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Game Semantics

• Quite successful in modelling logics and 
programming languages

• full abstraction/full completeness

• lots of different models, with similar 
underlying ideas

• perhaps it’s worth revisiting the 
foundations...



Combinatoric 
Foundations

• Harmer, Hyland and Mellies (LICS 2007) 
give a new, combinatoric/algebraic 
development of the key ideas.

• Central result: an algebraic explanation of 
why innocent strategies compose.

Categorical Combinatorics for Innocent Strategies, LICS 2007



A geometric 
foundation?

• We present baby steps in giving a 
foundation based on geometry.

• Why?

• In practice, “we” draw pictures when 
working with games.

• Geometry makes certain things obvious.



Distinguished history

• Compare with the development of 
monoidal categories, braided, tortile and 
traced monoidal categories

• In that work, geometry took over as the 
foundation:

• definitions were given geometrically;

• combinatoric/algebraic analogues took a 
back seat.



Game semantics basics

• A game describes a tree of valid plays — 
certain sequences.

• A strategy is a subtree:

• its root is the root of the game

• it has at most one branch at odd-depth 
nodes



Maps in game semantics

• A map A     B is a strategy on A      B, 
whose plays are given by 

• a play of A

• a play of B

• an interleaving between them. 
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Schedules

• A play of           is given by a pair of plays of 
A and B and a schedule.

• Schedule: a sequence s∈{L,R}* such that

• s0 = R

• s2i = s2i-1 for all i≥1.

A     B



Composing schedules

• s : m     n means s is a schedule with m L’s 
and n R’s. 

• Given s: m     n and t: n     p we can 
compose to get s;t: m     p as follows. 

• Relabel the R’s in s and the L’s in t as M 
(“middle”)

• ∃!u∈{L,M,R}* such that u|L,M = s, u|M, R = t.

• Define s;t to be u|L,R. 
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The Zipping Lemma

• The existence and uniqueness of this u is 
tedious to prove.  

• It’s a dull induction on length.

• But once you see what’s going on, it’s 
something that ought to be obvious. 

• Note that we need this lemma just to have 
a complete definition of composition.



Identities

• Identities are copycat schedules

• R L L R R L L R R L L R R L ...



Associativity



Associativity
• Composition of schedules is associative:

s; (t; u) = (s; t); u.
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• ... which is “obvious” but takes some 
proving
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Associativity
• Composition of schedules is associative:

s; (t; u) = (s; t); u.

• To prove it:

• prove a three-way zipping lemma

• prove that the three-way zip corresponds 
to the two associations you need...

• ... which is “obvious” but takes some 
proving

• Or just cite my thesis...

...which also does not contain the proof. 



Category of games

• Objects: games

• Maps: (certain) sets of tuples

(pA, pB, s)

where: 

• pA is a play of A, pB is a play of B, and 

s: |pA|      |pB| is a schedule



Composition of maps

Let σ: A      B, τ: B     C. Define

σ ; τ = {(pA, pC, u) | ∃ pB, s, t. 

                                   (pA, pB, s)∈ σ,

                (pB, pc, t)∈ τ,

                 u = s; t }

So the category of games is category of 
“scheduled relations”. 



Aside

• For deterministic strategies, the schedules 
are redundant: they can be recovered from 
the sets of plays.

• So the category of games is a subcategory 
of Rel.

• But we need schedules to describe the 
closed structure.



Schedules 
Geometrically

• A schedule is a path in the plane: here’s a 
schedule from 3 to 5.



More precisely...
• Work in an oriented plane: we can tell up 

from down and left from right.

• Each natural number comes with an 
embedding Ln of {0, 1, ..., n-1} in the real 
line .

• A schedule s: m     n consists of

• embeddings of Lm and Ln in the plane, 
vertically, with m to the left of n

• a path through the vertices of these 
lines, lying entirely in the strip between 
them. 



Switching condition

• We also insist that schedules satisfy the 
switching condition: 

• the path can only cross from Lm to Ln (or 
the other way) after visiting an odd 
number of vertices in total.



Isotopy

• We identify these paths up to what they look 
like. 

• That is, really we’re working with the 
underlying graphs, which might as well be 
sequences RLLLLRR...

• The extra geometric data lets us reason 
pictorially. 



Composition

• Given s: m     n and t: u     p, compose as 
follows:

• draw them next to each other

• follow the path from the top-right 
vertex, which is p1. 

• when you reach Ln, you face a choice...

• always cut Ln when you reach it. 
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Composition
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Associativity

• Define the obvious 3-schedule (or arbitrary 
n-schedule) version of composition. 

• Only need show that the subpath on any 
three consecutive lines is a composition as 
above.

• Suffices to show that choices are resolved 
the same way.

• So it’s enough to show that vertices are 
always entered from the same side. 



Right, left, right, left
• Every topmost vertex is entered from the 

right

because the path starts at top right, and cannot 
cross a line without passing the top vertex.

• The next level vertices are entered from 
the left

because the path entered the part of the plan to 
their left at the previous level, and cannot cross the 
line elsewhere.

• And so on. 

• Done!



Stating the obvious

• This proof makes use of “obvious 
geometric facts” — the intermediate value 
theorem, for instance. 

• Cultural shift: when working geometrically, 
this sort of reasoning is acceptably precise; 
not so combinatorically. 



Conclusions?

• None really.

• The geometric setup makes things formally 
obvious. 

• It’s closer to intuition and to practice than 
combinatoric formalisms. 



Where to?

• Can we give useful geometric accounts of 
views, visibility, innocence?

• Can we use geometry to make other 
generalizations “thinkable”? 

• e.g. plays or views which are DAGs?


