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Expressive Power of Logics

We are interested in the expressive power of logics on finite structures.

We consider finite structures in a relational vocabulary.

A finite set A, with relationsR1, . . . , Rm and constants c1, . . . , cn.

A property of finite structures is any isomorphism-closed class of structures.

For a logic (i.e., a description or query language) L, we ask for which properties
P , there is a sentence ϕ of the language such that

A ∈ P if, and only if, A |= ϕ.

In our examples, we will confine ourselves to vocabularies with just one binary relation E.
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First-Order Logic

terms – c, x

atomic formulae – R(t1, . . . , ta), t1 = t2

boolean operations – ϕ ∧ ψ, ϕ ∨ ψ, ¬ϕ

first-order quantifiers – ∃xϕ, ∀xϕ

Graphs which contain a triangle:
∃x∃y∃z(x 6= y ∧ y 6= z ∧ x 6= y ∧E(x, y) ∧E(y, z) ∧E(x, z))

Unions of cycles: ∀x(∃!yE(x, y) ∧ ∃!zE(z, y))

Can we define the class of connected graphs? No, but how do we prove
it?
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Quantifier Rank

The quantifier rank of a formula ϕ, written qr(ϕ) is defined inductively as follows:

1. if ϕ is atomic then qr(ϕ) = 0,

2. if ϕ = ¬ψ then qr(ϕ) = qr(ψ),

3. if ϕ = ψ1 ∨ ψ2 or ϕ = ψ1 ∧ ψ2 then
qr(ϕ) = max(qr(ψ1), qr(ψ2)).

4. if ϕ = ∃xψ or ϕ = ∀xψ then qr(ϕ) = qr(ψ) + 1

In a finite relational vocabulary, it is easily proved that in a finite vocabulary, for
each q, there are (up to logical equivalence) only finitely many sentences ϕ with
qr(ϕ) ≤ q.
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Finitary Elementary Equivalence

For two structures A and B, we say A ≡p B if for any sentence ϕ with
qr(ϕ) ≤ p,

A |= ϕ if, and only if, B |= ϕ.

Key fact:

a class of structures S is definable by a first order sentence if, and only if,
S is closed under the relation ≡p for some p.

In a finite relational vocabulary, for any structure A there is a sentence θp
A

such
that

B |= θ
p
A

if, and only if, A ≡p B

Anuj Dawar March 2009



6

Ehrenfeucht-Fraı̈ssé Game

The p-round Ehrenfeucht game on structures A and B proceeds as follows:

• There are two players called Spoiler and Duplicator.

• At the ith round, Spoiler chooses one of the structures (say B) and one of the
elements of that structure (say bi).

• Duplicator must respond with an element of the other structure (say ai).

• If, after p rounds, the map ai 7→ bi is a partial isomorphism, then Duplicator
has won the game, otherwise Spoiler has won.

Theorem (Fraı̈ssé 1954; Ehrenfeucht 1961)
Duplicator has a strategy for winning the p-round Ehrenfeucht game on A and B

if, and only if, A ≡p B.
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Proof by Example

Suppose A 6≡3 B, in particular, suppose θ(x, y, z) is quantifier free, such that:

A |= ∃x∀y∃zθ and B |= ∀x∃y∀z¬θ

round 1: Spoiler chooses a1 ∈ A such that A |= ∀y∃zθ[a1].
Duplicator responds with b1 ∈ B.

round 2: Spoiler chooses b2 ∈ B such that B |= ∀z¬θ[b1, b2].
Duplicator responds with a2 ∈ A.

round 3: Spoiler chooses a3 ∈ A such that A |= θ[a1, a2, a3].
Duplicator responds with b3 ∈ B.

Spoiler wins, since B 6|= θ[b1, b2, b3].
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Using Games

To show that a class of structures S is not definable in FO, we find, for every p, a
pair of structures Ap and Bp such that

• Ap ∈ S, Bp ∈ S; and

• Duplicator wins a p round game on Ap and Bp.

Example:
Cn—a cycle of length n.

Duplicator wins the p round game on C2p ⊕ C2p and C2p+1.

• 2-Colourability is not definable in FO.

• Even cardinality is not definable in FO.

• Connectivity is not definable in FO.
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Using Games

An illustration of the game for undefinability of connectivity and 2-colourability.

Duplicator’s strategy is to ensure that after r moves, the distance between
corresponding pairs of pebbles is either equal or ≥ 2p−r .
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Inductive Definitions

Let ϕ(R, x1, . . . , xk) be a first-order formula in the vocabulary σ ∪ {R}

Associate an operator Φ on a given structure A:

Φ(RA) = {a | (A, RA, a) |= ϕ(R,x)}

We define the increasing sequence of relations on A:

Φ0 = ∅

Φm+1 = Φm ∪ Φ(Φm)

The inflationary fixed point of Φ is the limit of this sequence.

On a structure with n elements, the limit is reached after at most nk stages.
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IFP

The logic IFP is formed by closing first-order logic under the rule:

If ϕ is a formula of vocabulary σ ∪ {R} then [ifpR,xϕ](t) is a formula of
vocabulary σ.

The formula is read as:

the tuple t is in the inflationary fixed point of the operator defined by ϕ

LFP is the similar logic obtained using least fixed points of monotone operators
defined by positive formulas.

LFP and IFP have the same expressive power (Gurevich-Shelah; Kreutzer).
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Transitive Closure

The formula

[ifpT,xy(x = y ∨ ∃z(E(x, z) ∧ T (z, y)))](u, v)

defines the reflexive and transitive closure of the relation E

The expressive power of IFP properly extends that of first-order logic.

On structures which come equipped with a linear order IFP expresses exactly the
properties that are in P.

(Immerman; Vardi)

Open Question: Is there a logic that expresses exactly the properties for
unordered structures?
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Finite Variable Logic

We write Lk for the first order formulas using only the variables x1, . . . , xk.

A ≡k
B

denotes that A and B agree on all sentences of Lk .

For any k, A ≡k
B ⇒ A ≡k B

However, for any q, there are A and B such that

A ≡q B and A 6≡2
B.
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Axiomatisability

Any class of finite structures closed under isomorphisms is axiomatised by a
first-order theory.

A class of finite structures is closed under ≡q (for some q) if, and only if, it is
finitely axiomatised, i.e. defined by a single FO sentence.

A class of finite structures is closed under ≡k if, and only if, it is axiomatisable in
Lk (possibly by an infinite collection of sentences).

Every sentence of IFP is equivalent, on finite structures, to an Lk theory, for
some k.

ϕ(R, x1, . . . , xl) ∈ Lk

Each stage of the induction ϕm can be written as a formula in Lk+l.
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Pebble Games

The k-pebble game is played on two structures A and B, by two players—Spoiler
and Duplicator—using k pairs of pebbles {(a1, b1), . . . , (ak, bk)}.

Spoiler moves by picking a pebble and placing it on an element (ai on an
element of A or bi on an element of B).

Duplicator responds by picking the matching pebble and placing it on an
element of the other structure

Spoiler wins at any stage if the partial map from A to B defined by the
pebble pairs is not a partial isomorphism

If Duplicator has a winning strategy for q moves, then A and B agree on
all sentences of Lk of quantifier rank at most q. (Barwise)
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Using Pebble Games

To show that a class of structures S is not definable in first-order logic:

∀k ∀q ∃A,B (A ∈ S ∧ B 6∈ S ∧ A ≡k
q B)

To show that S is not axiomatisable with a finite number of variables:

∀k ∃A,B ∀q (A ∈ S ∧ B 6∈ S ∧ A ≡k
q B)
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Evenness

To show that Evenness is not definable in IFP, it suffices to show that:

for every k, there are structures Ak and Bk such that Ak has an even
number of elements, Bk has an odd number of elements and

A ≡k
B.

It is easily seen that Duplicator has a strategy to play forever when one structure
is a set containing k elements (and no other relations) and the other structure has
k + 1 elements.
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Hamiltonicity

Take Kk,k—the complete bipartite graph on two sets of k vertices.

and Kk,k+1—the complete bipartite graph on two sets, one of k vertices, the
other of k + 1.

These two graphs are ≡k equivalent, yet one has a Hamiltonian cycle, and the
other does not.
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Fixed-point Logic with Counting

Immerman proposed IFP + C—the extension of IFP with a mechanism for
counting

Two sorts of variables:

• x1, x2, . . . range over |A|—the domain of the structure;

• ν1, ν2, . . . which range over numbers in the range 0, . . . , |A|

If ϕ(x) is a formula with free variable x, then ν = #xϕ denotes that ν is the
number of elements of A that satisfy the formula ϕ.

We also have the order ν1 < ν2, which allows us (using recursion) to define
arithmetic operations.
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Counting Quantifiers

Ck is the logic obtained from first-order logic by allowing:

• allowing counting quantifiers: ∃ixϕ; and

• only the variables x1, . . . .xk .

Every formula of Ck is equivalent to a formula of first-order logic, albeit one with
more variables.

For every sentence ϕ of IFP + C, there is a k such that if A ≡Ck

B, then

A |= ϕ if, and only if, B |= ϕ.
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Counting Game

Immerman and Lander (1990) defined a pebble game for Ck .

This is again played by Spoiler and Duplicator using k pairs of pebbles
{(a1, b1), . . . , (ak, bk)}.

At each move, Spoiler picks a subset of the universe (sayX ⊆ B)

Duplicator responds with a subset of the other structure (say Y ⊆ A) of
the same size.

Spoiler then places a bi pebble on an element of Y and Duplicator must
place ai on an element of X .

Spoiler wins at any stage if the partial map from A to B defined by the
pebble pairs is not a partial isomorphism

If Duplicator has a winning strategy for q moves, then A and B agree on
all sentences of Ck of quantifier rank at most q.
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Cai-Fürer-Immerman Graphs

There are polynomial-time decidable properties of graphs that are not definable in
IFP + C. (Cai, Fürer, Immerman, 1992)

More precisely, we can construct a sequence of pairs of graphsGk, Hk(k ∈ ω)

such that:

• Gk ≡Ck

Hk for all k.

• There is a polynomial time decidable class of graphs that includes all Gk and
excludes all Hk .

Still, IFP + C is a natural level of expressiveness within P.
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Constructing Gk and Hk

Given any graphG, we can define a graphXG by replacing every edge with a
pair of edges, and every vertex with a gadget.

The picture shows the gadget for a ver-
tex v that is adjacent in G to vertices
w1, w2 and w3.
The vertex vS is adjacent to avwi

(i ∈

S) and bvwi
(i 6∈ S) and there is one

vertex for all even size S.
The graph X̃G is like XG except that
at one vertex v, we include V S for odd
size S.

PSfrag replacements

avw1
bvw1

avw2

bvw2
avw3

bvw3

v∅ v{1,2} v{1,3}v{2,3}
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Properties

If G is connected and has treewidth at least k, then:

1. XG 6∼= X̃G; and

2. XG ≡Ck

X̃G.

(1) allows us to construct a polynomial time property separatingXG and X̃G.

(2) is proved by a game argument.

The original proof of (Cai, Fürer, Immerman) relied on the existence of
balanced separators in G. The characterisation in terms of treewidth is
from (D., Richerby 07).
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Bijection Games

≡Ck

is characterised by a k-pebble bijection game. (Hella 96).

The game is played on structures A and B with pebbles a1, . . . , ak on A and
b1, . . . , bk on B.

• Spoiler chooses a pair of pebbles ai and bi;

• Duplicator chooses a bijection h : A→ B such that for pebbles aj and
bj(j 6= i), h(aj) = bj ;

• Spoiler chooses a ∈ A and places ai on a and bi on h(a).

Duplicator loses if the partial map ai 7→ bi is not a partial isomorphism.
Duplicator has a strategy to play forever if, and only if, A ≡Ck

B.
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TreeWidth

The treewidth of a graph is a measure of its interconnectedness.

A graph has treewidth k if it can be covered by subgraphs of at most k + 1 nodes
in a tree-like fashion.
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TreeWidth

Formal Definition:

For a graphG = (V,E), a tree decomposition of G is a relation D ⊂ V × T

with a tree T such that:

• for each v ∈ V , the set {t | (v, t) ∈ D} forms a connected subtree of T ;
and

• for each edge (u, v) ∈ E, there is a t ∈ T such that (u, t), (v, t) ∈ D.

The treewidth of G is the least k such that there is a tree T and a
tree-decompositionD ⊂ V × T such that for each t ∈ T ,

|{v ∈ V | (v, t) ∈ D}| ≤ k + 1.
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Cops and Robbers

A game played on an undirected graphG = (V,E) between a player
controlling k cops and another player in charge of a robber.

At any point, the cops are sitting on a set X ⊆ V of the nodes and the robber on
a node r ∈ V .

A move consists in the cop player removing some cops from X ′ ⊆ X nodes and
announcing a new position Y for them. The robber responds by moving along a
path from r to some node s such that the path does not go throughX \X ′.

The new position is (X \X ′) ∪ Y and s. If a cop and the robber are on the
same node, the robber is caught and the game ends.
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Strategies and Decompositions

Theorem (Seymour and Thomas 93):
There is a winning strategy for the cop player with k cops on a graphG if, and
only if, the tree-width of G is at most k − 1.

It is not difficult to construct, from a tree decomposition of width k, a winning
strategy for k + 1 cops.

Somewhat more involved to show that a winning strategy yields a decomposition.
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Cops, Robbers and Bijections

If G has treewidth k or more, than the robber has a winning strategy in the
k-cops and robbers game played on G.

We use this to construct a winning strategy for Duplicator in the k-pebble bijection
game on XG and X̃G.

• A bijection h : XG → X̃G is good bar v if it is an isomorphism everywhere
except at the vertices vS .

• If h is good bar v and there is a path from v to u, then there is a bijection h′

that is good bar u such that h and h′ differ only at vertices corresponding to
the path from v to u.

• Duplicator plays bijections that are good bar v, where v is the robber position
in G when the cop position is given by the currently pebbled elements.
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Solvability of Linear Equations

A natural P problem that has been shown to be undefinable in IFP + C is the
problem of solving linear equations over the two element field Z2.

(Atserias, Bulatov, D. 07)

The question arose in the context of classification of Constraint Satisfaction
Problems.

The problem is clearly solvable in polynomial time by means of Gaussian
elimination.

We see how to represent systems of linear equations as unordered
relational structures.
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Systems of Linear Equations

Consider structures over the domain {x1, . . . , xn, e1, . . . , em}, (where
e1, . . . , em are the equations) with relations:

• unary E0 for those equations e whose r.h.s. is 0.

• unary E1 for those equations e whose r.h.s. is 1.

• binary M with M(x, e) if x occurs on the l.h.s. of e.

Solv(Z2) is the class of structures representing solvable systems.
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Undefinability in IFP + C

Take G a 3-regular, connected graph with treewidth > k.

Define equations EG with two variables xe
0, x

e
1 for each edge e.

For each vertex v with edges e1, e2, e3 incident on it, we have eight equations:

Ev : xe1

i + xe2

j + xe3

k ≡ i+ j + k (mod 2)

ẼG is obtained from EG by replacing, for exactly one vertex v, Ev by:

E′
v : xe1

i + xe2

j + xe3

k ≡ i+ j + k + 1 (mod 2)

We can show: EG is satisfiable; ẼG is unsatisfiable; EG ≡Ck

ẼG
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Computational Problems from Linear Algebra

Linear Algebra is a testing ground for exploring the boundary of the expressive
power of IFP + C.

It may also be a possible source of new operators to extend the logic.

For a set I , and binary relation A ⊆ I × I , take the matrix M over the two
element field Z2:

Mij = 1 ⇔ (i, j) ∈ A.

Most interesting properties of M are invariant under permutations of I .
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Representing Finite Fields

We can represent matrices M over a finite field Fq by taking, for each a ∈ Fq a
binary relation Aa ⊆ I × I with

Mij = a ⇔ (i, j) ∈ Aa.

Alternatively, we could have the elements of Fq (along with the field operations)
as a separate sort and include a ternary relation R

Mij = a ⇔ (i, j, a) ∈ R.

These two representations are inter-definable.
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IFP + C over Finite Fields

Over Fq , matrix multiplication; non-singularity of matrices; the inverse of a matrix;
are all definable in IFP + C.

determinants and more generally, the coefficients of the characteristic polynomial
can be expressed IFP + C.

(D., Grohe, Holm, Laubner, 2009)

solvability of systems of equations is undefinable.
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Rank Operators

We introduce an operator for matrix rank into the logic.

rkx,yϕ is a term denoting the number that is the rank of the matrix
defined by ϕ(x, y).

More generally, we could have, for each finite field Fq , an operator rkq .
(D., Grohe, Holm, Laubner, 2009)

Adding rank operators to IFP, we obtain a proper extension of IFP + C.

#xϕ = rkx,y[x = y ∧ ϕ(x)]

In IFP + rank we can express the solvability of linear systems of equations, as
well as the Cai-Fürer-Immerman graphs and the order on multipedes.
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Games for Logics with Rank

What might a pebble game for IFP + rank look like?

We could, as in the Immerman-Lander game, let Spoiler pick a relation and have
Duplicator respond with one of equal rank.

This works if we restrict the players to playing definable relations. A rather
unsatisfactory solution.

Is there a game to be obtained by modifying the Hella game, replacing bijections
with invertible linear maps?
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Open Questions

With a suitable notion of game, we could try and tackle problems like:

• Are there any problems in P that are not definable in IFP + rank?

• Show for any concrete problem (say an NP-complete one) that it is not
definable in IFP + rank.

• Are rkp and rkq interdefinable for p 6= q?

• etc.
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