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ABSTRACT

We present an update on the status of the Cougar Sensor
Database Project, in which we are investigating a database
approach to sensor networks: Clients “program” the sensors
through queries in a high-level declarative language (such as
a variant of SQL). In this paper, we give an overview of our
activities on energy-efficient data dissemination and query
processing. Due to space constraints, we cannot present
a full menu of results; instead, we decided to only whet
the reader’s appetite with some problems in energy-efficient
routing and in-network aggregation and some thoughts on
how to approach them.

1. INTRODUCTION

A powerful paradigm in sensor network design has emerged
recently: Give users a declarative query interface to the sen-
sor data, thereby abstracting away the physical properties
of the network when tasking the sensors. Such a sensor
database system sends event data from source nodes to se-
lected storage nodes called view nodes where the data is
collected for further processing. Many such sensor networks
have strong constraints on their energy usage to maximize
network lifetime. A significant amount of energy can be pre-
served by (1) carefully determining the data that should be
stored in designated view nodes, and (2) coordinating the
data dissemination to these nodes.

In this paper we overview several ongoing research direc-
tions. Our first direction is view selection. In order to min-
imize the number of messages for a given query workload,
we introduce a hybrid pull-push model, in which relevant
data is collected at sensor nodes and pushed to view nodes,
from where the data can be pulled when queries are issued.
Our goal is to decide, given a query workload, what data we
should store and where in the network this data should be
stored in order to minimize the expected overall query cost.

A second, related research direction is aggregation tree se-
lection. Processing an aggregation query requires that data
from a set of sensor nodes be routed to the site where the
query was posed, with in-network aggregation on the route.
The most natural way is along edges of a spanning tree
that in some sense “embeds” the query plan. The feasi-
bility and cost benefit of in-network aggregation depends in
subtle ways on the choice of the routing tree.

Our third research direction is wave scheduling. We pro-
pose to schedule transmissions among nodes such that data

*Corresponding author.

JrA. Demers, J. Gehrke, N. Trigoni and Y. Yao are with
the Department of Computer Science, Cornell Univer-
sity, Ithaca NY 14853, email: {ademers, johannes, niki,
yao}@cs.cornell.edu. R. Rajaraman is with the College of
Computer and Information Science, Northeastern Univer-
sity, Boston, MA 02115, email: rraj@ccs.neu.edu

SIGMOD Record, Vol. 32, No. 4, December 2003

flows quickly from event sources to storage nodes while avoid-
ing collisions at the MAC layer. Since all nodes adhere to
the schedule, most nodes can be turned off and only wake
up during well-defined time intervals, resulting in significant
energy savings. Routing protocols can be modified to inter-
act symbiotically with the scheduling decisions, resulting in
significant energy savings at the cost of higher latency.

2. MODEL

In this section, we describe our model for sensor networks
and sensor data, and outline our architectural assumptions.

Sensor Networks. We consider a sensor network that
consists of a large number of sensor nodes connected through
a multi-hop wireless network [20, 34]. We assume that nodes
are stationary, all node radios have the same fixed commu-
nication range,’ and that each node is aware of its own loca-
tion. Sensor networks have the following physical resource
constraints:

Communication. The bandwidth of wireless links con-
necting sensor nodes is usually limited, on the order of a
few hundred Kbps; the network provides limited quality of
service, with variable latency and high packet loss rates.

Power consumption. Sensor nodes have limited supply of
energy; thus, energy-efficiency is a major design considera-
tion.

Computation. Sensor nodes have limited computing power
and memory sizes that restrict the types of data processing
algorithms that can be deployed and intermediate results
that can be stored on the sensor nodes.

Sensor Data. Each sensor can be viewed as a separate
data source that generates structured records with several
fields such as the id and location of the sensor, the time
stamp, the sensor type, and the value of the reading. Con-
ceptually, the data distributed throughout the sensor net-
work forms a distributed database system consisting of mul-
tiple tables with different types of sensor data.

Queries and View Nodes. The sensor network is pro-
grammed through declarative queries which abstract the
functionality of a large class of applications into a common
interface of expressive queries. Our work applies to any
query processing strategy that performs in-network process-
ing by collecting data from multiple sensors onto a desig-
nated subset of nodes that we call the view nodes. The view
nodes may either store the unprocessed sensor readings di-
rectly or materialize the result of more complex processing
over them.

Synchronization Between Sensors. We assume that
the clocks of neighboring nodes in the sensor network are
reasonably synchronized, either through GPS or through

!Note that future generations of nodes might have variable-
range radios; future extensions of this work will deal with
variable-range radios.
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distributed time synchronization algorithms (e.g., [7, 26]).

Embedding on a Grid. We assume that the area is
divided into a grid of square cells. The size of each cell is set
so that a node anywhere in a cell can communicate directly
with nodes in any of the four horizontally and vertically
neighboring cells. This constrains the size of a cell to have
length at most r/+/5, where r is the transmission range of
a node. In such a grid it can be shown that a shortest
(rectilinear) path between any two nodes is at most a factor
of 4 more hops than the optimal (non-grid) path. We assume
that each grid cell is occupied by exactly one node.

The above assumption can be realized by layering our
techniques on top of a protocol like GAF [41], which period-
ically elects a single representative node for each nonempty
grid cell. This achieves significant power savings (only rep-
resentative nodes expend energy on inter-cell message rout-
ing), and provides some fault-tolerance as well. Of course,
some cells may be entirely empty. The treatment of such
“holes” is an important consideration which we omit here
due to space constraints.

3. VIEW SELECTION

As in a centralized database system, the contents of a
view are defined through a user-defined query. It is our
goal to automatically select the best views (and view nodes)
in the sensor network in order to optimize the overall cost
of a query workload. Our use of views in sensor networks
follows a hybrid pull-push model in which the sensor data
is processed inside the network and pushed to view nodes
where the data is stored. Queries are routed to relevant view
nodes from which the requested data is pulled to assemble
the query answer.

While automated view and index selection algorithms have
been proposed for relational databases [6], the view selection
problem for sensor networks is much more complex: in ad-
dition to deciding what view to materialize, we also need to
decide where the view should be stored. As we will discuss
below, view content and location have complex interactions.

We consider a set of sensor nodes ni,...,nx spread in a
plane. We assume that time is divided into periods, that
queries can be executed only at the end of a period, that
queries refer to readings generated during that period, and
that a sensor node generates one reading within that pe-
riod. Let ui, i =1,...,k, be the probability that node n;
generates a reading within a period.? A query workload W is
a set of tuples W= {< Qi,p1 >,...,< Qu,pn >}, where p; is
the probability that query Q; is asked during a period. Each
query Q; returns the aggregate value of an attribute A over a
subset of the sensor nodes S; for the preceding period. We
assume that the aggregate function used is the same for all
queries.

We consider a tree having as leaves the data sources ni,

.., nx and as root the server where users present their
queries. During each period, a set of queries is posed. Query
evaluation, which happens at the end of the period, concep-
tually involves three phases. First, data from some sensors
is forwarded proactively up the tree, to the selected view
nodes, and partial aggregate results are materialized there.
In the next phase, request messages characterizing the set
of queries posed in the period are forwarded down the tree

2For simplicity of exposition, we assume that sensors are
independent even though this is often not the case.
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Figure 1: A dissemination tree for view selection.

until they reach all the view and sensor nodes required to
answer the queries. Finally, partial query results are sent up-
ward. The results may be combined at intermediate nodes,
and eventually reach the root. The cost of computing par-
tial aggregates is negligible compared to the cost of sending
messages along the edges of the tree, so the total cost of the
tree is the sum of the message costs along all edges. Our
objective is to minimize this expected cost.

Tree edges are classified as either proactive or on-demand.
Along a proactive edge, all new data is sent upward uncon-
ditionally in every period. Thus, there is no need to send
request messages down proactive edges. In contrast, an on-
demand edge transfers only the data required to answer the
queries posed in the current round. Thus, an on-demand
edge requires an explicit request message in each period.
The request message must be sent even if no partial result
is required in the current period. This is a consequence of a
(realistic) energy model in which radio receivers have sub-
stantial power requirements. In the presence of collisions
at the MAC layer and imperfect clock synchronization, the
energy cost (at the listener) of determining that no message
will arrive in a period can be substantially more than the
energy cost (at sender and listener) of transferring a short
“nothing to request” message.

For a proactive edge, the per-period expected cost is de-
termined by the probability of new sensor readings being
generated in the subtree beneath it. For an on-demand edge,
the expected cost is the cost of its (unconditional) request
message plus the cost of partial result messages needed to
answer the currently posed queries.

Studying special instances of the view selection problem
given a tree structure is the focus of current research. In
particular, we consider the following design space:

e All queries and data updates occur with probability 1.

e Sensor updates have probability 1, but queries occur
with arbitrary probabilities.

e Queries occur with probability 1, but sensor updates
occur with arbitrary probabilities.

e Both sensor updates and queries occur with arbitrary
probabilities.

Different query probabilities can result in different optimal
solutions to the view selection and placement problem.
Ezample: Consider the dissemination tree shown in Fig-
ure 1. Sensors are at the leaf nodes a, b, and c; each sensor
generates a new data value in each period. There are two
aggregate queries, the sums (a+b) and (a+c). These queries
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are issued independently, each with probability (1 — €). Let
q be the cost of a sending query request message down a tree
edge, and r >= ¢ the cost of sending a data result message.

Two limiting cases are easy to analyze. First, if we set
€ = 0 (so both queries are issued with probability 1) the op-
timal solution is to proactively forward everything: values
of sensors a, b, and ¢ are sent from the leaves to the inter-
mediate node i, where the values of the queries (a + b) and
(a + ¢) are computed and sent to the root. Every edge is
proactive, so no request messages are sent at all, and the to-
tal cost is 5r per period — one data message sent from each
sensor node to node i, and two data messages from node i
to the root.

The second limiting case occurs when € is nearly 1, so
that in most periods no query is issued at all. In this
case, proactively transmitting data along any edge wastes
energy with high probability, since the data is unlikely to
be needed. Thus, the optimal solution must make every
edge on-demand, flooding the tree with request messages
and sending the requested data up the tree as in the pre-
vious case. The expected per-period cost of this solution
is obtained by summing the costs of the edges. The ex-
pected cost of the edge between the root and interior node 4
is ¢ + 2(1 — e)r, representing an unconditional request mes-
sage and two result messages (one for each query) with inde-
pendent probabilities (1 — €). By symmetry, the edges enter-
ing nodes b and ¢ have equal expected costs of ¢+ (1 — €)r.
Finally, the edge entering node a, which is shared by both
queries, has expected cost ¢ 4+ (1 — €2)r. Tt is clear that when
€ is sufficiently near 1 no edge can be made proactive without
strictly increasing the cost of the solution.

Finally we consider intermediate cases in which the tree
is neither entirely proactive nor entirely on-demand. By
comparing the expected per-edge costs for the two limiting-
case solutions above, we can see that it is beneficial to send a
request message from the root to node 7 (that is, to make the
edge on-demand) when ¢ < 2er. Similarly, it is beneficial to
send request messages to nodes b and ¢ when ¢ < er; and it
is beneficial to send a request to node a when ¢ < €2r.

For this simple example, the optimal solutions are now
completely determined by the relative values of ¢, r and e.
When ¢ > 2er (the first limiting case above), a completely
proactive solution is best. For er < ¢ < 2er, the best so-
lution is to make on-demand only the edge from the root to
node i, proactively sending data from the leaves to node
and materializing the two queries there. For €’r < ¢ < er
it becomes beneficial to make the edges to nodes b and ¢ on-
demand as well, but still materialize the value of a at node
i. And for ¢ < €*r (the second limiting case above), a com-
pletely on-demand solution is optimal.

This example illustrates that query probabilities affect the
optimal choice of views. Similar examples can be given
to show the effect of data update probabilities. Finally,
the behavior is affected by the choice of aggregate func-
tion: AVG and MIN behave quite differently. For example,
MIN{a,b,c} is completely determined by MIN{a,b} and
MIN{a,c}, while this is not true of AVG.

Due to space constraints, we only summarize our results
here:

e We can show that the general problem is NP-complete
through a reduction from the Set Basis Problem [10].

e We can give dynamic programming algorithms (with
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at least exponential worst-case complexity) for the com-
plete design space above.

Because of the complexity of the dynamic programming
algorithms, we are currently looking into approximation al-
gorithms for this problem, and we are working on an imple-
mentation to obtain experimental results.

4. AGGREGATION TREE SELECTION

In the previous section, we studied the problem of select-
ing views and view locations in a given aggregation tree,
such that the total communication needed for processing a
set of given aggregate queries is minimized. The effective-
ness of the solution depends not only on the particular view
selection, but also on the choice of the aggregation tree. In
this section, we study tree selection, the problem of comput-
ing an optimal tree in the underlying sensor network that
connects the root with the set of active sensors.

We consider two performance criteria for determining the
quality of an aggregation tree, both based on the measure
of energy consumed. One criterion is to minimize the total
energy consumed for processing the given query set. Another
criterion is to minimize the mazimum energy consumed at a
node, aimed at maximizing the network lifetime (where the
lifetime is defined as the time until the first node dies).

Before we discuss the challenges in tree selection, we present
our model for energy consumption. We assume that the en-
ergy consumed in communicating b bits on a link is of the
form a + @b, where o > 0 is a fixed cost associated with
every message exchange and (3 is the per-bit transmission
and reception cost. Both the parameters a and § are sums
of two components each, as + o, and [, 4+ (s, respectively,
where a (resp., Os) is the part of the fixed cost (resp., per-
bit cost) associated with the sender and «, (resp., (3,) is
the part associated with the receiver. In the following, we
make the simplifying (if somewhat unrealistic) assumption
that a = 0; that is, the energy consumed in transferring b
bits on a link is proportional to b, so that minimizing the
number of bits transferred will minimizie the total energy
consumed.

As discussed in Section 2, we assume that the nodes of the
sensor network are organized in a grid. In such a network,
the general problem of selecting a tree that minimizes the
total energy consumed is intractable: an easy reduction from
the NP-complete rectilinear Steiner tree problem [9] shows
that tree selection is NP-hard even for the case of a single
query. In the remainder of this section, we present a series of
examples that indicate how the effectiveness of aggregation
trees varies with problem instances and the performance cri-
teria.

A given instance specifies an underlying sensor network
G with a designated root r and a set @ of queries covering
a set S of sensors. For a given tree T' that connects every
sensor node included in a query in @ to the root, the total
cost (or the maximum cost) depends on the particular view
selection algorithm used over T since different solutions may
differ in the amount of communication along the tree links.
Here we assume that the total cost (resp., maximum cost)
is that of an optimal view selection algorithm.?

3 Another natural notion for the total cost of a tree is to asso-
ciate with each query q a separate cost Cy(7T') that is defined
as the size of the subtree of T that contains the unique paths

55



(a) (b) (c)

| o=
o

(d) (e) ®

Figure 2: Aggregation trees and query set instances.
Each of the six figures illustrates a query set instance
and an aggregation tree. In each figure, a query is
represented by the set of nodes within a bounding
box and the aggregation tree is shown with edges
directed toward the root, which is shaded gray. For
reference, we label the query sets and trees in parts
(a) through (f) by Q. through Q; and 7, through
Ty, respectively.

Ezample: Consider a sensor network consisting of a 3 x 3
grid with 9 sensor nodes. We let (7,7) denote the node in
row %, column 7, 0 <7 < 3, 0 < j < 3. Suppose the root
server is the center (1,1). We consider different query set
instances, in each of which all the sensor nodes are active;
thus the desired tree is, in fact, a spanning tree. We assume
that all the update probabilities and the query probabilities
are 1.

1. Qq contains the single set of all nodes. That is, the
only query of interest is an aggregate of all the nodes.
In this case, every spanning tree has the same total
cost and is hence optimal. In particular, the tree T,
consisting of all the vertical edges together with the
horizontal edges on row 1 is an optimal tree (see Fig-
ure 2(a)).

2. Qp is the same as @q, but the performance criterion
is different; it is network lifetime. Tree 7, is no longer
optimal. In a “snakelike” tree T (see Figure 2(b)),
each node sends and receives at most one message and
the root receives two messages, while in T, certain in-
termediate nodes receive two messages and send one
message and the root receives four messages. The ex-
act benefit of T}, over Ty, depends on the ratio of Gs to

Br-

3. Q. contains all the singleton sets. That is, every query
seeks the data on a single node. In this case, a tree with
optimal total cost is a shortest path tree. Thus, tree

from every node in g to the root r. Then, the cost of the
tree T' is simply > ., Cq(T'). While this notion of cost may
be easier to analyze, it does not take into account optimiza-
tions that can be done when the projection of queries within
a subtree are linearly dependent (see Section 3 for examples)
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T, has optimal total cost. The same can be said for
tree T, consisting of all the horizontal edges together
with the vertical edges on column 1 (see Figure 2(c)).
Both the trees have a cost equal to the sum of distances
from each node to the center. In the given network,
it is 12; for a general N x N grid the cost is ©(N?).
Clearly, the snakelike tree T} is very poor, incurring a
total cost of O(N?).

4. Qg equals {{(4,7) : 0 <i<3}:0<j < 3}. That is,
every query is an aggregate on a column. In this case,
one can see that tree Ty (same as Tg) is a tree with
optimal total cost 8 (see Figure 2(d)) while tree T; has
total cost 12 and is suboptimal.

5. In all the above instances, a tree with optimal total
cost is a shortest path tree. However, this is not neces-
sary. Suppose the root is at node (0,1) and the query
set Q. contains the query {(0,0),(1,0),(2,0),(2,1)}
and a set consisting of each of the other nodes (see
Figure 2(e)). For this instance, in a tree T. with op-
timal total cost, the node (2,1) is connected to the
root (0, 1) via the long path (2,1) — (2,0) — (1,0) —
(0,0) — (0,1).

6. As a final example, we consider a query set Q¢ with
root (1,1) in which the queries are not disjoint (see
Figure 2(f)). For this instance, the tree T, has total
cost 10. This is because the bases of the projection of
the queries on to columns 0 and 2 are both of size two;
consequently, the two horizontal edges on row 1 have
to carry 2 information units, one corresponding to a
column and the other corresponding to a node in row
0. In contrast, tree Ty has a cost of 9 only because only
one subtree rooted at a child of the root has a basis of
size more than one; in particular, only the vertical edge
((0,1),(1,1)) carries two units of information, while
every other edge carries one.

The above examples indicate that the optimal trees have di-
verse characteristics, depending on the particular query in-
stance and the performance criterion being considered, even
for the special case when the set of active sensors includes
all the nodes.

To close this section, we note that it is not necessary to
restrict our attention to trees; indeed, when queries are not
disjoint the generalization to DAGs can be beneficial. It is
not difficult to generalize the example of Ty above so that a
DAG in which the shared sensor value is sent to two neigh-
bors yields a lower cost solution than any tree. Aggregation
DAGs are the subject of future research.

5. WAVE SCHEDULING

We now present wave scheduling, a class of simple activa-
tion schedules and associated routing protocols that achieve
scalability and energy-efficiency with modest delay penal-
ties.

As discussed in Section 2, we assume that the nodes of
the sensor network are organized in a grid with only nearest-
neighbor communication allowed. Our goal is to compute a
periodic edge activation schedule and an associated routing
scheme for nodes arranged in such a grid, where the number
of destinations (sites at which queries are posed) is modest.
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Tree Scheduling. Consider first a network with only a
single view server. The edges of an optimal activation sched-
ule form a spanning tree. A natural schedule for such a tree
simply activates edges in reverse order of their distance (in
the tree) from the view server, enabling a message to prop-
agate from any leaf of the tree to the view node in a single
scheduling period. Routing in a tree is trivial: each non-
view node forwards every message it receives to its parent.
We note that this use of a tree to route messages from sensor
nodes to a specific server is not new. For example, it is a
key component of the TAG method for handling aggregate
queries [30].

The above discussion ignores the effect of interference be-
tween edges, which could arise in the “bottom-up” schedule
owing to the simultaneous activation of edges that are within
collision range of one another. In fact, the immediate chil-
dren of a tree node, which are always activated together, are
certain to be within collision range. Thus, even when there
is only a single view, this approach demands an effective
MAC protocol.

We next consider the more realistic case of a network with
multiple view servers. To generalize tree scheduling to han-
dle this case, we construct a forest containing one spanning
tree rooted at each of the view servers. An edge activa-
tion schedule for the entire forest can then be derived from
schedules for the individual trees in several ways. At one ex-
treme is a conservative schedule, which is simply a concate-
nation of schedules for the individual trees, activating edges
of each spanning tree in succession. At the other extreme,
an aggressive schedule activates all the trees in parallel. Nei-
ther scheme scales well. With a conservative schedule, mes-
sage latency grows linearly with the number of views. With
an aggressive schedule, energy consumption grows linearly.
In addition, an aggressive schedule tends to generate many
more collisions, further increasing energy consumption (due
to message retransmissions) and reducing network capacity.

Wave Scheduling. With the above motivation, we can
now describe our wave scheduling technique, by which we
avoid the scaling problems inherent in tree scheduling. Re-
call that tree scheduling handles multiple destination view
nodes by computing a separate activation schedule for each
view and then combining the schedules. Scaling problems
arise because there is no obvious way to combine sched-
ules without increasing either the period or the collision fre-
quency.

To avoid these problems, we can compute a single “general-
purpose” schedule, in which every edge of the network is
activated exactly once per period, and which is guaranteed
to have no collisions. Since every edge is activated infinitely
often, it is always possible to route a message between any
connected pair of nodes using such a schedule.

Unfortunately, even though a path can be followed in prin-
ciple, its latency may be unacceptably high if the path and
activation schedule do not “fit” together well. For example,
suppose a path enters node n along edge e; and leaves it
along e>. Each message arriving along e; must be queued
at n until the next time es is scheduled. If e is activated
just before ey in the schedule, the message must wait nearly
a full period in n’s queue before it can be forwarded (during
the next iteration of the schedule). In the worst case, this
phenomenon occurs at every node along the path. The re-
sulting message latency (the product of the path length and
scheduling period) is unacceptable for most applications.
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Figure 3: An illustration of the SimpleWave sched-
ule in a 10 x 10 grid. The first two rows depict
the edge activations in the first phase (north). The
last row depicts the edge activations at the start of
the next phase (east). The remaining phases that
complete the schedule can be similarly drawn. In
each picture, the darkly shaded node is a sender,
while a lightly shaded node is a receiver. The min-
imum distance of seven nodes between two senders
simultaneously transmitting is computed to ensure
non-interfering transmissions.

Thus, we seek an activation schedule and associated rout-
ing algorithm that yield a “reasonably” low-latency path
from any source node to any view server. Wave Scheduling
is our proposed solution.

Periodic Activation Schedules. In a wave schedule,
horizontal and vertical communication edges are activated
in a periodic sequence of phases. Each phase has a direc-
tion — north, east, south or west — along which a “wave” of
messages traverses the grid for some number of steps. For
example, in a north-going phase there is a pattern of non-
interfering north-going edges, containing at least one edge in
each column (assuming the sensor network contains a large
number of cells). The edges are activated simultaneously,
then the entire pattern shifts north by one cell, wrapping
around between the north and south edges of the grid as
necessary to maintain the integrity of the pattern. This
process is repeated one or more times for the duration of
the phase. The east, south and west waves are scheduled
analogously.

The preceding framework admits a number of different ac-
tivation schedules. One of these, which we call Simple Wave,
is illustrated in Figure 3. For each activation schedule, we
can devise routing protocols that are biased towards mini-
mizing energy, latency, or some combination.

6. RELATED WORK

Query Processing in Sensor Networks. Several re-
search groups have focused on in-network query processing
as a means of reducing energy consumption. The TinyDB
Project at Berkeley investigates query processing techniques
for sensor networks including an implementation of the sys-
tem on the Berkeley motes and aggregation queries [29, 30,
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31, 27, 19].  An acquisitional approach to query process-
ing is proposed in [28], in which the frequency and timing
of data sampling is discussed. The sensor network project
at USC/ISI group [20, 17, 16] proposes an energy-efficient
aggregation tree using data-centric reinforcement strategies
(directed diffusion). A two-tier approach (T'TDD) for data
dissemination to multiple mobile sinks is discussed in [43].
In a recent study [12], an approximation algorithm has been
designed for finding an aggregation tree that simultaneously
applies to a large class of aggregation functions.

There has been a great deal of work on query processing
in distributed database systems — a recent survey appears
in [23]. However, there are major differences between sen-
sor networks and traditional distributed database systems.
Most relevant to sensor networks is existing work on dis-
tributed aggregation [38, 42], but these approaches do not
consider the physical limitations of sensor networks. Mad-
den et al. [30] give an extended classification of aggregate
operators with properties relevant to sensor network aggre-
gation.

View Management in Sensor Networks. Our high-
level framework for distributed storage builds on the data-
centric storage model proposed in [36, 37] and extended
in [11]. Long-term storage in sensor networks is combined
with multi-resolution data access and spatiotemporal data
mining in [8].

There has been a lot of work on view design, maintenance
and exploitation in centralized database systems. Chaud-
huri et al. [6, 2] consider the automated selection of materi-
alized views and indices given a query workload and discuss
their implementation on Microsoft SQL Server. Several vari-
ations of the view selection problem have been extensively
studied in the context of data warehouses: although the gen-
eral goal is to select views that would minimize the query
response time, the constraints under consideration is either
the materialization time, the storage space or both [14, 3,
15, 22]. Kotidis et al. propose a dynamic view management
system for data warehouses (DynaMat [24]), which unifies
the view selection and the view maintenance problems un-
der a single framework. Algorithms for query rewriting and
making efficient use of existing materialized views to speed
up query processing are discussed in [25, 35, 13].

Routing and M AC Layers in Sensor Networks. The
data management layer should not be considered in isolation
from the communication layers. For instance, an oppor-
tunity for cross-layer optimization is to design and adapt
communication protocols to the particular communication
needs of the data management layer. A number of protocols
for ad-hoc networks have been proposed in the literature
[32, 21, 4, 33]. Recent work on energy-aware routing pro-
poses the selection of routes on the basis of available energy
in order to increase network lifetime [5, 46, 34]. Heinzel-
man et al. present the SPIN family of network protocols for
communication of large messages in sensor networks [18].
The PAMAS MAC-level protocol turns radios off when they
are not transmitting or receiving packets [39]. TDMA pro-
tocols reduce the duty cycle thus trading idle-time energy
consumption for latency [34]. Our wave scheduling approach
achieves significantly greater energy savings by coordinating
the radio usage across the sensor network.

An energy-efficient MAC protocol called S-MAC has been
proposed in [44, 45], where the nodes are locally synchro-
nized to follow a periodic listen and sleep scheme. GAF (Ge-
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ographical Adaptive Fidelity) [41, 40] is an algorithm that
also conserves energy by identifying nodes that are equiva-
lent from a routing perspective and then turning off unnec-
essary nodes. Our wave scheduling protocol is orthogonal
and synergistic to GAF.

7. CONCLUSION AND FUTURE WORK

We introduced the problems of view selection, aggrega-
tion tree selection, and node scheduling in a sensor network,
and presented a high-level description of our approach to
solving them. In future work, we plan to investigate the in-
teraction between these three problems. We are interested
in exploring efficient wave schedules given specific message
generation patterns, view locations, and aggregation trees.
Another interesting direction is to study fault-tolerance in
the context of materialized views and scheduled data prop-
agation.
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