs. If the correlations
among sensor readings can be captured by a perfectly linear
model (e.g, illumination), then we can estimate the exact
readings of all sensors using the working sensors. How-
ever, in most cases these correlations cannot be captured
by a linear model but need to be approximated by a linear
model (e.g, temperature readings). In this case we have to
collect readings of all sleeping sensors periodically (every,

time units) in order to avoid error accumulation. The
appropriate value of

,
can be derived from historical data.

However, if the readings of sleeping sensors can be es-
timated by a small subset of them (linear observers), then
collecting readings from that subset is enough to estimate
the readings of all sleeping sensors. This scheme requires
the system model to be continuously used to derive the es-
timated readings of all sensors based on the readings of the
working sensors. The linear observers are activated peri-
odically every

,
time units for a short period to recalibrate

the errors in the system model. In this paper we use a linear
observer to estimate the readings of all sleeping sensors. A
linear observer is a linear system built from the original sys-
tem model given by (1). Given a system model in the form
of (1) and a vector of readings of a subset of the sensors- � of size . ( - �/�!01��� where 02�3�546�&� and 087:9;�=<�> is �
if sensor < is in the observer set and it is the only � in that
row), our goal is to determine whether all sleeping sensors
can be observable via the - � , referred to as the observer.
If it is possible to observe, then we use the linear observer
specified by the - � �'01� �
Example Consider an environment monitored by three
sleeping sensors and one working sensor with a system
model:

����

��� ������� � ����� (2)

where � � is a ?8@A� matrix such that � � 7:9B> is the estimated
reading of sleeping sensor 9 and � � is �C@D� matrix and
� � 7B�E> is the actual reading of the working sensor at timeF

. � and
�

are matrices given by a system identification
toolbox based on historical data. If this model is accurate
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then actual readings of sleeping sensors need not to be col-
lected, because all of the readings of the sleeping sensors
can be estimated from the reading of the working sensors.
However, if the model is a linear approximation, then the
error given by the system model will accumulate over time.
In order to decrease such an error we collect readings of
the three sleeping sensors every

,
time units. However, if

the readings of these three sensors are observable by any
of them, then the readings of the other two sleeping sen-
sors can be estimated by collecting data from that observer.
Then the question becomes: Is this system model observ-
able via - � � 01��� where 0 � � � �8��� (the reading of the
third sensor)? If it is observable then we can construct a
linear observer and use that to estimate the readings of the
other two sleeping sensors.

The problem of monitoring systems with queries can be
formulated as follows: Given a set of historical readings of
sensors, and a set of continuous queries to monitor,
� build a scheduler to schedule sensors as a working or

a sleeping sensor,
� discover a linear model between the readings of work-

ing sensors and sleeping sensors,
� construct linear observers and an observer scheduler

to execute queries while reducing and balancing the energy
consumption.

In this paper, we assume that the working and sleep-
ing sensors are statically assigned. In addition, we as-
sume working sensors are not subject to energy constraints.
However, these assumptions are not realistic. Hence, we
need a scheduler to schedule sensors as a working or a
sleeping sensor. The choice of working sensors to model
the system more accurately and a scheduling technique
needs further research.

3 Formal Model For Observers
Given a system model and a 0 matrix where - �$� 01�	� ,
we can construct a linear observer if the pair 7 � � 0�> is an
observable pair which is defined as follows [1]:

Definition 1 The pair 7 � � 0�> is said to be an observable
pair if the matrix ���� 0

0(�
...

0(����� �
	�

�

is full column rank.

Theorem 1 states how and why a linear observer can be
constructed with an observable pair 7 � � 0�> .
Theorem 1 Given a system model and a - � as follows:

� ��

� � ��� � � � � � (3)
- � � 01� � � (4)

The states of all sleeping sensors can be observed via - �
using the following system called linear observer if the
7 � � 0�> pair is observable:
� ��

� � � 
� � ���57 - ��� 0 
� � >
� � � � (5)

where � is an observer matrix.

Proof 1 If we define the error as ��� �!� � 
� , then we can
write using (3), (4), and (5)� ��

� � �	��

� � 
�	��

�

� ����� � � 
�	� � �57 - � � 0 
��� >
� � 7:�	� � 
�	� > � � 087:�	� � 
�	� >
� 7 � � � 0�>�7 ��� � 
��� >
� 7 � � � 0�>�� ��� (6)

Equation (6) tells us that if all the eigenvalues of the error
gain matrix � � � 0 are with magnitude strictly less than
unity, i.e., � � � 0 is Schur, then we can claim � � � ��� �
and hence


� � � � � as
F ��� . Now, the question is can

one always pick � so that � � � 0 has this property. It is
possible to pick such an � only if the 7 �%� 0�> pair satisfies
the observability condition [1]. Indeed, if 7 �%� 0�> is an
observable pair then the eigenvalues of � � � 0 can be ar-
bitrarily placed (all of them can be set to zero for instance)
with a proper choice of � and the system called observer
given by Equation (5) can be used to estimate all of the
states.

Suppose we are given the system matrix � and we can
measure two of the sleeping sensors, say � 7B�E> and �
7 ?6> ,
where � � � �
7B� >(�
7���>�� �!���
7 + >"�$# . Then we can construct
an observer with a decaying observer error if 7 �%� 0�> pair
is observable where

0 �&% � � � � � � � �
� � � � � � � ��'

Therefore, we can estimate all of the states by collecting the
readings of sleeping sensors � and ? via the linear observer
in Theorem 1.

Using the same observer will drain the energy of the sen-
sors designated as observers. Therefore, we should find a
set of observers and switch among them periodically. In
order to do this, we should have an observer determination
technique. The goal of the observer determination process
is to give a set of 0 matrices such that the system is observ-
able via - � ��01�	� . The number of possible different ob-
servers is �)( , where * is the number of sleeping sensors.
For small * , it is possible to test all 0 matrices whether
7 � � 0�> is observable or not. However, for large * it is im-
possible to test all of the possible �+( cases. Therefore, we
need a heuristic to find a set of observers in polynomial
time.

Discussion So far, we use the system model to estimate
the readings of sleeping sensors with the readings of the
working sensors. However, the linear observer given by
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(5) can be used to estimate the readings of all the sleeping
sensors with readings of the working sensors and sensors
in that observer. Although it seems inefficient in terms of
energy consumption, it may be beneficial to get more ac-
curate results. We leave these experimental evaluations as
future work. In general, we need a set of observers and an
observer scheduler to select a linear observer to estimate
the readings of all the sensors. Given a set of observers,
we can not switch them at any time. Formally, suppose we
have a set of observers defined by

� � �E� � � ��� �!� � � " � and� 0 � � 0 � ���!� � ��0 " � . Let the resultant error gain matrices
be

��� � � � � ���!� ��� � " � , where
��� � � � � � 0 �

is Schur
for all 9 � � �6� �&� �!� � �)* � . Although each error gain matrix
is Schur, there is no guarantee that the error decays to zero
under arbitrary switching between observers. Intuitively, if
we stay at an observer long enough before switching to an-
other one then we still should have a decaying observer er-
ror. Therefore, we need an observer scheduler to schedule
observers appropriately. Throughout the paper, we assume
that we are given a set of observers and a time matrix �
such that given two observers � �

and �	� , � � � is the time to
switch from � �

to �	� .

4 Query Processing
The readings of the sensors are needed to answer queries.
Recall there are two methods to estimate the readings of the
sensors:

� Method 1: Use the system model continuously and
access any of the observers for a short time every,

time units to recalibrate the errors in the system
model.

� Method 2: Use only observers such that at any time
only one of the observers is accessed and the estimated
readings of all of the sleeping sensors are derived from
that observer.

The job of the query processor is to schedule observers
to balance energy consumption among sensors. The ob-
server scheduler chooses the observer with the highest
score where the score is defined as the ��
�����
�� ����+������ -
0�� +���� */.�� 9�� +���� 0������ ��� � ����
"!�9 +#�$�%�'&(�*) �+��,-� ����
 ��� di-
vided by the �.
 ����
/��� �.
0
 9��1
2, � �3�%+��4��� - �'&65 �E+������'� 9 +
�*) �7��,-� ����
 ��� . At any time the observer scheduler chooses
the observer with the lowest cost and the highest energy.

Observer scheduling is quite straightforward in Method
1. The job of the observer scheduler is to select the observer
with the highest score every

,
time units and execute it for

a short time to estimate readings of all sleeping sensors in
Method 1.

Since the observer scheduler cannot switch observers at
any arbitrary time, observer scheduling is not straightfor-
ward in Method 2. An example of observer scheduling for
Method 2 is shown in Algorithm 1, which uses an eager
approach to schedule observers assuming the � matrix is
known. Let � �

and �	� be the two observers with the high-
est scores and � � � is the time needed to execute � �

before

switching from � �
to � � . Algorithm 1 uses � �

for � � � time
units. After that, it calculates the new scores and repeats
the same process based on the new scores.

Algorithm 1 Observer Scheduler Algorithm
1: Input:
2: # : Time matrix shows time needed before switching observers;
3: 8 : Set of observers 8:9;8=<?>*@A@A@A>�8CB
4: Procedure:
5: while There is a query do
6: Calculate the score of each observer in 8
7: Find two observers 8CD and 8#E with highest scores
8: Use 8 D for # DFE9: end while

10: End Procedure

5 Preliminary Results

The main motivation behind BINOCULAR is modeling the
correlations among the sensor readings and use that model
in query processing. Thus, we conducted some prelimi-
nary experiments over a real temperature dataset from the
Tropical Atmosphere Ocean Project [9] to show correla-
tions among the readings of sensors can be modeled. We
took the average daily temperature readings of 20 sensors
for ���6��� days. After that we randomly select one sensor
as a working sensor and the remaining as sleeping sensors.
Based on the first ?��6� days we build a system model and
try to measure the average errors of readings of sensors for
each time interval during the remaining G �6� days In addi-
tion to this, we collect actual readings of all sleeping sen-
sors at time ?6��� in order to avoid the error accumulation
(we did not use observers). The average error for time � is
calculated as follows: 7 7 ��H)�4I6>�J#K �ML �*N � 
� � � � � ��H�� � >�J��E���
where


� � is the estimated reading and � � is the actual read-
ing of a sensor 9 at time � . Results are shown in Figure
1, where the � axis represents time and the - axis repre-
sents the average percentage error. With the system model
and one working sensor, we can estimate the reading of
all sensors within ? �AO percent error on the average (this
is PRQ ��S�0 ). This preliminary result shows that we can
model the readings of sensors and use that model in order
to process queries resulting in significant savings in energy
consumption. In this study, for example, we need only one
sensor to be working instead of all of the ��� sensors.

6 Conclusion and Future Work

In this paper we presented our system monitoring frame-
work, BINOCULOR, and also showed some preliminary
results. BINOCULAR uses a linear model between work-
ing sensors and sleeping sensors to answer queries while
using a small set of sensors. We introduced the notion of
linear observers to account for the fact that the linear model
will always be an approximation of the physical environ-
ment. By using the linear observers, the modeling error
can be reduced exponentially over time. This results in less
communication cost and prolongs the lifetime of sensors.
Although we presented the general framework, there are
still open research questions. These include:
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Figure 1: Average error (in percentage) of sensor readings

� How to choose working sensors and balance energy
usage among all sensors?

� How to determine the set of observers in large scale
networks?

� When and how to switch observers to balance energy
consumption?

� How to adapt the system model to changes which is
needed for systems with mobile sensors?
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Abstract

A distributed data-stream architecture finds
application in sensor networks for monitoring
environment and activities. In such a network,
large numbers of sensors deliver continuous
data to a central server. The rate at which the
data is sampled at each sensor affects the com-
munication resource and the computational
load at the central server. In this paper, we
propose a novel adaptive sampling technique
where the sampling rate at each sensor adapts
to the streaming-data characteristics. Our ap-
proach employs a Kalman-Filter (KF)-based
estimation technique wherein the sensor can
use the KF estimation error to adaptively ad-
just its sampling rate within a given range,
autonomously. When the desired sampling
rate violates the range, a new sampling rate
is requested from the server. The server allo-
cates new sampling rates under the constraint
of available resources such that KF estima-
tion error over all the active streaming sensors
is minimized. Through empirical studies, we
demonstrate the flexibility and effectiveness of
our model.

1 Introduction

As sensor networks grow in size, bandwidth allocation
becomes increasingly critical. A sensor network needs
to allocate its bandwidth to maximize total informa-
tion gain. A desirable bandwidth allocation scheme
should distribute the given bandwidth such that it
is sensitive to streaming data characteristics, query
precision, available resources (communication, power,
CPU), and sensor priority (data from some sensors
might be more important than others) [9, 2]. We can

Copyright 2004, held by the author(s)

Proceedings of the First Workshop on Data Mana-
gement for Sensor Networks (DMSN 2004),
Toronto, Canada, August 30th, 2004.
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further motivate this research using the following two
examples.

• Wireless sensor-networks are being used for habi-
tat monitoring applications. In [11], sensors regis-
tering light, temperature, and sound are deployed
in burrows of Storm Petrels (a seabird) for mon-
itoring purposes. During the day time, the bur-
rows are expected to be empty, and thus we can
have a low sampling rate. However, if some un-
usual measurements are recorded at some burrows
(say abrupt increase in sound levels), it would be
desirable to collect samples from them more fre-
quently than the other burrows.

• In video surveillance applications like [6], multi-
ple cameras are mounted at key locations to mon-
itor activities of vehicles and people in a parking
lot. If a camera shows a vehicle exhibiting unex-
pected behavior (random swirling, speeding), the
camera’s sampling rate should be increased by de-
creasing the sampling rates of the other cameras
that are not observing abnormal behavior.

A näıve solution to the above-mentioned problems
is over-sampling [12]. However this comes at increased
cost of resources, namely:

• CPU — The CPU at the central server might
have to process unnecessary data from numerous
sources, but this would not affect the result sig-
nificantly.

• Network Bandwidth — The communication chan-
nel would be transmitting unnecessary data.
Moreover, in cases of low bandwidth networks the
option of over-sampling might not be available at
all.

• Power Usage — Power conservation is critical for
wireless sensors. Over-sampling leads to increased
power consumption of a sensor’s measuring de-
vices, radio transmitter, and processing unit.
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There has been a significant amount of work in the
sensor-network resource management. The key aspect
that differentiates this work from the prior efforts lies
in data collection (sensing). We adjust sampling rates
(sensing rates) at sensors to adapt to data characteris-
tics. Traditional methods (e.g., load-shedding [17] and
adaptive precision setting [13]) collect data at a peak
sampling rate and then determine whether collected
data should be dropped to conserve resources. Even
though the filtering and load-shedding approaches can
reduce bandwidth consumption in the transmission
phase, excessive sampling rates incur high cost in data
collection and processing (to determine what data to
drop) at the sensors. The adaptive sampling scheme
proposed in this paper adjusts the data collection rate
according to data characteristics. Therefore, resources
are conserved and better utilized working only on data
relevant to the queries.

Our general and adaptive sampling approach ad-
justs the sampling interval SI (the time interval be-
tween two consecutive samples) collectively. At the
sensors, the SI is adjusted depending on the stream-
ing data characteristics. The remote source is allowed
to modify the sampling interval independently within
a specified Sampling Interval Range (SIR). If the de-
sired modification in the SI is more than that allowed
by the SIR, a new sampling interval is requested from
the server. At each sensor, we use the Kalman Filter
estimator to predict the future values of a stream based
on those seen so far. Large prediction errors signify un-
expected behavior of the streaming data or an interest-
ing event. The sampling interval is adjusted based on
the prediction error. At the server, new sampling in-
tervals are allocated to the requesting sensors based on
available bandwidth, network contention, and stream-
ing source priority.

We consider a simple network model to conduct the
experiments, where all the streaming sources connect
to a single network channel. The server continuously
monitors the usage of this network channel and allo-
cates new bandwidth based on its availability. These
kinds of networks are prevalent in video surveillance,
object tracking and process control (automated meter
reading, building automation). Extending our current
architecture to multi-hop sensor networks is a part of
future research.

The main contributions of our work can be summa-
rized as below:

• We propose a model which, is adaptive to adjust
the sampling rate based on the input data charac-
teristics and general to map to linear (as well as
non-linear) problems without many major modi-
fications.

• Our method utilizes the given bandwidth judi-
ciously such that more important sources get more
bandwidth by reducing the bandwidth of less im-
portant ones.

• Our method allows the capability at the remote
site to adjust the sampling rate (to a certain
extent) independently without the central server
mediation to improve response time.

• Finally, we propose an optimal estimation scheme
(Kalman Filter) that can be used on the sensor
side to assess data arrival characteristics.

2 Related Work

The resource management problem in data streaming
has been studied mainly from the perspective of data
filtering [5, 13]. It has been shown that using adaptive
precision bounds [13], unusual trends in the streaming
data can be captured (the data is updated to the server
only when it falls out of an adaptive precision bound)
at low communication costs. However, due to uniform
sampling, the approach does not have the capability to
utilize a given bandwidth to maximize the information
gain.

The adaptive sampling approach proposed in [10]
considers only the network channel contention while
adjusting the sampling rate. The sensors check for the
network channel contention before putting the data on
it and reduce the sampling rate if the contention and
data-tuple drop rate is high. This reduces the overall
load on the network channel and achieves a better de-
livery rate at the server. The proposed approach does
not utilize the network channel judiciously, and it uses
adaptive sampling only when the network channel be-
comes congested and requires load-shedding.

The use of adaptive sampling and bandwidth man-
agement in sensor networks has been very well moti-
vated in [12, 3, 14, 9]. However a scalable method ap-
plicable in a distributed environment is still not avail-
able.

As we have discussed in Section 1, the problem of
adaptive sampling is not the same as that of load-
shedding [17]. First, to the best of our knowledge, none
of the load-shedding techniques have yet used predic-
tion/estimation models. Second, while load-shedding
modules are activated only when the load on the sys-
tem increases beyond what it can handle, adaptive
sampling modules are executed during the lifetime of
a stream. In the event of network congestion, the
load-shedding module would reduce the data transmis-
sion rate of the sensor by randomly dropping tuples,
whereas an adaptive sampling technique would reduce
the data collection rate in such a way that higher pri-
ority data receive a higher proportion of the available
bandwidth.

3 The Kalman Filter

The Kalman Filter was introduced in 1960 by R. E.
Kalman [7] as a recursive solution to the discrete-data
linear filtering problem. Since then, it has found ap-
plication in the fields of data smoothing, process es-
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timation, and object tracking, to name a few. The
traditional Kalman Filter is a linear algorithm that
estimates the internal state of a system based on a
prediction/correction paradigm. Below, we provide
a brief overview of the Kalman Filter’s mathematical
formulation, for more details refer [18].

The Kalman Filter comprises a set of mathematic
equations that provide a recursive solution to the least-
squares method. The system model is represented in
the form of the following equations:

xk+1 = φkxk +wk (1)

zk = Hkxk + νk (2)

where

xk = state vector of the process

φk = state transition matrix relating xk

to xk+1

wk = process model noise

zk = measurement vector

Hk = matrix relating system state and

measurement vector

νk = measurement noise

k = discrete time index

The prediction x̂k is based on a linear combination
of previous prediction/estimation and the weighted
prediction error. This error is called innovation ψk,
which is calculated as follows:

ψk = zk −Hkx̂
−
k . (3)

The value of the weight is called Kalman Gain Kk

which is adjusted with each measurement. The pre-
diction is calculated as follows:

x̂k = x̂−
k +Kkψk. (4)

Applying the least-square method we get

Kk = P−
k H

T
k ( HkP

−
k H

T
k +Rk)−1. (5)

Pk = (I −KkHk)P−
k . (6)

where, Pk and Rk are the error covariance and mea-
surement noise covariance matrices respectively (the
superscript denoting the a priori state of the matri-
ces).

The advantage of using the Kalman Filter is that it
gives satisfactory results even when we cannot model
the process accurately (i.e., when the values of matri-
ces νk and φk are unknown) and that the innovation
sequence can be used to evaluate the performance of
the estimation process.

There is a wide spectrum of filtering solutions
available which work on the estimation/correction
paradigm and can be substituted for Kalman Filter in
our proposed architecture. However, we support the
use of Kalman Filter as it can be easily customized to
provide good results on a wide range of streaming sen-
sor data and produce unbiased estimates even when
the incoming data have high variance. Biased algo-
rithms (like Exponential Weighted Moving Average,
EWMA) might not be the best choice when incoming
data has high variance. Error estimates can be fur-
ther improved using more sophisticated solutions like
Particle Filter [8] or condensation (conditional density
propagation) [4] as they work on non-Gaussian noise
processes and multi-modal state propagation. Such
algorithms are likely to provide better results as real-
life data are not Gaussian, however this performance
upgrade comes at increased cost of computational re-
sources. Most of the sensing devices have limited com-
putational capacity and selecting the best filtering so-
lution is subject to the availability of the resources.
The advantage of using Kalman Filter here is that the
computational complexity can be easily manipulated
by adjusting the number of state variables in the state
propagation equation.

4 Our Approach

We now present our adaptive sampling approach in a
distributed stream environment. We consider an envi-
ronment where numerous sensors continuously stream
updates to a central server. For example, a system
of sensors that continuously measure the location of a
moving object in two dimensions (one sensor for each
object). Our adaptive approach would distribute the
available bandwidth automatically in such a way that
sensors monitoring objects showing increased activity
have shorter time intervals between successive (low
sampling interval) measurements whereas those with
reduced activity have longer time intervals (high sam-
pling interval). This way, the trajectory generated at
the server by interpolating the measurements from the
sensors would be closer to the original trajectory than
that obtained by performing uniform sampling.

To maintain simplicity, we do not assume the pres-
ence of any data filtering or load-shedding modules in
our discussion. Thus, the data-sampling interval is the
same as the data-transmission interval of the sensor.
We interpret the sampling interval as the number of
time units between two successive measurements.

There are two main modules in the system, one
on the sensor side and the other on the server side.
Due to the space limitations, we describe each of them
only briefly. To simplify our discussion, we assume in
this paper that the tuple size over all the sources is
the same, and hence the bandwidth consumption is
directly proportional to the sampling interval at the
streaming sources.

12



4.1 Source Side Module

Let SIi denote the current sampling interval at source
Si (i is the ith source) which, is the number of time
units between two consecutive measurements. Let
SIRi denote the range within which, the sampling
interval can be adjusted by the source without any
server mediation and SI lasti denote the latest value of
sampling interval received from the server. (We cur-
rently assume static SIRi’s.) Let SIdesiredi denote the
desired sampling interval based on the KF prediction
error. Sensor Si need not contact the server for addi-
tional bandwidth provided that

(SI lasti − SIRi/2) ≤ SIdesiredi ≤ (SI lasti + SIRi/2).
(7)

If SIdesiredi satisfies Equation 7 then SIi takes the
value of SIdesiredi . This scheme helps the source to
capture unexpected data trends immediately as the
server grants over the network could be delayed due
to network congestion or unavailability of resources.
Each data tuple sampled by Si is forwarded to a
Kalman Filter KFi which, provides with the innova-
tion ψi

t value (Section 3). The estimation error δi at
any instant t is then calculated as:

δit = sqrt(trace(ψi
t(zi

t)−1)2). (8)

We multiply the innovation (error in prediction) by the
inverse of the measurement matrix to get the fractional
error (ψi

t and zi
t are column matrices). We take the

square of the matrix to eliminate any negative values.
Finally the square root of the trace gives the fractional
error over all the variables in the measurement matrix.
Si maintains a sliding window of size Wi that holds

the last Wi values of the estimation error. If nij is the
jth element of the sliding window at Si (ni1 being the
latest element), total error ∆i over the sliding window
is calculated as:

∆i =

j=Wi∑
j=1

nij/j

j=Wi∑
j=1

1/j
. (9)

Equation 9 ensures that the newer values in the win-
dow have higher weight.

User parameters λi and θi control the dynamics of
SIi. Each time ∆i is calculated, a new sampling in-
terval SInewi is generated as follows:

SInewi = SIi + θi ∗ (1− efi). (10)

where fi = ∆i−λi
λi

. Equation 10 ensures sharp fall and
gradual rise in the sampling interval due to the expo-
nential factor that helps improving the response time
of the system. If SInewi satisfies Equation 7, then the
sampling interval is assigned this new value; otherwise,

a new sampling interval is requested from the server.
The source requests the change is the sampling interval
∆SIi such that

∆SIi = SInewi + SIRi/2. (11)

In addition the source also sends the fractional error fi
for each request of decrease in the sampling interval.

4.2 Central Server module

We now discuss the sampling rate allocation policy at
the central server. The allocation algorithm is exe-
cuted each time a request for decrease in sampling in-
terval (increase in the sampling rate) is received from
a streaming source. The server maintains a variable
Ravail that holds the amount of communication re-
source available at any time. When a source reports
about an increase in its sampling interval, the server
immediately adds the proportional amount of resource
units to Ravail and sends an acknowledgment to the
source. Any request for a decrease in a sampling in-
terval is added to a job-queue that is processed con-
tinuously by a separate thread.

Each job Jp in the job-queue has 5 attributes which,
are described below:

1. Fractional error fp is received from the source
when it sends a request.

2. Request Reqp is the units of resource requested.

3. History hp is the age of the request in the job-
queue. Its value is incremented by unity each time
the job-queue is processed.

4. Grant gi is the fraction by which, the Reqp has
been satisfied so far.

5. Query Weight wp the weight of the streaming
source from the query evaluator.

Assuming that the error fp is reduced to zero if re-
source request Jp is satisfied completely, we can for-
mulate a linear optimization problem, minimizing the
total error over all the jobs. If Jp is allocated Ap units
of resources, then the residual error after satisfying
the job is proportional to (1 − Ap/Reqp). Jobs hav-
ing higher fp, hp, and wp are given more priority than
others, whereas the priority varies inversely with gp.
We normalize each attribute by dividing it by the sum
of its value in all the jobs in the job-queue. Thus the
objective function can be formulated as:

min
Ap

(
fpP
fp
∗ hpP

hp
∗ wpP

wp
∗

P
gp
gp
∗

(
1− Ap

Reqp

))
(12)

s.t.
{ ∑

Ap ≤ Ravail
0 < Ap ≤ Reqp

(13)

Constraints in Equation 13 ensure that the sum of the
allocated resources is less than that of the total avail-
able and that each grant is less than its request. Once
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the optimization problem is solved, the resource units
are distributed to the requesting sources and the job-
queue attributes are updated accordingly.

5 Results

In this section we present the preliminary results of our
distributed adaptive sampling system. We performed
the experiments on data produced by the oporto real-
istic spatio-temporal data generator [15]. We recorded
the trajectories (in 2 dimensions) of 12 shoals produced
by the generator for 3, 000 time units. Oporto pro-
duces data with uniform distribution and some of the
trajectories were more complex than the others.

We implemented our system and conducted the ex-
periments on a Pentium III processor workstation with
256MB of RAM on a 10/100 Mbps LAN. The coding
was done on JDK 1.2.4, using JAMA [1] matrix pack-
age for matrix operations and OR-Objects [16] package
to solve the LP problem.

We initialized different streaming sources with dif-
ferent trajectories but the same initialization parame-
ters using a linear KF model [5]. All the sources had
to wait until the sliding window was full. We ran the
simulation until one of the sources had read all the
3, 000 records. The tuples received at the server with
their timestamps were then used to create the com-
plete trajectory using linear interpolation for both X
and Y coordinates. We evaluated the performance of
our system based on an effective resource utilization
(ERU) metric ξ which, is calculated as

ξ = η ∗m (14)

where m is the fraction of messages exchanged between
the source and the server, to the total number of tuples
read by the source, where η is the mean fractional error
between the actual trajectory and that generated by
interpolation. While calculating m we considered the
number of tuples forwarded by the source, messages for
bandwidth allocation and acknowledgment messages
from the server to the source. In all the experiments
θi=2, the initial sampling interval was five tuples and
none of the sources were allowed to skip more than 12
tuples in the adaptive sampling module. We studied
the affect of the number of sources, sliding window size
Wi and λi on the ERU . Results shown in Figures 1,
2, and 3 were obtained using Wi = 5 and λi = 0.6.

Figure 1 shows the mean fraction of messages for-
warded to the main server against the number of
sources. In this figure m is low for a small number
of sources, but as the number of sources increases, it
rises and stabilizes around 0.12. In all the cases the
number of messages is less than or equal to that sent
using uniform sampling.

Figure 2 shows that the fractional error using adap-
tive sampling is always less than that using uniform
sampling, except when the number of sources is one.
This is because we initialize the experiments with same

0.1

0.105

0.11

0.115

0.12

0.125

0.13

0 2 4 6 8 10 12

m

No. of Steaming Sources

Adaptive Sampling
Uniform Sampling

Figure 1: m on varying # of streaming sources
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Figure 2: η on varying # of streaming sources

sampling interval for both uniform and adaptive meth-
ods. Thus if the number of sources is one, then we
cannot beat the uniform sampling method.

Figure 3 shows change in ERU on varying the num-
ber of sources. The trend is similar to that in Fig-
ure 2. We observe that our approach outperforms the
uniform sampling method even when the number of
sources is high. There are some unusual results when
the number of sources is five and seven. This is be-
cause the trajectories for these sources of input data
may be unusually simple/complex.

Figure 4 shows the affect of parameter λi on the
ERU . Resource utilization is high for very low values
of λi because although the error rate would be low, the
number of messages would be very high. We observed
lower ERU when λi varied around 0.4 and 1.2. This is
because at lower values of λi the error is low and thus
ERU is low, on slightly higher values, although the
error is high, the value of m drops down significantly
enough to reduce the resource utilization below that of
uniform sampling. However at further increasing the
value of λi, ηi starts to dominate and the ERU starts
to increase.

The effect of varying the sliding window size is
shown in Figure 5. It is observed that at low values
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of Wi give better ERU . As the window size increases,
the ERU approaches constant value.

6 Conclusions and Future Work

In this paper we have proposed an adaptive sampling
technique based on a Kalman Filter estimation of er-
ror as an alternative to commonly used uniform sam-
pling techniques. We motivated the need for adap-
tive sampling techniques in a sensor network environ-
ment, where network bandwidth is a valuable resource.
Adaptive sampling was shown to be desirable not only
to conserve resources but also to improve the overall
quality of results (minimize the fractional error be-
tween the actual and the interpolated results).

We discussed some of the preliminary results in Sec-
tion 5 to show the effectiveness of our approach. We
observed that when we choose the input parameters
judiciously, our system can provide performance up-
grade as much as three to four times as compared to
uniform sampling (Figure 3). We have also shown the
effect of different input parameters on the system per-
formance which, suggests that further research needs
to be conducted to enable us to choose optimal param-
eters for the system.
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Figure 5: ERU on varying Wi

Our preliminary results are encouraging but further
research is indicated in the following directions:

• Extending the current architecture to multi-hop
sensor networks.

• Choosing appropriate window size.

• Developing efficient techniques to compute the er-
ror over the sliding window. In some cases expo-
nential decay methods might provide better re-
sults.

• Developing efficient algorithms to reduce the re-
quest/acknowledge message overhead between the
server and the sources. (Currently the message
overhead is high.)

• Developing algorithms to incorporate adaptive
SIRs in the current system.

• Testing the system performance on more real life
data sets.
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Abstract 
Recent years have witnessed an increasing 
interest in filtering of distributed data streams, 
such as those produced by networked sensors. 
The focus is to conserve bandwidth and sensor 
battery power by limiting the number of updates 
sent from the source while maintaining an 
acceptable approximation of the value at the 
sink. We propose a novel technique called 
Predictive Filtering. We use matching predictors 
at the source and the sink simultaneously to 
predict the next update. The update is streamed 
only when the difference between the actual and 
the predicted value at the source increases 
beyond a threshold. Different predictors can be 
plugged into our framework, and we present a 
comparison of the effectiveness of various 
predictors. Through experiments performed on a 
bee-motion tracking log we demonstrate the 
effectiveness of our algorithm in limiting the 
number of updates while maintaining a good 
approximation of the streamed data at the sink. 

1. Introduction 
Advances in networking and sensor technology have 
made it possible to access sensor data as it is gathered, 
and this in turn has fueled the development of applications 
that use a continuous stream of data. To manage this data, 
several data stream management systems have been 
developed, including STREAM [4], NiagaraCQ [6], 
TelegraphCQ [7] and Aurora [5]. We consider distributed 
environments in which remote data sources continuously 
stream updates to a stream processing installation. These 
environments incur a significant communication overhead 

in the presence of rapid update streams. Limiting the 
number of updates can significantly reduce this overhead. 

We present a novel approach to limiting stream 
updates, called Predictive Filtering. In many scenarios 
like motion tracking and network monitoring, 
approximate data values can be tolerated by the stream 
applications [2]. When the data values do not change 
randomly, prediction algorithms can be used to 
approximate the next update when it occurs without 
actually streaming the data. In our approach the sink 
requesting data from a stream source specifies to the 
source a certain precision constraint that needs to be 
satisfied. Predictors are then deployed both at the source 
and the sink that adapt to evolving data patterns in the 
stream. An update is streamed only when the difference 
between the actual and the predicted value at the source 
increases beyond the threshold or the precision constraint; 
otherwise the sink uses the predicted update. In the case 
of streams with a known update rate, the sink knows when 
the next update should be predicted; otherwise an update-
beacon (described later) is used to signal the occurrence 
of a new update at the source. 

As with all previous prediction techniques our 
approach is also limited to data streams that show some 
pattern in the updates because predictions are based on the 
previous updates and patterns. Our approach is well suited 
for streaming sensor data, since many sensors track 
phenomena with an inherent pattern, such as temperature, 
motion, and so on. We next give an example of one 
particular application of our approach. 

1.1 Example Application: Location Tracking and 
Collision Prevention 

Consider a scenario where a number of fast moving 
objects are being tracked to maintain location 
information. Tracking the location of fast moving objects 
incurs a large amount of communication overhead 
because of the large number of updates required per unit 
time to track an object. Our predictive filtering approach 
takes advantage of the fact that motion does not tend to be 
random. For example, airplanes follow air routes and bees 

Copyright 2004, held by the author(s) 
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move in a way that communicates information to other 
bees. As long as the objects being tracked stay on the 
predicted course, few updates will have to be streamed. 
Moreover, our filters can allow us to look beyond the 
current update and predict with some probability the 
future positions of the tracked objects. This can aid in 
applications that may need to react early to certain 
conditions, such as two airplanes passing too close to each 
other. 

1.2 Related Work 

An approach to data stream filtering was suggested by 
Olston, Jiang and Widom [1], which makes use of 
adaptive filters for processing continuous queries with 
precision guarantees. However, the approach makes no 
attempt to predict the next update and is thus similar to 
our approach with the predictor always predicting the next 
update to be equal to the last update. We present results 
comparing our techniques to their approach in Section 4. 
Quantitative guarantees regarding the precision of 
approximate answers is dealt with in [3]. One possible 
application for monitoring of environmental conditions 
using wireless sensors is discussed in [8, 9, 10]. 

1.3   Roadmap of the paper 

The rest of this paper is divided into 4 sections; Section 2 
gives a brief description of various prediction techniques 
explored in this paper. Section 3 contains the details to 
incorporate the prediction techniques into our stream 
framework. Section 4 contains an evaluation of our 
approach and its performance when compared to existing 
data stream filtering algorithms. In Section 5 we conclude 
by discussing some possible future directions and 
challenges in the domain. 

2. Overview of Algorithm & Prediction 
Techniques 

The choice of a prediction technique is highly dependent 
on the nature of the data stream under consideration. 
Using linear extrapolation one can easily approximate a 

linear data stream that monotonically increases, decreases 
or remains constant for sufficiently large intervals of time; 
such a scenario happens when tracking fast moving 
objects that tend to stay on course. In situations where 
linear extrapolation is not appropriate because of the 
rapidly fluctuating or more complex patterns of behavior, 
enhanced prediction techniques like double-exponential 
smoothing can be used. In some cases like streaming 
stock market data, statistically modeling a system for 
predicting such updates might not be possible. In such 
scenarios neural network-based time series prediction 
methods can serve the purpose. However, besides the 
nature of data stream, the update rate may also affect the 
choice of the prediction technique. We can tolerate 
computational delays for streams with slow update rates; 
but for streams with faster update rates, techniques with 
less computational overhead have to be used to ensure 
delivery of all updates. We now briefly describe each of 
these approaches. 

The basic components of our approach are shown in 
Figure 1. We maintain two predictors; one at the source, 
and other at the sink, that are exact copies of each other. 
The predictors contain three components; the ‘Predict’ 
component that is responsible for predicting the update 
based on past updates; ‘Learn’, which performs the 
learning in case of an incorrectly predicted update, and 
finally the ‘Update Trigger’ that causes periodic 
generation of an update in case of regular streams or 
causes the generation of an update on arrival of an update-
beacon. The update-beacon is a small message that occurs 
in lieu of the actual update to signal the sink that an 
update has occurred. Update-beacons are important for 
streams with irregular update rates in which the 
occurrence of next update cannot be determined until it 
actually occurs. An update-beacon is not required for 
regular streams, but for irregular streams we must tolerate 
some communication overhead imposed by update-
beacons (which is less than actually propagating the 
updates) in order to know when updates should be 
predicted. It may be possible to extend our predictors to 
predict the update rate as well, although we have not yet 
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Figure 1. Showing the components in Predictive Filtering 
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examined this possibility. The filter-bound at the source is 
a user specified parameter that encapsulates the degree of 
approximation that is tolerable. 

The procedures at the source and the sink for handling 
updates / update-beacons are shown in Figure 2 and 
Figure 3 respectively. The learn() and predict() 
procedures are specific to the type of prediction technique 
being used. The following sub-sections contain details 
about these procedures. 

2.1 Linear Extrapolation 

Linear Extrapolation provides a technique that imposes a 
very low overhead but performs sufficiently well for 
predicting a wide range of data streams. Given two 
updates at time tn and tn+1 the update at time tn+2  is given 
by the following expression: 
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Thus, the next update is predicted to be on a straight line 
connecting the previous two updates. When the stream is 

not changing rapidly we can predict more than the next 
update i.e. the dth update into the future is calculated using 
the following expression: 
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For linear extrapolation, learning consists only of tracking 
the previous two updates. 

2.2 Double Exponential Smoothing 

Double exponential smoothing-based prediction (DESP) 
[11] models a given time series using a simple linear 
regression equation where the y-intercept c and slope m 
are varying slowly over time. An unequal weighting is 
placed on these parameters that decays exponentially 
through time so newer observations get a higher 
weighting than older ones. The degree of exponential 
decay is determined by the parameter α � [0:1). The 
method makes use of two smoothing statistics: 
  

))(()1()())(( 1−−+= nnn tuStutuS αα  
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Using these smoothing statistics c and m can be estimated 
as c� and m� by applying the following equations 
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Given these estimates and with some algebraic 
manipulation the next update is predicted time d into the 
future with 
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In this case, the predictor learns by refining c and m over 
time based on updates. 

2.3 Artificial Neural Network based Predictors 

Another popular technique used for prediction is Neural 
networks [12, 13, 14]. Compared to the previous two 
techniques, they tend to be more adaptable and flexible, 
since they can effectively model complex non-linear 
mappings and a broad class of problems due to their non-
parametric nature. Their topology and weights are 
adaptable; therefore they are able to learn, which makes 
neural networks well suited for applications like 
prediction, system identification, and classification in 
many problem domains. One of the drawbacks of neural 
networks is that they need a sufficiently large data set to 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2. Source side update component 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Sink side update component 
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train the network, but this is what makes them even more 
suitable for stream-based applications that present 
enormous amounts of data.  Another advantage of using 
neural networks is that they can be used to predict 
categorical data streams, which may have certain 
elements that cannot be mathematically approximated. 
However, the inherent mathematical complexity involved 
in training neural networks and then in the prediction may 
limit the usefulness of this approach.  
Since we do not want to overload the stream data-source 
with computations for predicting the next update, we use 
a modified algorithm in this scenario. The learning 
component in case of neural network based predictors is 
present only at the sink and the predictor at the source is 
periodically updated to ensure similar predictions as the 
sink. The modified source and sink procedures are shown 
in Figure 4 and Figure 5 respectively. Further 
modifications to the algorithm include updating the sink 
predictor with batched updates after a threshold number 
of mispredictions. This allows us to limit the number of 

source predictor updates and produces better on-line 
training of the neural network. We have so far 
experimented with simple three-layer feed-forward neural 
networks and made use of the error back-propagation 
method to train the network; units with sigmoid function 
were used to construct the network.  We are gathering 
results for neural-network based predictors as part of our 
ongoing work.  

3. Implementation Details 
In this section we deal with the issues concerning the 
deployment of predictive filters. We have implemented a 
distributed stream management framework using the 
ECho publish-subscribe middleware [18, 19] developed at 
Georgia Tech. The predictive-filtering algorithm 
discussed in this paper was implemented as a part of our 
stream management framework. The ECho middleware 
supports channels that facilitate the flow of data between 
the source and the sink. One of the important features of 
the ECho-Channel framework is its ability to dynamically 
compile and deploy filters written in E-Code, a highly 
portable subset of C, at remote sites to process data at the 
source. We have used this ability of the framework to 
enable deployment of predictors at the source. More 
details about ECho and the E-Code Language can be 
found in [18]. 

The E-Code equivalent of a source-side predictor 
using linear extrapolation is shown in Figure 6. The 
variables input and filter_data are implicitly available to 
the function. The input variable contains the update. The 
filter_data variable contains configuration and state 
information, including the slope, y-intercept, last update 
and the update iterator. A return value of 1 causes the 
update to be transmitted to the sink while a 0 results in 
non-transmission of the update. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4. Modified source side update component 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Modified sink side update component 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. E-Code representation of source side linear 

predictor 
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Another advantage of using ECho channels is that the 
sink can remotely access the filter_data configuration 
information available to the source-predictor. This facility 
helps in remote maintenance of this structure and proves 
helpful in implementation of neural network based 
predictors in which the source predictor needs to be 
updated by the sink. 

4. Experimental Results 
We evaluated the performance of our technique and its 
applicability by designing a motion tracking system that 

records a log of various fast-moving objects. The 
temporal data feed was visual data collected by the 
BioTracking group at Georgia Tech [20]. The group video 
recorded activity of bees around a beehive for 10 days, 12 
hours per day; and then processed the video using an 
image-processing algorithm to track the individual bees. 
We chose this data stream because the high rate of change 
in a bee’s trajectory allows us to examine our techniques 
for predicting very complex data streams.  

The original motion log of a single bee is shown in 
Figure 7, which depicts 7846 updates from the bee-path 

 
     Figure 7. The original path followed by the Bee.     Figure 9. Bee-Path Trace using Linear Extrapolation 

 

 
          Figure 8. Bee-Path Trace using Source                Figure 10. Bee-Path Trace using Double Exponential 
                                  Approximation                                                                     Smoothing 
 

Table 1. Comparison of various predictive filtering techniques for constant Filter-Bound = 5 
 

Filtering Technique Number of Updates 
Propagated 

RMS Error 

No Filtering 7846 - 

Source Approximation[1] 542 3.98 

Linear Extrapolation 672 2.62 

Double Exponential Smoothing 454 2.07 
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trace. In our experiment, we limited the number of 
updates for tracking the bee by using various prediction 
techniques discussed above. Figure 8 shows the path 
traced by the bee using the source approximation 
technique discussed in [1]. Note that the path is very 
sparse and misses some details. Figure 9 shows the results 
obtained by using a linear extrapolation predictor. The 
figure shows more of the zig-zag nature of the original 
curve as the filter tries to predict and approximate the 
correct position of the bee. The results of using a double 
exponential smoothing based predictor are shown in 
Figure 10 and smooth edges and even more detail are 
shown in the figure.  

Table 1 shows the actual number of updates 
propagated from the source to approximate the position 
log for the various prediction techniques when filter-
bound is kept constant. It also contains the root-mean-
squared (RMS) difference (error) between the updates 
predicted by or received at the source and the actual 
updates. The RMS measures the quality of the 
approximated data; lower error is better. The number of 
updates required for linear extrapolation is more than that 
required for source approximation but the corresponding 
RMS error is considerably lower. However, the double 
exponential smoothing technique is the best both in terms 
of the number of propagated updates and the RMS error. 
Table 2 shows the actual number of updates required by 
each technique to approximately deliver the same quality 
in terms of RMS error at the sink. The table clearly shows 
the advantage of using prediction-based methods for 
filtering the updates. It maybe noted that better filtering 
techniques allow for relaxed filter-bound to achieve the 
same quality of sink updates. 

Experiments with neural-network based predictors are 
being conducted as part of our ongoing work. 

5   Conclusion and Future Work 
We have presented a novel approach to limiting the 
number of updates in streaming data environments by 
predicting values rather than streaming them. We have 
described the basic algorithm, which can be used in 
conjunction with a number of prediction techniques. Our 
initial experiments suggest that our approach can produce 
high quality data at the sink while effectively limiting the 
number of updates that must be sent. Our approach is 

applicable to a large number of streaming data 
applications typically present with sensor networks that 
deal with regular data: e.g. network monitoring data, 
traffic data and stock market data, and so on. We are 
currently exploring the possibility of predicting 
categorical data streams using neural network based 
predictors. We understand that the techniques are limited 
to data with numeric values; if the data is from a domain 
with discrete strings or categories as values, a 
modification of the proposed techniques will be needed. 
This is left as part of our future work.  
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Abstract

The military is working on embedding sensors in a
“smart uniform” that will monitor key biological
parameters to determine the physiological status
of a soldier. The soldier’s status can only be deter-
mined accurately by combining the readings from
several sensors using sophisticated physiological
models. Unfortunately, the physical environment
and the low-bandwidth, push-based personal-area
network (PAN) introduce uncertainty in the inputs
to the models. Thus the model must produce a
confidence level as well as a physiological status
value. This paper explores how confidence lev-
els can be used to influence data management de-
cisions. In particular, we look at power-efficient
ways to keep the confidence above a given thresh-
old. We also contrast push-based broadcast sched-
ules with other schedules that are made possible
by two-way communication.

1 Introduction
Data management has traditionally been reserved for large
complex software environments in which huge amounts of
data must be processed with limited resources. Modern
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database management systems (DBMS) that run on large
back-office servers are the most well-known embodiment
of this kind of technology. Researchers have recently re-
alized that similar technologies are needed in smaller en-
vironments in which resource limitations are also an issue
[9, 4]. In sensor-based applications, bandwidth and battery
power are typically the scarce resources.

This paper looks at a real sensor-based application in
which results are computed along with a confidence value.
The data management game that we play here is to set
transmission parameters (statically or dynamically) in or-
der to achieve the highest confidence only when the appli-
cation requires it. Our techniques use strategies that are
informed by the confidence models to conserve bandwidth
and power. We discuss these ideas and some possible ap-
proaches in terms of a military physiologic sensing applica-
tion. Our main contribution is in the way that confidences
can be used in this particular application.

The warfighter’s workplace has unique occupational
challenges: from mission demands, the environment, and
combat injuries. Modern dismounted soldiers commonly
engage in intense, mentally and physically demanding 3-
10 day missions, often in rugged terrain or complex urban
settings. Warriors carry heavy loads and are often food and
sleep-restricted. Environmental conditions can vary widely
in terms of ambient temperature, humidity, wind speed,
barometric pressure, and the like. In non-war mode the
military can suffer over 120 heat casualties a year [1]. Un-
der or over hydration can decrement physical and cogni-
tive performance, and increase the risk of heat injury, hy-
ponatremia, or death [14, 15, 16]. Added to the harsh en-
vironment is the possibility of receiving a wound. Once
a warfighter has become a casualty, it is critical that treat-
ment is received quickly during the “golden hour”, which
is the short period of time when proper medical treatment
can mean the difference between life and death. It has been
suggested that 20% of these deaths could be prevented with
rapid intervention [13]. Therefore, wearable physiological
and medical status monitoring can play an important role
in: sustaining physical and mental performance, reducing

24



the likelihood of non-battle injuries such as heat stroke, and
provide remote notification and medical status of a casu-
alty.

In this paper, we first describe the Warfighter Phys-
iologic Status Monitoring (WPSM) application in detail
in Section 2, where we also present an example scenario
and show how the sensor network behaves under this sce-
nario. We discuss potential data management techniques
that would improve the existing network in Section 3. We
present some preliminary simulation results in support of
these discussions. Section 4 summarizes related work in
the area. We conclude the paper by discussing future direc-
tions in Section 5.

2 The WPSM Application
2.1 The Sensor System

The Medical Research and Material Command (MRMC)
under its Warfighter Physiologic Status Monitoring - Initial
Capability (WPSM-IC) program is developing what is es-
sentially a wellness monitor for each soldier. This system
is comprised of a medical hub which hosts a personal area
network of physiologic and medical sensors and a num-
ber of algorithms. The algorithms estimate the state of
the warfighter in the following areas: Thermal, Hydration,
Cognitive, Life Signs, and Wound Detection. Each area has
four potential states that are coded by color. Green repre-
sents normal-no action is required; Yellow means requires
attention; Red calls for immediate action; and Blue indi-
cates a system fault. For each area’s state, the hub also esti-
mates a confidence level. Confidence refers to the accuracy
level of the state estimated by a model.

The states for each medical and physiologic area are
based upon input to the state algorithms from a number
of sensors distributed around a warfighter’s body, uniform
and equipment, as well as outputs from other algorithms
resident in the medical hub. Figure 1 shows a schematic
of the current WPSM-IC sensor system and the physical
placement of sensor equipment on a warfighter. The in-
gestible thermometer pill is network-enabled, and mea-
sures the temperature of the stomach and intestines, which
is usually a good indication of body core temperature. The
fluid intake monitor measures the amount of fluid con-
sumed through a bladder-style canteen. The life sign de-
tection sensor (LSDS) is an integrated system with multiple
parameters and algorithms including heart rate, respiration
rate, body orientation, actigraphy 1, and skin temperature.
The LSDS also has an integrated ballistic impact detec-
tion device which provides an alert when on-body acous-
tic signals are detected that indicate the probability that a
ballistic projectile has impacted the warfighter. The sleep
performance watch treats sleep as a consumable quantity,
measures it, and uses an algorithm to equate this to appar-
ent cognitive readiness. The soldier also carries a GPS and
other technologies which report his geographic location.

1Actigraphy is a measure of activity patterns [7].

Figure 1: WPSM-IC Sensor System

The sensors are connected to the medical hub by a pro-
prietary wireless RF network [12]. The network was devel-
oped with a number of key requirements unique to a mil-
itary operational environment. The network needed to be
very low power, to allow miniature physiologic sensors to
run for weeks without the need of battery recharge or re-
placement, and also have an ability to reject cross talk and
interference from similar networks borne by other soldiers
when congregated in close proximity to each other. In ad-
dition, the network had to provide a low profile signature
to avoid detection.

The current network uses a detuned (low detectability)
40MHz radio frequency (RF) carrier. Digital data are trans-
mitted from sensors to the medical hub utilizing a pseudo
random push transmission scheme. Sensors are factory set
with an identification number (ID) and random number ta-
ble seed. Sensors are supplied operating in a deep sleep
mode and are activated through an infrared (IR) port, by a
medical hub. Activation associates a particular sensor with
a particular hub. The sensor in a series of initial transmis-
sions sends its transmission schedule (based upon its ID
and random number seed) and clock information to the hub.
Knowing this information, the hub is able to keep itself in
a sleep mode, powering up fully only when it knows to ex-
pect a transmission from an associated sensor. This reduces
power consumption in the hub (∼0.1% duty cycle) and also
guards, to some degree, against cross talk from other sen-
sors. This “push-only” scheme has the benefits of allowing
sensors to only carry transmission circuitry which is acti-
vated on a known schedule, rather than both a transmitter
and receiver. In a “polled” scheme, a sensor would need
to constantly power the receiver circuitry to listen for data
polls, and hence consume more power. Sensors in the cur-
rent network sample every 15 seconds and transmit data at
2400 baud on average every 15 seconds. The transmission
interval can vary from 3 seconds to 27 seconds according
to the pseudo random schedule with each transmission time
interval having an equal probability of occurrence. Each
sensor message is 240 bits long.
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Model Skin Temp. Heart Rate Actigraphy Geo-Location Resp. Rate Pill # Sensors
TSkin

√
1

Threshold
√ √

2
Model1

√
1

Model2
√ √

2
Model3

√ √ √ √
4

TCore
√

1

Table 1: Models for estimating thermal state

2.2 Example Scenario: Estimating the Thermal State

In this paper, we focus more closely on the warfighter ther-
mal state, and the sensors and models which allow thermal
state and its confidence to be determined. In what follows,
we describe an example scenario for estimating the thermal
state of a soldier.

The best and most confident method to assess thermal
state is direct measurement of core body temperature by
using the network-enabled ingestible pill. When core body
temperature is greater than 39.5◦C, there is a high prob-
ability that the warfighter is in thermal strain. However,
this method is impractical for continual use. Thus, these
devices are reserved for use during high thermal stress
missions, while encapsulation in nuclear, biological, and
chemical protective suits, and/or if use is indicated by other
algorithms or medics.

When a core temperature pill is not being used, WPSM-
IC plans to use variants of two basic types of models to
provide an estimate of thermal state. The simplest model
is the Threshold Model [2] that takes inputs from two sen-
sors measuring skin temperature and heart rate. Under very
low and high skin temperatures, the confidence in states
produced by this model is higher than otherwise. For mid-
values of temperature, knowing heart rate values improves
confidence. The second model is a first principles model
similar to the USARIEM Scenario Model [6], that takes
metabolic rate, environmental conditions, clothing config-
urations and biometric data as inputs to estimate core body
temperature. Metabolic rate and the environmental con-
ditions are key drivers of this model. From the current
system, metabolic rate can be derived independently from
heart rate, respiration rate, actigraphy, and geo-location
readings in multiple ways with different confidence lev-
els. Based on these, Table 1 summarizes six alternative
models to estimate thermal state together with the sensors
they are using. TSkin Model is a simplified version of
the Threshold Model, using only the skin temperature sen-
sor. The Threshold Model additionally uses the heart rate
sensor. Models 1-3 represent variants of the first princi-
ples model where metabolic rate is derived using differ-
ent sets of sensors: Model1 uses just actigraphy; Model2
uses both actigraphy and geo-location; Model3 uses actig-
raphy, geo-location, heart rate and respiration rate. Finally,
TCore Model uses the core temperature pill. Each alterna-
tive model has complex algorithms that map sensor values
to physiologic states with certain confidence levels. The
details of these algorithms are outside the scope of this pa-

per.
Our thermal state estimation problem consists of three

major dimensions that determine the confidence levels:

1. Model: The first factor is the model, and hence the
set of sensors, that participate in the state computa-
tion. Input from a greater number of sensors usually
increases the confidence in the state. This is not true
when the core temperature pill is used. However, the
core temperature pill is unique in that it is a consum-
able sensor, with a costly logistics and resupply train.

2. Latency: The second factor is the latency of sensor
messages. As readings get older, their relevance and
usefulness to the models and state algorithms decay.
Thus, a latency decay function or “shelf-life” is de-
fined for each sensor. This function maps latency val-
ues measured in seconds to decay coefficients. For
our example scenario, all sensors are simply assumed
to have the following exponential decay function2:

2
−(dlatency/15e−1), where latency > 0

For example, a heart rate reading of age 20 seconds
has a decay coefficient of 0.5, i.e., a state computation
that uses this heart rate value would have its confi-
dence level degraded by 0.5. When multiple sensors
are involved in a model computation, we simply use
their average latency to compute the decay coefficient.
If sensors had different latency decay functions, then
we would take an average of their individual decay
coefficients.

3. State: Finally, the third determinant of confidence is
the output state. For our thermal state estimation prob-
lem, the Green state can be determined with higher
certainty than the Yellow and Red states.

Next, we present confidence assignments on two of the
dimensions, Model and State. The latency dimension is
based on the decay function provided above.

As mentioned earlier, physiologic models are also af-
fected by the physical environment. In Table 2, we il-
lustrate a detailed work environment scenario. The first
two columns of this table show nine different environment-
activity combinations. Work environment conditions are

2In general, it is more realistic to choose different decay functions for
different sensors. For example, heart rate readings would certainly age
faster than ambient temperature readings.
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TSkin Threshold Model1 Model2 Model3 TCore
Env. Work G Y R G Y R G Y R G Y R G Y R G/Y/R
cool low 80 76 72 90 85.5 81 95 90.25 85.5 95 90.25 85.5 95 90.25 85.5 100

warm low 80 76 72 90 85.5 81 95 90.25 85.5 95 90.25 85.5 95 90.25 85.5 100
hot low 60 57 54 80 76 72 95 90.25 85.5 95 90.25 85.5 95 90.25 85.5 100
cool med 70 66.5 63 90 85.5 81 95 90.25 85.5 95 90.25 85.5 95 90.25 85.5 100

warm med 50 47.5 45 70 66.5 63 80 76 72 90 85.5 81 95 90.25 85.5 100
hot med 40 38 36 60 57 54 70 66.5 63 80 76 72 90 85.5 81 100
cool high 40 38 36 60 57 54 90 85.5 81 95 90.25 85.5 95 90.25 85.5 100

warm high 20 19 18 40 38 36 60 57 54 70 66.5 63 80 76 72 100
hot high 5 4.75 4.5 20 19 18 50 47.5 45 60 57 54 75 71.25 67.5 100

Table 2: Work Environment models to estimate thermal state and their confidence levels

measured independently from the soldier (e.g. through
a weather station) and they are external to the soldier’s
personal area sensor network. However, they directly af-
fect the confidence achieved by the models. For each
environment-activity combination, confidence levels for
six alternative models are shown. Note that these values are
representative values. Each model can estimate the Green
(G) state with the highest confidence. If a Yellow (Y) is
computed, this confidence degrades by 0.95; if a Red (R)
is computed, it degrades by 0.90. TCore Model is an ex-
ception as its confidence for all states is perfect due to its
being a direct measure of thermal state. Note that as the
environment moves from cool to hot, and as activity moves
from low to high, more types of sensors may be needed
to maintain a high confidence about the soldier’s thermal
state.

The application requires different confidence levels de-
pending on soldier’s state. Table 3 shows the required
thresholds for our example. If a Green state is reported,
its confidence has to be at least 50. If a Yellow state is ob-
served, a confidence value of at least 70 is required. Finally,
if soldier’s state is reported to be Red, a confidence value of
at least 80 has to be provided. In other words, the applica-
tion requires higher confidence for more important events.
The goal is to operate the sensor network in such a way
that it delivers state estimations with sufficient confidence
levels.

State Confidence Threshold
Green ≥ 50

Yellow ≥ 70

Red ≥ 80

Table 3: Required confidence thresholds for each state

2.3 The Push-Only Transmission Scheme

We simulated the existing push-only sensor network on
CSIM [11]. We ran the alternative models of the exam-
ple scenario through the simulator, using one model and
one environment-work pair at a time. We assumed that the
soldier is in the Green state. We make the following impor-
tant observation: Models requiring more sensors do not al-

ways achieve better confidence levels. Models periodically
compute states based on what has most recently been re-
ceived from the participating sensors. When more sensors
are present in the network, the frequency of packet colli-
sions and message drops increases. When the most recent
measurement from a sensor is missing, state computation
at the hub has to rely on a stale earlier reading from that
sensor. As mentioned before, stale data degrades the confi-
dence level associated with each instance of model output.
Figure 2 shows how each model behaves under three of the
environment-activity conditions. Model3, using four sen-
sors to estimate metabolic rate, achieves better confidence
than other models (except TCore) in the (warm, high) and
the (hot, high) cases which represent relatively high inten-
sity conditions. To generalize this notion, delivering high-
confidence for different detection goals (i.e., thermal stress,
wound detection, etc) demand different models.

Figure 2: Simulation of the push-only scheme

3 Confidence-based Data Management

In the WPSM context, data management largely concerns
the scheduling of data transmissions. Frequent transmis-
sion can in principle improve latency, but over zealous
transmission can waste power and increase the odds of a
collision (i.e., lost data). In what follows, we discuss tech-
niques for optimizing this tradeoff. We use confidence
modeling as the primary way to inform these decisions.
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Model Average Confidence % Drop
Model 1 64.92 0
Model 2 72.73 1.98
Model 3 77.75 5.79

All Models 79.22 5.71

Table 4: Model redundancy simulation results

3.1 Exploiting Redundancy

Physiologic states can be estimated with higher certainty
by allowing redundancy at several levels.

Model Redundancy. All alternative models to estimate a
particular state can run concurrently. As we have demon-
strated, various factors like sensor values and latency
decay may cause one model to achieve higher confidence
than another. By running the models simultaneously, one
can obtain multiple state estimations at different levels of
certainty and the one with the highest confidence can be
picked. Table 4 shows preliminary results from a model
redundancy simulation for a changing work environment
scenario. We again assume that the soldier is in the Green
state. Models 1-3 are run both separately and all together.
The work environment is initially set to (cool, high) and
then gradually changed to (warm, high) and (hot, high).
When all models are redundantly run together, the average
confidence is the highest. Models 1 and 2 have fewer
drops due to fewer sensors sharing the channels. Model 3
and All Models use four sensors and they both experience
higher percent message drop due to collisions. Note that
All Models loses around the same percent of messages as
Model 3 alone, but achieves higher average confidence.

Data Redundancy. Sensor readings can be transmitted
multiple times. A sensor message not only contains the
most recent reading, but also the previous reading as well.
This type of redundancy is useful when the model to be
computed not only requires the most recent sensor value,
but a valid sensor reading every certain time period. This
increases the probability that a reading will get through.

Obviously, allowing redundancy has drawbacks in terms
of resource consumption. Running all models at the same
time increases network traffic and message loss. Similarly,
repeating readings in multiple messages increases message
lengths, thus consuming bandwidth and expending addi-
tional battery power. Therefore, the degree of redundancy
has to be adjusted based on a tradeoff between desired level
of confidence, variability of the conditions affecting confi-
dence, and resource consumption.

3.2 Adjusting Sampling Rates

In the current deployable network, sensors come with
factory-set transmission schemes. Thus, their sampling and
transmission periods are not adjustable. However, we be-
lieve that confidence levels and network lifetime could be
considerably improved by dynamically adjusting these sen-

sor parameters to match the requirements of the physiolog-
ical models. Thus, we foresee a need to incorporate two-
way communication into future sensor designs. Of course,
we must be able to show that the extra power needed to run
the receiver is worth it.

In general, sensors reporting with high frequency feed
low-latency values into the models, but messages are more
likely to get dropped due to collisions. In the extreme case,
high data rates can translate into high latency as well as
extensive energy consumption. On the other hand, low-
frequency transmissions seldom get dropped and use power
economically, but they may not refresh the models as often
as needed. Each sensor’s sampling rate should be adjusted
between these two extremes based on model requirements.

One thing to consider is the sharing between running
models. There are five different areas where state estima-
tion is needed. Each area may also run multiple models
concurrently. Each model requires readings from a certain
subset of the sensors. Sensors could be ranked based on
how many models they are feeding. Also, importance of a
state could be considered. For example, Wound Detection
may be more important than Cognitive State. Sensors in-
volved in Wound Detection should have higher rank. Sen-
sors of high rank should have shorter sampling and report-
ing periods.

A second consideration is the latency decay functions
of the sensors. A cumulative latency decay function could
be defined based on functions of all sensors involved in a
model computation. This function would indicate how of-
ten that model has to be refreshed to preserve its confidence
level. As mentioned before, some sensors can have stricter
latency requirements than others. For example, heart rate
readings age faster than temperature readings. This implies
that the heart rate sensor must update more often, illustrat-
ing the notion that refresh periods are application depen-
dent.

3.3 Bi-directional Data Communication

The sensor network used in the described application is de-
signed to be push-only, where data flows in a single di-
rection, from sensors to the hub. Sensors do not have any
receivers, but only transmitters. The rationale behind this
kind of a setup is threefold. First, it uses less power since
no sensor wastes battery by listening to the network. Sec-
ond, message loss is small since collisions are expected to
occur less frequently. Last but not least, push-only sen-
sors are much cheaper to build. However, this design limits
many potential optimizations that could be performed at the
receiver hub.

The receiver hub is the only point in the network that has
a complete view of all the sensors and all the physiological
models with their confidence requirements. As such, it can
make the best judgement about how to deliver high confi-
dence states in an efficient way. However, in a push-only
scheme, it has no control over sensor transmissions. The
hub must be able to ”pull” from the sensors as needed.

With a two-way communication model, we can accumu-
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late minimal sensor readings in order to populate the lower-
confidence models. Typically, the amount of data and the
latency requirements are lower for low confidence results.
In this situation, if we get an alert for a thermal stress event
with a low confidence, we can then contact the sensors to
collect more data in order to feed the higher confidence
models. Thus, we only spend bandwidth and power when
it is needed. In other words, in the normal operating case,
it is best to run lean at the expense of confidence. When an
important but low confidence event is observed, we expend
more resources to confirm or deny it. We now illustrate
this point on our work environment example presented in
Section 2.2. As shown in Table 3, our application has dif-
ferent confidence requirements depending on the soldier’s
state. These requirements can be met in multiple ways us-
ing alternative models. For example, if the soldier is in
the Green state and under the (hot, high) condition, Mod-
els 1-3 and TCore Model can deliver enough confidence
(≥ 50). Among these models, Model1 is the most desir-
able one. First of all, Model1 uses only one sensor. Thus,
network bandwidth does not have to be shared with other
sensors. The network lifetime with one sensor would be
much longer as the energy consumption at the hub is pro-
portional to the the number of sensors it is communicating
with. Finally, the actigraphy sensor used by Model1 is a
much cheaper alternative than using the core temperature
pill. If we apply this heuristic of “using as few sensors as
possible” to all condition and state combinations in Table
2, we end up with model preferences shown in Table 5.

To show the performance benefit of this heuristic, we
considered a scenario where the soldier is in a (hot,
medium) environment and is initially in the Green state.
Then his state gradually changes to Yellow and Red.
Model3 delivers enough confidence for all of these states.
Therefore, we ran one simulation where only Model3 is
used. In a second simulation, we started out with Model1
and changed to Model2 only when soldier entered Yellow
state, when Model1 can not deliver enough confidence.
Similarly, when the soldier’s state changed to Red, we
switched from Model2 to Model3 so that confidence is
above the required threshold. This second run simulates
the behavior of a hub pulling from sensors as necessary.
Initially, it only pulls from the actigraphy sensor; then the
geo-Location sensor is added; and finally, heart rates and
respiration rates are pulled. We further assumed that the
main determinant of network lifetime is the battery at the
hub which is about 1800 mAHrs. Additionally, we assume
that each sensor that is turned on has a current draw of
50mA; i.e, if this sensor is left on for an hour, it will con-
sume 50mAHrs of the total 1800mAHrs battery. Then we
compared these two simulations in terms of network life-
time. The first simulation runs out of hub battery in 9 hours
whereas the second one can survive more than 14 hours.
This simple scenario clearly demonstrates how a pull-based
model could conserve energy based on model and situation-
specific confidence requirements.

In a way, bi-directional communication enables switch-

Env. Work G Y R
cool low TSkin/Model1 TSkin/Model1 Model1

warm low TSkin/Model1 TSkin/Model1 Model1
hot low TSkin/Model1 Model1 Model1
cool med TSkin/Model1 Model1 Model1

warm med TSkin/Model1 Model1 Model2
hot med Model1 Model2 Model3
cool high Model1 Model1 Model1

warm high Model1 Model3 TCore
hot high Model1 Model3 TCore

Table 5: Model preferences based on the number of sensors

ing between alternative estimation models dynamically. As
such, it is a much more efficient alternative to the redun-
dancy approach proposed in Section 3.1.

Two-way communication is also more flexible than the
sampling rate adjustment approach discussed in Section
3.2. Sensor transmission rates can effectively be adjusted
by changing the pull frequency at the hub.

4 Related Work
There is a growing body of research on sensor network
data management. TinyDB [18] and Cougar [4] are two ex-
ample query processing systems for multi-hop sensor net-
works. These systems emphasize in-network processing of
declarative queries to reduce data communications and bat-
tery usage. TinyDB especially focuses on acquisitional as-
pects of query processing like where, when and how of-
ten data should be collected from the sensors [9]. Sen-
sor sampling rates are adjusted based on event and lifetime
specifications of queries. Cougar uses sensor update and
query occurrence probabilities for view selection and loca-
tion on top of a carefully constructed aggregation tree [4].
Scheduling techniques to overcome collisions in the sensor
network are also explored in this project. These systems
are designed to serve monitoring applications that span a
larger or difficult to reach geographical area than the per-
sonal area case, where multi-hop sensor communication is
a necessity (e.g., habitat monitoring).

More relevant to our problem are quality-driven ap-
proaches. As an example, TiNA exploits temporal co-
herency tolerance specifications of users in in-network pro-
cessing to trade off between result quality and energy con-
servation [17]. Sensor readings are reported only if they
differ from an earlier value by a certain amount. Another
example is the QUASAR project [8], which also exploits
applications’ tolerance to imprecision to minimize resource
consumption. As a more closely related work to ours, a
model-driven approach for data acquisition in sensor net-
works has been recently developed by Deshpande et al [5].
A probabilistic model of the sensor network data is cre-
ated based on a history of readings from sensors and cor-
relations between them. Queries can be approximately an-
swered based on this model. If confidence requirements
can not be met by the model alone, then the sensors in the
network need to be queried. The model is also refined as
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more readings are received. In the application that we con-
sider, multiple complex models exist to estimate physio-
logical states of a soldier. Each model uses a different set
of sensors. These models and their confidence levels are
well-defined. Rather than building and refining the models,
we concentrate on efficient data acquisition from sensors to
estimate states with acceptable confidence using alternative
models.

There is some related work on data management for per-
sonal area sensor networks as well. For example, a re-
cent work proposes a query processing system for health-
care bio-sensor networks [3]. Patient heart rates are mon-
itored using electrocardiogram (ECG) and accelerometer
sensors. Multiple ECG sensors have to be worn for a com-
plete measurement of the electrical activity of the patient’s
body. Furthermore, if the patient moves, ECG signals may
be corrupted. Therefore, readings from an accelerometer
sensor have to be correlated with ECG readings for a more
reliable result. This application has similar sensor network
uncertainty concerns as ours. However, the focus of this
work is on query processing at the base station. We believe
our confidence-based approach could be used at the data ac-
quisition phases of this system to improve query results. In
the same domain, CodeBlue is a wireless communications
infrastructure for medical care applications [10]. It is based
on publish/subscribe data delivery where sensors worn by
patients publish streams of vital signs and geographic loca-
tions to which PDAs or PCs accessed by medical personnel
can subscribe. Secure and ad hoc communication, priori-
tization of critical data, and effective allocation of emer-
gency personnel in case of mass casualty events are major
emphases of this project.

Finally, wireless sensor networks are also a subject of
recent research in the networking community. Of particular
relevance to our work are MAC (Medium Access Control)
protocols that determine when and how the network nodes
coordinate to share a broadcast channel [19]. Collision
avoidance is a major concern in these protocols. S-MAC is
one such protocol where sensor nodes periodically sleep to
reduce energy consumption by avoiding idle listening [20].
While such protocols make the underlying network more
reliable in power-efficient ways, they are unaware of the
application-specific requirements, like confidence levels in
our WPSM-IC application.

5 Future Directions
In this paper, we presented a challenging sensor network
application which can highly benefit from various data
management strategies as evidenced by our initial simu-
lation results. We are currently working on making these
strategies operational on the real network. In the future, we
are planning to extend this work in several directions. A po-
tential research direction involves treating sensor readings
as continuous waveforms with integrity constraints. If sen-
sor values could be noisy or erroneous, earlier values could
verify or deny confidence of the latest value. We could
also decide when to pull from sensors based on what val-

ues have recently been received. If recent heart rate read-
ings suggest that the heart rate could not have gone beyond
normal threshold since the last reading, then we do not need
to receive a new heart rate report.

WPSM-IC is currently concerned with dismounted war-
riors and the management of their personal area networks.
The goal at this point is to create a summary of the soldier’s
physiological state at the hub. In the future, this state in-
formation would be disseminated to other battlefield units.
This might include mobile medics who are deployed in the
theater of operation or to advanced field hospitals that are
prepared to deal with both prevention of potential casual-
ties as well as management of known casualties of various
kinds. The information that is uploaded beyond the individ-
ual soldier would be used for some form of remote triage.

The remote triage problem, of course, comes with its
own technical challenges. Similar reports from more than
one co-located soldier might be an indication of a particu-
lar kind of attack. Physiological status reports from many
soldiers can be used to prioritize treatment. In these cases,
the medic might find that the reported confidence level is
not high-enough to warrant the deployment of an ambu-
lance. Instead, the medic may contact the soldier’s hub to
amplify the confidence to some given level. This might re-
quire a great expenditure of resource, but in an emergency,
the investment is likely worth it.

References
[1] Army Medical Surveillance Activity. http://amsa.

army.mil/.

[2] L. Berglund, M. Yokota, and M. Kolka. Non-Invasive Phys-
iological Hyperthermia Warning System. Technical report,
USARIEM, 2004 (in process).

[3] C.-M. Chen, H. Agrawal, M. Cochinwala, and D. Rosen-
bluth. Stream Query Processing for Healthcare Bio-sensor
Applications. In IEEE ICDE Conference, April 2004.

[4] A. Demers, J. Gehrke, R. Rajaraman, N. Trigoni, and
Y. Yao. The Cougar Project: A Work-In-Progress Report.
Sigmod Record, 32(4), December 2003.

[5] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and
W. Hong. Model-Driven Data Acquisition in Sensor Net-
works. In VLDB Conference, Toronto, Canada, September
2004.

[6] A. P. Gagge, A. P. Fobelets, and L. G. Berglund. A standard
predictive index of human response to the thermal environ-
ment. ASHRAE Transactions, 92(2B):709–731, 1986.

[7] R. Hoyt, M. Buller, J. DeLaney, D. Stultz, K. Warren,
M. Hamlet, D. Schantz, W. Matthew, W. Tharion, P. Smith,
and B. Smith. Warfighter Physiologic Status Monitoring
(WPSM): Energy Balance and Thermal Status During a 10-
Day Cold Weather US Marine Corps Infantry Officer Course
Field Exercise. Technical Report T-02/02, DTIC Number
A396133, USARIEM, October 2001.

[8] I. Lazaridis, Q. Han, X. Yu, S. Mehrotra, N. Venkatasub-
ramanian, D. V. Kalashnikov, and W. Yang. QUASAR:
Quality-Aware Sensing Architecture. Sigmod Record, 33(1),
March 2004.

30



[9] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. The Design of an Acquisitional Query Proces-
sor for Sensor Networks. In ACM SIGMOD Conference,
San Diego, CA, June 2003.

[10] D. Malan, T. Fulford-Jones, M. Welsh, and S. Moulton.
CodeBlue: An Ad Hoc Sensor Network Infrastructure for
Emergency Medical Care. In International Workshop on
Wearable and Implantable Body Sensor Networks, April
2004.

[11] Mesquite Software, Inc. CSIM18 Simulation Engine.
http://www.mesquite.com/.

[12] Mini Mitter, Inc. Physiological and Behavioral Monitoring
for Humans and Animals. http://www.minimitter.
com/.

[13] R. F. Bellamy. The Causes of Death in Conventional Land
Warfare: Implication for Combat Casualty Care Research.
Military Medicine, 149:55–62, 1984.

[14] S. J. Montain and E. F. Coyle. Fluid ingestion during ex-
ercise increases skin blood flow independent of increases in
blood volume. Journal of Applied Physiology, 73(3):903–
910, 1992.

[15] S. J. Montain and E. F. Coyle. Influence of graded dehy-
dration on hyperthermia and cardiovascular drift during ex-
ercise. Journal of Applied Physiology, 73(4):1340–1350,
1992.

[16] S. J. Montain and M. N. Sawka and W. A. Latzka and C. R.
Valeri. Thermal and cardiovascular strain from hypohydra-
tion: Influence of exercise intensity. International Journal
of Sports Medicine, 19(2):87–91, 1998.

[17] M. A. Sharaf, J. Beaver, A. Labrinidis, and P. K. Chrysan-
this. TiNA: A Scheme for Temporal Coherency-Aware in-
Network Aggregation. In 3rd ACM MobiDE Workshop,
September 2003.

[18] TinyDB: A Declarative Database for Sensor Net-
works. http://telegraph.cs.berkeley.edu/
tinydb/.

[19] W. Ye and J. Heidemann. Medium Access Control in
Wireless Sensor Networks. In C. S. Raghavendra, K. M.
Sivalingam, and T. Znati, editors, Wireless Sensor Networks.
Kluwer Academic Publishers, 2004.

[20] W. Ye, J. Heidemann, and D. Estrin. An Energy-Efficient
MAC Protocol for Wireless Sensor Networks. In 21st In-
ternational Annual Joint Conference of the IEEE Computer
and Communications Societies (INFOCOMM 2002), New
York, NY, September 2002.

31



Approximately Uniform Random Sampling
in Sensor Networks

Boulat A. Bash John W. Byers Jeffrey Considine

Computer Science Department
Boston University

{boulat, byers, jconsidi}@cs.bu.edu

Abstract

Recent work in sensor databases has focused ex-
tensively on distributed query problems, notably
distributed computation of aggregates. Exist-
ing methods for computing aggregates broadcast
queries to all sensors and use in-network aggre-
gation of responses to minimize messaging costs.
In this work, we focus on uniform random sam-
pling across nodes, which can serve both as an
alternative building block for aggregation and as
an integral component of many other useful ran-
domized algorithms. Prior to our work, the best
existing proposals for uniform random sampling
of sensors involve contacting all nodes in the net-
work. We propose a practical method which is
only approximately uniform, but contacts a num-
ber of sensors proportional to the diameter of
the network instead of its size. The approxi-
mation achieved is tunably close to exact uni-
form sampling, and only relies on well-known
existing primitives, namely geographic routing,
distributed computation of Voronoi regions and
von Neumann’s rejection method. Ultimately,
our sampling algorithm has the same worst-case
asymptotic cost as routing a point-to-point mes-
sage, and thus it is asymptotically optimal among
request/reply-based sampling methods. We pro-
vide experimental results demonstrating the effec-
tiveness of our algorithm on both synthetic and
real sensor topologies.

1 Introduction

In the emerging research area of sensor databases, a
central challenge is to develop cost-effective methods
to extract answers to queries about conditions inside
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the sensor network. One typical sensor database sce-
nario involves sensor elements that are prone to failure,
are highly resource-constrained, and must communi-
cate across a lossy network. Sensor networks com-
prised of small battery-powered motes are a represen-
tative instantiation of this scenario [7]. In such an
environment, aggregation queries are particularly ef-
fective, as they are robust to node and link failures,
can be resilient to incorrect or outlying responses, and
are amenable to the use of in-network processing to
minimize messaging cost. For these queries, approxi-
mate answers typically suffice, especially in light of the
very high cost of ensuring 100% reliability in commu-
nications in sensor networks. Recent work has focused
on computation of aggregates using a request/reply
model in which a query is broadcast to a region of in-
terest, individual sensors make best-effort replies, and
responses are aggregated in-network en route to the
origin of the query [3, 11, 20].

In this paper, we argue that there is a rich and rela-
tively under-explored set of classic statistical methods
that have not yet been extensively studied in the do-
main of sensor databases. In particular, we propose
a more careful study of random sampling methods,
which have long been used in other domains to approx-
imately compute aggregates such as MEDIAN, AVG,
and MODE [2, 12, 13]. Random sampling is a par-
ticularly good fit for approximate aggregation queries
in the sensor network domain in light of the poten-
tially modest messaging cost. While we view random
sampling as especially useful in the context of data
management and data aggregation problems, we also
note that it is an integral component of other useful
randomized algorithms that are potentially applicable
to sensor networks, including randomized routing [18].

In the context of sensor networks, a natural abstrac-
tion is spatial sampling, i.e. sampling from geographi-
cal locations within the network uniformly at random.
On a 2-D network with bounded spatial extent, such
an objective can easily be realized by picking an (x, y)
coordinate from within the space at random and us-
ing geographical routing to route to the node closest
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to that point. While this is desirable for many appli-
cations, such as computing spatial averages [6], many
other applications and database queries prefer to ig-
nore geometry and instead wish to sample uniformly
from the set of nodes. Examples include querying av-
erage sensor battery life, counting the number of nodes
that are currently capable of executing a given sens-
ing task, determining the 95th quantile of sensor CPU
utilization, or estimating the number of sensors that
will fail within the next day. Our focus is to develop
practical algorithms for uniformly sampling from a set
of sensor nodes with low messaging cost.

Since it is well-known that nodes in a sensor net-
work often have highly irregular placements, spatial
sampling will produce non-uniform samples of the
nodes [5]. Our work relies on spatial sampling as a
starting point, but uses practical methods for smooth-
ing, or regularizing, the non-uniform samples to pro-
duce approximately uniform node samples. The key
idea is to have each sensor node compute and maintain
the area of its Voronoi cell. A uniform node sample is
then realized by sending a sequence of spatial samples
until one is “accepted”. A targeted node in the net-
work “accepts” by responding to a given spatial sam-
ple with an appropriate probability normalized by its
Voronoi cell size, otherwise it “rejects”. The specifics
of this normalization depend on global statistics on the
number of nodes in the network and on an appropri-
ate k-quantile of Voronoi cell sizes across the network.
We argue that these statistics can be updated infre-
quently and consistently. Ultimately, this application
of von Neumann’s rejection method [19] results in ap-
proximately uniform node samples.

As sketched above, our algorithm for generating a
random sample has a messaging cost that is typically
bounded by the messaging cost of a small constant
number of spatial samples in the expectation. This
cost is low since the messaging cost of computing a spa-
tial sample is akin to routing a point-to-point message
using a geographic routing method such as GPSR [8].
In the worst case, such a message traverses the di-
ameter of the network. In contrast, the best existing
methods for node sampling, which can compute an ex-
actly uniform sample, necessitate contacting all nodes
in the network [13]. We note that the additional infre-
quent global update costs incurred by our algorithm
can be amortized by the potentially vast number of
samples that can be taken between updates.

The remainder of the paper is organized as follows:
Section 2 formalizes the uniform sampling problem and
the limitations of existing methods. We summarize the
building blocks of our proposed method in Section 3.
Our rejection-based sensor sampling algorithm is pre-
sented in Section 4. Then in Section 5 we describe
the practical implementation issues, and Section 6 con-
cludes with the broader implications and applications
of our work.

2 Sampling: Problems and Methods

We now formally define our sampling problems.

Definition 1 (Uniform random sampling) An
algorithm samples uniformly at random from a set of
reachable sensors S if and only if it outputs a sensor
ID s ∈ S with probability 1

|S| .

Uniform random sampling is simple if the set of sen-
sor IDs is known in advance and sensors neither fail nor
move. However, it is much more challenging in the re-
alistic case where the set of IDs may not be known and
the set of reachable sensors dynamically changes over
time. For these reasons, we will be content with the
following close approximation to uniform sampling.

Definition 2 ((ε, δ)-sampling) An algorithm per-
forms (ε, δ)-sampling of a reachable set S if and only
if it returns a sample s ∈ S such that no element of
S is returned with probability greater than 1+ε

|S| and at
least (1− δ)|S| elements are output with probability at
least 1

|S| .

By this definition, our goal is to sample from almost
all sensors nearly uniformly with tunable parameters
ε and δ. Our definition allows us to under-sample a
small fraction δ of the nodes.

In a sensor network scenario, we typically wish to
sample from a set of pairs 〈k, v〉 where k identifies a
particular sensor and is unique within the set, and v
is some value associated with the sensor. This value
might be a measurement by the sensor, such as the
local temperature, or an internal statistic such as the
remaining battery life. As motivated earlier, sampling
in sensor networks is more challenging since neither a
full list of sensors nor direct communication with them
is available.

Prior to this work, the following two methods for
near-uniform sampling were proposed in the context
of sensor and other overlay networks.

Min-wise sampling: In [13], the use of min-wise
samples [1] was proposed for sampling a sensor net-
work uniformly at random. Given a hash function h
on sensor IDs, they returned the value associated with
the ID s such that h(s) is minimal (i.e. ∀s′∈S(h(s) ≤
h(s′))). Each sensor would then propagate the value
associated with the smallest observed h(s′). With
careful control of the transmissions, this scheme can
be implemented with each node in the sensor network
sending a constant number of messages, for a total of
Θ(|S|) transmissions. However, since the entire net-
work is involved, this is an expensive operation.

Random walks: Another natural method for sam-
pling is the use of random walks. In the sensor network
domain, one could generate a random sample by prop-
agating a request message along a randomly chosen k-
hop path starting from the query sink, and sampling
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the kth sensor reached. Unfortunately, this procedure
would both need to use a large value of k, and would
need to compensate for the fact that the method is
biased toward drawing samples from near the center
of the spatial region where sensors are located, as we
demonstrate in Section 5.1.

Our methods follow a rather different line. Like the
random walk method, we ultimately seek out a single
sensor, but our choice of the route to the sensor avoids
many of the dependencies and complications of the
random walk approach.

3 Prerequisites

Instead of choosing a path at random, we choose a lo-
cation in the sensor coordinate space at random and
route a probe to its closest sensor using geographic
routing techniques. When we partition the coordi-
nate space into regions of ownership by mapping the
nearest neighbor regions (Voronoi cells) to sensors, we
note that these regions are irregularly sized in most
instances. Thus, this naive spatial sampling method is
very likely to generate a biased sample. Therefore, our
last key step is to use von Neumann’s rejection method
to normalize the samples. We now briefly summarize
these three prerequisite ideas.

Geographic routing: If every node in a network is
aware of its own coordinates (e.g. via GPS), then it is
possible to route to a particular position using entirely
local decisions. Most of these local routing decisions
can be made in a greedy fashion, simply choosing the
neighboring node which has the closest coordinates to
the destination. This greedy routing fails when there
is an obstruction, or “void”, which must be circumnav-
igated to reach the destination. GPSR [8] provides an
elegant solution to this problem with just two states.
The default state of GPSR is greedy routing, while the
other state follows the perimeters of voids until greedy
routing can resume. When a packet reaches its target
point, another round of perimeter routing is run to
visit each of the immediately surrounding sensors so
that it can find the sensor nearest to the target point.
For typical topologies in 2-D, geographic routing takes
Θ(

√|S|) steps.

Voronoi diagrams: Once routing to an arbitrary
point is possible, we must also quantify the size of the
region of points that are closest to a particular sensor
s. Formally, the set of points closer to sensor s than
any other sensor is called the Voronoi cell of s [4]. In
the planar case which we consider, the Voronoi cell of
s is a convex polygon containing s, where each edge of
this polygon lies on a perpendicular bisector between
s and another sensor. The exact boundaries of this
Voronoi cell are easily determined exactly by locating
all of the sensors in the immediate vicinity of s. The
areas of these Voronoi cells have been used previously

to weight sensor readings for spatial aggregates [6] and
they are easily computable, but it is well known that
these areas vary widely when the sensors are placed
randomly [16]. This variation leads to a bias in spatial
sampling – each sensor is chosen with probability in
proportion to A(s), the area of its Voronoi cell. For
convenience, we assume the areas are normalized so
that they sum to one, and thus A(s) can also be in-
terpreted as the probability a randomly chosen point
is closest to s.

von Neumann’s rejection method: Much of the
early work on random sampling focused on sampling
complex distributions, assuming the ability to sample
simpler distributions. A well known example of this
is von Neumann’s rejection method [10, 19]. Suppose
we wish to sample from a distribution with probabil-
ity density function f (i.e. an event t has probability
f(t)). If we can sample from a distribution with prob-
ability density function g, then we can sample from
f as follows. First generate a sample t using g, but
only accept and return sample t with probability f(t)

cg(t) ,
where c is a positive constant. If t is not accepted, it
is rejected and the process repeats for a new sample
t. Assuming that c is chosen so that f(t)

cg(t) ≤ 1, then
the probability of picking a particular event t on the
first attempt is g(t) · f(t)

cg(t) = 1
cf(t). It then follows that

after c expected samples from g, we have one sample
from f .

4 Rejection-based Sensor Sampling

We now describe our method to combine ideas of spa-
tial sampling with von Neumann’s rejection method to
flatten out an irregular probability distribution into a
nearly uniform one. For our application, the desired
density function is uniform, i.e. f(t) = 1

|S| , and the
distribution which we can sample from, g(t), is the
distribution of Voronoi cell areas. One weakness in
von Neumann’s method for exactly reproducing a dis-
tribution f is that the constant c must be chosen so
that for all events t, f(t)

g(t) ≤ c. In our application, if
there exists a very small Voronoi cell, then c, and hence
the expected messaging cost, can be very large. Since
we cannot rule out this possibility, we content our-
selves for now with generating approximately uniform
samples. Later, in Section 5.2, we consider strategies
to boost sampling probabilities for the smallest cells to
significantly reduce residual sampling bias. We employ
the following basic algorithm.

Algorithm 1 (Rejection-based Sampling)
1 The random sampler picks a random location in
the sensor field and routes a message to the sensor
s closest to this point, using geographic routing
and pre-computation of Voronoi cells.
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(a) MIT sensor testbed. Reproduced with permission
from [17]

(b) James Reserve sensor network. Reproduced with
permission from [5]

Figure 1: Maps of real sensor deployments used in our experiments.

2 With probability min(A(s),τ)
A(s) , s accepts and re-

ports its value, where τ is a threshold to be defined
shortly.

3 Otherwise, s rejects and the random sampler re-
peats Steps 1-3. The random sampler also returns
to Step 1 if it times out waiting for a response.

Intuitively, τ can be thought of as a threshold on
Voronoi cell areas, in which we think of any Voronoi
cell of area at least τ as large and any area less than
τ as small. By our procedure, all large cells will
be selected equiprobably, but small cells will be se-
lected with smaller probability, in proportion to their
area. To ensure that Algorithm 1 results in (ε, δ) sam-
pling, we must guarantee that the fraction of small
cells (sampled non-uniformly) is less than δ, and that
the bias introduced by under-sampling small cells re-
sults in at most (1 + ε)-oversampling of large cells. In
practice, we set τ to be the area of the cell that is
the k-quantile, where k = min

(
δ, ε

1+ε

)
, and prove the

following main result.

Theorem 1 Running Algorithm 1 with k =
min

(
δ, ε

1+ε

)
and setting τ to be the cell area

that is the k-quantile results in (ε, δ)-sensor sampling.

Proof: By our problem definition, it suffices to show
that the method ensures that no element of S is sam-
pled with probability greater than 1+ε

|S| and at least

(1 − δ)|S| elements are sampled with probability at
least 1

|S| . First, we show that all large cells, i.e. cells
with area at least τ , are sampled in a given iteration
of the sampling algorithm with probability at least
1
|S| . The probability that a given sensor s is sampled
in a particular probe is ps = min(A(s), τ), and thus
the probability that a particular probe is successful is∑

s ps ≤ |S|τ . Now let E� denote the event that the
algorithm ultimately samples from a large cell �.

Pr[E�] =
p�∑
s ps

=
τ∑
s ps

≥ 1
|S| .

Now since large cells are at least a (1 − δ) fraction of
all cells by the setting of k ≤ δ, we have that at least
(1 − δ)|S| elements are sampled with probability at
least 1

|S| .
Next we show that no element is sampled with prob-

ability greater than 1+ε
|S| . By construction, large cells

are sampled with highest probability, so we restrict
attention to those cells. Starting from the same prob-
ability bound as before:

Pr[E�] =
p�∑
s ps

=
τ∑

s|A(s)<τ ps +
∑

s|A(s)≥τ ps

=
τ∑

s|A(s)<τ ps +
∑

s|A(s)≥τ τ

≤ τ∑
s|A(s)≥τ τ

≤ τ

(1 − k)|S|τ
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≤ τ

(1 − ε
1+ε )|S|τ

≤ 1
(1+ε
1+ε − ε

1+ε )|S|
=

1
( 1
1+ε )|S|

=
1 + ε

|S| .

Thus the theorem follows.
Relating this result back to von Neumann’s method,

this corresponds to a situation in which c = 1
τ |S| . As

with the rejection method, the probability that a par-
ticular sensor s is picked and accepted on the first at-
tempt is A(s)min(A(s),τ)

A(s) = min(A(s), τ). It remains to
select an appropriate threshold τ for our algorithm.

4.1 Threshold Management

Given user-specified values of ε and δ, the threshold τ
should be set to the k-quantile of the Voronoi cell ar-
eas, where k = min

(
δ, ε

1+ε

)
as discussed earlier. The

k-quantile can be computed during an initial prepro-
cessing step using recent techniques developed in the
sensor database community. In particular, work such
as [3, 11] shows how to efficiently count the number
of sensors matching some criteria (e.g. with a cell area
below a specified threshold) and deriving other simple
statistics such as the average cell area. We note that
while these values need to be updated to account for
dynamic changes within the sensor network, they need
not be exact, as bounds on the values suffice for our
methods. Therefore, only infrequent updating of these
global statistics is needed to maintain consistent and
approximately correct values. Updating these statis-
tics can easily be performed either by piggybacking
them on the random probes or on various control and
maintenance messages. Either way, once these statis-
tics are available, the sampler recomputes τ , and sends
it with each probe. Since the sampler’s value of τ is
included in the query, each sensor deciding to accept
or reject a probe acts consistently.

5 Practical Implementation Issues

We now discuss the details of a practical implementa-
tion of Algorithm 1. We begin in Section 5.1 present-
ing experimental results using the basic implementa-
tion outlined in Section 4, and then discuss various
refinements to improve the uniformity of sampling in
Section 5.2.

5.1 Experiments

We experimentally validated our proposed sampling
algorithm using three topologies: two from real sen-
sor deployments and one synthetic topology with 215

1.3

0.9

0.6
0.8

1.5

0.6

1.1

0.4

0.6

1.3

1.3

0.4

1.3

0.6

1.5

0.9

1.3

0.9

0.8

1.3

0.6

0.6

1.1
1.1

1.5

1.3

0.9

0.9

1.3

1.1

0.4

0.8

0.8

1.7

1.1

0.8

1.7

1.5

0.6

0.8

1.3

0.9

0.6
0.8

1.5

0.6

1.1

0.4

0.6

1.3

1.3

0.4

1.3

0.6

1.5

0.9

1.3

0.9

0.8

1.3

0.6

0.6

1.1
1.1

1.5

1.3

0.9

0.9

1.3

1.1

0.4

0.8

0.8

1.7

1.1

0.8

1.7

1.5

0.6

0.8

1.3

0.9

0.6
0.8

1.5

0.6

1.1

0.4

0.6

1.3

1.3

0.4

1.3

0.6

1.5

0.9

1.3

0.9

0.8

1.3

0.6

0.6

1.1
1.1

1.5

1.3

0.9

0.9

1.3

1.1

0.4

0.8

0.8

1.7

1.1

0.8

1.7

1.5

0.6

0.8

1.3

0.9

0.6
0.8

1.5

0.6

1.1

0.4

0.6

1.3

1.3

0.4

1.3

0.6

1.5

0.9

1.3

0.9

0.8

1.3

0.6

0.6

1.1
1.1

1.5

1.3

0.9

0.9

1.3

1.1

0.4

0.8

0.8

1.7

1.1

0.8

1.7

1.5

0.6

0.8

1.3

0.9

0.6
0.8

1.5

0.6

1.1

0.4

0.6

1.3

1.3

0.4

1.3

0.6

1.5

0.9

1.3

0.9

0.8

1.3

0.6

0.6

1.1
1.1

1.5

1.3

0.9

0.9

1.3

1.1

0.4

0.8

0.8

1.7

1.1

0.8

1.7

1.5

0.6

0.8

Figure 2: Sample distribution using long random walks
along adjacent Voronoi cells. Each sensor’s cell is la-
beled with its probability relative to the mean. For
example, a sensor labeled 1.3 is picked with probabil-
ity 1.3/|S|.

sensors placed uniformly at random on a unit square.
The first real network, illustrated in Figure 1(a), is
a testbed deployed at MIT [17]. These sensors were
heuristically placed according to expected quality as a
vantage point, and proximity to available power out-
lets. The second real deployment, illustrated in Fig-
ure 1(b), is a sensor network for micro-climate mon-
itoring at the James Reserve [5]. These sensors are
more concentrated in the lower left, where there is
thick foliage.

The objective of these experiments was to demon-
strate that we can cheaply obtain a close approxima-
tion to uniform sampling. Thus, besides examining
ε and δ at for various choices of τ , we also examine
the expected value of the random variable Y, which is
the number of probes sent before a sample is returned.
The actual energy costs of our method depend heav-
ily upon the geographic routing protocol in use. Since
testing the performance of various geographical rout-
ing protocols is beyond the scope of this work, we do
not implement geographic routing in our simulation.

First, we confirm our intuition that random walks
are unsuitable for near-uniform random sampling. We
consider the following random process. Starting at any
sensor in the network, a query repeatedly considers the
sensors with adjacent Voronoi cells and moves to one
chosen uniformly at random. After a sufficient num-
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Figure 3: Resulting distributions for real testbeds. Nodes are in increasing order of Voronoi cell area.

c ε δ E [Y]
naive 1.9 0.6 1.00

1 0.34 0.45 1.34
2 0.047 0.25 2.09
3 0 0 3.00
4 0 0 4.00
5 0 0 5.00

(a) MIT sensor testbed

c ε δ E [Y]
naive 4.3 0.69 1.00

1 0.48 0.46 1.48
2 0.12 0.23 2.24
3 0.041 0.15 3.12
4 0.012 0.038 4.05
5 0.0072 0.019 5.04

(b) James Reserve sensor network

c ε δ E [Y]
naive 3.8 0.57 1.00

1 0.27 0.41 1.27
2 0.051 0.15 2.10
3 0.017 0.06 3.05
4 0.0079 0.029 4.03
5 0.0042 0.017 5.02

(c) 215 randomly placed points

Table 1: Summary of experimental results

ber of steps to converge on the stationary distribution,
the query outputs its current location. Figure 2 shows
the Voronoi diagram of the MIT sensor testbed and
the relative sampling probabilities of each sensor. As
expected, the sensors most likely to be chosen are in
the middle of the network, and the sensors least likely
to be chosen are on the edges of the network. Suffi-
ciently long random walks on this topology can achieve
(0.71, 0.52)-sampling. This is better than naive spatial
sampling, which would achieve (1.90, 0.60)-sampling
on the same topology, but our rejection-based methods
will give much better results.

Figure 3 shows the results of Algorithm 1 on the
real topologies assuming that there are no faults and
each sensor knows the area of its own Voronoi cell.
The areas of both networks are the areas of their min-
imum bounding boxes. The threshold τ was set to

1
c|S| for c = 1, 2, 3, 4, 5, and the naive spatial sampling
method is included as a baseline. As c increases and τ
decreases, the distribution becomes more uniform and
improvements in both ε and δ are clearly visible.

Tables 1(a) and 1(b) summarize the parameters of
the resulting sampling distributions, along with the
expected number of probes for each sample. With the
MIT sensor testbed, setting c = 3 (equiv. τ = 1

3|S| )
results in uniform sampling – this is because there are

no sensors with less than a third of the average cell
area in their Voronoi cell. With the James Reserve
network, one sensor has a cell area of slightly more
than one tenth of the average, so c ≥ 10 is necessary
for uniform sampling. However, this is the only sensor
which is under-sampled for c ≥ 5.

For comparison, Table 1(c) summarizes the corre-
sponding results for a synthetically generated topol-
ogy of 215 randomly placed points on a unit square.
The smallest Voronoi cell in this topology was slightly
smaller than 1

98|S| , so if exact sampling is desired,
an average of c ≥ 99 probes per sample are needed.
However, just setting c = 5 achieves (0.0042, 0.017)-
sampling.

Figure 4 shows the cell size distributions of our test
topologies where the impact of human choices on sen-
sor placement is present. First, humans are prone to
favor interesting or easily accessible points, resulting
in sensors being clustered together, each with below-
average area. This is evident in Figure 4: the two
real sensor networks have a larger fraction of sensors
with below-average Voronoi cell areas than a randomly
generated topology. At the same time, humans are un-
likely to choose very poor placements where many sen-
sors are extremely close together. Figure 4 also hints
at this point, as the smallest Voronoi cells in syntheti-
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cally generated networks are significantly smaller than
the ones in real topologies.

5.2 Algorithmic Modifications

We now consider a variety of heuristics for improving
our baseline algorithm by reducing the impact of small
Voronoi cells on the (ε, δ)-approximation.

Sleeping: Perhaps the simplest method for handling
sensors with very small Voronoi cells is for some of
these sensors to sleep. Sleeping sensors are deacti-
vated, and sampling from them is thus rendered impos-
sible. Putting one small cell to sleep will increase the
size of adjacent cells (which are also likely to be small),
so it is not necessary to put all small cells to sleep to
remove their impact. We note that this approach is
similar in spirit to some routing schemes which use
sleep for power management, particularly in crowded
areas [21]. Because the sensed values from the sleep-
ing nodes are unavailable, this approach may not be
appropriate for some applications.

Pointers: Another method for increasing the sam-
pling probability of small cells is for larger cells to
keep pointers to nearby small cells and forward some
rejected probes to those small cells. That is, when-
ever a large cell would reject a probe, it may instead
redirect the probe to a nearby small cell. The proba-
bility of forwarding a probe can be negotiated between
the cells based on their respective sizes. Essentially, a
large cell would donate part of its “unused” area to its
small neighbor.

Virtual coordinates: Instead of using real-world ge-
ographic coordinates to map points to sensors, we can
use virtual coordinates [14, 15], modified to include ei-
ther a repulsive force between close sensors, or a hard
lower bound on the inter-sensor distances. Virtual co-
ordinate spaces also allow the boundaries of the sensor
network to be pre-defined, instead of explored via pe-
riodic probing [5].

6 Future Work and Conclusions

Uniform random sampling is a standard and useful
primitive underlying many algorithmic and statisti-
cal methods. Our work focused on the unique con-
straints imposed by sensor networks, and the problem
of cheaply selecting one sensor node uniformly at ran-
dom. In future work, there are numerous generaliza-
tions to consider. Our methods immediately general-
ize to queries that wish to sample nodes satisfying a
geometric predicate, such as those within a region of
interest, but we have not yet studied how to efficiently
sample from nodes satisfying a non-geometric predi-
cate. Another interesting question is how best to take
advantage of parallelism when the number of samples
needed or the expected number of attempts is high.
Here, distinct probes may traverse common network
links, so clever strategies may be able to reduce total
transmission costs. We also plan to consider how to op-
timize sampling for queries which do not fall into a re-
quest/reply paradigm. For example, if query patterns
are known in advance, such as periodic fixed queries,
a more streamlined method for sampling that avoids
explicit requests could be implemented in a decentral-
ized fashion. However, our methods may still find use
in answering such queries since their “on-demand” na-
ture allows quick responses to unexpected events or
failures.

Finally, we note that variants of our sampling meth-
ods can be applied much more broadly, outside the
context of sensor networks. For example, uniform node
sampling is also an important problem in structured
P2P networks based on coordinate systems [9]. Vari-
ants of our methods apply to these P2P scenarios and
provide a simpler and more topology-agnostic alterna-
tive to existing methods.

Acknowledgments

We are grateful to Deepak Ganesan and Stanislav Rost
for the use of their sensor deployment maps and al-
lowing them to be reproduced here. We thank Phil
Gibbons, Kanishka Gupta, and Niky Riga for helpful
conversations and feedback on earlier versions of this
manuscript.

38



References

[1] A. Broder, M. Charikar, A. Frieze, and M. Mitzen-
macher. Min-wise independent permutations. Journal
of Computer and System Sciences, 60:630–659, 2000.

[2] S. Chaudhuri, R. Motwani, and V. Narasayya. Ran-
dom sampling for histogram construction: how much
is enough? In Proc. of ACM SIGMOD ’98, pages
436–447, 1998.

[3] J. Considine, F. Li, G. Kollios, and J. Byers. Approx-
imate aggregation techniques for sensor databases. In
Proc. of the IEEE Int’l Conf. on Data Engineering,
March 2004.

[4] M. de Berg, O. Schwarzkopf, M. van Kreveld, and
M. Overmars. Computational Geometry: Algorithms
and Applications. Springer-Verlag, 2nd edition, 2000.

[5] D. Ganesan, S. Ratnasamy, H. Wang, and D. Es-
trin. Coping with irregular spatio-temporal sampling
in sensor networks. In Proc. of HotNets-II, November
2003.

[6] C.-C. Han, S. Ganeriwal, A. Boulis, and M. Srivas-
tava. Going beyond nodal aggregates: Spatial aver-
age of a physical process in sensor networks. Poster
in ACM SenSys, Nov. 2003.

[7] J. Hill and D. Culler. Mica: A Wireless Platform for
Deeply Embedded Networks. IEEE Micro, 22(6):12–
24, Nov/Dec 2002.

[8] B. Karp and H. Kung. GPSR: Greedy perimeter state-
less routing for wireless networks. In ACM MobiCom,
Aug. 2000.

[9] V. King and J. Saia. Choosing a random peer. In
Proc. of ACM PODC’04, July 2004.

[10] D. E. Knuth. The Art of Computer Programming, Vol-
ume 2: Seminumerical Algorithms. Addison-Wesley,
Reading, MA, 2nd. edition, 1981.

[11] S. Madden, M. Franklin, J. Hellerstein, and W. Hong.
TAG: a Tiny AGgregation Service for Ad-Hoc Sensor
Networks. In USENIX OSDI, 2002.

[12] G. S. Manku, S. Rajagopalan, and B. G. Lindsay. Ap-
proximate medians and other quantiles in one pass
and with limited memory. In Proc. of ACM SIGMOD
’98, pages 426–435, 1998.

[13] S. Nath and P. Gibbons. Synopsis diffusion for ro-
bust aggregation in sensor networks. Technical Report
ITR-03-08, Intel Research, Aug. 2003.

[14] J. Newsome and D. Song. GEM: Graph EMbedding
for routing and data-centric storage in sensor networks
without geographic information. In ACM SenSys ’03,
pages 76–88, 2003.

[15] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker,
and I. Stoica. Geographic routing without location
information. In ACM MobiCom, Sept. 2003.

[16] S. Ratnasamy, B. Karp, S. Shenker, D. Estrin,
R. Govindan, L. Yin, and F. Yu. Data-centric storage
in sensornets with GHT, a geographic hash table. Mo-
bile Networks and Applications, 8(4):427–442, 2003.

[17] S. Rost and H. Balakrishnan. Lobcast: Reliable Data
Dissemination in Wireless Sensor Networks. Under
submission.

[18] L. G. Valiant and G. J. Brebner. Universal schemes
for parallel communication. In Proceedings of the 13th
Annual ACM Symposium on Theory of Computing,
pages 263–277. ACM Press, 1981.

[19] J. von Neumann. Various techniques used in con-
nection with random digits. U.S. National Bureau
of Standards Applied Mathematics Series, 12:36–38,
1951.

[20] Y. Yao and J. Gehrke. The Cougar approach to in-
network query processing in sensor networks. ACM
SIGMOD Record, 31(3):9–18, 2002.

[21] W. Ye, J. Heidemann, and D. Estrin. An energy-
efficient MAC protocol for wireless sensor networks. In
Proc. of IEEE Infocom, pages 1567–1576, June 2002.

39



Optimization of In-Network Data Reduction

Joseph M. Hellerstein∗ † Wei Wang∗

∗UC Berkeley and † Intel Research Berkeley

{jmh,wangwei}@eecs.berkeley.edu

Abstract

We consider the in-network computation of approximate
“big picture” summaries in bandwidth-constrained sen-
sor networks. First we review early work on comput-
ing the Haar wavelet decomposition as a User-Defined
Aggregate in a sensor query engine. We argue that this
technique can be significantly improved by choosing a
function-specific network topology. We generalize this
discussion to a loose definition of a 2-level optimization
problem that maps from a function to what we call a sup-
port graph for the function, and from there to an aggre-
gation tree that is chosen from possible subgraphs of the
physical network connectivity. This work is frankly quite
preliminary: we raise a number of questions but provide
relatively few answers. The intent of the paper is to lay
groundwork for discussion and further research.

1 Introduction

Wireless sensor networks must operate with significant
constraints on energy and bandwidth consumption. This
presents challenges for interactive analysis of data in
sensornets, since data analysts tend to desire a big-
picture view of the data before “drilling down” to spe-
cific queries. The big-picture queries can range over all
the data in the network, but fortunately approximate an-
swers are often sufficient for these purposes. Techniques
to provide approximate answers to resource-intensive
queries of this sort were explored by a variety of re-
searchers in traditional database scenarios (e.g., [6, 8]).

Copyright 2004, held by the author(s)

Proceedings of the First Workshop on Data Management
for Sensor Networks (DMSN 2004),
Toronto, Canada, August 30th, 2004.
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In this paper we explore some initial ideas and chal-
lenges in performing online, in-network data reduction
in sensor networks. Data reduction techniques can be
used to provide synopses or “sketches” that can be used
to approximately answer queries. Our main contribution
here is not to present specific results, but to rough out
a set of ideas and research challenges that we hope the
community can explore and define further.

We begin by describing in some detail two tech-
niques for in-network computation of Haar Wavelets. We
hinge this discussion on the Haar support tree, a logical
dataflow specification that describes the ordering con-
straints on combining data values. We show that an ear-
lier idea for in-network computation of the Haar does not
observe the constraints of the support tree, and instead
produces biased results. We then consider constraining
the network topology to generate a physical communi-
cation tree that observes the constraints of the logical
Haar support tree. We present the surprising observation
that a correct communication pattern for the Haar sup-
port tree results in a binomial communication tree at the
network layer. This insight leads to some relatively crisp
questions surrounding the optimization of communica-
tion topologies for computing Haar wavelets in-network.

Given this specific example as background, we pose a
more generic (albeit vaguely defined) family of optimiza-
tion problems for doing in-network data reduction, by fo-
cusing on the general problem of mapping from support
graphs to communication graphs for various computa-
tions. We also raise various challenges in transferring
this algorithmic work to practice.

2 Case Study: Wavelets

Wavelets have been widely used in the database litera-
ture as a data reduction technique (a tutorial is presented
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Figure 1: A column of a table and its Haar wavelet sup-
port tree (sometimes called an “error tree”). The output
of the wavelet transform in this example is [35, -1, 3, 8,
-4, 3, 3, 3].

in [11]). Aggregate queries can be answered approxi-
mately by running them over compressed wavelets of a
raw dataset. Wavelets have a number of attractive prop-
erties, including their mathematical simplicity, and their
ability to provide “multi-resolution” results by incremen-
tally fetching more of the wavelet from a disk or network.

2.1 A Brief Primer on Haar Wavelets

The Haar wavelet is the simplest and most popular ex-
ample of the wavelet family. The Haar is also easy to ex-
plain; we give a brief sketch here. Given an array of num-
bers (e.g., one column of a database table), it pairs up
the neighboring numbers in odd and even positions (e.g.
rows of the table), and transforms them into two different
numbers: their sum and their difference. The differences
are stored, and the sums are passed into a recursive appli-
cation of the procedure. The recursion can be visualized
as a tree, as in Figure 11. The numbers (“coefficients”)
stored at each internal node in the tree represent the dif-
ferences between the overall sum of leaves in the left and
right subtrees of the node; the edges are labeled with the
sums that are passed up. The root represents the sum
of all the entries in the original array. We call this tree
the support tree of the Haar wavelet: edges in the tree
represent data dependencies, where each internal node
is computed as a function of its children, and the leaves
underneath a node represent the support of the value in
that node. The output of the Haar transform can be pro-
duced by a breadth-first traversal of the (non-leaf) nodes
of the support tree, though in practice there are coding al-
gorithms that do not require constructing and traversing

1The example builds a 1-d wavelet. Multi-d wavelets are analo-
gously built with trees of fan-in 2d.

such a tree [16].

The decoding of the transformed data can be done in a
straightforward fashion starting from the root and recurs-
ing downwards: given the overall sum s at the root, and
the difference d at the node below, the overall sums of
the left and right subtrees are calculated as (s+d)/2 and
(s − d)/2 respectively, and the process can then recurse
to the leaves.

As described, the output of the Haar transform is ex-
actly the same size as the input. However, a simple
scheme can be used to lossily compress the wavelet by
truncating the list of coefficients. The basic idea is to
only keep coefficients with high absolute values2, and
“round” the remaining coefficients to zero. In our ex-
ample of Figure 1, truncating to the top 3 coefficients
gives [35, 0, 0, 8, -4, 0, 0 ,0]. The resulting output array
has mostly zero-valued entries, and can be represented
compactly via a number of well-known techniques (e.g.,
via (position, value) pairs for the non-zero entries, or
run-length encoding.) Decoding our truncated example
wavelet reconstructs the input as [2, 6.75, 4.375, 4.375,
6.125, 6.125, 2.125, 2.125]. Note that wherever a node
in the support tree was rounded to zero, the reconstructed
leaves in the corresponding subtree moved closer to-
gether in value. Dropping coefficients “smooths” differ-
ences in the original data.

If the full wavelet encoding is available somewhere
– e.g. on a disk, or across a network – then the num-
ber of “unrounded” coefficients fetched locally can be
increased incrementally in a “multi-resolution” manner,
to remove these smoothing effects. Each new coefficient
fixes a more subtle smoothing than the previous. This
incremental improvement in the reconstruction is one at-
tractive feature of wavelets.

A final side-note is merited regarding the treatment of
set-valued data like columns of database tables. Wavelets
are a sequence-encoding scheme, preserving the ordering
of values in the input. In databases, this input ordering
is arbitrary by definition. Given that any ordering is ac-
ceptable, an open question is to choose an ordering of the
input data for which a wavelet truncated to the top k co-
efficients is most effective. For numeric data, sorting the
table is a natural option; an extension of this idea for inte-

2Typically the values are normalized by dividing by
√

2i where i is
the height of the node above the leaves. Normalization does not affect
the examples or algorithms here.
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ger data is the Wavelet Histogram, which run-length en-
codes the sorted column into (value, frequency) pairs and
performs a wavelet transform on the resulting sorted fre-
quencies [13]. For categorial attributes, the best choice
of sort-order is an open question; it is likely to be depen-
dent on the wavelet basis functions chosen (e.g. Haar,
Daubechies-4, Mexican Hat, etc.)

2.2 Haar Wavelets as a Distributed UDA

Earlier work based on the TinyDB system presented a
User-Defined Aggregation (UDA) technique to compute
a Haar wavelet over readings gathered in a sensor net-
work [10]. We refer to this as the Pad-Merge or PM
technique, and briefly review it here.

As in extensible databases, UDAs in TinyDB are rep-
resented by a triplet of functions: a merging function f ,
an initializer i, and an evaluator e. The initializer con-
verts a scalar input value into an opaque partial state
record (PSR), the merging function takes two PSRs and
combines them into a new PSR, and the evaluator takes
a PSR and produces an output scalar value. In sensor-
net query systems like TinyDB, an aggregation query is
disseminated to participating sensor nodes, which call
the initializer function on their local reading and then
communicate PSRs up a communication tree of network
links to the query node. When a node N receives a PSR
from a child in the tree, it calls the merging function to
merge the incoming PSR into N ’s current PSR; when
N has merged in all of its children’s PSRs, N sends the
merged PSR to its own parent. Details of this aggrega-
tion scheme, including the dissemination of queries and
construction of communication trees, can be found in the

literature [12].
The PM technique uses a distributed, bottom-up

scheme to construct a Haar support tree like that of Fig-
ure 1. It has a total communication cost that is linear
in the number of nodes of the network (one fixed-size
message per node). The PSRs in the PM technique are
essentially arrays of k wavelet coefficients represented as
(position, value) pairs. Each PSR corresponds to a sub-
tree of a complete Haar support tree. The main logic in
the PM technique is in the merging function, which takes
two arrays of wavelet coefficients (representing two Haar
subtrees), generates a new set of wavelet coefficients rep-
resenting the two trees connected by a new root, and
keeps the top k of those coefficients as the new PSR3.
Upon completion, the PM technique produces k large
wavelet coefficients that can be used to lossily recon-
struct the input data.

A Haar support tree is a balanced binary tree. But
aggregation in TinyDB imposes no structure on the com-
munication tree, and hence it does not control the order in
which PSRs are merged. The merging function can be in-
voked on two arbitrary PSRs, which may represent Haar
subtrees of differing heights. To handle this, the PM ap-
proach proposes a zero-padding technique to “promote”
the smaller of the two input PSRs to a tree of the same
height as the larger: it pads the smaller PSR with an ap-
propriate number of zero-valued leaves until it becomes

3The order in which PSRs are combined recursively determines the
left-to-right ordering of the leaves of the Haar tree. In our discussion
here we focus on set-oriented query scenarios where this order – or,
equivalently, IDs of the nodes – is insignificant. Preserving the order
or node IDs can be done in a number of different ways that would
complicate our discussion here unnecessarily.
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Figure 3: An in-network computation of the Haar wavelet of Figure 1. The left side annotates the (logical) support
tree with dark arrows representing physical message-passing between the sensor nodes. The right side of the figure
shows just the (physical) communication tree, i.e., the leaf level of the left side. Each edge on the right is labeled with
the wavelet coefficients sent.

a balanced binary tree of the same height as the larger
PSR (Figure 2). This guarantees that the PM technique
always merges two PSRs of the same size, and hence al-
ways constructs balanced binary Haar support trees.

If the PM technique never truncates any coefficients,
it can reconstruct the data perfectly: the extra zeros in-
troduced by padding can be correctly accounted for and
deleted in the decoding process. However, in the practi-
cal cases where the PSR is much smaller than the number
of nodes in the network, each merging step has to trun-
cate to the top k coefficients. When zero-padding is used,
the truncating can smooth the spurious zeros across the
true data. In the end, the PM technique will produce a
k-coefficient wavelet that is not as accurate as the one
that would be produced in a centralized implementation
of the Haar encoding – the PM wavelet will incorrectly
bias the reconstructed data toward zero, in many cases in
a significant way.

2.3 Haar-Specific Network Topologies

The PM technique introduces bias when padding Haar
support subtrees of unequal size. Imagine that one could
guarantee that only equal-sized subtrees were merged.
Then no zero-padding would be needed, and the correct
top-k wavelet coefficients would be produced as a re-

sult. In this section we explore the possibility of achiev-
ing such an invariant by controlling the sensor network
topology used for aggregation in the network.

For purposes of illustration, assume for a moment that
we have a fully-connected communication network with
nodes numbered 1 through 2 l. Our goal is to construct
the Haar support tree bottom-up by passing messages be-
tween nodes. By convention, we will assume that lower-
numbered nodes will pass messages to higher-numbered
nodes. The process begins at the leaves of the support
tree: node 1 passes its value to node 2, node 3 passes
its value to node 4, etc. The even-numbered recipients
pass along PSRs that contain their top k difference co-
efficients as well as their sum: node 2 passes its PSR
to node 4, node 6 passes its PSR to node 8, etc. At the
end of this process, the contents of the Haar support tree
would be distributed throughout the network, with the
top-k coefficients and the overall sum residing at node
2l. This communication pattern is depicted by the di-
rected arrows in the left side of Figure 3.

Given our assumption of a fully connected sensor net-
work graph, this distributed algorithm employs a very
stylized subgraph that comes from the data structures lit-
erature: the binomial tree [4] (right hand side of Fig-
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Figure 5: A binomial tree embedded in a radius-1 grid.

ure 3). In a binomial tree of 2 l nodes, the root has
l children, which are binomial trees of 2 i nodes for
i ∈ 0, . . . , l − 1. The depth and maximum fan-in of a bi-
nomial tree are both logarithmic in the number of nodes.

We can now relax our unrealistic requirement of full
connectivity in the sensor network, and ask whether this
technique is feasible in practice. This reduces to two ba-
sic questions: (1) do binomial trees naturally occur as
subgraphs of practical sensornet communication graphs,
and if so, then (2) can an efficient, distributed topology-
selection algorithm be devised to find and maintain a bi-
nomial subtree topology in a sensor network?

It would be interesting to study this question empir-
ically, and/or to analyze it formally for random graphs
from typical distributions. Here we simply provide a
bit of intuition from the canonical simplistic sensornet
model of an equally-spaced 2-d grid of nodes with com-
munication radius of 1 grid-square per node. In a 4 × 4
grid, it is certainly possible to find binomial trees (Fig-
ure 5). Note however that in two dimensions each node
has only 8 neighbors, and the root of a binomial tree of
size 2l has l children. Hence clearly any 2-d grid topol-
ogy of more than 256 nodes will not have a binomial tree
embedding unless its communication radius is greater
than 1. Similarly, since the corner of a grid has only 3
neighbors, there is no binomial tree rooted at a corner of
our 4× 4 grid of Figure 5.

3 Generalizing the Haar Example

Haar wavelets are only one of many non-trivial aggre-
gation functions that may be of use in sensor networks.
The discussion above illustrates a number of interesting,
general problems that arise in computing such complex
aggregates efficiently. In this section we briefly sketch a
set of research problems that arise in this space.

3.1 A Static Optimization Problem

Section 2.3 raises the challenge of finding communica-
tion trees that match the Haar wavelet support tree. This
is an example of a more general optimization problem
in sensornet aggregation. The challenge is to take any
aggregation function and map it onto the graph of radio
connectivity in the network. This can be viewed as a
multi-layer optimization problem: as illustrated in Fig-
ure 4: (a) a support graph must be chosen for the ag-
gregation function, and (b) the support graph must be
mapped onto a communication tree; the communication
tree in turn is constrained to be a subgraph of (c) the radio
connectivity graph of the sensornet. Note that depending
on the aggregation function, there may be more than one
satisfying support graph for step (a). Similarly, in step
(b) there are multiple communication trees correspond-
ing to a chosen support graph, more than one of which
may be a subgraph of the radio connectivity.

In the case of the Haar wavelet, the mapping from
support graph to communication graph was quite ele-
gant: a balanced binary support tree became a binomial
communication tree. Since the properties of binomial
trees are well known, they are amenable to analysis and
(hopefully) simple construction and maintenance algo-
rithms. It is unclear whether the mappings of other sup-
port graphs into communication graphs will be as ele-
gant. The curious reader is encouraged to play with the
Daubechies-4 wavelet as a more complex example, since
it has a support DAG rather than a support tree. The gen-
eral mapping problem itself is of interest, as is the ques-
tion of characterizing the communication graphs at the
output.

As noted in the previous section, it may in some cases
be impossible to find a communication graph in the net-
work to match a particular support graph for a func-
tion. In such cases, two options are available. One is to
achieve such a topology as an overlay network, by hav-
ing some sensors forward PSR messages directly to other
nodes without applying the merging function. This of
course causes overheads that spoil the ideal linear com-
munication cost of many aggregates. The second op-
tion is to always apply the merging function on arriv-
ing PSRs regardless of data dependencies in the support
graph; logically this reshapes the support graph that gets
computed. This is exactly the approach taken by the PM
technique for Haar wavelets. Ideally this latter approach
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Figure 4: The general optimization problem needs to choose a Support Graph, and map it to a Communication Graph
that is a subgraph of the Radio Connectivity Graph.

should include a technique to quantify the error intro-
duced by such inappropriate merging.

The general optimization problem is as follows.
Given an aggregation function, a connectivity graph, and
a cost function to minimize, the challenge is to choose a
min-cost communication graph in the network that is a
subgraph of the connectivity graph. The communication
graph must be annotated to differentiate between cases of
PSR forwarding and PSR merging. The cost function is
likely to be a multi-objective metric, incorporating per-
haps such issues as bandwidth, latency, power consump-
tion, and bounds on errors in the result.

3.2 Real-World Complications

This optimization problem is relatively well-defined, but
not entirely realistic. Here we highlight additional chal-
lenges that are likely to arise in practice.

The first is the very real issue of packet loss in sen-
sor networks. Loss probabilities on radio links can be
estimated, and added as inputs to the optimization prob-
lem. But this leaves the question of how to deal with
loss. A natural option is to implement network retries;
the expected number and cost of retries can be translated
in the cost metric to bandwidth, latency and power con-
sumption. A second option is simply to tolerate loss, and
estimate the loss in accuracy of the answer. A third, in-
triguing direction is the use of forward error correction.
Naive application of error-correcting codes seems like a
bad idea, since the codes are traditionally used to pre-
serve opaque packets. Given our knowledge of applica-
tion semantics, it is interesting to explore the joint de-

sign of error-correcting aggregation functions. The re-
cent work on duplicate-insensitive distinct count sketch-
ing [3] may seen as an example of this idea. A generic
challenge with any of these schemes is to minimize wak-
ing time: if a node chooses not to propagate any data
(e.g., because its coefficients are below a threshhold) it
should be able to power down. This is complicated by
the problem of loss, since it is unclear how receivers dif-
ferentiate between lost packets and unsent packets.

A second critical challenge is that of network dy-
namism. Experience shows that connectivity in a sen-
sornet changes over time as a function of many factors.
Given that the physical graph will change over time, a
dynamic reoptimization technique is needed for the prob-
lems sketched above, and preferably one that works in
a distributed fashion with minimal communication re-
quirements.

An additional, fundamental challenge arises at the ar-
chitectural level. This paper advocates algorithmic op-
timizations that collapse traditional boundaries between
application-level logic and various parts of the network
stack (e.g. topology construction, loss handling, etc.)
This raises the challenge of architecting a system that
allows users defining new aggregation functions to de-
scribe acceptable networking choices with a minimum of
fuss. This is an extensibility interface that is not well un-
derstood. A better understanding of this interface might
also provide guidance in choosing data reduction func-
tions to compute. For example, the support graphs of
various wavelet variants (Haar, Daubechies-4, etc.) are
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quite different. Understanding how to describe these dif-
ferences compactly to a system might also provide ana-
lytical insight into their relative merits in terms of map-
pability to communication graphs.

Finally, this discussion raises the question of what one
does with multiple concurrent functions with competing
desires – e.g. a query that requests the simultaneous com-
putation of two very different aggregates.

4 Open Issues and Alternatives

This paper describes a relatively focused family of opti-
mization challenges. In this section we briefly touch on
some broader issues and alternative approaches.

An important challenge in this context is to handle
changes in the data while the aggregation protocol is
running. Multi-resolution schemes like wavelets can let
users watch detail accumulate as coefficients are passed
up in multiple rounds of communication, in the spirit of
Online Aggregation [9]. However, during the multiple
rounds of communication, the data itself may be chang-
ing, and it may be more beneficial to send newer, coarse-
grained data rather than increasing refinements on stale
data. In this vein, it might be beneficial look at spatio-
temporal wavelet encoding, and consider which coeffi-
cients of the spatio-temporal wavelet to communicate at
each timestep. This tradeoff emcompasses data proper-
ties and user desires, and it inherently a mix of systems,
coding, and HCI issues.

The traditional database approach to aggregation has
a unidirectional dataflow that results in the one-way com-
munication trees we have discussed here. A broad class
of data analysis techniques can be more efficiently com-
puted in two communication rounds: one up a tree and
the other back down. This includes multi-dimensional
regression, Fast Fourier Transforms, and Bayesian be-
lief propagation, all of which can be computed via the
Junction Tree algorithm [1]. These techniques have been
mapped into the sensornet domain in recent years [7, 15].
But current sensornet query engines have yet to incor-
porate these approaches into their architectures or lan-
guages, and the integration may require a new architec-
ture beyond analogies to Object-Relational UDAs. It is
worth noting that many of the problems suggested here
are related to work being studied in the Junction Tree
context [15].

Another fruitful vein of exploration is to design data

reduction techniques whose merging function is fully
commutative and associative. The network optimization
for these aggregates is therefore unconstrained by the
choice of support tree. AMS sketches [2] are one ex-
ample that may be a good alternative to wavelets. Nath
and Gibbons propose a scheme to additionally intro-
duce duplicate insensitivity to aggregates in a general
way [14]. Duplicate insensitivity removes the constraint
of the communication graph being a tree, allowing for
arbitrary “diffusion” or “gossip” of messages.

Wavelets have been proposed for sensor networks in
the work of Ganesan, et al. on DIMENSIONS [5]. DI-
MENSIONS does not perform any distributed wavelet
computation. Instead it has two main components: (a)
it uses local wavelets to lossily compress archival stor-
age of readings over time at each node in the network,
and (b) it embeds a geographic quad-tree in the network
to provide distributed, hierarchical spatial summariza-
tion. Each node of the quad tree receives the (wavelet-
encoded) data from the nodes below, decodes it to form
a 2-d array, and re-encodes the array into (threshholded)
2-d wavelet coefficients used both for lossy local stor-
age and for communication further up the quad-tree.
DIMENSIONS blends two approaches to hierarchical
data reduction: local wavelets and distributed quad trees.
An interesting question is whether a distributed multi-
dimensional wavelet of the form described in this paper
could be extended appropriately to achieve the function-
ality of DIMENSIONS in a unified fashion.

5 Conclusion

If sensornet query engines are to succeed, they need to
either provide a wide range of useful built-in function-
ality, or be easily extended to incorporate new function-
alities. Given the relative immaturity of the area, it is
unlikely that we will anticipate many of the important
features in advance. The traditional User-Defined Ag-
gregation functionality of extensible databases should be
a key feature in sensornet query systems, and optimiza-
tion of UDAs over networks will be a key challenge. Per-
haps the most critical aspect of the work described here
is architectural challenge raised: how do users define the
merging rules for complex UDAs to the system, and are
there general optimization techniques to take such rules
and use them to achieve good performance?
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�u�\�P�¡¥G©´ºs£�¢����qªÂ¢G�%ªÂª\�P¨�¢u©´ºs£�¢����qªR�¡�G¸\�¡¤��%¥�«y�¡�G�¡��§u�G¨��w�¡¼�¢µ���^«\�¡¤°º
¯�¤�Áu�!�¡¼\�!�¡�u¨��u®G¢G����¯��P���¡¤�§!¬­���!¢5¥^¤�®j�u�Â��§¶¼%�uª\¸%¨��^±
h�ikj l�m�n,o>pko>pkq5rYpkrYs
b!¸\�¾��§¶¼%�qªy¸%¨�¤��%¥�¯��u§¶¼�¢��%¤���¯�¤��!¨�¢u©��P�¡�qªÂ�G�Â�¡�^«Ì�G¬�¢�«\�¡���¡��§u�^¨
¨�¤� j�9t;È Nyn u�ss½´�w¼\¤�§¶¼�«%¢����¡¤°�¡¤��^�\�`�%�´ª\�P�`¤����¡�5§u�u¨�¨��¾¢���ª>«i�P�¡¤��´ªyº
¤�§q¢G¨�¨°©d�u¨��u§P�¡�.¢$��¤��%¥G¨���¨��q¢^ªy�P���\�´ª\�>¬­�G�.�q¢G§¶¼d�%�^�\�u¯�«\�C©�§P�u¨�¨ ±
V!�´ªy�u�`ªy�P�¡�P�¡¯�¤��%���¡¼%��§u�u¨�¨Í�¡¼%¢��N�¡¼\�P©�£i�u¨��G�%¥5�¡�Ä£�©>¸%��¤��%¥5ª\¤��Wº
���¡¤�£%¸y�¡�qªA¨���§q¢�¨�¤�Áq¢µ�¡¤��^�d�¡�u§·¼\�%¤�Õ�¸%�u� n v\½2p�~�s v³�PÀy«i�P�¡¤�¯��u���¡�¹¼%¢µ®^�
��¼%�q�w�Ä�¡¼�¢��@t;È N�¤��K�¡�^£\¸%�W�K�¡�����^¯��·�w¼�¢��D¤��%¢G§u§u¸y�¶¢��¡�N«i�G��¤°�¡¤��G�
¤��\¬»�G�¡¯>¢��¡¤��G� n u�ss± �N¼%�m��¤�Áu�5��¬D�q¢G§¶¼Ì§u�u¨�¨K¤������P�¾���.�¡¼�¢��!¢.�%�´ªy�
¢G��©´�w¼%�·�¡�¾¤��R¢¹§u�u¨�¨i§q¢G�>§u�G¯�¯+¸\�%¤�§q¢��¡��ªy¤��¡�P§P�¡¨°©.�w¤°�¡¼R�\�´ª\�u��¤��
¢G��©R�G¬D¤°�¡�w¬­�G¸\��¼%���¡¤�ÁP�^���¶¢G¨}¢���ªR®j�P���¡¤�§q¢G¨e�%�u¤�¥G¼y£i����§u�u¨�¨��u± �N¼%¤��
§u�G�%�W���¶¢G¤��\�K�¡¼%�N��¤�ª\���G¬h¢�§u�u¨�¨��¡�!¼%¢µ®^��¨��u�\¥G�¡¼Mw$¢��K¯��^�W�@xzy�{ |y½
�w¼%�·�¡�Tx�¤��m�¡¼%�.���¶¢��%��¯�¤�����¤��^���¶¢G�\¥^�>�G¬�¢Â�\�´ª\�^±Ì�y¤��%§P���^�%¨°©
¨��q¢^ªy�P�¡�.¢µ�¡�T�P�%¥j¢�¥^�qª�¤��d¤��´�¡�·��ºC§P�u¨�¨N¯��u���¡¢G¥G�R�¡�G¸\�¡¤��%¥y½}�¡¼%���¡�Pº
¯>¢G¤��\¤��\¥.�%�´ªy�u�w¯>¢u©R�¡¸y�¡����ÊA�¡¼\�u¤°���¶¢Gª\¤��^��¯��^�W����¬}�¡¼%�!�¡¤�¯��^½
¢G§¶¼%¤��u®´¤��%¥A��¤�¥^�%¤°Ë%§q¢G���>�u�\�P�¡¥G©0�¡¢q®´¤��\¥^�u±��N¼%�Â��§¶¼%�qªy¸%¨��u�.�¡¼%¢��
�N�.�w¤�¨�¨³«\�¡�^«i�G����¤����¡¼%¤��¹���u§P�¡¤��G���PÀy«%¨��^¤°�m�¡¼%��t;È NÆ�¡�^«i�G¨��^¥G©
§u�G�´���¡�G¨K��§¶¼%�u¯��¹¤��Ì�G�¶ªy�P�!�¡�>¢�§·¼\¤��u®j�m¬­¸\���¡¼\�P�¾�u�%�P�¡¥�©Â�¡¢q®´¤��%¥^�u±
�N¼%�·©Æ¨��u®j�·�¶¢G¥^�¦�¡¼%�¦¢�£%�W���¶¢�§P�¡¤��^���G¬m«%¢����¡¤°�¡¤��^�\¤��\¥d¤����¡�P¥^¸%¨�¢µ�¡¨�©
«i�^��¤°�¡¤��^�\�qª��%�´ªy�u�Ä¤����¡�Ì§u�P¨�¨��5�G�¡¥j¢��%¤�Áu�qª�¤��d¢��¡�u§·�¡¤�¨�¤��%�u¢��.¥��¡¤�ª
¢G�%ª�¬­��§u¸\���^� §u�����¶ª\¤���¢µ�¡¤��%¥0¤����¡�P��ºs§u�P¨�¨¹§P�^¯�¯+¸\�%¤�§q¢µ�¡¤��G�e± Ã �
�w¼�¢µ�`¬­�G¨�¨��q�w�u½%�b�!�w¤�¨�¨Í�¡�P¬»�P�`�¡�+§P�u¨�¨���¢�� QWS'j�V�TWX/R�Z7V�Q;�G�w��¤�¯�«%¨°©
X/R�Z8V�Q¶±
N%���w§u�^�´®j�u�\¤��u�%§u�!�G¬}�PÀy«i�G��¤��¡¤��G�e½%�b�m¢G����¸\¯��;¼%�P�¡�¾�¡¼�¢��`�¡¼\�

�¡�u§P�¡¤�¨�¤��%�q¢µ�+¥��¡¤�ª�¤��+¢��¡Õ�¸%¢��¡�^±TÜe�·��| ªy�u�%���¡�.�¡¼%�.�´¸\¯+£i�P�¹��¬
��¸%«i�·�¡�%�´ª\�P�Ì¢G¨��^�\¥Æ¢�� �qª\¥G���G¬Ä�¡¼%�$¥G�¡¤�ªh±�Å��$¤�ª\�u���¡¤°¬»©��¡¼\�
��¸%«i�·�¡�%�´ª\�P�.£�©��¡¼%�u¤°��§P���G�¶ª\¤��%¢��¡�u��t0�~}�!7u�vN¬»�G�>�PÀ\¢G¯�«\¨�� tC~�}W~8u
�¡�P¬»�P�¡���¡�.�¡¼\�¹�%�´ªy�m¢����¡¼%�;���G¸\�¡¼��N�u�W�¾§u���¡�%�P�¾�G¬}�¡¼\�¹�%�P�C�N�G�¡ i±
�N¼´¸%�u½-t0��1 p�}k!7u·½2t0�~}k! 1 p�u·½-t0�
�dp>}�!7u·½Í¢G��ª t0�~}k!d�dp'u¾¢µ�¡�Ä�¡¼\�
�q¢��W�q½M�\�G���¡¼e½i�b�u�W�q½M¢G��ªÌ���G¸\�¡¼$�%�u¤�¥^¼´£i���¡�u½Í�¡�P��«i�u§P�¡¤�®j�u¨°©�½Í�G¬b�\º
�´ª\� t0�~}k!7u·½\¬­�����~}�!M��n ~�}�|�u·±
h�i(� ��m��5�������Y�%���Y�kp�r�s�������sNqNnZp�o>�Y���
t!¤�®j�u�0¢Ì���P����¬!��¸\«i�P�¡�%�´ªy�u�.¢µ���¶¢G�%¥G�qªd¤��0¢Ì�¡�u§P�¡¤�¨�¤��%�q¢µ��¥G�¡¤�ªÍ½
�N�$«\�¡�G«i�^���A¢�§u¨�¢G������¬Ä«i�P�¡¤��´ª\¤�§�¢�§P�¡¤�®^¢µ�¡¤��G� ��§·¼\�qª\¸\¨��P�R�¡¼%¢��
§u�G�%���P�¡®j�P�;�u�%�·�¡¥G©¦£�© tò¤ u!¢q®j�^¤�ªy¤��\¥T¤����¡�P��¬»�P�¡�u�%§P��¢��;�¡¼\��ÇÂÈ�É
¨�¢u©��P�m¢���ª�tò¤�¤ u!¢�¨�¨��q�w¤��%¥���¸%«i�P�¡�\�´ª\�u�!�¡�R�¡¸\�¡�¦�GÊ��¡¼%�u¤°�;�¶¢Gª\¤��^�
�w¼%�P�%�u®j�·�Ä�¡¼\�P©A¢��¡�>�%���Ä���u��ªy¤��\¥Â�G�Ä�¡�u§u�P¤�®´¤��%¥Ì¯��P���¡¢G¥^�P�u± Ã �
�¡¼%�P���T��§¶¼%�qªy¸%¨��u�u½D�w¼%¤�§¶¼��N��§u¢G¨�¨ ^*\:l:V�Q�U��	VAZ:S�
�V�Q¶½��u®j�·��© t ª\¤°º
�¡�u§P�¡�uª3uT�qªy¥^�A�G¬Ä�¡¼%�A�¡�P§P�¡¤�¨�¤��\�q¢��¦¥��¡¤�ª ¤��¦¢G§P�¡¤�®G¢��¡�qª «i�P�¡¤��´ª\¤°º
§q¢�¨�¨°©�¢��`�b�u¨�¨�ºCªy�PË��\�qªR§P�^¯�¯+¸\�%¤�§q¢µ�¡¤��G�T¤����¡�P�¡®G¢G¨��u½\§q¢G¨�¨��qª Q
V�X/Z:f
TkVAUWV�cel:VT¤����¡�P�¡®G¢G¨��u± N%�G�+¢G��©A�I�N�Ì�\�u¤�¥^¼´£i�G�¡¤��\¥$��¸\«i�P�¡�%�´ªy�u���
¢G�%ª'�>½D�¡¼\�R�uª\¥^�T�b���Ö¤���¢G§·�¡¤�®G¢��¡�uª�¤����¡¼\�R���P��ªyº �¡�u§P�u¤�®j�
¤����¡�P�¡®^¢�¨�� n ��1��k�\}J��1��k��1� 's ½�¬»�G�>�u®j�·��©'��¡ ~y½��w¼%�P�¡�¢�5¤��
�¡¼%�TË%�¡�W�>�¡¤�¯����¡¼%�Ì�qªy¥^�Ì¤��R¢G§P�¡¤�®G¢��¡�qªÆ¢G��ª£� ¤����¡¼\�Â«i�P�¡¤��´ª
�G¬³�¡¼%�m��§¶¼%�qªy¸%¨��^±�Å��m�%�q� �u¨�¢G£i�G�¶¢µ�¡�+�G�¦�¡¼\�m�qª\¥G�+¢�§P�¡¤�®^¢µ�¡¤��G�
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�W�¡�u« ¢���ª*�¡¼\�u��«\�¡�u���P�´�>�C�N���`¢q®j�¦��§¶¼%�qªy¸%¨��u�PO0�´¤�¯�«%¨��PÅ�¢q®j�
¢G�%ªUWD¤�«i�u¨�¤��\�qªyÅ�¢q®j�^±
#!ùeü�ø��%÷^ÿqú����%ÿqú�öiû ±ÄÈ¾�Ì�uª\¥^�5¢G§·�¡¤�®G¢��¡¤��G� �8� ��§P�^�%��¤��W�¡�;��¬
¢.§u�G�´�¡�P�´�¡¤��G�\ºs£�¢����qªÂ¢G�%ªÂ¢+§u�G¨�¨�¤���¤��^�yº ¬»�¡�u�5«i�P�¡¤��´ªÍ± Ø ¸\�¡¤��%¥+�¡¼\�
§u�G�´�¡�P�´�¡¤��G�\ºs£�¢����qªA«i�P�¡¤��´ªh½D¢G¨�¨b�\�´ª\�u�¹�w¤°�¡¼%¤����¡¼\�.§u�u¨�¨Y�Y�¡¸\�¡�
�^�d�¡¼%�P¤��+�¶¢^ª\¤��G��¤��0�G�¶ªy�P�.�¡�¦�¡¸%���¡¼%� t;È N «y�¡�G�¡��§u�G¨+tkt;È N
�^�\¨°©+�¡¸%�\�D¨���§u¢G¨�¨°©>¤���§P�u¨�¨%� u·± �N¼%�P©+§·¼\�u§· m�w¼%�·�¡¼%�P�³�¡¼%�`¨��q¢Gª\�P�
¼�¢��N�u�\�^¸%¥G¼T�P�%�P�¡¥�©��¡�u���P�¡®j�u�N�¡�Ä§u�G�´�¡¤��´¸%�¾¢G����¸\¯�¤��%¥m�¡¼%�!¨��q¢Gªyº
�P�¡��¼\¤�«��¡�G¨��G± Ã ¬w�¡¼%�R¨��q¢^ªy�P��¤��.�u�\�P�¡¥G©´ºCªy�¶¢�¤��%�qªh½b¢Â�¡�Pºs�u¨��u§·�¡¤��G�
«\�¡���¡��§u�^¨}���P¨��P§P�¡�;�¡¼%�Ä�%�P� ¨��q¢^ªy�P�q±ÄÇ��u���¡¢�¥^�u�¹¤��Ì�¡¼%�5Õ�¸%�u¸\�Ä��¬
�¡¼%�w�G¨�ª.¨��q¢Gª\�P�q½y¢����b�u¨�¨h¢G�³¤����¡�P��ºs§u�P¨�¨\�¡�^¸\�¡¤��\¥Ä¤��y¬­�G�¡¯>¢µ�¡¤��^�e½�¢��¡�
���¶¢G�\�W¬­�P�¡�uª��¡�Ì�¡¼\���%�P� ¨��u¢^ª\�·�q±��N¼\�R�¡�P¯>¢G¤��%¤��%¥Ì�\�´ª\�u�Ä�¡¼%�u�
���u�%ª>�¡¼\�u¤°�w���u�%�������¡�u¢^ª\¤��\¥^�u½y�w¼%¤�§·¼R�N�P�¡�!¥^�u�\�P�¶¢��¡�qªR��¤��%§u�!�¡¼\�
«\�¡�P®y¤��G¸%�Ft;È NA«i�P�¡¤��´ªh½y�¡�¹�¡¼\�¾¨��q¢Gª\�P�`��¬e�¡¼\�¾§P�u¨�¨ ±bÉb�G�´�¡�P�´�¡¤��G�
�¡�u���G¨�¸y�¡¤��^�RÇÂÈ�Éd«y�¡�G�¡��§u�G¨����N���¡ 5®^�P��©m�N�u¨�¨�¤���¢q®j�G¤�ªy¤��%¥;¤������¶¢�º
§u�u¨�¨K§P�^���¡�u���¡¤��^�e½���¤��\§u�5¢G¨�¨}�%�´ªy�u�¾¤��Ì�¡¼%�m§u�P¨�¨K¢��¡�m�w¤��¡¼\¤��$§P�^¯.º
¯+¸\�%¤�§q¢µ�¡¤��G�;�¶¢G�\¥^�N¢���ª;�¡¼%�·�¡�b¢µ�¡�b�%�w��§u§P¸\�¡�u�\§u�u�K��¬\�¡¼\��¼\¤�ª\ª\�u�
�¡�P�¡¯�¤���¢�¨\«y�¡�^£\¨��P¯Â± �N¼%¤��³¢^ª\¢G«y�¡�qª+®j�P�¡��¤��G�.�G¬i�¡¼\�Bt;È NÌ«\�¡���¡�Gº
§u�G¨Í¤��`¯����¡�!�u�\�P�¡¥G©´ºs�P¿�§u¤��u���`�¡¼%¢G�>�¡¼%�!���¡¤�¥^¤���¢�¨
t;È N���§·¼\�u¯��^½
£i�u§q¢�¸%���m¤°�¾¢µ®^�^¤�ª\��¤��´�¡�·��¬­�P�¡�u�\§u�m§q¢G¸\���qª�£�©R§u�^�\§u¸\���¡�P�´��¨��q¢Gª\�P�
�¡�u�u¨��u§·�¡¤��G�Ì¤���§u�G�%���u§u¸y�¡¤�®j�¹§u�u¨�¨��u±

�N¼%�+§u�^¨�¨�¤���¤��G�\º ¬»�¡�P�T«i�P�¡¤��´ª$�G¬w¢����qª\¥G��¢G§·�¡¤�®G¢��¡¤��G�'� � �
¤���¸%���qª0¤��Æ�G�¶ªy�P���¡�A�¡�G¸\�¡�Â¯��P���¡¢G¥^�P�>¬��¡�^¯ �¡¼\��¨��q¢^ªy�P�R�G¬ �
�¡���¡¼%��¨��u¢^ª\�·�Â�G¬d��± Ø ¸\�¡¤��%¥A�¡¼�¢��R«i�P�¡¤��´ª�£i���¡¼�¨��q¢^ªy�P�¡�T��¬
� ¢G�%ª£� t­�¡�P¬»�P���¡�qª��¡�A��¤�¯�«\¨�©�¢G��� ¢G�%ª ��um�¡¸y�¡�d�^�d�¡¼%�u¤°�
�¶¢^ªy¤��^�R«\�¡�u«%¢��¡¤��%¥�¬»�G�R¯��u���¡¢G¥G�Ì���¶¢G�%��¯�¤�����¤��^� ¢���ª*�¡�P§u�u«\�¡¤��G�
�¡�u��«i�u§·�¡¤�®^�u¨°©�± Ã ¬C� ¼�¢��w�%�.ª\¢��¶¢Ä¯��u���¡¢G¥G�u�N�¡�.���u�%ªÍ½y¤°�w���u��ªy�w¢
��«i�u§u¤�¢�¨B? R:]��LceX7[	L/R��gV�X3Zdt0V �w��u!¯��u���¡¢G¥G�.�¡�Â�%�´ªy� �>½e�w¼%¤�§¶¼
¢G¨�¨��q�w��£i���¡¼5�\�´ª\�u�K�¡�w�¡¸\�¡�Ä�GÊ��¡¼\�u¤°�K�¶¢^ªy¤��^�}�w¤°�¡¼%�^¸y�}¼�¢q®´¤��%¥��¡�
�`¢�¤°�;¸%���¡¤�¨e�¡¼\�m�u��ªÂ��¬��¡¼\�1Q
V�X3ZGf TAVAU�V�c�l:V�¤����¡�P�¡®G¢G¨ò±�È¾���N�m�w¤�¨�¨
��¼%�q�Æ¤��5�¡¼%�w�PÀy«i�P�¡¤�¯��u���¶¢G¨y���u§P�¡¤��^�Í½��¡¼%�w¸%���w��¬]V �w�+¯��u���¡¢�¥^�u�
�GÊh�·�¡�+��¤�¥^�\¤�Ë%§q¢G���5�u�%�·�¡¥G©��¡¢q®´¤��%¥G�5��¤��%§P�T¤°�+¢^ª�ÚI¸%�W�¡�m�¡¼%�>�%�´ªy�
ª\¸y�I©d§P©y§u¨��Â�¡�A¤��¡�>¨���§q¢�¨¾���¶¢�¿.§^± �y¤��%§u��¤��0�¡¼%�Â§P�^¨�¨�¤���¤��G�\º ¬»�¡�u�
«i�P�¡¤��´ª\���¡¼%�P�¡�¹¤����%��¤����¡�P��¬­�·�¡�u�%§u�5¢����¡¼%�;�w¤°�¡�u¨��u���!¯��qª\¤�¸%¯Â½y¤°�
¤��N�%���`�%�P§u�u���¡¢���©��¡�Ä�PÀy§¶¼�¢G�\¥^���*�w��¢���ªTÉ �w�>¯��u���¡¢�¥^�u�`«y�¡¤��G�
�¡�Â���u�%ª\¤��%¥¦¢��¡�P¥^¸%¨�¢µ�.ª\¢��¶¢�¯��u���¡¢�¥^��tò�G�+¢G� V �w�A¯��u���¡¢�¥^�'u·±
ÈYª%¢��¶¢�tò�G�9V �w�	u¾¯��P���¡¢G¥^�+¤��¹��¤�¯�«\¨�©�¬­�^¨�¨��q�N�qªA£´©$¢���È�É! .±
�N¼%�TË%�¡�W�>ª\¢��¶¢A��� V �w��¯��u���¡¢G¥G���¡¼�¢µ�¢� ���P��ª\�5�¡�;�!t ¢G�%ª
¤°�¡��È¾É! uN§q¢��Â£i�;¸\���qª�¤��Â�G�¶ªy�P�w�¡�+�¡�u�W©y�%§¶¼\�¡�G�%¤�Áu�;�¡¼\�;§u¨���§· ´�
�G¬`�¡¼\�+�I�b�Â�%�´ªy�u�¹¬­���5�¡¼\�.�%�PÀ´�Ä¢�§P�¡¤�®^¢µ�¡¤��G���G¬w�uª\¥^� � � �>±
Ã ¬w�¡¼\�T�W©y�%§¶¼\�¡�G�%¤�Áq¢µ�¡¤��G�*�·���¡�G��£i�P�C�N�u�P�d�C�N�$�%�u¤�¥G¼y£i�����%�´ªy�u�
¢����¡¼%�m£i�u¥G¤��%�%¤��\¥��G¬D�¡¼%�m§u�G¨�¨�¤���¤��^�yºs¬��¡�u�.«i�P�¡¤��´ªÂ¤��!£i�G¸%�%ª�£�©�"
¯����u§u�u½³�N�T���P�.�¡¼\�T�¡�u§u�P¤�®^�P� �Ö�¡�¦�`¢G ^��¸%«#"Â¯����u§P�.�q¢��¡¨�¤��P�

�¡¼�¢�����§¶¼%�qªy¸%¨��qª$¢G§u§P�G�¶ª\¤��\¥��¡�Â¤°�¡�¹¨���§q¢G¨�§u¨���§· i±R��©\�\§·¼y�¡�^�\¤�Áu¢�º
�¡¤��^�A¤�����¸\�u�m¢��¡�.ª\¤���§u¸%�����uªA¤��A¯����¡�.ªy�P�¶¢G¤�¨D¤��A�¡¼%�5�u��ª¦�G¬��¡¼%¤��
���u§P�¡¤��G�e±
Ã ���¡¼\�T�¡�u¯>¢�¤��%ª\�P�+�G¬¾�¡¼%�R«�¢G«i�·�q½N£�©��qªy¥^�Â¢�§P�¡¤�®^¢µ�¡¤��^�*�b�

¯>¢G¤��\¨�©Æ�¡�P¬­�P�Ì�¡�d�¡¼%�$§u�G¨�¨�¤���¤��^�yºs¬��¡�u��«i�P�¡¤��´ª6��¬5�¡¼\���qªy¥^��¢G§Pº
�¡¤�®^¢µ�¡¤��^�Æ¸\���qª0¬»�G�R¤����¡�P��ºs§u�u¨�¨¾§P�^¯�¯+¸\�%¤�§q¢µ�¡¤��G�e±��N¼%�Â�¶¢��¡¤�����¬
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�VGF�\:l:V5¢�¨�¥G�G�¡¤°�¡¼%¯Â± Ã �;¤��

�q¢���¤�¨°©Rªy�u«%¨��q©´¢G£\¨���¤��R¢mª\¤��W���¡¤�£%¸y�¡�qª.¯>¢G�\�%�P�q½���¤��\§u�¾¨���§q¢�¨i§u���G��º
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§u�G�%§u¸y���¡�u���¡¨�©Ì¢��¹¢.�¡¤�¯��Ä¤����¡�P�¡®G¢G¨e�¡¼�¢��!ª\�P«i�u��ªy�!�^�Ì�¡¼\�u¤°�¹ª\¤��Wº
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¨�¢�Ày�qªÌ�¡�qÕ�¸%¤°�¡�u¯��u���¡���G¬��`¢q®j�+��§¶¼%�uª\¸%¨��u�u± �N¼\�u¤°�m«i�P��¬­���¡¯>¢G�\§u�
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�W©y�%§¶¼\�¡�G�%¤�Áq¢��¡¤��G�+¢�¯��^�%¥��%�´ªy�u�K�w¤°�¡¼%¤��Ä¤����¡�P��¬»�P�¡�u�\§u�b�¶¢G�\¥^�^½G¤��\º
�W�¡�q¢Gª��G¬D¢�§·¼\¤��u®´¤��\¥�¥^¨��^£%¢G¨e�W©\�\§·¼y�¡�^�\¤�Áu¢��¡¤��^�Í±
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nqp�sR�h±/�¾¢��¡�%¢G�¡¢�¯5©�½ Ù ±� m¢��¡«Í½¹Ü³±��!¤��e½ Nb±��b¸Í½ Ø ±`²³�W���¡¤��e½

�Ä±�t!�µ®´¤���ª\¢G�e½b¢G�%ªÆ�i±��y¼\�u�% j�·�q½��Jt!¼���OÌÈ�¥^�u�G¥G�¶¢�«%¼%¤�§
¼�¢���¼T�¶¢G£\¨��;¬­�G�¾ª\¢��¶¢�ºs§u�P�´���¡¤�§;�W�¡���¶¢G¥G�^½ ��¤�� F ��?"[;½	r:~:~8r�±

n r�s>ÈÄ±Ct!¼%�^���G½��y±�t¾�¡�^���� ´¨�¢G¥G�u½`¢G�%ª��\±³Éb¼´¸�¢��%¥y½�� �¾�u��¤�¨�¤��u�\º
�>ª%¢µ�¶¢�ºs§u�u�����¡¤�§��W�¡���¶¢G¥G�Â¤��0�w¤°�¡�u¨��u���R¢^ª´ºs¼%��§����P�%���G�>�\�P��º
�N���¡ y�u½ �A¤��������¦½	r�~G~Gz´½i«%«Í±�}7|��7�8r�±

n z's Ù ±%Éb¼%�u�Í½  .±��^¢G¯�¤��u���^�Í½��Ä± Ù ¢G¨�¢G ��¡¤���¼%�%¢G�Í½�¢���ª �m±%Ç��G��º
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�u½ � [�� � F�c�TkVK
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r:~:~8r´±

n }�s�b5±- m¢��W�¡�u�e½ �I²³�\�P�¡¥G©+§u�^�\��¸%¯�«y�¡¤��G�e½ �1�M�u§¶¼e±-�¾�P«e±�½�²2� �¾º
� ¸y�¡¤�§·¼Í½/r�~G~�pG±

n |�sRÇA±´���¡�u¯�¯4¢G�%ª �Ä±� m¢��¡ÁG½ ��Ç��q¢���¸\�¡¤��%¥Ä¢G�%ª5�¡�qªy¸%§u¤��%¥¹�P�\º
�P�¡¥G©$§u�G�%��¸\¯�«\�¡¤��^�¦�G¬b�%�P�C�N���¡ $¤����¡�P��¬­¢G§u�u�m¤��$¼�¢G�%ªyºs¼%�P¨�ª
ª\�u®´¤�§u�u�u½ � E��YE���� L�TA\:X�Q
\GU
]hcCR:X	Q R�X��2RP��� SLX�cCUk\:]hcCR:X�Q¶½
®j�^¨ò±%²�u:~�º Ù ½%«%«e±gp:p'rG| �3p:p�z�pG½-pQv�vGx´±

n �'s�V5±��Í�¡¤�¥G�^�\¤ ½ �+± �N¢��\½*ÈÄ± Ø �u¯��P�¡�u½ �\±�t!�u¼y�¡ j�Y¢G�%ª
�Ä± �!¢qÚ�¢µ�¶¢G¯>¢G�Í½ �sÅ�¢q®j�µ�´§·¼\�qª\¸\¨�¤��\¥�O0²D�%�P�¡¥�©yºC²}¿�§u¤��u���
Ø ¢��¶¢ Ø ¤������u¯�¤���¢��¡¤��G��¬­�G� �y�P�%���G��V!�·�I�N���¡ ´�u½ � r:~:~:}
§u�^¸\¥j¢µ�q± §P�u± §P�G�¡�%�P¨�¨ò± �qªy¸e±

n x�s>ÈÄ±b�y�P��¢G�%ª�ÇA± �!¸\���^�e½ �IÈÖ�%�P� ¯��´ªy�u¨`¬­������§¶¼%�qªy¸%¨°º
¤��%¥�«�¢�§· ^�P�¾�¶¢Gª\¤��>�%�P�C�N���¡ y�u½ �0¤���E~? 7	� � � �¦½%pQv>vG�y½h«\«e±
pGp:p�� �	pGp�r�}\±

n u's �+±�
!¸Í½��\± �¾�u¤�ª\�u¯>¢��%�e½`¢G��ª Ø ²³�W���¡¤��Í½ �Jt!�u�^¥��¶¢G«\¼´©´º
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Abstract 

In this position paper, we present MEADOWS, a 
software framework that we are building at 
HKUST for modeling, emulation, and analysis of 
data of wireless sensor networks.  This project is 
motivated by the unique need of intertwining 
modeling, emulation, and data analysis in 
studying sensor databases.  We describe our 
design of basic data analysis tools along with an 
initial case study on HKUST campus.  We also 
report our progress on modeling power 
consumption for sensor databases and on 
wireless sensor network emulation for query 
processing.  Additionally, we outline our future 
directions on MEADOWS for discussion and 
feedback at the workshop.  

1.  Introduction  

Sensor networks have created exciting opportunities for 
data management [2], especially for in-network query 
processing [1][5][11][18], because these networked 
sensor nodes form a large-scale, dynamic, and distributed 
database with each node acquiring, processing and 
transmitting data simultaneously.  However, studying in-
network sensor query processing is a challenging task due 
to the unique features of sensor networks.  These unique 
features of sensor networks include: (1) each sensor node 
has limited computation, communication, and storage 
capabilities as well as limited power supply; (2) sensory 
units and communication channels are lossy and error-
prone; and (3) deployed sensor nodes are embedded in the 
physical world, are scattered geographically, and may be 
mobile.  In order to facilitate studying sensor databases in 
general and in-network query processing in specific, we 

propose MEADOWS, a software framework that we are 
building at HKUST (The Hong Kong University of 
Science and Technology) for modeling, emulation, and 
analysis of data of wireless sensor networks.   

Modeling, emulation, and data analysis for sensor 
networks is essential for studying in-network query 
processing systematically.  On one hand, studying query 
processing techniques in real sensor networks with real 
applications has been fruitful and has a high practical 
impact [11].  On the other hand, the tight integration of 
sensor networks with the physical world, the high 
uncertainty in sensory data, and the high deployment cost 
make it hard to produce general and complete results 
through field studies only.  Consequently, it is highly 
desirable to perform in-depth analysis of sensory data 
from field studies and to model and emulate sensor 
networks in controlled environments.   

Let us give a real-world example to illustrate the 
usefulness of MEADOWS.  This example is an 
experimental monitoring application that we deployed 
near a frog pond on HKUST campus in the spring of 
2004.  We used the MICA2 Motes made by Crossbow [4] 
for the sensor nodes and TinyDB [15] as well as other 
software running on the motes for collecting sensory data.  
In TinyDB, the data collection process is the execution of 
declarative, SQL-like queries, which eases application 
development and allows for optimization for performance.  
However, if we would like to answer some important 
questions about the query processor for the application, 
we find it is difficult or infeasible to obtain the answers 
through a simple field study.  Specifically, some of the 
questions are as follows: 

(1) We have only ten sensor nodes available for the 
application.  How many do we really need and what 
geographical deployment topology do we use in order to 
observe important phenomena such as trends in 
temperature, humidity, and frog croaks around the frog 
pond? Copyright 2004, held by the author(s) 
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(2) If we collect sensor readings every 30 seconds, 
what will be the status of power consumption at each 
node as time goes and when will the batteries run out? 

(3) If we change the type of sensor nodes (e.g., CPU, 
radio channel, sensing units), the routing scheme of the 
sensor network, or the data collection queries, what will 
be the new answers to questions (1) and (2)?  

In MEADOWS, we attempt to answer these questions 
through data analysis, modeling, and emulation.  We 
show that we can determine the number of sensor nodes 
needed and the geographical deployment scheme by 
performing data analysis (Section 2). We also show that 
we can estimate power consumption in various scenarios 
realistically by including real-world factors into modeling 
and emulation (Sections 3 and 4). In addition, the 
integration of data analysis, modeling, and emulation 
helps answer the questions better than merely employing 
one of the three approaches in isolation.  Our ultimate 
goal is to enable various studies on sensor databases and 
sensor query processing.  

To date, modeling, emulation, and data analysis of 
sensor networks for query processing is still at an early 
stage. Our work in MEADOWS is only initial steps in this 
direction.  In this early report, we present a case study of 
preliminary sensor network data analysis in Section 2, a 
hierarchical power consumption model for sensor 
databases in Section 3, and a sensor network emulator for 
query processing in Section 4.  We draw some 
conclusions and list future directions in Section 5.  

2. Analysis of Sensor Network Data 

In this section, we focus on real-world sensory data and 
discuss a case study of collecting and analyzing the data 
from a small network of sensors deployed outdoors on the 
HKUST campus.  The purpose of this case study is to 
explore how data analysis can help answer questions 
about sensor query processors.  In addition, we aim to 
gain insights for data analysis tool design. 

2.1 Overview 

Analysis of real-world data provides realistic basis for 
modeling and emulation.  Because sensor networks are 
designed to be tightly embedded in the physical world, 
collecting and analyzing real-world sensor network data is 
both challenging and worthwhile.  Even though there have 
been a few projects on outdoor deployment of sensor 
networks [14], we have not yet seen previous studies with 
a goal of answering questions about query processors.  
Therefore, as a first step of our framework development, 
we conducted a field study with this specific goal in mind.  
The scale of the study was small due to our resource limit.  
However, it is sufficient for the purpose of producing an 
initial design of data analysis tools. 

The case study is the frog pond monitoring application 
we briefly described in the Introduction. The frog pond is 
located at the northeastern corner of the campus.  

Throughout the late spring, the frogs in the pond croak 
loudly all day long.  We chose the frog pond as it has this 
interesting phenomenon as well as other outdoor 
microclimate characteristics (e.g., close to the sea and two 
pagodas).  

We deployed a small number of sensor nodes in two 
groups near the frog pond.  We collected one-day of 
sensory data during four two-hour periods.  We pre-
processed the data by adding labels (e.g., timestamps) and 
converting data formats (e.g., from raw sensor readings to 
more human-friendly engineering units).  We analyzed 
the data by examining patterns, exceptions (outliers), and 
correlations.  Finally, we discuss our design of data 
analysis tools as well as the insights gained from the case 
study. 

2.2 The Case Study 

We deployed two groups of MICA2 motes in the two 
pagodas near the frog pond (Figures 1 and 2).  Mote 0’s of 
both groups were sink nodes connected with a laptop 
through a serial cable.  Group 1’s Motes 1-5 used the 
MTS310CA sensor boards, which detect temperature, 
light, noise level, acceleration and magnetic value.  
Group2’s Motes 1-2 used the MTS420CA weather sensor 
boards, which measure temperature, light, acceleration, 
humidity and barometric pressure.  We used TinyDB [15] 
to collect data from Group 1 and a modified Xlisten 
program from the TinyOS Sourceforge CVS directory 
[17] to collect data from Group 2, due to the applicability 
of the software to different types of sensor boards.  In 
addition, we logged battery voltage of both groups for 
data conversion and analysis. 

 

 

Figure 1: Deployment of Group 1 Motes 

It was a cloudy day and rained intermittently.  We 
collected data during the following four 2-hour periods: 
6:30-8:30, 12:30-14:30, 17:30-19:30, and 22:00-24:00. 
We set the sampling period of each reading to be 30 
seconds and collected thousands of readings per group.  
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We show three figures (Figures 3-5) as representative 
examples. 

The noise readings of all sensor nodes of Group 1 
were similar to one another at a point of time.  We picked 
two motes that differed most in the readings, Motes 1 and 
5, to show in Figure 3.  These readings captured frog 
croaks mainly.  They indicate that frogs croaked most 
actively in the early morning and were most quiet during 
noon time.  There is a gap of a few minutes in the 
morning readings, which was due to a crash of our data 
logging program and its subsequent recovery.   

 

Figure 2: Deployment of Group 2 Motes 

Noise (ADC counts)

300

400

500

600

700

800

900

1000

4:48 7:12 9:36 12:00 14:24 16:48 19:12 21:36 0:00 2:24

Group 1 Mote 1

Group 1 Mote 5

 

Figure 3: Group 1 Noise Readings 

The humidity readings of Group 2 remained at the 
level of around 90% most of the time (Figure 4).  There 
were some readings of abnormally high humidity (larger 
than 130%) of Mote 1 at the beginning of the morning 
period.  These abnormal readings were because some rain 
drops splashed onto Mote 1 by accident when we took it 
out of a box and deployed it.  The water made the 
humidity sensor of Mote 1 malfunction and to return 
abnormally high readings.  This kind of physical problems 
for motes is common and recoverable [14].  After being 
dried, the humidity sensor returned to normal operation.   

The temperature readings of the two groups varied 
slightly within each group (21-24°C in Group 1 and 21-
23°C in Group 2).  As illustrated in Figure 5, the 
temperature measured by Group 2 motes was often 

slightly higher than that measured by Group 1 motes 
(except around noontime), even though the two pagodas 
were close to each other (within a distance of 20 meters).  
We think there are two possible reasons for this 
difference: (1) the temperature sensors of the two groups 
have different hardware characteristics since they are 
made by different companies, and (2) the microclimates in 
the two pagodas had a slight difference due to their 
different geographical locations. 
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Figure 4: Group 2 Humidity Readings 
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Figure 5: Temperature Readings of Two Groups 

2.3 Discussion 

From our data analysis, we suggest that the application 
just use one Mote per pagoda for a small-scale case study 
around the frog pond, since the readings within each 
group were similar and there were slight differences 
between the two groups that were deployed in different 
geographical locations (pagodas).  Moreover, if the 
application scenario changes and more questions about 
the query processor are asked, we need to have a set of 
general data analysis tools to answer these questions. 

Based on our experience with the frog pond case 
study, we propose the following three requirements for a 
sensory data analyzer. 

(1) The analyzer should have data acquisition 
functions that are fault-tolerant and adaptive, since the 
sensory data collection process determines the quality of 
sensory data.  The fault-tolerance requirement is because 
hardware malfunctioning is common in field studies, as 
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we have already experienced.  It is thus desirable that a 
data collector is able to recover, to migrate the work from 
a failed node to a normal node, and to resume the work.  
The adaptivity requirement is to take advantage of the 
patterns and regularities captured in sensor readings.  For 
instance, continuous quantities such as temperature can be 
measured with a sampling frequency adapted to the 
changes in the temperature readings in order to improve 
power efficiency while keeping the quality of sensory 
data unaffected.   

(2) The analyzer should have a set of basic functions 
for data pre-processing and post-processing operations.  
Data pre-processing is to further ensure the quality of data 
for analysis.  Data post-processing is mainly for the 
presentation of analytical results.  For example, the 
function convert() converts sensor readings from raw 
ADC counts to human-friendly engineering units, the 
function calibrate() performs hard-ware-specific 
calibration of the readings, and the function plot() plots 
data points and curves together with analytical summaries 
following user-defined criteria.   

(3) As the core of the analyzer, the sensory data 
analysis functions include pattern and outlier detection, 
and correlation of multiple sensory attributes or multiple 
sensor nodes.  We further discuss these two kinds of 
functions as follows. 

First, detecting patterns and outliers in single-node 
single-attribute sensory data is the basic analytical 
operation.  For instance, given the temperature readings of 
one sensor node, the basic analytical information about 
these readings must include a summary of the range, the 
trend, and the outliers of the data.  As a result of 
measuring natural phenomena, sensory data has inherent 
patterns as well as outliers.  Moreover, outliers sometimes 
are due to real events in the environments and sometimes 
due to system errors.  It is necessary to pay special 
attention to outlier analysis. 

Second, correlation analysis gives insight into sensory 
data, because each sensor node has multiple sensory 
attributes and multiple sensor nodes work concurrently in 
a geographical region.  The inherent correlations between 
natural phenomena as well as the temporal and spatial 
correlations of sensor nodes will be useful for both sensor 
query processing and application deployment.  For 
example, when an application is detecting transient 
changes such as a sudden increase in the noise level, it 
can utilize the spatial correlation of a cluster of adjacent 
nodes to detect the noise with a high fidelity.  In other 
words, if one sensor node detects a sudden increase of 
noise level, it might be a real event as well as a system 
error.  But if multiple nearby nodes report the same event, 
the probability of a system error is much lower than that 
of a real event.   

In summary, analytical results from real-world sensory 
data, such as patterns, outliers, and correlations, can help 
answer questions about query processors as well as 
improve query processing.  In addition, data analysis can 

interact with modeling and emulation to better serve the 
purpose of studying query processing.  On one hand, 
analytical results serve as a realistic basis for modeling 
and emulation; on the other hand, modeling and emulation 
can be used for guiding and cross-validating data analysis. 

3 Modeling Power Consumption 

Having presented a case study of sensory data analysis, 
next we turn to modeling of sensor databases.  Due to the 
short time period (eight hours) and resource constraints 
(no oscilloscope on site) of the field study, we were 
unable to obtain detailed power consumption statistics.  
Since power efficiency is a major issue in sensor query 
processing, we examine this issue by modeling and 
emulation.  

3.1 Overview 

Power efficiency is a major issue in sensor networks, 
since sensor nodes are battery-powered and it is difficult 
or infeasible to recharge deployed sensor nodes in 
practice.  There has been work on power efficiency of 
sensor nodes [6][13], sensor networks [8][10], and senor 
query processing techniques [1][3][11][18].  However, it 
remains unclear how to evaluate power efficiency of 
sensor databases systematically.  The main reason is that 
there are many intertwined factors that affect power 
consumption in a sensor database system, for instance, 
sensor node computation, wireless transmission, and 
various query processing techniques. Therefore, we 
propose to represent these factors in a general model for 
studying power consumption of sensor databases. 

We group these factors into a three-level hierarchy 
(Figure 6): the sensor database, the sensor network, and 
the sensor node.  The sensor node model captures power 
consumption characteristics of a single sensor node and 
provides a quantitative approach to estimate the power 
consumption of a single sensor node by the operations of 
the node.  The sensor network model groups main factors 
in wireless communication that affect power consumption 
in a sensor network.  It adapts the quantitative approach 
provided by the sensor node model to a network 
environment.  The sensor database model formalizes main 
factors of database workloads that affect power 
consumption in a sensor network and further improves the 
accuracy of power consumption estimation for database 
workloads.  

As a result, our hierarchical model can estimate the 
power consumption of a sensor query processing 
workload in a unified and general way.  We can 
instantiate each level of model with specific real-world 
factors and estimate power consumption of query 
workloads realistically.  For instance, we can use the 
MICA2 hardware specification for the sensor node, a 
typical network routing scheme for the sensor network, 
and a monitoring query used in our frog pond application 
for the database workload.   
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In the remainder of this modeling section, we use 
UML (Unified Modeling Language) style illustrations for 
modeling (Figures 6-9).  A big box with a small square on 
top represents a package, e.g., “Sensor Database Model” .  
A package can contain other packages.  A dashed line 
with an arrow stands for the “uses”  relationship.  A solid 
line with an arrow stands for the “has” relationship. 
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Figure 6: Model Hierarchy 

3.2 The Model 

We show our hierarchical power consumption model in 
Figures 7, 8, and 9 and describe them briefly.  For brevity, 
all formulas are omitted and will be available in a 
technical report. 

In Figure 7, we represent the configuration of a smart 
sensor node as a package of six types of units: the 
processor, the RAM, the flash memory, the wireless 
transmission unit, the battery, and the sensing data units.  
A configuration contains the important units (in terms of 
power consumption) of a sensor node and the parameters 
for power consumption estimation of the units.  The 
parameters starting with “pc”  represent the unit power 
consumption, e.g., “pcInstruction”  of the processor stands 
for power consumption per instruction.  We define several 
operations in a sensor node (not shown in Figure 7): 
sensing (sampling), listening, sending (transmitting), 
receiving, discarding, and processing.  We estimate the 
power consumption of a sensor node during a period of 
time by summing up the power consumption of all 
operations occurred during this period.  For each 
operation, the power consumption is calculated using a 
linear battery model [13].  Clearly, our sensor node model 
accommodates a wide range of sensor nodes with various 
hardware characteristics. 

In Figure 8, we model a sensor network with the 
canonical topology, the routing scheme, and the model 
metrics.  The canonical topology is represented as an 
undirected graph with its k-ary spanning tree.  The routing 
scheme is responsible for building the spanning tree on 
the graph.  For instance, in the flooding scheme, we can 

build the spanning tree by traversing the graph via 
Breadth-First Search.  Finally, the model metrics include 
per-node metrics (the number of neighbors per node and 
the number of children per node in the spanning tree) as 
well as network-wide metrics (expansion, resilience, and 
distortion).  Note that a node’s neighborhood is 
determined by the wireless signal transmission range in 
the deployment whereas a node’s children are determined 
by the routing tree.  Obviously, different routing schemes 
have different power consumption characteristics.  Our 
sensor network model aims to provide insights for 
designing power-efficient routing schemes. 

 

 

Figure 7: Sensor Node Package 

 

 

Figure 8: Sensor Network Package 

 

 

Figure 9: Sensor Database Package 
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In Figure 9, the sensor database model consists of the 
data model, the query model, the query plans, the 
workload model, and the model metrics.  Our data model 
is relational and our query model is TinySQL-style 
extended SQL [11] with clauses specifying sampling rate 
EPOCH and query lifetime LIFETIME. The query plans 
describe the execution plans of queries with selection, 
projection, and aggregation operators.  The model metrics 
include the number of tuples, the size of each tuple, and 
the reduction factor of each operation (selection, 
projection, or aggregation).  A reduction factor is defined 
to be the ratio of the output data size to the input data size 
of the operator.  Finally, the workload model estimates 
power consumption of the query workload in the sensor 
network.   

To estimate the power consumption of a query 
workload, we consider both the local computation cost 
and the network traffic cost, which depend on the 
complexity of the handling and the volume of data 
handled.  We have developed algorithms for estimation of 
sensor network lifetime in terms of power consumption in 
the static (the routing tree does not change as long as the 
network topology does not change) and dynamic (the 
routing tree changes dynamically) deployment 
respectively.  The algorithms estimate the power 
consumption for each node and identify the weak points in 
the sensor network.  A weak point is a node whose power 
consumption is higher than others in the sensor network.  
The algorithm for the static deployment works in the 
following steps: 

(1) Generate a k-ary spanning tree based on the 
selected routing scheme.  If it fails, the algorithm stops. 

(2) Generate the query plan of the query workload 
on the sensor network and estimate the reduction factors 
for selection, projection and aggregation as needed. 

(3) Estimate the power consumption of each node 
for this query workload as time goes, and identify the 
weakest point until it runs out of power. 

(4) Remove the dead weak point from the network 
and repeat the previous steps starting from step (1). 

For the dynamic deployment, we modify the algorithm 
for the static deployment by adding a time period round. 
At the end of each round, even though there are no nodes 
run out of battery, there will still be a router reassignment 
process. Similar to the algorithm for the static 
deployment, the algorithm for the dynamic deployment 
estimates the lifetime of the deployment until the sensor 
network is disconnected. 

3.3 Initial Validation Results 

We have validated our model using a typical sensor node 
configuration, two representative routing schemes, and a 
simple query workload.  The sensor node configuration 
followed the MICA2 [4] Motes hardware specification.  
The two representative routing schemes we compared 
were LEACH [8] and flooding (Figure 10).  LEACH 

identifies clusters of nodes and selects leader nodes of 
clusters in a round-robin fashion for packet merging (or 
called “partial aggregation”  in networking terms, but not 
the “aggregation” , e.g., SUM(), in database terms). The 
query workload we tested was a simple aggregation 
query: “ SELECT MAX(temperature), humidity FROM 
sensors GROUP BY humidity EPOCH 30 seconds” . 

The “sensors” virtual table had a schema of {humidity, 
temperature, timestamp} with a fixed length of 4 bytes per 
attribute.  We assumed each packet contained a header of 
20 bytes.  With the temperature and humidity attributes in 
the query result, each packet contained 28 bytes.  We also 
assumed that each sensor node covered an area of a circle 
with a radius of 20 feet.  The average distance between a 
sensor node and the sink node (Mote 0) was assumed to 
be 500 feet.  We used LEACH’s assumption that the unit 
power consumed in sending is proportional to the 
distance.  

 

  

Figure 10: LEACH (left) versus Flooding (right) 

Figure 11 shows the predicted average node lifetime in 
a network of N (ranging from 6 to 24) nodes resulted from 
our model.  Our model predicts that LEACH results in 5-
times improvement on power efficiency over flooding 
whereas in the original LEACH paper this factor was 8.  
One major reason for this difference is that we considered 
power consumption of database workloads as well as 
individual sensor nodes in addition to networking.   
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Figure 11: Predicted Average Node Lifetime 

Since the number of nodes was small and there were at 
most two hops in LEACH in our study, the effect of 
database-style in-network aggregation (e.g., executing 
MAX() at a leader node) was insignificant.  We are 
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considering more complex and larger-scale cases for 
validation, in which in-network aggregation makes a 
difference [1][11][18].   

3.4 Discussion 

As shown in the preliminary results, our modeling can 
estimate power consumption of query processing 
workloads fairly realistically by using real-world factors 
such as sensor node hardware configuration, 
representative routing schemes, and typical queries in 
monitoring applications.  In order to further improve our 
model, we consider the following three extensions: 

(1) Extend the estimation of reduction factors for 
power-aware query processing.  For example, our data 
analysis shows that patterns and correlations are common 
in sensory data.  If a query processor takes advantage of 
these patterns and correlations and performs pattern-
aware or correlation-aware data acquisition, we can 
extend the estimation method of reduction factors for 
these techniques. 

(2) Extend the estimation of node neighborhood in the 
sensor network model by considering synchronization 
characteristics of transmission.  A neighborhood of a node 
is a basic topology element in a multi-hop networking 
environment and transmission between nodes can be 
synchronous or asynchronous.  We have modeled 
transmission to be synchronous as commonly assumed by 
existing work.  In order to achieve more accurate 
estimation, we plan to cover asynchronous transmission 
as well.  

(3) Extend the database workload model to handle 
joins.  Joins are a complex operation in sensor databases, 
which involves factors such as where and how to perform 
the join.  Using the reduction factor only seems to be 
insufficient for modeling the power consumption 
characteristics of a join operation.   

4 Emulation for Query Processing 

Modeling is useful for defining the problem space and 
quantifying the effects of multiple factors, as shown in 
our hierarchical power consumption model in Section 3.  
Nevertheless, dynamic behaviors of programs, for 
instance, parallel execution of query processing code on 
multiple sensor nodes, sometimes are hard to abstract and 
to model.  Under such situations, emulation is useful for 
observing the execution process.  In this section, we 
present an emulator for sensor query processing. 

4.1 Overview 

Currently, it is difficult to study in-network query 
processing on real sensor networks, not only because the 
deployment is expensive and hard to maintain, but also 
because the resource constraints in a sensor network limit 
the collection of detailed statistics about the system 
running status. Both simulation and emulation can ease 

these problems, either by representing the logical views 
and actions of the target system (simulation) or by 
executing the code with the same control flow as that of 
the target system (emulation). 

We propose an emulation environment, VMN (Virtual 
Mote Network), for studying sensor query processing.  It 
is a mix of simulation and emulation.  We use TinyOS 
[16] modules to emulate the application execution 
environment in each VM (Virtual Mote).  We simulate the 
radio channel and the sensing units of each VM following 
the MICA2 [4] hardware specification.  The sensory data, 
which is fed into the virtual sensing units as the input of 
VMN, is generated from real-life data such as data 
collected in our frog pond monitoring application (Section 
2).  Finally, the execution of query processing code on 
each VM and the network topology are emulated on 
networked PCs.   

Our VMN is different from the two existing sensor 
network simulators, TOSSIM [9] and EMStar [7], in that 
VMN utilizes networked PCs to emulate networked motes 
in parallel and has execution time and power consumption 
models for query processing applications.  Other 
simulators such as ns-2 [12] and Sensorsim [13] or 
emulators such as EMPOWER [19] lack the execution 
environment of smart sensor nodes.  

4.2 The Emulator 

Our VMN (Figure 12) emulates a real network of MICA2 
motes running TinyOS.  PC 0 acts as the virtual base 
station, which runs VM 0 to emulate the sink node (Mote 
0) in the real sensor network and runs the real application 
client (in this case, the TinyDB GUI) to communicate 
with VM 0. Each of the PCs 1 to n emulates multiple 
virtual motes except VM 0.  Virtual motes communicate 
with one other through the virtual channel, which is 
implemented on top of UDP (User Datagram Protocol) on 
a LAN (Local Area Network) and simulates a real radio 
channel with bit errors and delays. 
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Figure 12: Architecture of a VMN 

Each VM (Figure 13) emulates a MICA2 mote 
running TinyOS.  We partition a VM into the upper layer 
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and the lower layer.  The upper layer includes (i) the 
application, (ii) the senders and receivers of Active 
Messages (AM), UART (Universal Asynchronous 
Receiver/Transmitter, or RS232 serial communication) 
packets and radio packets, and (iii) the VM manager for 
emulation control and statistics collection on the node.  
The lower layer consists of (i) various types of virtual 
sensors, the virtual UART (for Mote 0 only), and the 
virtual RFM (Radio Frequency Monolithic), (ii) the 
virtual drivers for (a), and (iii) the virtual clock.  This 
partitioning scheme is to identify the components that are 
pertinent to program execution and then to put these 
components into the upper layer.  Consequently, it is 
solely the task of the upper layer to emulate the 
environment such that the real code of a query processing 
application for a real sensor mote runs on a VM as if it 
runs on the real mote. 
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Figure 13: Architecture of a VM 

Connecting multiple VMs, the virtual channel 
simulates wireless network effects using three software 
modules: the bit error module, the collision module and 
the delay module (shown in Figure 14).  

The bit error module uses an experiential radio signal 
error data model to generate the bit error rate.  The error 
rate is defined as (number of error bits received by the 
receiver) / (number of total bits sent by the sender).  The 
module maintains a table of two attributes: distance and 
bit error rate, and generates bit errors randomly at a rate 
that the table specifies. 

The collision module simulates radio signal collision 
by performing two operations: carrier sense and collision.  
Both operations need information about the virtual time 
(the time in the emulated world) and the data transmission 
status of all VMs.  This information is kept in the VMN 
Manager.  

In the carrier sense operation, the collision module 
asks the network manager whether if a sending VM can 
hear any VMs that are transmitting data.  If so, the 
sending VM will wait a period of time whose length is 
defined by the network protocols. In the collision 
operation, the collision module destroys the current bit to 
be sent on one of the two conditions: (1) another VM is 

transmitting and the sender of this current bit can hear that 
transmitting VM, or (2) another VM is sending to the 
same destination as this sender.  

Finally, the transmission delay module adds a delay to 
the virtual time of each packet to be sent. 

Having described the three network effect modules, 
we then describe the transmission process of data on a 
virtual channel from/to a VM: When outgoing bits are 
sent from the Virtual Radio Frequency Module (VRFM) 
of the VM to the virtual channel, they pass through the 
three modules and stay in a buffer for wrapping (in the 
lower right corner of Figure 14). When all bits of a packet 
arrive in the buffer, the virtual channel wraps them into a 
packet and sends out the packet via UDP.  When an 
incoming UDP packet arrives at the virtual channel, it is 
put into a queue (lower left of Figure 14) and is 
decomposed into bits to be sent to the VRFM of the VM 
via another buffer (on the left of Figure 14). 
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Figure 14. Virtual Channel 

Because VMs run simultaneously, synchronization is 
needed to ensure that the messages and the operations of 
VMs are in the same order with that of the target sensor 
network. The synchronization procedure is as follows: at 
the startup time, the network manager initializes its table 
of network status information including the total number 
of VMs n and the value of the virtual clock of each VM: 
vt0, vt1… vtn-1.  Whenever the VMs run for a predefined 
interval T, which is called the synchronization interval, 
they pause and report to the network manager.  After 
every VM has reported to the network manager that its 
virtual clock has advanced by T, the network manager 
sends out a broadcast message to inform the VMs to 
resume running.  In addition, the UDP packets on the 
virtual channel are put in a queue and sorted by their 
virtual time in the ascending order.  With the queue and 
the synchronization interval, the order of operations and 
messages are ensured to be the same as that on the real 
network. 

4.3 Preliminary Evaluation Results 

We have done preliminary evaluation of the VMN with a 
small number of nodes running a simple query on TinyDB 
and validated the results of running the query on real 
MICA2 motes.  The query was to report temperature 

65



readings of all motes for every epoch of 960ms.  This 
short sampling rate was used to measure the electric 
currents on real motes at a fine granularity, because the 
HP 4155A oscilloscope we used was able to measure 
electric currents at a scale of milliseconds for a period of 
time of up to 2 seconds. The 2 seconds were sufficient for 
studying the processing of the query, because we 
observed two epochs in each measurement.   

We measured the power consumption of this query on 
a 4-node real mote network using an oscilloscope (HP 
4155A) during the query execution (Figure 15).  We then 
ran the query on a 4-node VMN and estimated the power 
consumption of the query (Figure 16).  In our power 
consumption emulation, we divided the query execution 
time into several power modes with different operations. 
These operations are: “Sleeping” , “Processing” , 
“Listening” , “Sampling”  and “Transmitting” . Two 
different operations can occur in one mode, e.g., 
Processing & Transmitting. The measured electric current 
in a mode was nearly constant (the range was within +/- 
0.3 mA in our experiments).   

Figure 15 shows our measurements of four power 
modes during the query processing in the 4-node real 
mote network, which were “Listening” , “Processing & 
Transmitting” , “Processing & Listening” , and 
“Sampling” . Because the sampling rate was short 
(960ms), the motes did not run into sleeping.  In other 
experiments with a longer sampling rate (>10s), we 
measured that the average current in sleeping was about 
0.0162 mA. All of these results are consistent with the 
data sheet of MICA2 Motes [4].  These results are also 
similar to those reported by Madden et al. [11] except one 
difference is that we did not get the “Snoozing”  mode 
with an average electric current of 4 mA.  We are 
investigating this issue further.  

 

Figure 15: Measured Power Consumption of a MICA2 
Mote 

Figure 16 shows the estimated power consumption 
and the estimated query execution time in the 4-node 
VMN.  Compared with the results in Figure 15, the error 
on query execution time estimation was 1.4-1.34 = 0.06 
seconds or 0.06/1.34 = 4.4%.  We calculated the power 

consumption by the sum of (current *  running-time), 
because the number of measurement points was different 
in the real mote network than in the VMN.  The sum of 
the real measurement was 27.38 mA*seconds, and that of 
VMN was 28.68 mA*seconds, which resulted in an error 
rate of 4.72%.  

 

Figure 16: Estimated Power Consumption of a VM 

5 Conclusion and Future Work 

We have proposed a software framework, MEADOWS, 
for modeling, emulation, and data analysis of wireless 
sensor networks.  We have reported a case study of real-
world data collection and analysis and proposed a 
preliminary design of data analysis functions for detecting 
patterns, outliers, and correlations.  We have also 
presented our initial work on a hierarchical power 
consumption model for sensor databases and on a sensor 
network emulator using networked PCs.  We find that this 
framework is useful for answering questions about sensor 
query processing.  In addition, the integration of 
modeling, emulation, and data analysis creates synergy 
for studying sensor query processing. 

Our future work on MEADOWS include (1) 
implementing our proposed data analysis functions and 
using the results to cross-validate with our modeling and 
emulation work, (2) conducting extensive, more complex 
case studies for our sensor database power consumption 
model and extending the model, and (3) increasing the 
scale of sensor network emulation and adding node 
mobility emulation. 
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discarded unless there is some sort of capture [Pah95].  
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are not in CD(n6,n3).  

n3

n1

n2 

n7

n4

n5 n6

O1: o(n4~n2, n2~n1)  

O2: o(n5~n2, n2~n1) 

O3: o(n6~n3, n3~n1) 

O4: o(n7~n3, n3~n1) 

A2: a(n4~n2, n7~n3)

A3: a(n4~n2, n3~n1)

A4: a(n5~n2, n6~n3)

A5: a(n5~n2, n7~n3)

A6: a(n5~n2, n3~n1)

A7: a(n6~n3, n2~n1)

A8: a(n7~n3, n2~n1)

Initial DTA  
specification: 
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Example DTA  transformation rules: 

R1: o(A,B) , o(B,A) 
R2: a(A,B) = a(B,A) 
R3: c(A,B) = c(A,B) 
R4: a(A,B) & a(A,C) = a(A, c (B,C) ) 
R5: c( A, c(B,C)) & o(A,B) = c( o(A,B), C ) 
R6: c( c(B,C), A) & o(B,A) & o(C,A) = o(c(B,C), A) 

Example of DTA transformations: 

A1,A2,R4 imply:  
A9: a( n4-n2,  c(n6~n3, n7~n3) ); 

A3, A9, R4 imply: 
A10: a( n4-n2,  c(c(n6~n3, n7~n3), n3~n1)); 

A10,O3,O4,R6 imply: 
A11: a( n4-n2,  o(c(n6~n3, n7~n3), n3~n1)); 

�Cp�������qZ¨ ½5»WºU¹�~mz6v�qyjKidw8tW��{���¹�h�� ikj���~m¹�{�prj�h��

schedule cost 

ni~nj Tp(ni)+Ttx(ni~nj)+Tp(nj)

o(A,B) cost(A)+cost(B) 

a(A,B) max(cost(A),cost(B)) 

c(A,B) cost(A)+cost(B) – Tf 
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Figure 5 represents valid moves between DTA schedules.  

M1. Choice commutativity     c(X,Y) :  c(Y,X) 
M2. Overlap commutativity   a(X,Y) :  a(Y,X) 
M3. Choice associativity        c(c(X,Y),Z) :  c(X,c(Y,Z)) 
M4. Overlap associativity      a(a(X,Y),Z) :  a(X,a(Y,Z)) 
M5. Order associativity          o(o(X,Y),Z) :  o(X,o(Y,Z)) 
M6. A/C exchange                  a(X,c(Y,Z)) ;  c(a(X,Y),Z) 
M7. Left A/O exchange          a(X,o(Y,Z)) ;  o(a(X,Y),Z) 
M8. Right A/O exchange        a(X,o(Z,Y)) ;  o(Z, a(X,Y) 
M9. C/A exchange                  c(a(X,Y),Z) ;  a(X,c(Y,Z)),  

       provided any(X,Z) holds 
M10. Left O/A exchange          o(a(X,Y),Z) ;  a(X,o(Y,Z)),  
                                                               provided any(X,Z) holds
M11. Right O/A Exchange       o(Z, a(X,Y) ;  a(X,o(Z,Y)),  
                                                           provided any(X,Z) holds
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Procedure II () { 
minS = Sser ; 
   while (not stopping_condition) do { 
      S = random DTA schedule 
      while (local_minimum(S)) do { 
        S’ = random DTA schedule  
                in neighbors(S) 
        if cost(S’) < cost(S)  then  S=S’ 
      } 
      if cost(S) < cost(minS)  then  minS=S 
   } 
return(minS)   
}

    Explanation of variables and parameters:
minS – current DTA schedule with  
            minimal cost; 
Sser – random serial DTA schedule; 
S – random initial DTA schedule; 
neighbors(S) – a set of schedules that can be  
                        generated from S via one valid  
                        move; 
stopping_condition – number of considered  
                                     initial schedules; 
local_minimum(S) – a number of neighbors of 
S to be tested, of which none has lower cost 
than S. If the test is successful, S is considered 
to be a local minimum 
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Initial DTA Specification: 

O1: o(n4~n2, n2~n1)  

O2: o(n3~n2, n2~n1) 

A1: a(n4~n2, n5~n3) 

(b)

Initial DTA Specification: 

O1: o(n4~n2, n2~n1)  

O2: o(n3~n2, n2~n1) 
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Abstract

Recent research and development efforts show the
increasing importance of processing data streams,
not only in the context of sensor networks, but also
in information retrieval networks. With the ad-
vent of various mobile devices being able to par-
ticipate in ubiquitous (wireless) networks, a major
challenge is to develop data stream management
systems (DSMS) for information retrieval in such
networks. In this paper, we present the architec-
ture of ourStreamGlobesystem, which is focused
on meeting the challenges of efficiently querying
data streams in an ad-hoc network environment.
StreamGlobe is based on a federation of hetero-
geneous peers ranging from small, possibly mo-
bile devices to stationary servers. On this foun-
dation, self-organizing network optimization and
expressive in-network query processing capabili-
ties enable powerful information processing and
retrieval. Data streams in StreamGlobe are rep-
resented in XML and queried using XQuery. We
report on our ongoing implementation effort and
briefly show our research agenda.

1 Introduction
In recent years, Peer-to-Peer (P2P) networks have gained
huge attention both in the media and the computer sci-
ence community. This is, on the one hand, due to the
stunning success of filesharing systems like, e.g., Napster
and Gnutella. But on the other hand, it is also caused by
the degree of flexibility these networks provide. For ex-
ample, they can be used for setting up ad-hoc sensor net-
works where sensors can join and leave the network at any
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time, e.g., while moving across the area covered by the re-
spective network. Of course, this does not only hold for
the data delivering sensors, but also for the network nodes
that query the data streams within the ad-hoc network. In
the past, various approaches for finding information, i.e.,
documents, files, etc., in P2P networks have been stud-
ied, which has led to a number of topologies for P2P net-
works, one example being super-peer networks [28]. Deal-
ing with data streams, finding peers which deliver the re-
quired information is not the only task. Additionally, a
continuous data flow from data sources to consumers in
the network has to be established. An interesting challenge
arising in this highly dynamic environment is to develop
a distributed, self-organizing system for efficient routing
and in-network query processing. We pursue this goal with
our StreamGlobesystem which is based on its predeces-
sor ObjectGlobe [3]. StreamGlobe extends ObjectGlobe—
which is mainly focused on distributed query processing
for persistent data on the internet—by introducing query
processing capabilities on data streams in the network.
In our context, data streams are represented in XML and
queried (i.e., subscribed) using XQuery. While Stream-
Globe is not restricted to sensor networks, we use them as
a motivating example in the following.

Consider Figure 1 as an abstract example of a possible
application scenario for StreamGlobe. The depicted net-
work contains four so-calledsuper-peers(SP0 to SP3),
forming a stationary super-peer backbone network, and five
possibly mobilethin-peers, or peers for short, (P0 to P4)
connected to the backbone. PeersP0, P2 andP3 are a cell
phone, a laptop, and a PDA, respectively. These peers are
meant to register queries in the network and are therefore
at the receiving end of data streams. In contrast to that,
peersP1 andP4 are sensors delivering their sensor data to
the network in the form of XML data streams. Two ex-
amples for applications of similar real-life networks would
be satellite communication and weather observation. In
the former case, orbiting satellites would be the moving
sensors—or rather collections of sensors—streaming their
data to various receiving stations on the ground for evalu-
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ation. In the latter case, the sensors would be attached to
weather balloons or observation planes, delivering data like
temperature, humidity, etc. to enable weather forecasts for
different regions.

To illustrate some of the difficulties of query process-
ing in such networks and to motivate our approach, we
now introduce a rather simplified real-world example in a
little more detail. Let us assume thatP4 in Figure 1 de-
livers a data stream produced by special sensor suits worn
by firefighters in action. The sensors continuously deliver
sensor readings containing the corresponding firefighter’s
identity (id ), a timestamp (time ), and the GPS coordinates
of the sensor (x , y), as well as information about the fire-
fighter’s vital statistics and the environmental conditions.
We have exemplarily chosen to monitor body temperature
(bt ), pulse rate (pr ), and oxygen saturation (os ), as well
as environmental temperature (et ), carbon dioxide concen-
tration (CO2), and sulfur dioxide concentration (SO2). For
brevity, we use the following simplified DTD to describe
the data stream, although StreamGlobe actually employs
XML Schema.

<!ELEMENT reading (id, time, x, y,
bt, pr, os,
et, CO2, SO2)>

<!ELEMENT id (#PCDATA)>
...

The remaining elements have analogous DTD entries. Let
us now further assume thatP0 andP2 are devices used by
an emergency physician and the fire department, respec-
tively. The former should receive a notification on a cell
phone whenever a firefighter’s oxygen saturation reaches a
critical level. Therefore, the peer represented by the physi-
cian’s cell phone registers the following XQuery.

for $m in stream("firefighters")/reading
where $m/os < 92 or $m/os > 98
return

<alert>
{$m/id} {$m/time} {$m/x} {$m/y}
{$m/os}

</alert>

The fire department wants to monitor the environmental
conditions, e.g., to be able to issue a warning if the condi-
tions get critical for the firefighters on site or the residents
living nearby. Thus, it registers the following XQuery.

for $m in stream("firefighters")/reading
return

<gas>
{$m/id} {$m/time} {$m/x} {$m/y}
{$m/CO2} {$m/SO2}

</gas>

StreamGlobe will handle this scenario as follows. Suppose
we want to reduce network traffic. The data ofP4 will be
sent toSP3 where it will be filtered, leaving only the ele-
mentsid , time , x , y , os , CO2andSO2 in the stream. The
elementsbt , pr and et can be removed as they are not

Figure 1: Example Scenario

needed (i.e. not subscribed) anywhere else in the network,
leading to a smaller data stream and reducing network traf-
fic. The resulting stream, containing the combined infor-
mation for satisfying the queries ofP0 andP2, is routed to
SP2. Note that up to now, data needed by bothP0 andP2

has been routed as one single stream through the network.
At SP2, however, the stream has to be split into the—in
our case—non-disjoint parts for the two receiving peers.
This involves replicating the stream and again filtering the
two new streams, resulting in two streams which constitute
the final results for the two queries. These are eventually
routed toP0 andP2 via SP0 andSP1, respectively.

Decisions such as where to execute which operators in
the network and how to route the data streams are made
by the StreamGlobe query optimizer. Additional difficul-
ties arise by the fact that the network can change over time
by adding or deleting queries and data streams which re-
quires a strategy for continuous or periodic reoptimization.
The distinguishing features of StreamGlobe compared to
related systems are thereby its self-organizing network, in
terms of continuous reactions to dynamic changes in reg-
istered data streams and queries, and its routing and op-
timization approaches for query and network traffic opti-
mization in P2P networks.

The remainder of the paper is organized as follows. Sec-
tion 2 presents some related work. In Section 3 we give
an overview of the StreamGlobe system architecture. Sec-
tion 4 deals with optimization and query processing in
StreamGlobe. In Section 5 we present a brief report on
the current implementation status of our StreamGlobe pro-
totype. Finally, Section 6 concludes the paper and gives an
outlook on future work.

2 Related Work
In the following, we present an overview of some work re-
lated to our StreamGlobe system. In particular, we deal
with work in the fields of data stream systems, query pro-
cessing, network architecture, and grid computing.

2.1 Data Stream Systems

With StreamGlobe being a system that handles and pro-
cesses data streams, it is worthwhile to take a look at other
recent approaches to building data stream systems.

89



One important project is TelegraphCQ [7]. This is a sys-
tem that deals with continuously adaptive query processing
in a data stream environment. Cougar [30] tasks sensor
networks through declarative queries. Aurora [6] is a new
DBMS for monitoring applications and constitutes a cen-
tralized stream processor for dealing with streaming data.
In [10] two complementary large-scale distributed stream
processing systems, Aurora* and Medusa, are described.
Aurora* is a distributed version of Aurora with nodes be-
longing to a common administrative domain. Medusa
supports the federated operation of several Aurora nodes
across administrative boundaries. STREAM [2] incorpo-
rates its own declarative query language for continuous
queries over data streams and relations. It handles streams
by converting them into relations using special windowing
operators and converting the query result back into a data
stream if necessary. PIPES [20] is a recent public domain
infrastructure for processing and exploring data streams.

All of these systems—more or less—focus on special
aspects of (adaptive) query processing, load balancing, or
quality-of-service management. The major contribution of
StreamGlobe is that it does not only efficiently locate and
query data streams, but also employs in-network query pro-
cessing for adaptively optimizing data flow within the net-
work. Thus, StreamGlobe pushes query processing from
subscribing clients towards data sources in the network.
The optimization is based on data stream clustering derived
from clustering the queries in the system. NiagaraCQ [8]
intends to achieve a high level of scalability in continuous
query processing by grouping continuous queries accord-
ing to similar structures. In StreamGlobe, we employ a
similar multi-query optimization approach to reduce net-
work traffic and to enable efficient query evaluation.

2.2 Query Processing

With respect to query processing, works in the fields of
multi-query optimization, as pointed out above, and con-
tinuous queries are related to StreamGlobe. Multi-query
optimization (MQO) has been addressed in [26]. It pur-
sues the goal of processing multiple queries all at once in-
stead of one query at a time. The main optimization po-
tential lies in the fact that queries may share a considerable
amount of common—or at least similar—input data that
can be reused for more than one query. Obviously, Stream-
Globe in general has to deal with a set of queries simul-
taneously, thus rendering multi-query optimization an ap-
plicable and suitable optimization approach. Also, queries
in StreamGlobe are usually continuous queries over data
streams. Efficient processing of such queries has been ex-
amined in [22]. Query processing in sensor networks has
been explicitly addressed in [31].

Multicast in IP, ad-hoc and sensor networks, described
for example in [15], routes data towards receiving ends in
a way that reduces network traffic by transmitting the same
message or document only once for all recipients instead of
multiple transmissions, one for each recipient. It is impor-
tant to point out that our work differs from these approaches
in a major way. Instead of only reusing existing messages

or documents, our system is able to perform expressive in-
network transformations of data streams. Therefore, it can
dynamically create appropriate data streams that best fit the
queries to be answered while at the same time reducing net-
work traffic.

To achieve this goal, StreamGlobe uses clustering tech-
niques to identify reusable existing data streams in the net-
work that fit newly registered queries. This approach has
similarly been applied in the world of persistent data where
view materialization and view selection are used to im-
prove the efficiency of query processing [21]. In [29], fur-
ther algorithms for solving the view materialization prob-
lem are devised. Materialized view selection and mainte-
nance have also been examined using techniques of multi-
query optimization [23].

As already mentioned, StreamGlobe uses XQuery to
query XML data streams. In [11] an XQuery engine called
XQRL for processing XQueries on streaming XML data
is introduced. In StreamGlobe, we use FluX [19], an-
other XQuery engine for efficiently processing XML data
streams. The query containment problem in the context of
XML queries, which is relevant for multi-query optimiza-
tion, has been addressed in [27].

2.3 Network Architecture

Considering network architecture, a lot of work has been
done with respect to P2P, Publish&Subscribe, and ad-hoc
networks.

P-Grid [1] is a self-organizing, structured P2P system.
The notion of self-organization with respect to stream pro-
cessing and stream routing is also central to StreamGlobe.
In [28] the concept of super-peer networks is introduced.
These networks are meant to improve the scalability of
P2P networks by using a super-peer backbone network.
The super-peers usually are powerful servers. Less power-
ful, possibly mobile thin-peers can register and deregister
themselves in the network via the super-peers.

HyperCuP [25] is an approach that uses hypercubes as
a network topology in P2P networks. It thereby achieves a
logarithmic upper bound for the number of hops needed to
get from one super-peer in the network to any other super-
peer. This topology is used in [5] to deal with distributed
queries and query optimization in P2P systems.

2.4 Grid Computing

StreamGlobe builds on and extends the Open Grid Services
Architecture (OGSA) and its reference implementation, the
Globus Toolkit [14] by adding data stream processing capa-
bilities to the grid computing domain. A related approach,
also building on Globus, is described in [9]. However, this
alternative approach concentrates mainly on data stream
analysis and quality-of-service aspects in data stream de-
livery whereas we primarily focus on self-organization, dis-
tributed in-network query processing and optimization.

Another system building on the Open Grid Services Ar-
chitecture is OGSA-DAI (Open Grid Services Architecture
Data Access and Integration) [24]. As the name suggests,
this project is concerned with constructing a middleware to
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enable the access and integration of data from distributed
data sources via the grid. It also contains a distributed
query processor called OGSA-DQP. In contrast to Stream-
Globe, OGSA-DAI has no special focus on data streams.

3 StreamGlobe Architecture Overview
StreamGlobe constitutes a federation of servers (i.e., peers)
which carry out query processing tasks according to their
capabilities. The basic architecture of a peer is depicted
in Figure 2. The various layers of this architecture will be
sketched in the following. Dashed lines mark layers whose
presence depends on the capabilities of the respective peer.

3.1 Open Grid Services Architecture

The StreamGlobe architecture is based on grid standards.
Grid computing [13] and the associated Open Grid Ser-
vices Architecture (OGSA) [12] have gained considerable
attention recently. Grid computing denotes a distributed
computing infrastructure where computers can exchange
data and perform large-scale resource sharing over the grid.
To achieve this, an architecture for integrating heteroge-
neous dynamic services while guaranteeing certain quality-
of-service requirements is needed. For this purpose, the
Open Grid Services Architecture has been developed.

Despite the growing importance of the grid standards,
data stream processing in the grid computing context has
hardly been investigated so far. We have decided to im-
plement our StreamGlobe prototype as an extension of the
Globus Toolkit for grid computing [14]. Globus is a refer-
ence implementation of the Open Grid Services Architec-
ture. Our goal is to use existing Globus techniques for our
purposes where possible and to integrate the StreamGlobe
system and its functionality into the toolkit as an extension
of Globus for data stream processing.

The main aspects of Globus that will be used in Stream-
Globe are communication mechanisms andservice data el-
ements. Service data elements can be associated with any
service in the grid. They are essentially XML documents
satisfying a given XML Schema and describing properties
of the service they are associated with. In our context, ser-
vice data elements will be used for describing data streams
and properties like bandwith of network connections, pro-
cessing capabilities of peers, etc.

3.2 Network Topology

In the OGSA framework, direct communication between
all participating grid services is allowed. However, this be-
havior is not the normal way of communication in networks
including mobile devices. It might not even be desirable
in a scenario that tries to reduce network traffic as in our
case. For instance, mobile sensors will normally commu-
nicate via some kind of access point they are connected to.
Hence, in StreamGlobe we establish a logical P2P overlay
network constituting a federation of heterogeneous peers.
Developing a research platform, we do not restrict our-
selves to employing a special P2P network topology for
StreamGlobe at the moment. The P2P network consists
of a set ofpeers. Each peer has a set of other peers as
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Figure 2: Architecture Overview

neighbors. A peer only interacts with its neighbors, i.e., no
direct communication takes place between two peers not
being neighbors. If data has to be transferred between two
random peers, aroute between these two peers has to be
established such that two successive peers on this route are
neighbors and the starting point and the end point of the
route are the source peer and the destination peer, respec-
tively. For the implementation of this overlay network, pre-
vious work on P2P network topologies can be employed,
e.g., a structured approach based on Cayley graphs as used
in the HyperCuP [25] topology. Since a major goal is build-
ing a network with highly heterogeneous peers with respect
to computing power—ranging from small, mobile devices
to stationary workstations or servers—, we have to classify
peers according to their capabilities.Thin-peersare devices
with low computational power, like sensor devices, PDAs,
cell phones, etc., which are not able to carry out complex
query processing tasks. In contrast,super-peersare station-
ary workstations or servers providing enough resources for
extensive query processing. These super-peers establish a
backbone taking over query processing tasks which cannot
be performed by other peers. Thus, they constitute a super-
peer backbone network similar to that in [28].

3.3 Client Interface

User interaction in StreamGlobe is depicted at the top layer
of Figure 2. StreamGlobe enables clients to specifysub-
scription rulesfor information processing and retrieval us-
ing the XQuery language. Subscription rules are registered
at certain peers, i.e., normally at the devices users are work-
ing with, e.g., their laptops, PDAs, cell phones, etc. In our
context, subscriptions are transforming queries and not just
queries for retrieving matching files or documents. In fact,
StreamGlobe enables expressive transformations of data
streams according to registered subscription rules. Thus,
it allows clients to flexibly tailor data streams to their indi-
vidual requirements.

Similarly, data sources also register the provided data
streams at a certain peer within the StreamGlobe system.
Data streams can be registered in two ways. A data source
may register its data stream as an individual stream, which
then is published using a unique identifier. Another possi-
bility is registering a data stream as part of avirtual data
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stream, which again is accessible using a unique identi-
fier and multiplexes all the data of the participating data
sources into one single stream. This technique is used in
the introductory example to merge the sensor data of all
firefighters. The schema of the data streams is specified us-
ing XML Schema. Streams are fed into StreamGlobe using
wrappers, which are running on corresponding peers and
transform the data into a suitable format, e.g., by convert-
ing raw sensor data to XML.

3.4 Peer Architecture

A more detailed view of the peer architecture is depicted
in Figure 3. It basically reflects the structure sitting on top
of the P2P network layer of Figure 2. The various com-
ponents are implemented as cooperating grid services in
the OGSA framework. The individual peers exchange con-
trol information, e.g., registration of new neighbors, sub-
scriptions, etc., via a top-level interface service, which dis-
patches the messages to corresponding subsidiary Stream-
Globe services, e.g., the optimization or the query engine
service. The communication of these services is conducted
via the RPC mechanisms of the Globus Toolkit. All ser-
vices marked by solid rectangles are mandatory for every
peer. Dashed boxes mark services that vary between dif-
ferent peers according to their functionality, as mentioned
earlier. For example, thin-peers do not incorporate a com-
plete optimization and query execution unit, but only pro-
vide basic functionality. A cell phone might for instance
only provide functionality for receiving and displaying data
streams and a sensor device might only be able to transmit
its measurement data.

The metadata management component, which will be
discussed further in the next section, interacts with each
of the components and provides information needed for
network management, optimization, and query execution.
Peers exchange XML data streams representing user data
over their data ports. The XML data streams are initially
parsed by the wrappers and represented as a sequence of
SAX events. Special events are interspersed within these
streams which are used for internal purposes. For example,
synchronization marks are generated whenever the system
restructures the data flow to synchronize all affected peers
for the change in query execution. Since the Globus Toolkit
currently does not provide suitable techniques for transmit-
ting data streams, we use our own protocol based on TCP
connections for this purpose.

3.5 Metadata Management

As Figures 2 and 3 suggest, metadata is needed in all layers
of the StreamGlobe architecture. The metadata manage-
ment (MDV) is based on the distributed metadata manage-
ment of ObjectGlobe [16] and forms a backbone that peers
exchange metadata with. In particular, the metadata man-
agement component records the following information:

• Network: The metadata management records the
neighborhood relationships between peers needed for
establishing the P2P overlay network.
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Figure 3: Peer Architecture

• Subscriptions: All subscription rules and registered
data sources are recorded. For each registered data
source, the schema of the data stream is stored.
Schemas of data streams are specified using the XML
Schema language.

• Optimization: The metadata management main-
tains information needed for optimizing the network.
Among others, it maintains properties of network con-
nections, like bandwith and current amount of net-
work traffic. It also maintains the computational capa-
bilities of the peers and statistics of the data streams,
i.e., size and cardinality of the elements of a data
stream. The statistics can be provided either by the
data source itself or by computing them online as
the corresponding wrapper feeds the data stream into
StreamGlobe.

All metadata is stored locally at a peer in the form of
Globus service data elements. For being able to optimize
the network, special speaker-peers, which will be intro-
duced in Section 3.6, will need to have more global infor-
mation about a special set of peers (a certain subnet). In this
case, those special peers maintain additional information,
e.g., the graph of the network topology of the respective set
of peers, or are able to request the desired information from
the corresponding peers, e.g., statistics of a certain data
stream. To maintain a consistent state, peers have to notify
the speaker-peer of changes, e.g., if a peer joins or leaves
the network, new subscriptions or data streams are regis-
tered or existing subscriptions or data streams are deregis-
tered, etc. Therefore, MDVs of peers register themselves
as notification sinks or notification sources at the MDV of
their speaker-peer using the notification mechanism of the
Globus Toolkit.

3.6 Optimization and Evaluation Strategy

In Section 1, we have briefly introduced our approach of
optimizing the data flow in the network using in-network
query processing. In the following, we give an overview
of the optimization and evaluation strategy we employ in
StreamGlobe.

92



Optimization in a distributed architecture implies sev-
eral challenges. In order to perform optimization, some
metadata about the network—as described in the previous
section—has to be available. In a distributed system, there
are basically three approaches for performing optimization
using such metadata:

1. A single optimizing component has global knowl-
edge of all metadata and performs optimization with a
global view of the network.

2. Every peer has only local knowledge of its own meta-
data (including that its neighbors can be asked for their
metadata) and tries to optimize the network by making
locally optimal decisions.

3. A hybrid approach, in which special peers have global
knowledge of (small) subnets which are individually
optimized by the responsible peer.

Since we assume a large, distributed environment, a cen-
tralized optimization component as in the first method is
infeasible. The second approach fits quite nicely into a
distributed P2P network, but it seems unlikely that it will
deliver acceptable results. Hence, we focus on the hybrid
approach: A selected super-peer, calledspeaker-peer, is re-
sponsible for optimizing a certain subnet of the network.
Of course, this subnet may include other super-peers that
will not actively participate in optimizing this part of the
network. With peers joining and leaving subnets, a speaker-
peer might decide that a subnet is getting too big (or too
small). In this case, the subnet is split into two new sub-
nets and for each new subnet a responsible speaker-peer is
elected among the super-peers (or analogously a subnet is
merged with a neighboring subnet if it is getting too small).
Additionally, by varying the maximum size of a subnet op-
timized by a speaker-peer, the approaches (1) and (2) can
be simulated, which enables an evaluation of all three ap-
proaches in terms of optimization quality.

Basically, optimization in StreamGlobe determines the
peers at which (at least parts of) the subscriptions are ex-
ecuted and decides how to route the data streams in the
network. Optimization has three major goals:

1. Enable users to register arbitrary subscriptions at any
(suitable) device regardless of its processing capabili-
ties.

2. Achieve a good distribution of data streams in the net-
work without congesting it with redundant transmis-
sions.

3. Optimize the evaluation of a large number of subscrip-
tion rules by means of multi-query optimization.

The goals (1) and (3) are accomplished by pushing
query execution into the network. Subscription rules, i.e.,
XQueries, are evaluated using the FluX query engine [19]
that was developed in cooperation with our group. The sec-
ond goal is achieved by placingfiltering operatorson the
routes of data streams. These filtering operators are also ex-
ecuted by FluX. They could alternatively be implemented

using special filtering techniques such as XSAGs [18].
More details will be presented in Section 4.

Of course, optimization is a continuous process which
reoptimizes the system on-the-fly as peers come and go,
data sources and subscription rules are registered and
deregistered, and data streams change over time.

4 Optimization and Query Processing
In this section, we describe some of our approaches to opti-
mizing network traffic and performing efficient query pro-
cessing in StreamGlobe. This substantiates the strategy in-
troduced in the previous section.

4.1 Optimization

First, we address the key ideas for achieving the three op-
timization goals stated at the end of Section 3.6. The
first goal is achieved by appropriately pushing subscrip-
tion evaluation into the network. This is done by execut-
ing the subscription as a whole or in part at one or more
appropriate peers on a route from the data sources to the
peer where the subscription was registered. An appropriate
peer is a peer that is able to process the subscription, i.e.,
has sufficient computing power and is selected by the query
optimizer, taking into account optimization goals such as,
e.g., reducing network traffic. In order to support power-
ful subscription rules, the concept ofmobile codeis em-
ployed. Besides peers providing a basic set of functionality,
users are enabled to include user-defined code in subscrip-
tion rules, e.g., predicates, aggregation operators, etc. This
user-defined code is subsequently instantiated at the peer
processing the corresponding part of the subscription.

The second goal is accomplished by using two tech-
niques complementing each other. The first technique is
filtering of data streams. Filtering is achieved by using
either projection (called structural filtering) or selection
(called content-based filtering) or both on the elements of a
data stream—as described in the example scenario in Sec-
tion 1—and is performed byfiltering operators. These fil-
tering operators are executed at peers on the route of the
data stream as close to the source of the stream as possi-
ble. Thus, the amount of data that has to be transmitted
through the network is reduced. The second technique is
data stream clustering. This term denotes the combina-
tion of several similar or equal data streams in the network
to form one single stream that serves multiple recipients.
Data stream clustering in StreamGlobe works as follows.
During the registration of a new query, the system parses
the query, identifies its properties and stores them in a suit-
able data structure. In our case, this will be a Globus ser-
vice data element. The properties of a query include the
data streams needed to answer the query (content aspect),
the operations, e.g., projections, selections, joins, etc., used
to transform these input streams (structural aspect) and the
conditions needed for these operations, e.g., projection at-
tributes, selection and join predicates, etc. All transformed
data streams in the system, that where generated by a query,
are equally represented by their respective properties. Ini-
tial data streams, registered at a super-peer by some data
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Figure 4: Query Evaluation Plan for the Example Scenario

source, are represented by a unique id. The reason for
choosing this properties approach is to get one level of ab-
straction higher compared to the schema representation of
data streams, thus facilitating the comparison of streams
and the search for reusable data streams in the network.

During the actual data stream clustering stage, the
speaker-peer of the affected subnet looks up all rele-
vant metadata (i.e. service data elements) of existing data
streams in its subnet and compares their properties to those
of the newly registered query. In a first simple greedy ap-
proach, the speaker-peer selects those data streams as input
streams for the new query that contain the necessary infor-
mation for answering the query, contain the least amount
of unnecessary information, and have to be routed through
the minimum number of peers to get to the recipient. Of
course, the decision where to execute certain query op-
erators, e.g., joins, in the network has also to be made.
This, along with more sophisticated methods for search-
ing reusable streams and routing them to recipients, is the
subject of future research and will be based on an appro-
priate cost model. Furthermore, we also intend to investi-
gate strategies for reorganizing the network in order to keep
the system globally effective even if local evolutions due to
network and/or subscription changes lead to a deterioration
of global system performance.

Data stream clustering as described above also con-
tributes to fulfilling the third goal of effective multi-query
optimization. In every subnet, the speaker-peer analyzes
the registered subscriptions and identifies common subex-
pressions. These common subexpressions are evaluated
once in this subnet by executing a subscription rule cor-
responding to a common subexpression at a suitable peer.
Rather than individually evaluating this subexpression in
each of the original subscriptions, the subscriptions are
rewritten to utilize the newly generated and specialized data
stream stemming from the common subexpression. Be-
sides reducing the workload of the affected peers, network
traffic might be further reduced. For instance, a common
task will be aggregating sensor data. Instead of transmit-
ting the whole dataset to every peer performing the same
aggregation, it will be executed near the data source and
only the aggregated results, which will constitute a smaller
data volume, will be delivered to the respective peers. Fur-
thermore, existing aggregated data streams in the system

can be reused to compute more common aggregates similar
to the roll up and the cube operations in data warehousing.

Figure 4 shows the query evaluation strategy using the
example scenario from Section 1. The symbols at the net-
work connections represent groups of elements. The dia-
mond represents the elementsbt , pr , andet , the circle
representsos , the triangle representsCO2andSO2, and the
rectangle representsid , time , x , andy . Projections cause
symbols to disappear as their corresponding elements are
filtered out of the stream. Selections remove certain in-
stances of elements that do not fulfill the selection predi-
cates which is depicted as dotted symbols. An exclamation
mark denotes a change in data representation, e.g., the in-
troduction of thealert element atSP2 in the result for the
query atP0. In our example, the introduction of thegas
element in the answer for the query atP2 is supposed to
take place atP2 itself and therefore does not show up in
the network. The decision whether to perform the FluX
subscription evaluation atP2, SP1, or SP2 is made by the
optimizer and is based on factors like computational power
and current load factor of peers.

The sample query evaluation plan in Figure 4 depicts
the situation after the data stream and the two queries of
Section 1 have been registered in the network of Figure 1.
Furthermore, the query optimizer has already optimized the
queries and integrated them into the system. First, the el-
ementsbt , pr , and et are removed from the stream by
a projection operator. To reduce network traffic, the opti-
mizer chooses to install the mobile code of the appropriate
projection operator as close to the data source as possible.
Since the data sourceP4 is a simple sensor without query
processing capabilities and is therefore not able to perform
the projection by itself, the projection operator has to be
installed and executed in the network at super-peerSP3.
The resulting data stream is routed only once (as one data
stream cluster) toSP2, although it is needed twice in the
system. Therefore, the optimizer decides to replicate the
data stream atSP2 to obtain two identical versions of the
stream. The decision of how to route and where to replicate
the stream is simply made by pursuing the goal of mini-
mizing the number of hops each stream has to go from its
source to its recipient in the network. Of course, more so-
phisticated optimization goals and routing strategies can be
employed here. We will examine this in future work. At
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SP2, the stream with destinationP2, which is the fire de-
partment, is again reduced by a projection operator remov-
ing element os. The remaining stream is forwarded toP2

via the shortest path, in this case overSP1. The rest of the
query evaluation, consisting of the introduction of thegas
element, is performed atP2 itself. The stream with destina-
tion P0 is also filtered atSP2, this time using a projection
and a selection as demanded by the respective query. Also,
the newalert element in the query result is already intro-
duced atSP2. The resulting stream is then forwarded to
P0, again using the shortest path which is viaSP0. In gen-
eral, the shortest path is not unique and depends on the un-
derlying network topology. In the case of multiple shortest
paths, one appropriate path among them is chosen.

Continuing our example from Section 1, we now take
a look at a more complicated situation. Let us assume
that peerP1 represents a collection of weather sensors
delivering a virtual data stream registered at super-peer
SP0. Each sensor reading contains the identifier of the
corresponding sensor (id ), a timestamp (time ), the GPS
coordinates of the sensor (x , y), and measurements for
wind (wind ), temperature (temp ), humidity (hum), and air
pressure (ap). Sensor readings for wind consist of wind
strength (strength ) and wind direction (direction ).
The resulting data stream corresponds to the following
DTD.

<!ELEMENT reading (id, time, x, y,
wind, temp, hum, ap)>

<!ELEMENT id (#PCDATA)>
...
<!ELEMENT wind (strength, direction)>
<!ELEMENT strength (#PCDATA)>
<!ELEMENT direction (#PCDATA)>
...

We now further assume that the fire department atP2 reg-
isters a new query atSP1 in addition to the one already
registered in Section 1. This new query requires the data
from P4 to be joined with data fromP1. The fire depart-
ment is interested in finding out how strong and from which
direction the wind blew at the point in time and at the place
a gas concentration was measured. Therefore, it joins the
data of the gas sensors fromP4 with that of the weather
sensors fromP1. The join tries to find for each measured
gas concentration a sensor reading for wind strength and
direction that was close to the gas measurement in terms of
both, the point in time the respective sensor readings where
created and the geographical location at which the corre-
sponding sensors where located. This can be achieved by
using the bestmatch join operator [17].

One possibility to compute the join would be to filter
P1’s data stream accordingly atSP0 and route the result-
ing stream directly toSP1, where the join processing takes
place and the result gets delivered toP2. This would prob-
ably be the best solution if no data from peerP1 is needed
anywhere else in the network. However, whenP3 also re-
quests data fromP1, it might be better to route a data stream
with the data for bothP2 andP3 from SP0 to SP2 first and

then split the stream atSP2, routingP3’s part directly to
P3. The remaining stream for peerP2 could then be routed
to SP1, where the join processing could take place. But if
the join is known to produce a relatively small result com-
pared to the input streams, it would probably be better in
terms of network traffic to process the join already atSP2

and then route the result toP2 via SP1. This is an exam-
ple of a more difficult decision that has to be made by the
StreamGlobe query optimizer.

4.2 Query Processing

Let us now outline some basic concepts used for in-network
query processing. Query execution in StreamGlobe focuses
on processing streaming data and therefore employspush-
basedevaluation strategies—in contrast to traditional query
engines where data is normally “pulled” from subordinate
operators, e.g., by using the iterator model.

First, we will explain how filtering operators are exe-
cuted. As outlined before, filtering operators perform a
projection of a data stream on the required parts of the
entire schema and a selection according to predicates of
a subscription rule. Since the basic schema of the origi-
nal data stream remains the same1 (besides discarding un-
necessary information), projection can be done on-the-fly
without the need of buffering parts of the data stream. Per-
forming selections is somewhat more difficult, because in
the worst case data cannot be propagated before the predi-
cate is evaluated, which renders buffering inevitable. Thus,
we restrict filtering operators to only employ predicates re-
ferring to a single data object of the data stream. There-
with, at most the current data object has to be buffered for
being able to propagate the filtered data stream. Hence, we
can implement these operators scalably and efficiently us-
ing automata-based techniques as described in [18] or the
new FluX query engine which was developed in coopera-
tion with our group and will be sketched in the remainder
of this section.

In order to evaluate subscription rules on data
streams, we employ novel optimization techniques, called
FluX [19], for minimizing memory buffer consumption
during the execution of XQueries on streaming data. FluX
is an intermediate language extending the XQuery syntax
by event-based processing instructions which enables con-
scious handling of main memory buffers. The key idea of
the FluX query language is the novelprocess-streamstate-
ment { ps $x: ζ } for event-based (streaming) pro-
cessing of a substream assigned to a variable$x. It pro-
cesses the data stream by means of a list ofevent-handlers
ζ. Each event handler is of one of the two forms

• on a as $y return α

• on-first past( S) return α

with α being an arbitrary subexpression,a being the la-
bel of a tag, andS being a set of labels of XML tags. An
“on a” handler is executed if an opening tag labeleda is
encountered in the stream of$x. The subsequent elements

1In particular, the order of elements is preserved.
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of the data stream are labeled as a substream$y and used
to evaluate the subexpressionα (which may in turn be a
process-stream statement or traditional XQuery). The lat-
ter “on-first ” handler is executed if no more elements
labeleds with s ∈ S will be encountered in the stream be-
ing currently processed and triggers the evaluation ofα. In
general, an arbitrary query cannot be evaluated purely on-
the-fly without buffering, e.g., if the sequence of elements
in the query is different from that in the input data stream.
Hence, a FluX query consists of a purely streaming part us-
ing our novel syntax and of embedded traditional XQuery,
which is evaluated on previously buffered parts of the data
stream. The main challenge is to rewrite an XQuery into a
corresponding FluX query which evaluates this query using
as many of the event-based methods as possible and thereby
minimizing buffer usage. In [19], an algorithm which uti-
lizes order constraints on the elements imposed by the DTD
of the data stream is presented to achieve this goal.

Rewriting XQuery into FluX is based on generating
a safe FluX query. That is, an XQuery subexpression
of a FluX query operating on buffered data must only
reference—e.g., by path expressions or other variables—
parts of the data stream which will not be encountered any
more after this expression has been evaluated. Thus, the
query engine can easily populate buffers with the needed
parts of the data stream and provide these buffers for the
execution of the buffer-based parts of the FluX query. The
second query of our example scenario using the given DTD
would be rewritten into FluX as follows.

{ps stream("firefighters")
on reading as $m return

{ps $m:
on-first past() return <gas>;
on id as $id return {$id};
on x as $x return {$x};
on y as $y return {$y};
on CO2 as $CO2 return {$CO2};
on SO2 as $SO2 return {$SO2};
on-first past( * ) return </gas>; } }

This FluX query is purely event-based (outputting the val-
ues of the substreams in the “on” handlers can be done on-
the-fly) and hence needs no buffering at all. “on-first
past( * ) ” is a shortcut for the setS containing all possi-
ble labels in this substream and is therefore executed af-
ter all other elements have been written. More details
on FluX together with an experimental evaluation can be
found in [19].

Summarizing, FluX enables query evaluation on data
streams with very low memory consumption and thus pro-
vides for a scalable evaluation of subscription rules. How-
ever, some subscription rules might possibly need un-
bounded buffering, e.g., subscriptions containing joins or
special aggregates. In such cases, unbounded buffering
is precluded by requiring users to specify window con-
straints. These allow for a scalable execution on infinite
data streams.

5 Implementation Status
As of the writing of this paper, we have implemented
the basic infrastructure of StreamGlobe, building on the
Globus Toolkit, and we are able to establish an overlay P2P
network between peers. We have also completed a proto-
type implementation of the FluX streaming query engine
for evaluating subscription rules. This query engine is cur-
rently being integrated into the StreamGlobe system. At
the moment, the optimization techniques of Section 4 are
developed and implemented. A first prototype system of
StreamGlobe including all the basic features presented in
this paper will be operational by the end of the year.

6 Conclusion and Future Work
In this paper, we have described the ongoing development
of our StreamGlobe system. StreamGlobe is focused on
meeting the challenges that arise in processing data streams
in an ad-hoc P2P network scenario. It differs from other
data stream systems in not only efficiently locating and
querying data streams, but also optimizing the data flow
in the network using expressive in-network query process-
ing techniques. This is basically achieved by pushing op-
erators for query processing into the network. Continuous
reoptimization leads to an adaptive and self-optimizing sys-
tem which enables users to carry out powerful information
processing and retrieval. StreamGlobe builds on and ex-
tends the Globus Toolkit, a reference implementation of the
Open Grid Services Architecture (OGSA) for grid comput-
ing, and serves as a research platform for our future work.

Future research will cover further topics in query pro-
cessing on streaming data, optimization methods for dis-
tributed data stream processing, load balancing and quality-
of-service aspects [4] in a distributed data stream manage-
ment system. In detail, this will include augmenting the
FluX query engine to support windowing operators like ag-
gregations and joins. It will also comprise improving the
optimization component by taking into account reorgani-
sation issues to keep the system effective as well as syn-
chronization aspects, e.g. for distributed join processing on
various streaming inputs. Furthermore, we will continue to
examine routing approaches for our hierarchical network
organisation and conduct advanced research concerning the
combination of multiple query processing operators, predi-
cate comparisons in the context of query clustering, and the
minimization of memory requirements during query eval-
uation. Eventually, support for content-based query sub-
scriptions will be added to StreamGlobe.
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Abstract

Recent years have witnessed a rapidly grow-
ing interest in query processing in sensor and
actuator networks. This is mainly due to the
increased awareness of query processing as the
most appropriate computational paradigm for
a wide range of sensor network applications,
such as environmental monitoring. In this pa-
per we propose a second database technology,
namely active rules, that provides a natural
computational paradigm for sensor network
applications which require reactive behavior,
such as security management and rapid for-
est fire response. Like query processing, effi-
cient and effective active rule execution mech-
anisms have to address several technical chal-
lenges including language design, data ag-
gregation, data verification, robustness un-
der topology changes, routing, power man-
agement and many more. Nonetheless, active
rules change the context and the requirements
of these issues and hence a new set of solutions
is appropriate. To this end, we outline the im-
plications of active rules for sensor networks
and contrast these against query processing.
We then proceed to discuss work in progress
carried out in project Asene that aims to ef-
fectively address these issues. Finally, we in-
troduce our architecture for a decentralized
event broker based on the publish/subscribe
paradigm and our early design of an ECA lan-
guage for sensor networks.

1 Introduction

Application development for sensor and actuator net-
works presents unique challenges since it has to address

Copyright 2004, held by the author(s)
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the complexities of distributed and often decentralized
operation, the highly resource constrained nature of
network nodes and the highly transient nature of net-
work topology [4]. Moreover, applications must oper-
ate unattended for prolonged periods of time and still
maintain their integrity and quality of service.

In recent years it has become clear that the in-
vestigation of higher level computational paradigms
is necessary so as to abstract the complexity of sys-
tems development and offer application developers
with a more amenable programming framework. To
this end, query processing has attracted considerable
interest and is rapidly becoming a popular computa-
tional paradigm for a plethora of sensor network ap-
plications. This approach has been seen to address
well the complex requirements of application develop-
ment in sensor networks in a variety of applications
including environmental monitoring, distributed map-
ping and vehicle tracking [5, 12]. Prototype sensor
network query processors have been implemented in
Tiny DB [11] and Cougar [17] systems.

In this paper we argue that another database tech-
nology that may provide an appropriate computational
model for a distinct set of sensor and actuator network
applications is event-condition-action (ECA) rules [15]
(also referred to as active rules). Indeed, sensor and
actuator network applications often operate in one of
either modes:

• in event-driven applications, for example detec-
tion of forest fires, security management or prod-
uct detection in ubiquitous retailing [9], the sys-
tem remains inactive until an event is generated
in one of the nodes; then the event propagates
through the system which subsequently initiates
appropriate actions in response to this event,

• in demand-driven applications, for example envi-
ronmental monitoring [5], activity is initiated in
response to external requests, usually in the form
of queries.

While query processing matches well the character-
istics of the later class of applications, an ECA rule-
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based approach offers a better fit for applications with
execution profile that corresponds to the first pattern
above. In such applications, the system needs to pro-
vide a timely response to events and although in princi-
ple this would still be possible using a sensor network
query processor, its deployment would unnecessarily
consume the limited resources by regularly checking
for events that may not have occurred.

In the following Section we discuss ECA rules as a
computational model for reactive systems with partic-
ular reference to sensor and actuator networks. We
then proceed to compare more traditional ECA tech-
nologies with the novel needs of sensor networks. In
Section 4, we discuss the requirements of ECA rules in
this context and highlight the differences to the more
well established sensor network query processors. Fi-
nally, we introduce the architecture of the Asene sys-
tem for Active SEnsor NEtworks. We conclude with
a discussion of work in progress and major challenges
ahead.

2 Active Rules as a Model for Compu-
tation in Sensor Networks

We begin by examining in more detail the structure
of a reactive sensor and actuator network application.
A reactive application must be able to detect the oc-
currence of specific events or changes in the network
state, and to respond by automatically executing the
appropriate application logic. For example, in a se-
curity monitoring scenario sensors capable of detect-
ing specific chemicals are deployed in the area under
observation, for example a customs and excise enclo-
sure in a port area. In addition to the sensor nodes,
a smaller number of actuator nodes are also deployed
with the capability to trigger alarms when activated.
In this case, there is little scope for fixed network in-
frastructure due to the transient nature of most objects
within the enclosure and the use of heavy machinery.
The aim is to program the application so that when
specific events are observed and specific conditions are
met the network reacts in a predetermined way, for ex-
ample when the concentration of particular chemical
factors are observed and their concentration exceeds a
set threshold within a small area the alarm in this and
neighboring areas are activated.

ECA rules [15] are one way of implementing this
kind of functionality. An ECA rule has the general
syntax

on event
if condition
do actions
The event part specifies when the rule is triggered.

The condition part is a query which determines if the
sensor network is in a particular state, in which case
the rule fires. The action part states the actions to be
performed if the rule fires. A side effect of these actions

may be that further events are generated, which may
in turn cause more ECA rules to fire.

In sensor and actuator networks in particular the
action part of an ECA rule may be either logical or
physical. For example, the action may be to signal an
actuator node to activate the alarm, or it may be a
notification for a node to initiate a particular control
sequence [16].

There are several advantages in using ECA rules
to implement this kind of functionality compared to
direct implementation in application code [2, 14]:

• ECA rules allow an application’s reactive func-
tionality to be specified and managed within a
rule base rather than being encoded in diverse
programs, thus enhancing the modularity, main-
tainability and extensibility of applications.

• ECA rules have a high-level, declarative syntax
and are thus amenable to analysis and optimiza-
tion techniques which cannot be easily applied if
the same functionality is expressed directly in ap-
plication code.

• ECA rules are a generic mechanism that can ab-
stract a wide variety of reactive behaviors, in con-
trast to application code that is typically special-
ized to a particular kind of reactive scenario.

To illustrate the use of active rules to model reac-
tive functionality we note that the application logic
described at the beginning of this section could be en-
capsulated within the following rule

ON UPDATE toxicity
IF AVG(toxicity) > thres WITHIN radius r1
DO ACTIVATE alarm WITHIN radius r2

3 Sensor Networks and Traditional Ac-
tive Database Systems

ECA rules in the context of a sensor and actuator
network present a number of novel challenges against
the traditional database view [8]. In traditional active
database (and web-based) systems the condition and
action parts of an ECA rule are most often tightly cou-
pled, that is the execution model of a particular rule
is [E][CA]: a database object is monitored and when
modified in a predetermined way an event is generated.
Rules whose event parts match this event are then trig-
gered and, if their conditions hold, their actions are
scheduled for execution. In all cases, execution of the
condition query and the action part is driven by the
same application logic. Hence, ECA functionality is
tightly coupled and coordinated. Moreover, such sys-
tems are generally administered by database experts
and often implement advanced failure-tolerance fea-
tures, including clustering, power backups and repli-
cated communication channels.
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Sensor and actuator networks consist of a large
number (often several hundreds) of loosely-coupled
node elements [1]. Each node operates fairly inde-
pendently and can make its own decisions about its
wake-up/sleep cycle and the data it accepts to for-
ward to nearby nodes. Nodes may also have different
capabilities, for example sensors may be able to detect
temperature, humidity, changes in the magnetic field
of the Earth, different types of biosensing and so on.
Actuators may be biomanipulators, microvalves and
micropumps or they can simply be electrical switches.
In addition to sensor and actuator nodes, nodes that
have the sole purpose of providing communications
and computational assistance may also be introduced
in the system. In all cases, nodes will have high failure
rates which may result in network fragmentation, that
is the separation of network segments into isolated is-
lands of system functionality.

Sensor and actuator networks are deployed in ad-
hoc ways and thus the resulting topologies may be
highly irregular and with highly heterogeneous density
and connectivity patterns. Furthermore, the topology
may often change rapidly during its pre-deployment,
deployment, and re-deployment phases and possibly
at very high speed. This is in stark contrast to tra-
ditional database management systems which assume
that connectivity is fairly fixed and network topology
is rarely of concern and dealt with outside the database
management system.

Last but not least, sensor and actuator nodes are
very limited in power, computational capability and
holding capacity and are normally unavailable for reg-
ular repair or frequent battery recharge. Although
Moore’s law predicts that node capabilities will in-
crease rapidly, they will always be less powerful than
other embedded, portable or hand-held computing de-
vices and most importantly battery power available for
their operation will remain limited for the foreseeable
future.

4 Challenges for Active Functionality
in Sensor Networks

In this paper we propose that ECA rules can provide
a natural computational paradigm to sensor and actu-
ator network applications that require reactive behav-
ior. While sensor network query processors (SNQP)
[3, 5, 11] have proven very successful in providing ap-
propriate abstractions for user interaction, ECA rules
address the problem of unattended system behavior
and can effectively model application logic in auto-
nomic situations1. In the context of such applications,

1The scope of active functionality as described here should
not be confused with the so-called event queries supported by
Tiny DB. Event queries aim at providing user control over data
acquisition so that users can register their interest for specific
results returned by an acquisitional query and specify additional
queries that should be carried out in response. Hence, support-

the system is required to provide a timely response
to events at the lowest communications and compu-
tational cost. Although potentially a SNQP could be
used for this type of application, in practice it would
unnecessarily consume limited resources by regularly
checking for events that may not have occurred. In-
deed, SNQPs primarily address data acquisition from
a relatively small number of vantage points. ECA
rules may provide an effective and efficient mechanism
to support reactive behavior by localizing control and
by providing a mechanism to react to events rather
than proactively test whether a particular event has
occurred.

This difference in scope between SNQP and ECA
rules implies that the two systems have very different
execution profiles which also means that they also have
very different requirements. In the following para-
graphs we attempt to outline the most critical differ-
ences between the two approaches and in the following
section we discuss our current work in trying to ad-
dress the novel requirements of ECA execution within
project Asene.

• Vantage Points. SNQPs assume that queries
are initiated at a single or a relatively small num-
ber of vantage points, with data aggregation po-
tentially carried out at a few intermediate loca-
tions, the so-called storage points. In ECA rules
any sensor in the network may generate an event
which may be used by any actuator also poten-
tially placed at any network location. Thus, an
ECA rule may fire at any node location within the
network and may also activate any node within
the network.

• Communication Pattern. SNQPs collect data
in regular patterns which sensor nodes can use
to synchronize and agree on wake-up/sleep cy-
cles. ECA rules are reactive and thus rules fire at
unpredictable, irregular intervals. Hence, wake-
up/sleep schemes that can support this asyn-
chronous mode of operation are required. More-
over, this irregular pattern implies that nodes con-
sume power at different rates and for this reason
node failure is more irregular and harder to pre-
dict.

• Routing. SNQPs currently mostly use tree-
based routing mechanisms that flood the net-
work at least once, during the tree construc-
tion stage. In this context the communications
overhead placed by the route discovery stage is
justified by the relatively large amount of data
that is being collected. An ECA rule proces-
sor is characterized by small, incremental updates
rather than a single data collection step and thus

ing generic reactive functionality is well beyond the scope of
event queries.
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the route discovery stage of tree-based algorithms
would dominate the communications cost. Con-
sequently, globally optimal routes would probably
not optimize power consumption for the network
as a whole and localized routing algorithms could
be more efficient [7].

• Data Model. SNQPs currently view the sensor
network as a single data space. ECA rules require
an alternative data model which distinguishes be-
tween the different types of objects that are being
observed and generate events. In the following
section we propose a mechanism for the construc-
tion of separate data spaces based on the so-called
topic channels.

• Aggregation. Aggregation in ECA is carried out
at the signal rather than the query layer which
is the norm for SNQP. Although the mathemat-
ical techniques used for aggregation in SNQP [6]
can also be used in ECA rule processing, this is
done at a lower layer and within a particular topic
channel in an approach akin to collaborative sig-
nal processing in distributed environments.

• In-network storage. Although both systems
clearly benefit from in-network storage, SNQP de-
velops hierarchical-directional mechanisms based
on the tree-based routing algorithms employed,
whereas ECA rules benefit from decentralized-flat
and schemes at the topic channel level.

• Network Segmentation. ECA rules execute
within the a specific network locality and thus can
be relatively resistant to network segmentation for
example due to loss of connectivity caused by in-
termediate node failure. ECA rules may still fire
despite their isolation from a sink controller.

5 A System Architecture for ECA in
Sensor Networks

One of the major challenges in implementing an ECA
rule based architecture for sensor and actuator net-
works is the distribution of events in a computation-
ally efficient manner. In this section we introduce the
Asene approach to support ECA functionality in sen-
sor and actuator networks.

Asene is built on top of event channels which are
also viewed as data object primitives. An event chan-
nel has two elements: a collection of nodes that mon-
itor the same attribute and associated algorithmic
mechanisms that coordinate node operation. Within
an event channel nodes carry out collaborative signal
processing and data aggregation and are responsible
for in-network storage and event generation. Finally,
the node components of an event channel encapsulate
internal structures that maintain shared descriptions
of the channel.

Event channels are also responsible for the distribu-
tion of events following the so-called publish/subsribe
(P/S) paradigm [13]. P/S systems are commonly used
to bring together data sources and information con-
sumers by transparently delivering events from the
first to the second. In Asene, event channels are re-
sponsible for maintaining a list of subscribers to the
particular event and for sending notifications. Thus,
subscriber nodes may move freely and re-attach to the
channel at alternative locations. Effectively, an event
channel functions as a decentralised event broker fol-
lowing the P/S jargon.

The particular characteristics of sensor and actu-
ator networks make them especially compatible with
the P/S paradigm, in particular with regard to the
need for in-network storage and processing:

• P/S systems are characterized by the same basic
properties as sensor and actuator networks; that
is, communication is anonymous, inherently asyn-
chronous and multicasting in nature. P/S systems
are also capable of quickly adapting to changing
network topologies.

• P/S systems can support the decentralized opera-
tion of event management and delivery, transpar-
ently for both sensor and actuator nodes. This is
particularly important since computation in sen-
sor and actuator networks is highly asymmetric
and thus local adaptability and local control is of
great importance.

• The P/S anonymity property in particular im-
plies that communicating nodes are not required
to identify the party they wish to communicate
with (that is, subscribers need only describe the
characteristics of the events they want to receive
instead of naming a specific publisher to receive
events from) and thus data aggregation may be
implemented transparently for the end applica-
tion. Moreover, the anonymity property implies
that flexile wake-up/sleep cycles can be developed
since delivery of events to subscribed recipients
does not depends on a single sensor node.

• Conceptually P/S systems deliver events to mul-
ticast groups, a communications mode that is a
good fit for the provision of incremental updates
to aggregation operators constructed on top of
role-based spatial hierarchies of sensor and actua-
tor networks nodes. The power saving potential of
these multi-resolution data aggregation schemes
can be considerable and more importantly their
effectiveness increases rapidly with the number of
nodes in the system. Moreover, it is possible to
achieve relatively high performance by using the
periodic beaconing performed of most medium ac-
cess and topology control protocols for update de-
livery across a particular topic channel.
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The properties that make P/S suitable for use in
sensor and actuator networks also suggest a natural
way to support node failures as a feature of the sys-
tem rather than as a fault. Indeed, in this context data
aggregation is performed independently by each node.
Hence, loss of updates will affect accuracy locally and
nodes will continue computation with whatever data
available, on a best effort basis. This is a distinct ad-
vantage over techniques originating from more tightly
coupled systems, where there would be a need for roll
backs and data cleansing operations which are not ap-
propriate in the case of sensor and actuator networks.

One of the expected advantages of this architecture
is that it allows for complex wake/sleep schemes while
at the same time maintaining a good quality of service
via replication of the in-network stored data and of the
subscription information.

The use of event channels as the core building block
for Asene allows for the full decoupling of the [E], [C]
and [A] components of ECA rules. Also note that
queries associated with the condition part of an active
rule can be answered locally and in some cases the
data required could be disseminated at the same step
as the event itself. It is also worth observing that new
functionality can be introduced in the system via the
simple insertion of new condition nodes, that is nodes
that are responsible for checking for specific conditions
in response to event notifications. Finally, construct-
ing activation channels is also a viable alternative al-
though often the expected number of actuator nodes
would be much smaller than the number of sensors and
it is probably not as cost efficient as an approach.

5.1 Heterogeneity

An interesting observation on the effects of the Asene
architecture is that significant operational benefits
may be achieved if heterogeneous sensor and actua-
tor networks are constructed. Heterogeneity in this
case is seen primarily in communication capability and
in terms of the range of communication. Inserting a
few nodes that have longer range capabilities (but also
higher power consumption) can significantly increase
the robustness of the event channel by increasing the
connectivity across node clusters.

5.2 Composite Events

Using event channels as the main mechanism for data
dissemination also suggests a clear way for construct-
ing rules with composite events: the condition node
needs only subscribe to all corresponding event chan-
nels. Compare this against the difficulty of dealing
with multidimensional data in the context of SNQP.

6 Discussion and Conclusions

In this paper we have argued that, in addition to query
processing, ECA rules is a database technology that

may provide an appropriate computational model for
a distinct set of sensor and actuator network appli-
cations. However, ECA rules in this context present
several challenges which we highlighted in previous
sections. We have also introduced Asene, an ongoing
research project that aims to establish ECA rules as
the common mechanism for the description of reactive
functionality in sensor and actuator networks.

The current version of Asene supports simple event
channels built on top of Tiny OS [10] primitives and
a simple ECA language. We are currently develop-
ing further our algorithms for the efficient construc-
tion of event channels in sensor networks. Our focus
is on a single-step approach that identifies all mem-
bers of all registered event channels in a particular
network and thus removes the need for duplication of
the bootstrap phase. We are also improving on the
data structures used to represent the internal state of
a particular event channel and maintain the list of ac-
tive subscriptions. Our work aims to balance the need
for low communication between nodes and the asyn-
chronous nature of event generation with regard to the
wake-up/sleep node cycles. We are planning to con-
duct extensive experiments with the prototype imple-
mentation to better understand the tradeoffs involved.

In addition to the development of efficient and effec-
tive event channel management mechanisms, a second
major objective of the Asene project is the definition
of an appropriate lightweight ECA language that sat-
isfies the requirements of the application domain. The
brief example presented in Section 2 in the context
of a security management application is taken from
the current version of Asene. Clearly, further work
in understanding the performance implications of the
different constructs is required and balanced against
language expressivity.

The next step for Asene is the integration of ad-
vanced aggregation algorithms and the study of local-
ized routing algorithms for event dissemination. In
doing so we favor a multi-resolution approach sim-
ilar to the aggregation schemes discussed in [6] but
more appropriate for the structure of our event chan-
nel construction algorithms. Finally, we intend to fur-
ther investigate the relative merits of different routing
strategies for event dissemination based on localized
network descriptions. We anticipate both approaches
to offer significant reduction in resource demands from
the network.
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Abstract

Wireless sensor networks consist of nodes with the
ability to measure, store, and process data, as well
as to communicate wirelessly with nodes located
in their wireless range. Users can issue queries
over the network, e.g., retrieve information from
nodes within a specified region, in applications
such as environmental monitoring. Since the sen-
sors have typically only a limited power supply,
energy-efficient processing of the queries over the
network is an important issue. In this paper, we
introduce a general framework for distributed pro-
cessing of spatio-temporal queries in a sensor net-
work that has two main phases: (1) routing the
query to the spatial area specified in the query;
(2) collecting and processing the information from
the nodes relevant to the query. Within this
framework, different algorithms can be designed
independently for each of the two phases. We also
propose novel algorithms for this framework, one
for the first phase and two for the second phase. In
an extensive experimental evaluation we study the
performance of these algorithms in terms of en-
ergy consumption, under varying conditions. The
results allow us to recommend the most energy
efficient solution, given a network and a spatio-
temporal query.

1 Introduction

Recent technological advances, decreasing production costs
and increasing capabilities have made sensor networks suit-
able for many applications, including environmental moni-
toring, biological contamination detection, warehouse man-
agement, traffic organization and battlefield surveillance.
Today’s sensors are no longer just simple sensing de-

vices wired to a central monitoring site, but they have
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computation, storage and wireless communication capabil-
ities. Most of these devices are battery operated, which
highly constrains their life-span, and it is often not pos-
sible to replace the power source of thousands of sensors.
Energy efficient data processing and networking protocols
must therefore be developed to make the long-term use of
such devices possible. While the network research commu-
nity has studied energy efficient protocols in the context of
ah-hoc networks, the database community has been con-
fronted mostly with time and size constraints, but rarely
with energy limitations. Therefore, the ability to apply
traditional data processing techniques in sensor networks
is limited, and different solutions must be found.

In this paper we focus on energy efficient query pro-
cessing in sensor networks. In particular, we are inter-
ested in answering historical spatio-temporal queries such
as “What was the humidity yesterday morning in Lake An-
nete area?”. We study this problem in a sensor network
where each sensor is only aware of the existence of the
other sensors located within its communication range, and
the query can be initiated locally at any sensor. There
are two main reasons for allowing query initiation at any
node. First, using only designated sensors as query origina-
tors causes an unbalanced energy use among sensor nodes,
leading to faster energy depletion at the designated sensors,
as well as the sensors located in their proximity, as these
nodes would participate in the processing of most queries.
Second, nodes could become unavailable for various rea-
sons, such as energy depletion, hardware failure or hos-
tile environment. To the best of our knowledge, historical
query processing in such a sensor network environment has
not been investigated before. The advantages of this envi-
ronment are network robustness, a balanced use of sensors’
energy resources and a wide range of application scenarios
that can take advantage of the proposed solutions.

An application where such a sensor network enviroment
can be used is micro-climate monitoring in national parks.
The sensor nodes could be deployed from a plane over a
forest area. Upon activation, each node would start ob-
serving periodically various physical phenomenons, such as
temperature and humidity of air and soil. Park rangers pa-
trolling through the forest can access the network through
any node in their proximity using a notebook or iPAQ.
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For instance, when certain events such as forest disease or
small fires are observed, the ranger could query the net-
work about historical observations, which may help him
understand what have caused such events or learn about
other areas that are threatened by similar events.
We propose the STWin framework for processing

historical spatio-temporal queries in sensor networks,
i.e., queries that specify the spatial area and temporal
range the answers must belong to. As sensor nodes spend
most of their energy supply during communication [1], we
aim at minimizing the amount of data exchanged among
nodes during query processing. Our framework has two
phases. First, we search for a path from the query origi-
nator node to a sensor located within the query’s spatial
window. Second, the located sensor assumes query coor-
dinator role, gathers the answers from all query relevant
sensors and ships them back to the query originator. We
use a greedy routing algorithm in the first phase, while for
the second phase we propose two algorithms, one based on
parallel flooding, the other using a depth first strategy.
In summary, the contributions of this paper are:

• we study the processing of spatio-temporal queries in
a sensor network where each node only knows about
the network nodes located within its wireless range;

• we introduce the STWin query processing framework;

• we propose three algorithms to be used within the
STWin framework;

• we evaluate experimentally the performance of these
algorithms and discuss their benefits and drawbacks.

The remainder of this paper is organized as follows. Sec-
tion 2 describes some of the research work related to ours.
Section 3 presents the sensor network settings as well as the
characteristics of the query and data. Section 4 details our
solution for spatio-temporal query processing. Section 5
presents the experimental evaluation of the proposed algo-
rithms, and Section 6 concludes the paper.

2 Related Work

In this section we discuss a few works related to our current
investigations. As sensor networks research lays at the in-
tersection of networks, systems and databases, we describe
a few projects addressing data management issues in the
sensor environment from the plethora of publications ad-
dressing various aspects of sensor networks.
The Cougar project [22] is one of the most related to

ours as it also investigates techniques for query process-
ing over sensor data. However, unlike ours, their research
focuses on a sensor networks environment where there is
a central administration that knows the location of all
sensors. In [4] the authors focus on defining a sensor
database model for processing long-running queries, which
are modelled as persistent views over the distributed sen-
sor database. A central optimizer has the tasks of building
a query plan and disseminating it to the relevant sensor
nodes. In a similar environment but with emphasis on en-
ergy efficient query processing, they extend their work in
[23] and analyze a wider range of problems, such as rout-
ing and crash recovery, basic query plans and in-network
aggregation.

In [13], Madden et al. focus on query processing in a
sensor environment where the information about the exist-
ing sensors is available in a catalog. Sensor nodes simply
collect and transmit the raw data to the powered sensor
proxies that are in charge of further processing and routing
the answers to the users. The authors focus on minimiz-
ing the used energy by adapting the sensors’ sampling and
data package transmission rates. They introduce the Fjord
architecture for management of multiple queries. Designed
for Berkley Mica motes and running on top of TinyOS,
TinyDB [15] is a distributed query processor that runs on
each of the sensor nodes. The authors focus remains on op-
timizing data acquisition for long-running queries, no data
being stored locally at the nodes. To reduce the energy
consumption, they also propose TAG [14], an aggregation
service for networks of TinyOS motes.
Beaver et al. [2] propose a solution for in-network ag-

gregation, which exploits the temporal correlation in a se-
quence of sensor readings to reduces the energy used during
query processing. Their solution, called TiNA, also allows
the user to specify a temporal coherency tolerance when
an approximate answer is sufficient, which lowers the en-
ergy costs. Similar to TinyDB and Cougar, TiNA is de-
signed for a sensor environment where sensors simply for-
ward their measurements to answer a long-running query,
without storing any historical data.
Directed Diffusion [12] proposes a data-centric frame-

work for query processing. Their sensor network environ-
ment is similar to ours in the sense that the query can be
originated at any node, and nodes are only aware of their
neighborhood. Different from us, nodes do not store his-
torical data and sensing is only performed in response to a
query request. In Diffusion, nodes request data by sending
interests for specific data, which is then collected by the
source nodes and shipped to the originator node. Interme-
diate nodes can cache and aggregate data, as well as di-
rect new interests based on the cached data. The Directed
Diffusion uses flooding to find paths from the query origi-
nator node to the data source nodes. Path reinforcements
are used for selecting a small number of “good-paths” over
which sensed data is returned. This scheme creates mul-
tiple paths for delivery, which increases the robustness of
delivery at increased energy costs.
A system that focuses on query processing over his-

torical data is DIMENSIONS [8, 9]. The authors focus
on multi-resolution summarization of data using wavelet
transform and construct a sensor hierarchy over the net-
work. While temporal summarization is performed in each
node, each level in the sensor hierarchy deals with another
resolution of summarization. Their solution is suitable for
data-mining, where a query can first look at the data at
a coarse resolution and then focus on a region of interest
at a finer resolution. The hierarchical scheme is applied
in a grid sensor network where clusterheads (nodes storing
coarser resolution in the sensor hierarchy) are dynamically
selected based on their location in the grid.
The authors in [11] focus on sensor data processing, and

propose solutions for data stream joins over the sensor data
in tracking or monitoring application. The performance of
their solution decreases sharply with increasing number of
sensors, with more evaluation being required to establish
the validity of their methods for large scale sensor deploy-
ments. In [6], the authors propose one of the first index
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structures for sensor networks. The solution is based on
the R-tree and it seems to be energy and time efficient,
but no evaluation is presented. Xu and Lee [21] propose
a window-based query processing technique in a network
of moving sensors, where sensors only take measurements
and provide data upon users’ request. Though interesting,
their solution has no experimental evaluation.
In the area of networks research, much work has been

done in ad-hoc wireless networks. One of the most relevant
issues for efficient query processing in sensor networks is
position based routing, that is, network routing when the
destination node is known and addressed by means of its
location. We refer the reader to several surveys [16, 20, 10]
on techniques for position based routing in ad-hoc net-
works. In our scenario, a sensor node is only aware of the
network nodes located within its wireless communication
range, which complicates the routing decisions. In such
a case position based routing algorithms with guaranteed
delivery cannot be readily re-used.

3 Background and Settings

We assume a sensor network with fixed nodes that have
equal roles in the network’s functionality. Each node has
a CPU, long term storage, its own energy source and it is
connected to other members of the network through wire-
less communication. All sensor’s components have limited
capabilities and the power source can be depleted quickly
if not used efficiently.
Due to the wireless network characteristics, a node can

communicate directly only with the sensors located within
its wireless range, which form its neighborhood. A node
can send a message individually to one of its neighbors, or
it can use broadcasting to send the message simultaneously
to all of its neighbors. When a message has to be sent
to all or most neighbors, it is cheaper to broadcast the
message than to send it individually to the neighbors. A
sensor communicates with nodes other than its neighbors
using a multi-hop routing protocol over the network. There
are two main types of messages in query processing: query
messages (which transport the query) and answer messages
(which transport the query answers).
Each node knows its location (e.g., it may use GPS dur-

ing node activation), as well as the location of its neighbors
(collected during network activation). Sensor nodes may
have several sensors, e.g., for temperature, humidity, mag-
netism, and light. In this paper we consider sensors that
observe the state of a measured entity at the sensor location
only. This is different from range sensing (e.g., movement
sensing used in tracking [7, 19]), which measures the state
of an entity not necessarily located at a sensor’s position,
but in its vicinity. Sensors take measurements periodically,
and the collected values are stored locally for future query-
ing. Data collection is performed continually, which can
be viewed as an infinite stream. As infinite data cannot
be fully stored, we adopt the stream storage solutions for
fixed storage space proposed in [24]. The solution uses tem-
poral aggregations over the data stream at multiple time
granularities. The aggregation level for a data record is
dependent on the age of the record, with only the most
recent data fully stored. The aggregation levels and their
granularity are decided before the network deployment and
are dependent on the measured data and the storage size.

Similar to any approximation technique, the adopted stor-
age solution may not be able to provide useful data if the
query requires high quality answers. Such stream storage
solutions need to be used only when sensor nodes use small
sampling rates or generate complex data per sample. For
instance, a sensor node with 1 megabyte of memory mea-
suring temperature once every 5 minutes could store more
than 1 year of raw data, which is beyond the expected
lifetime of some of the sensor devices currently available.
Each sensor node stores and manages locally its mea-

surements. Each measurement has attached to it a time-
stamp corresponding to the time of measurement. Each
type of sensor has associated a measurement interval,
which defines the interval between successive data collec-
tions and is identical for all sensor nodes. We consider
the data in the sensor network as a specialized distributed
database, with temporal data stored in a node’s database.
Each node has a location, which gives spatial properties
to data. Thus, on a global view, the sensor networks is a
distributed database storing spatio-temporal data.
We are interested in processing historical spatio-

temporal queries, denoted by HSTQ(qID,sw,tw), where sw
represents a spatial window, tw represents a temporal win-
dow and qID uniquely identifies a query. The answer to the
HSTQ query is formed by all sensor measurements from
the given area sw during the time range tw. Sensor nodes
have equal capabilities and therefore a query can originate
at any node with query answers located in some (possibly
all) of the nodes. Some sensor network scenarios [15, 22]
consider the so-called long-running queries, where a user
wants the continuously monitor the measured entities. We
do not consider this type of query in this paper.

4 Spatio-Temporal Query Processing

Given a historical spatio-temporal query HSTQ(qID,sw,tw)
at a sensor node, the problem is to efficiently locate and re-
trieve the answers, given the limited knowledge each node
has about the overall network. As a major constraint on
sensor nodes is their limited energy supply, we focus on en-
ergy efficient techniques. It has been shown that the energy
required by sensing and computation is up to three orders
of magnitude less than the energy used for communica-
tion [17]. Therefore we use the energy cost of communica-
tion as the measure of efficiency. This cost is proportional
to the number and the size of exchanged messages.
In this section we discuss first a basic query processing

algorithm for sensor networks. Next, we present an origi-
nal framework for processing spatio-temporal queries and,
within this framework, we propose three new algorithms.

4.1 Basic Query Processing Algorithm

A straightforward way to locate the query answers, which
we call FullFlood, is contacting every network node. The
query originator node broadcasts the query to its neigh-
bors, which in turn broadcast the query to their neigh-
bors, and so on, until all nodes have received the query.
Due to query message broadcast, each node will receive
the same query several times. For each query, a node
processes only the first query message received, discard-
ing subsequent query messages. When a query is received,
the node first broadcasts the query, then it selects the lo-
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Figure 1: The FullFlood algorithm - message flow

cally stored data relevant to the query (if any), it waits
for its neighbors’ answers and merges them with its own,
and finally it returns the answer to the neighbor that it
received the query from. Once the query originator node
has received the relevant data from all nodes, it can answer
the query. The messages flow for FullFlood algorithm is
shown in Figure 1.
The FullFlood algorithm is guaranteed to find the

query answer for a connected sensor network, but it in-
curs high communication costs due to the large number of
messages required to contact all nodes. The algorithm is
similar to a parallel breadth first search in a network graph,
where sensor nodes are vertices and edges represent direct
communication links between sensors. Assuming there is
no communication delay, the query will reach each node on
the shortest path (with respect to number of hops) from
the query originator. As query messages are broadcast
along all paths, the first message reaching a node must
have travelled over the shortest path. After a query is pro-
cessed locally, each node returns the answer to the neighbor
it first received the query from, and therefore answers are
returned over the shortest path to the query originator.

4.2 Query Processing with STWin

If there is only one node relevant to the query, the optimal
solution is contacting the node on the shortest path from
the query originator and returning the answers over the
same path. When the query answer involves several nodes,
communicating with these nodes on the shortest path be-
tween the query originator and each of them is no longer
optimal. Figure 2 shows an example. Forwarding the query
over the shortest paths (routes (a) and (c)) requires 6 query
messages in order to reach both relevant nodes, while route
(b) requires only 5 messages. On the other hand, return-
ing the nodes’ answer over the shortest path is still opti-
mal (assuming there is no aggregation of answers). As the
energy usage is proportional to the message size and the
same amount of answer data must be transferred over any
of the possible return paths, sending the answers over the
shortest path is the cheapest. Finding an optimal solution
requires each network node to know the network layout,
as well as possibly expensive local computation for finding
the optimal route for each particular query. Due to sen-
sors’ limitations, it is not feasible for each node of a large
sensor network to find and store the full network layout,
as well as make expensive processing. On the other hand,
contacting all sensor nodes as in FullFlood algorithm is
not the most energy efficient approach.
A heuristic solution for query processing is contacting

only the query relevant nodes, and a few extra nodes for
routing the query and the answer if the query originator

(a)

(c)

(b)

Figure 2: Query routing example

is not located inside the query’s spatial window. A heuris-
tic contacting only a subset of all network nodes should
use a lower number of messages than FullFlood, which
may lead to lower energy consumption. An additional ad-
vantage of such a solution is reduced network congestion,
which improves the query response time. Also, if only a
subset of the network nodes is involved in processing each
query, then several queries could be efficiently processed
simultaneously in different parts of the network. We pro-
pose the STWin (Spatio-Temporal WINdow) framework
for query processing in which such a heuristic can be im-
plemented. In this framework, we divide the query pro-
cessing into two phases, one for locating a path from the
query originator node to a sensor inside the query’s spatial
window, the other for gathering the query answer from the
relevant nodes and returning it to the query originator.

• Phase 1: Given a query at a node NQ, called query
originator, we want to find a path to a node located
in the query’s spatial window. This node will assume
query coordinator role NC for Phase 2.

• Phase 2: The coordinator node NC initiates the
query processing within the query’s spatial window.
The processing algorithm must locate all relevant
nodes, gather the results and return them to the query
coordinator NC . The coordinator will then return the
answer to the query originator node NQ on the rout-
ing path discovered in Phase 1.

These two phases form a general query processing
framework, where various algorithms can be used in each
phase. In the following we propose one algorithm for the
first phase and two algorithms for the second phase.

4.2.1 Phase 1: GreedyDF

The GreedyDF algorithm uses a greedy technique to find
a routing path from the query originator node to a node
NC located at the center of the query’s spatial window.
Other possibilities for choosing NC exist, and which node
is the best to select as coordinator for a query is an open
question. Choosing the center node is a good compromise
between the likelihood of a heuristic to find at least a node
in the query area and the length of the path over which
answers from the coordinator node will be returned to the
query originator node. The query originator forwards the
query to its neighbor located closest to NC , which in turn
forwards the query to its neighbor closest to NC , and so
on. If node NC is found, then node NC initiates Phase 2.
The routing may reach a sensor node that is closer to NC

than any of its neighbors, in which case the query can-
not be forwarded. If the reached node is located in the
query’s area, the node assumes coordinator role NC and
initiates Phase 2, else an empty answer is returned. The
GreedyDF algorithm uses a small number of messages, but
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Figure 3: The algorithms within the STWin framework - message flow

it does not guarantee that a routing path to a node in the
query’s spatial window will be found. Greedy-based rout-
ing methods for position based routing in ad-hoc networks
have been shown to nearly guarantee delivery for dense net-
work graphs, but to fail frequently for sparse graphs [20].
Variants to this heuristic would include using a different
neighbor selection method or backtracking the search when
query forwarding cannot be done. We choose to not use
backtracking solutions as they cannot guarantee answer lo-
cation within a small number of steps, while ultimately
degenerating to a slow network flood with higher commu-
nication costs due to the extra messages required for the
backtracking steps. The message flow for the GreedyDF
algorithm is depicted in Figure 3(a).

4.2.2 Phase 2: WinFlood and WinDepth

For the second phase of STWin we propose two algorithms.
The WinFlood algorithm consists of a constrained parallel
flooding, where a node broadcasts the query to its neigh-
bors only if its own location is inside the query’s spatial
window. The constrained flooding starts at the query co-
ordinator node NC and stops when the query reaches nodes
outside the spatial window. Figure 3(b) show the message
flow for theWinFlood algorithm. TheWinFlood algorithms
is similar to a window-constrained parallel breadth first
search in the network graph.

An alternative solution is the WinDepth algorithm,
which is based on the depth first search policy. In
WinDepth each node may forward the query only to
those neighbors located within the query’s spatial window.
When a node receives a query, it adds its node ID in the
query header so that the query path is remembered. Then
it selects a neighbor located within the spatial window that
has not received the query yet (determined based on the
query header), and forwards the query to this neighbor.
When the neighbor returns the partial query answer, the
node checks again if there is any other of its neighbors
that is relevant to the query and has not received it yet. If
there is such a neighbor, it forwards the query to this node
and waits again for the neighbor’s answer. This process
is repeated until all of a node’s neighbors located within
the window have answered the query, at which point all
the partial answers received are merged with the locally
stored answers and the new partial answer is returned to
the neighbor that the node received the query from. The
message flow for the WinDepth algorithm is shown in Fig-
ure 3(c).

TheWinFlood algorithm uses broadcast messages to for-
ward the query, while in WinDepth nodes send individual

messages to neighbors located within the window. As the
cost of one broadcast message is generally lower than the
cost for a group of one-to-one messages, it may be cheaper
to use broadcasting and stop the query forwarding when
an exterior node is reached. An advantage of WinFlood
is that it is faster than WinDepth for the same number
of contacted nodes and likely more cost efficient within a
small window due to the use of broadcast messages. On the
other hand,WinDepth contacts a smaller number of nodes,
which makes more nodes available to answer other queries,
and it causes less network congestion, which helps improve
the query response time if several queries are processed
simultaneously in the network.
In the following section we evaluate experimentally the

proposed algorithms and discuss the effects of several fac-
tors on the energy used during query processing.

5 Experimental Evaluation

We implemented a sensor network simulator in order to
study the performance of the presented algorithms. The
sensors’ placement follows a uniform distribution over a
two dimensional region. We represent a historical spatio-
temporal query HSTQ by the coordinates of a spatial area
(sw), a temporal range (tw) and its query ID (qID). The
query’s spatial window covers 1% of the monitored region
(that is 10% on each spatial coordinate), unless otherwise
noted. The temporal window covers 60 measurements,
where each measurement is represented by a <value,time-
stamp> pair. A summary of query and sensor network pa-
rameters and their default values used in our experimental
evaluation is presented in Table 1.
We compare the algorithms in terms of the average en-

ergy used per network node for communication while pro-
cessing a query. According to [18], the energy used to trans-
mit and receive one bit of information in wireless commu-
nication is given by:

Energy
transmit

= α+ γ × dn (1)

Energy
receive

= β (2)

where d is the distance to which a bit is being transmit-
ted, n is the path loss index, α and β capture the en-
ergy dissipated by the communication electronics and γ
represents the energy radiated by the power-amp. In our
experiments, we use the following values for these param-
eters [3]: α = 45 nJ/bit, β = 135 nJ/bit, n = 2, and
γ = 10 pJ/bit/m2. As typical sensors do not have sophis-
ticated communication electronics capable of adapting the
transmission range [5], we assume all messages are trans-
mitted as far as the wireless communication range. In our
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Figure 4: The effect of several parameters on the average energy used per network sensor for the investigated algorithms

Parameter Default Value
Area covered 1000x1000 meters
Wireless range 50 meters
Number of sensors 2000
Tuple size <value, time-stamp> 8 bytes
Query size 24 bytes
Query (spatial window) 1% (of area)
Query (temporal window) 60 measurements

Table 1: Parameters of query and sensor network

experiments we only measure the energy used to transmit
and receive messages. We focus on the energy efficiency
of the query processing algorithms and make the measure-
ments independent of the characteristics of the MAC layer
(for instance 802.11 radios consume as much energy in idle
mode as for receive mode, while other radios may switch
to a low-energy state when idle).

For the algorithms within the STWin framework,
we call STWinDepth the combination of GreedyDF
with WinDepth, and STWinFlood the combination of
GreedyDF withWinFlood. All experimental measurements
are averaged over 100 randomly generated sensor networks,
with 10 random queries over each network.

First, we investigated the effect of node density on the
performance of GreedyDF. For networks with 2000 or more
nodes, GreedyDF is able to find a routing path from the
query originator to a node inside the query’s spatial win-
dow for most of the tested networks. In the majority of the
successful cases, the reached node is located in the proxim-
ity of the center of query area. To have a fair comparison,
the following measurements consider the energy used by an
algorithm while processing a query only when each algo-
rithm located all answers for that query.

Figure 4(a) presents the effect of the number of sensors
on the energy usage of each algorithm. As node density
increases, FullFlood sends a larger number of messages
to nodes not relevant to the query, which leads to higher
energy costs. The increase in sensor density leads to an in-
crease in the number of nodes holding relevant data, which
affects the costs of all algorithms, as a larger answer set
must be returned to the query originator. With more nodes
available for routing, the GreedyDF algorithm may be able
to find a shorter path to the query coordinator node, an
advantage for both STWinDepth and STWinFlood as
less energy will be used for locating the query coordinator
and a shorter path is used to return the answers from the
coordinator node to the query originator. On the other
hand, the coordinator node will send a larger answer set to

the query originator in both STWinDepth and STWin-

Flood. The increase in the number of relevant nodes af-
fects more STWinDepth than STWinFlood. This is due
to the depth first policy used by WinDepth for query rout-
ing, as this policy contacts most relevant nodes on one
query forwarding path. This behavior causes the larger
answer set to be returned over a longer path to the query
coordinator, which increases the energy usage.
The negative effects of this behavior of STWinDepth

can be also seen in Figure 4(b), where the query size is
increased. A larger query area affects the FullFlood al-
gorithm less than the other two methods as only the com-
munication cost for returning the answers increases for this
algorithm, while the energy used for locating these answers
stays constant. With the query’s spatial window increas-
ing, STWinFlood uses flooding over a larger set of nodes,
ultimately degenerating into the FullFlood algorithm for
large query windows. In both STWinDepth and STWin-

Flood, the answers from a larger spatial window are sent
back to the query originator over a longer path (as the
answers are first collected by the coordinator node) com-
pared to the FullFlood method, which returns all an-
swers over the shortest path. For large query windows,
FullFlood uses less energy per node than STWinFlood

for 2000 nodes, but STWinFlood performs better than
FullFlood for large queries in denser networks (the cor-
responding graphs are not shown due to space limitations).
Figure 4(c) shows the effect of a query’s temporal range

on the energy consumption. A variation in the query’s
temporal range only affects the size of the answer messages,
and leads to a linear variation of the energy used by these
messages. The increase in energy usage is the smallest
for FullFlood as the algorithm returns the answers over
the shortest path to the query originator. STWinFlood

performs better than STWinDepth because the relevant
answers are returned on the shortest path to the query
coordinator in STWinFlood, and both algorithms share
the answer return path (discovered by GreedyDF) from the
query coordinator node to the query originator.

6 Conclusions

While the technological advances have lead to sensors with
reduced sizes and increased capabilities, the sensor data
management is still in its incipient stages. The challenges
are multiple, and the database research has to move its
focus from considering time as a main optimization goal
toward energy efficiency or a combination of both time and
energy. The size of the database is no longer a primary
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challenge, with the focus moving to the distributed nature
of the database and query processing.
In this paper we made a few steps toward energy ef-

ficient query processing in a sensor network environment
where each sensor is aware of only its neighbors. In this
scenario, we proposed the STWin query processing frame-
work, where the query is first forwarded to a query coor-
dinator node within the query’s spatial window, followed
by an efficient query processing involving only the relevant
nodes. Within this framework, we proposed the GreedyDF
algorithm for the first phase, andWinDepth andWinFlood
algorithms for the second phase.
The experimental results showed that STWinFlood is

more energy efficient in most situations than simple flood-
ing as well as the solution involving just depth-first based
algorithms. Only for very large query windows in networks
with low sensor densities, the FullFlood algorithm per-
forms slightly better in terms of energy usage, and it is
more robust for locating all relevant answers (however, it
causes network congestion, reducing the network’s capa-
bility to process several queries simultaneously). STWin-

Flood performs only slightly better than STWinDepth

for small query windows, but the difference in performance
dramatically increases for queries over large areas. An ad-
vantage of STWinDepth is that there are at most two
nodes working in each query processing step, which allows
the rest of the network to process other queries or simply
sleep to save energy. For most cases, STWinFlood has
shown low energy usage, and therefore we recommend it for
sensor networks where each node is only aware of the other
nodes located within its wireless range. The STWinFlood

combines the strengths of both depth first and breadth first
techniques while limiting their drawbacks.
In this paper we introduced techniques for query

processing when the user in interested in retrieving all the
relevant information. In other situations, an aggregated
query answer may be sufficient. We are currently investi-
gating new algorithms within the STWin framework that
would allow efficient in-network aggregation during query
processing.
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Abstract

An important type of spatial queries for sensor
networks are K Nearest Neighbor (KNN) queries.
Currently, research proposals for KNN query pro-
cessing is based on index structures, which are
typically expensive in terms of energy consump-
tion. In addition, they are vulnerable to node fail-
ure and are difficult to maintain in dynamic sensor
networks. In this paper, we propose KPT, an al-
gorithm for dynamically processing KNN queries
in location-aware sensor networks. KPT shows
great potential for energy savings and improved
query latency. Since the tree infrastructure is con-
structed only temporarily, KPT is less vulnerable
to sensor node failure.

1 Introduction
Recent research on accessing data available in sensor net-
works has been focused on index structures, data stor-
age, routing algorithms, data dissemination and aggrega-
tion techniques [2, 4, 6, 8, 7, 9, 15]. A major goal of these
proposals is to support various types of queries posed to a
sensor network from any location. A query is transmitted
from the query source to the sensor nodes or network loca-
tions that contain the data needed to satisfy the query. The
results (i.e., data collected at the sensor nodes) are then ag-
gregated (if allowed) and returned back to the query source.
The main requirement for query processing is to incur as
little energy expenditure as possible without dropping the
queries or sacrificing execution latency.

Spatial queries such as window/range queries and k
nearest neighbors (KNN) search are particularly relevant
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to sensor network applications because the data needed
for these applications is often geographically distributed in
the network. Several approaches have been proposed that
support window/range queries in sensor networks [5, 14],
while a preliminary study of the KNN queries in sensor
networks, called Peer-Tree, has just started [1]. Peer-tree, a
distributed index structure based on the design principle of
R-trees, ignores the fact that sensor nodes are susceptible
to radio interference, signal attenuation, and fading. As a
result of these radio problems index structures are difficult
to implement in sensor networks and expensive to main-
tain in terms of energy consumption. This paper introduces
the KNN Perimeter Tree (KPT) Algorithm for supporting
KNN queries. KPT exploits the fact that KNN queries
are geographically-based to achieve energy savings and in-
creased fault tolerance. A preliminary performance evalua-
tion is given to demonstrate the capabilities of KPT. For this
paper we are assuming a stationary, location-aware sensor
network. KPT assumes that sensors are aware of their ge-
ographical neighbors needed to support geographical rout-
ing. Sensor data is stored using local storage which can be
organized as cache lines based on sensing event types. A
given sensor can aggregate data over a period of time; for
example a line in the cache may represent the sensing data
of a minute.

This paper is organized as follows. In Section 2 we in-
troduce KNN queries in sensor networks and review rele-
vant research efforts. Then we introduce the KPT algorithm
in Section 3 and its analysis in Section 4. Finally, Section 5
concludes this study and discusses the future work.

2 Related Work

In this section we describe the background of sensor net-
works, KNN queries and related research contributions.

2.1 KNN Query in Sensor Networks

k-Nearest Neighbor (KNN) queries of spatial data have
been an interesting research topic for some time [10, 11]. A
KNN query is initiated by a query source node and involves
finding the k spatially nearest objects to a given query point
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within the sensor network. Centralized or distributed in-
dex structures such as the R-tree have provided support for
KNN queries [3]. However, in the context of sensor net-
works, technical issues such as node failures (caused by de-
pleted energy resources or communication problems) make
such index structures unwieldy and inefficient for executing
KNN queries.

KNN queries can be classified into two types for sensor
networks. For Type 1 queries, we assume that all sensor
nodes locally store sensor data and are able to answer a spe-
cific query constrained by a geographical query condition.
For example, assume that a query desires the k nearest tem-
perature readings to some query point and all sensor nodes
have a sensing component to measure temperature. In this
case, the query needs to be transmitted to the k geograph-
ically nearest sensor nodes to the desired query point. The
KNN nodes sample the temperature data and return it back
to the query source node.

For Type 2 KNN queries, we assume that some addi-
tional query condition precludes the ability of all sensors to
satisfy a query despite being located inside the desired ge-
ographic region. Type 2 queries request sensor data about
the k nearest events to some given query point. These
event locations are unpredictable and therefore determin-
ing which k sensors to transmit the query to for execution
is more complicated than Type 1. In this paper, we con-
sider only Type 1 KNN queries and leave support of Type
2 KNN queries as future work.

2.2 Geographical Routing

We assume for this research that sensor networks are sta-
tionary and location aware and that sensor nodes are knowl-
edgeable about neighbor nodes within their radio range.
Given these assumptions, several algorithms exist that can
route messages towards geographic locations.

The Greedy Perimeter Stateless Routing (GPSR) algo-
rithm is a geographical routing algorithm which operates
in two modes in location-aware sensor networks: greedy
mode and perimeter mode [4]. In greedy mode, the for-
warding node forwards the message to the neighbor near-
est the destination. If no such neighbor exists, the al-
gorithm switches to perimeter mode, which, given a pla-
narized graph of the network topology, routes messages
around voids in the network. GPSR can be employed for
routing Nearest Neighbor (NN) queries in sensor networks.
Given a desired location, GPSR can continue to route the
query message until the NN to the query point is reached.
The nearest neighbor sensor node can be confirmed by rout-
ing in perimeter mode around the query point. Due to this
nice property, GPSR was selected as the routing protocol
for implementing KPT.

2.3 Peer-Tree

To the best of our knowledge, Peer-Tree (PT) is the only
other proposal in the literature that is able to support KNN
queries. Peer-tree applies the decentralized R-tree index

structure to ad-hoc sensor networks in order to support
location-based queries [1].

Like with the R-tree, the sensor network is partitioned
into Minimum Bounding Rectangles (MBRs). Each MBR
covers a geographical region and includes as a member any
sensor node inside that area. The clusters are then orga-
nized in a hierarchical fashion until one overall cluster ge-
ographically spans the entire network. For each cluster, a
specific node is designated as a clusterhead, which knows
the location and ID of all sensors that belong to the MBR
cluster. Furthermore, it knows the location and ID of the
clusterheads of any child clusters and its parent cluster-
head. Although the authors do not discuss the physical
layer of the network topology directly, it is logical that that
the authors assume the clusterhead can communicate with
all nodes within its MBR as well as its parent.

In Peer-Tree, queries do not originate at the root of the
tree, but come up from the level 0 child nodes since it is
desirable to allow queries to be spawned from random lo-
cations in the network. NN queries can be locally scoped to
include only the largest MBR necessary for satisfying the
query. For handling NN queries, the source node routes the
query message to its clusterhead. The clusterhead deter-
mines whether the query point is within its MBR. If so, the
clusterhead then begins the algorithm for finding the NN. If
it is not, the clusterhead forwards the query to its parent for
processing. Eventually a clusterhead is reached that cov-
ers the area that contains both the query source and query
point. This clusterhead becomes the Peer-Tree root node
for processing the query.

The traditional branch-and-bound algorithm [10] is ex-
ecuted by the root node. Beginning with the child MBRs
of the root, the partition list is sorted by MINDIST and
the Peer-Tree is recursively traversed while a NN leaf node
candidate is maintained and used for pruning MBRs. Sup-
porting KNN queries with Peer-Tree is more complicated
and not discussed by the Peer-Tree authors. For Peer-Tree
to execute the query, it must be sent to the parent of the
highest clusterhead required for finding the NN in order to
guarantee that all candidate nodes will be evaluated (unless
the query is already at the root clusterhead). At this point,
the same branch-and-bound technique is employed except
that a sorted buffer of at most k nearest neighbors is main-
tained and pruning is done according to the distance of the
furthest nearest neighbor in this buffer.

There are several problems with the Peer-Tree approach.
First, query messages must typically be routed through sev-
eral layers of clusterheads. Transmission between clus-
terheads is executed largely independently of the physical
geographic direction and distance. Depending on the net-
work topology and the locations of clusterheads, it is possi-
ble that many unnecessary hops are included when routing
messages towards query points. Furthermore, the cluster-
heads become communication bottlenecks where network
congestion is likely (depending on the rate of submitted
queries) especially if the distances between clusterheads is
large and additional transmitting power is required. Ad-
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ditionally, adding hierarchical infrastructure to sensor net-
works is inherently problematic since sensor networks are
highly unstable. To handle the issue of fault tolerance,
the authors propose using a lease period for all clusterhead
nodes so that the hierarchical infrastructure is re-evaluated
periodically.

3 KNN Perimeter Tree
Our hypothesis is that geographical routing algorithms
such as GPSR can be used to approach shortest-path rout-
ing such that overall improved performance and fault toler-
ance is possible for KNN queries. Minimizing the individ-
ual responsibilities of sensor nodes makes the network less
vulnerable to failure since there are no critical nodes in the
network. Furthermore, less communication is necessary to
maintain index or topology information in the network.

The KNN Perimeter Tree (KPT) builds upon GPSR [4]
for processing KNN queries. KPT is deployed at all sensor
nodes during network deployment. GPSR can successfully
deliver messages to the nearest neighbor of any query point
in the network. Since data is only available at the sensor
nodes that generate them, a query need only be routed to the
sensor nodes that own the data. All nodes in the network
may participate in processing/forwarding queries.

The KPT algorithm can be broken down into phases as
follows:

1. find the nearest neighbor and a maximum KNN
boundary;

2. find k − 1 nearest neighbors;

3. disseminate and execute query;

4. return result.

3.1 Find NN and a Maximum KNN Boundary

The query message is geographically routed from the query
source towards the query point specified in the query.
Based on GPSR, the message will eventually reach the geo-
graphically nearest neighbor to the query point. This node
is designated as the home node of the KNN query. The
home node is assigned temporary responsibilities for orga-
nizing the dissemination of the query and processing the
results. This responsibility does make the home node vul-
nerable to node failure however only for the short duration
of the time needed to process the query.

To avoid flooding a query to the whole network, a max-
imum KNN boundary is estimated to restrict the search
space for finding the remaining k−1 nearest neighbors. We
consider several approaches for determining this boundary
while the query message is being routed to the home node.
These approaches seek to determine a circular boundary in
terms of a radius distance centered at the query point which
is guaranteed to contain the KNN sensor nodes and the ap-
proaches have different tradeoffs.

An intuitive approach (called SUMDIST) for determin-
ing the boundary is to add the position of each sensor node
on the forwarding path from the query source to the home

Home node

Query point

Figure 1: KPT home node and perimeter

node to a list in the query message. When the home node is
reached, the distance between the home node position and
the k-th position in the list serves as the maximum bound-
ary. This approach has a higher communication cost since
up to k locations are transmitted along with the query at
every hop. For large values of k, this cost can be large.

A second approach (called MHD-1) includes only a
counter variable, and a maximum hop distance (MHD)
value which represents the largest distance value for any
one hop on the route between the query source node and
the home node. The counter variable is incremented at
each forwarding hop until it reaches k. MHD always main-
tains the largest hop distance visited. After the query mes-
sage reaches the home node, the maximum KNN boundary
value can be determined by multiplying the MHD value by
k. The advantage of this approach is that the cost of deter-
mining the maximum KNN boundary is less than the naive
approach since only a few values are transmitted with the
query message (independent of k). However, the search
boundary is likely to be larger (and thus less efficient) than
the boundary obtained from the naive approach.

An improvement on the second approach (called MHD-
2) is to minimize the MHD value by plotting the hop dis-
tance along the direct path between the query source and
query destination using geometry instead of taking the di-
rect hop distance between neighbor nodes. However, the
location of the query source node has to be added to the
query message at an additional energy cost.

An assumption that is made for all three methods is that
at least k hops occur on the route between the query source
and the home node. Therefore, it is necessary to consider
the case when fewer than k hops occur. To solve this prob-
lem we estimate the boundary by taking the MHD value
and multiplying it by k (even for the naive approach). We
believe that this estimation should be fairly good for many
cases; however in implementing the KPT algorithm, we
must consider the case when the estimation fails.

Figure 1 demonstrates the state of the KPT algorithm af-
ter the query has been routed to the nearest neighbor home
node and the perimeter has been established. The query
point is illustrated with a star and the home node which
connects the incoming geographical route with the perime-
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ter route is solid.

3.2 Find k − 1 Nearest Neighbors

Given that the query is at the home node which knows the
maximal KNN boundary, the next step is to determine the
IDs and locations of the k − 1 nearest neighbor nodes. A
naive approach is to simply flood the query to all nodes
within the circular KNN boundary centered at the query
point. However, flooding expends excess energy, particu-
larly if nodes are densely packed with much overlapping of
radio and sensing ranges.

We propose the Perimeter Tree which is designed to re-
duce the number of total messages required to determine
the (k − 1)-NN nodes and for disseminating the query to
them. The philosophy of this approach is to divide the
boundary circle into regions for each of which a minimum
spanning tree can be constructed that is rooted at a perime-
ter node. The subtrees expand in the direction away from
the destination. The individual trees are bounded by the
circular boundary and the two subtree boundaries on both
sides.

The perimeter nodes that encircle the query point each
make up a root of a minimum spanning tree that expands
away from the destination and is bounded by the circu-
lar KNN boundary. The perimeter nodes are determined
when the query message is transmitted by the home node
in GPSR perimeter mode to validate the home node as the
NN to the query point similar to the Perimeter Refresh Pro-
tocol in GHT [9]. At each hop around the perimeter, the
midpoint on the line between Perimeter nodes is computed
and by plotting a line from the query point through the mid-
point to the circular boundary the subtree boundaries are
determined, similar to a Voronoi cell [12].

The next step is to establish the spanning trees in each
of the bounded areas that are rooted at the perimeter nodes.
The goal is to build a tree with as few messages transmitted
as possible and with also the shortest possible latency. By
having multiple trees rooted at the perimeter nodes instead
of one tree rooted at the home node the maximum height
of the trees is reduced which reduces the overall query la-
tency, although in highly irregular networks balancing the
tree may not be possible which would affect the query la-
tency but not the correctness. The construction of the tree
begins with the perimeter root node which knows the query
point, the two subtree boundaries (the midpoints between
it and its two perimeter neighbors) and the circular KNN
boundary. At a minimum, this information is transmitted
to its potential children along with other information spec-
ified in Phase 3. In a tree, nodes only have one parent and
belong to a certain level of the tree. Finally, a child node
responds to its parent after hearing from its children and
transmitting all node level information including node IDs
and locations. This information is forwarded to the perime-
ter root which then transmits it to the home node. The home
node then has all the locations of all nodes within the circu-
lar KNN boundary which it can then sort by their distance
from the query point and thus determine the KNN node set.

Figure 2: KNN Perimeter Tree

The perimeter boundaries are employed in order to keep
the tree as balanced as possible and thus reduce the over-
all query latency. However, strictly enforcing this bound-
ary for construction of the tree may exclude nodes that are
within the circular boundary but are out of communication
range of all potential parent nodes within its median bound-
ary. Therefore we allow nodes to select a parent outside its
tree boundary, but only if it does not hear a request from
another potential parent from within its tree boundary. Al-
though it may be possible for a sensor node to exist within
the circular boundary and be completely disconnected from
all other nodes within the circular boundary, it is unlikely.
Furthermore, this would tend to happen towards the edge
of the circular boundary reducing the probability that the
disconnected node belongs to the KNN set.

Figure 2 demonstrates the state of the KPT after the
Perimeter Tree has been established. The perimeter nodes
are used to construct the tree boundaries to minimize the
total height of the tree.

3.3 Disseminate and Execute Query

After Phase 2, the home node is aware of the IDs and lo-
cations of the KNN nodes. The next step is for the query
to be disseminated for execution. A naive approach is for
the home node to unicast or multicast using the Perimeter
Tree the query to the KNN nodes. In order to reduce the
overall latency, we propose combining the query dissem-
ination with the Perimeter Tree establishment from Phase
2. As the Perimeter Tree is constructed, the actual query
is transmitted to all tree members for automatic execution.
This approach should have drastically improved latency,
but less efficient energy performance since more than the
KNN nodes actually execute the query. Imposing a quota
system on the number of nodes to execute a query per sub-
tree can reduce the execution cost without increasing the la-
tency. The quota estimation method assigns the top q nodes
of every subtree to execute the query automatically where
q is a quota estimation defined in Equation (1) and p is the
number of perimeter nodes and c is an adjustable parameter
which trades off the quota size and the number of retrans-
missions needed when quota estimations fail.
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q =
k

p
+ c (1)

The q value is set by the perimeter root node and decre-
mented as it is assigned to nodes farther down the tree. The
nodes assigned to execute the query do so and return the
results back to the home node as the tree is constructed.
The remaining nodes in the tree that are not assigned by
the quota to execute the query automatically simply return
location information.

After the tree is constructed, the home node receives the
p× q results along with all the location and ID results from
all nodes within the circular KNN boundary. The home
node determines the KNN node set and whether the quota
results include all necessary data to satisfy the KNN query.
If any members of the KNN node set did not return quota
estimation results, then the quota failed and must be re-
solved. The resolution can be handled simply by unicast-
ing the query to the missing nodes and routing the results
back, adding additional overhead and latency and is thus
undesirable. The c parameter can be adjusted by experi-
ment to determine the appropriate quota size. Flooding is
used to execute the query if the circular boundary is un-
derestimated using one of the MHD methods which adds
considerable energy and latency costs. However, we feel
that this situation will be rare.

3.4 Return Results

After the home node has collected the query results, it
needs to transmit them back to the query source by unicas-
ting the results geographically using GPSR. The Perime-
ter Tree can be destroyed after the location information
has been returned to the home node. We reiterate that the
Perimeter Tree only exists for a short period of time and
therefore is only vulnerable to node failure very briefly un-
like Peer-Tree.

4 Preliminary Performance Analysis
To give an idea of the capabilities of KPT versus Peer-Tree,
we performed a mathematical analysis on both approaches
in terms of the number of messages required to execute
a query. For the analysis, we assume that nodes are uni-
formly distributed. To determine the cost processing KNN
queries with KPT and Peer-Tree, we define some parame-
ters which are listed in Table 1.

For analyzing the performance of KNN query process-
ing, we break the execution into three phases for both KPT
and PT:

• Phase 1 consists of the number of messages required
to reach the home node for KPT or the Peer-Tree MBR
root node.

• Phase 2 represents the cost of executing the query by
getting the query to the KNN nodes and returning the
results back to the Phase 1 home node.

Variable Definition
h Height of Peer-Tree
l Average distance between nodes
n Number of nodes in network
x Number of nodes in KNN PT MBR
f MBR fanout (.69×M )
s Square axis of network (s× s)
d Average query distance
k Number of nearest neighbors required
m Minimum children per MBR
M Maximum children per MBR
Pi Probability a PT node is accessed at level i

Table 1: Summary of Parameters for Analysis

• Phase 3 represents the cost of returning the query re-
sults back to the query source node.

Estimating the query execution cost for KPT is fairly
simple. For phases 1 and 3, we can estimate the number of
hops required to route a message to the query source node
and the home node and back by using the expression d

l .
For phase 2, we estimate the number of messages as two
messages per node inside the circular boundary. We can
compute the average number of nodes inside the circular
boundary by dividing the area of the circular boundary by
the average area per sensor node (density) and thus we de-
fine the number of messages as 2×(π×(k × l)2)/((s2/n)).

Performance analysis of Peer-Tree is more complicated.
We refer to the analysis of KNN queries for R*-Trees [13]
which is similar to Peer-Tree except that message transmis-
sions are used instead of disk accesses when information
from a node is needed. For phases 1 and 3, the number
of messages required to transmit the query message to the
root parent node and the results back is the number of lev-
els in the tree from level 0 to the level of the root parent.
The level of the root parent is one above the smallest MBR
that contains the query point and the query source node.
For estimating the size of the smallest MBR that contains
the query point and the source node we assume an average
square-shaped MBR where the query distance d makes up
half the bisecting hypotenuse with an area of 2 × d2. The
number of sensor nodes contained within the parent of the
MBR that spans the source node and query point can be
estimated as x = (h × 2 × d2)/((s2)/(n)). We can deter-
mine the height of the tree needed to execute the query as
h = 1 + �logf ( x

M )� [13].
For computing the cost of phase 2 for Peer-Tree,

we use the same formula for node accesses defined as∑h−1
i=0 (ni × Pi) where h is the height of the tree, Pi is

the probability that a node at level i is accessed and ni is
the total number of nodes at level i [13]. Due to the space
constraints of this paper, we leave the details to [13]. Two
messages are required for each node access, one to deliver
the query and one for a response.

For constructing experiments using the mathematical
analysis the following default parameters were used. A
network size of 100 × 100 meters2 was used with a node
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Figure 3: Experiment 1: Effect of k
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Figure 4: Experiment 2: Effect of query distance

density of 500 uniformly distributed sensors. The average
query distance used was 30 meters with a k value of 3.
For Peer-Tree, each MBR contained between 3 and 6 chil-
dren. The metric used for analysis was simply the num-
ber of messages required to execute the query for KPT and
Peer-Tree.

Figure 3 demonstrates the effect of k on the performance
of KPT and Peer-Tree. The results show that while Peer-
Tree is not affected by the value of k, KPT performs bet-
ter for lower k values, specifically with k smaller than 6.
This makes sense since the larger the k value, the larger the
circular query boundary which includes more nodes in the
query.

Figure 4 shows the effect of the query distance on the ex-
ecution performance of both approaches. The effect of the
query distance on KPT is minimal; only a very small linear
increase for KPT while Peer-Tree suffers an exponential in-
crease in the number of messages as the query distance in-
creases. This is due to the fact that the size of the spanning
parent MBR grows much larger and the height of the tree
increases as well. Although not demonstrated here, Peer-
Tree is also affected by the size of the child node capacity
and the node density of the network.

We acknowledge that this analysis is primitive by sim-
ply counting the number of messages of an individual query

and does not take into account that the messages for Peer-
Tree would likely have to be transmitted at a higher power
level and are thus more expensive. The size of the mes-
sages, per-bit cost of transmission and query execution
costs are also not considered here. Most importantly, this
analysis assumes that all required infrastructure for Peer-
Tree is in place, i.e., the considerable cost for constructing
and maintaining the tree is not demonstrated. Nonetheless,
KPT is able to perform often significantly better than Peer-
Tree for executing KNN queries. Fault tolerance to node
failure is also not demonstrated. Considering fault toler-
ance and actual energy consumption will be demonstrated
through simulation in our future work.

5 Conclusion

We believe that KPT shows potential for improving perfor-
mance in terms of energy consumption and latency for pro-
cessing KNN queries in sensor networks. Our preliminary
analysis shows that KPT can achieve significant energy
savings over Peer-Tree in terms of the number of messages
required to execute a KNN query without even compar-
ing the costs required to construct and maintain the Peer-
Tree infrastructure when compared to the minimal neigh-
bor information required for geographical routing. Addi-
tionally, although not demonstrated through analysis, KPT
intuitively is more fault tolerant than Peer-Tree.

For the future work of this project, simulation experi-
ments are under construction that are designed to back up
the claims of this paper. Additionally, further improve-
ments of KPT may be possible if assumptions can be made
about the node distribution. Furthermore, we intend to also
investigate the use of KNN queries in mobile sensor net-
work environments by employing routing protocols for dy-
namic networks. Finally, we intend to consider supporting
Type 2 KNN queries with KPT.
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