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Motivation

Avoid the use of interleaving models of concurrency.

But why?

1. Model-checking I: suffer from state explosion problem.

2. Model-checking II: use of partial order reduction methods.

3. Model-checking III: verification beyond temporal properties.

4. Equivalence-checking: verification of infinite state systems.

5. Synthesis: produce “global” components (automata).

6. Analysis: local reasoning on parallel components.

7. Game semantics: perhaps not the right models for logics with
an explicit notion of concurrency or independence.



Interleaving and Partial Order Models of Concurrency
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Partial Order Models of Concurrency: Features

Behaviour:

1. Concurrency: parallel computations.

2. Causality: sequential computation.

3. Conflict: deterministic and nondeterministic choices.

Structure:

1. A set of states S .

2. A set of events or transitions T .

3. An independence relation I on elements of T .

4. An alphabet of labels Σ (only for labelled models).



Local Dualities in Partial Order Models of Concurrency
A new approach to observing concurrent behaviour introduced in
[Gut09] - FoSSaCS’09.
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1. First duality: concurrency vs. causality.
ti I ej ⇔ ti � ej concurrent, but linearized.

¬(ti I ej ) ⇔ ti ≤ ej causally dependent.

2. Second duality: concurrency vs. conflict.
ej I ek ⇔ ej ⊗ ek immediately concurrent (same trace).

¬(ej I ek) ⇔ ej#ek in conflict (different traces).



Traces and Sets of Transitions

Support sets:

� Maximal Set: Pmax(s) = {t ∈ T | src(t) = s} (all traces).

� Conflict-free set: E ⊆ Pmax(s) s.t.
∀t1, t2 ∈ E . t1 �= t2 ⇒ t1 ⊗ t2 (one single trace).

Notation:

E � R
def
= E ⊆ R , s.t. E is a conflict-free set, i.e., a trace.

P1 � P2
def
= P1 ∪ P2, s.t. P1 ∩ P2 = ∅ ∧ P1 �= ∅ ∧ P2 �= ∅



Separation Fixpoint Logic (SFL)

SFL is an extension of the Modal Mu-Calculus that can express
properties of partial order models of concurrency.

Syntax: SFL has formulae φ built from a set Var of variables
Y,Z, ... and a set L of labels a, b, ... by the following grammar:

φ ::= Z Variables
| ¬φ1 | φ1 ∧ φ2 Boolean operators
| 〈K 〉cφ1 | 〈K 〉ncφ1 Modal operators (Duality conc. vs. caus.)
| φ1 ∗ φ2 Structural operator (Duality conc. vs. conf.)
| µZ .φ1 Fixpoint operator



SFL: Derived Operators and Notation

1. Derived Operators:

� φ1 ∨ φ2
def
= ¬(¬φ1 ∧ ¬φ2)

� φ1 � φ2
def
= ¬(¬φ1 ∗ ¬φ2)

� [K ]c φ1
def
= ¬〈K 〉c¬φ1

� [K ]nc φ1
def
= ¬〈K 〉nc¬φ1

� νZ .φ1
def
= ¬µZ .¬φ1 [¬Z/Z ]

2. Abbreviations:
� ff def

= µZ .Z

� tt def
= νZ .Z

� [−]φ
def
= [L]φ

3. Formulae in Positive Normal Form.



A Concrete Model

A TSI-based SFL model M is a TSI T = (S ,T ,Σ, I ) together with
a valuation V : Var → 2S, where:

� S = S × P × A is the set of tuples (s,P , ta) s.t.:

� s ∈ S is a state of the TSI,

� P ∈ P is a support set at s,

� ta ∈ A = T ∪ {tε} is a transition, and

� a is an action label in Σ ∪ {ε}.
Remarks:

� A tuple (s,P , ta) of a model M is called a process.

� The initial process of the system is the tuple
H = (s0,Pmax , tε).



SFL Sublogics

Logic Synt. rest. � vs. ≤ ⊗ vs. #

Lµ plain modalities only/∗-free NO NO

CLµ ∗-free YES NO

SLµ plain modalities only NO YES

SFL none YES YES

Encoding plain modalities:

〈K 〉φ = 〈K 〉cφ ∨ 〈K 〉ncφ
[K ]φ = [K ]c φ ∧ [K ]nc φ



Trace MSO Model Checking Games

Main idea behind the game: a player can see independence and
therefore can play traces, i.e., sets of independent transitions. This
is reflected in the rules and winning conditions of the game.

1. Players: Adam (Falsifier) and Eve (Verifier).

2. Board: A set of configurations in B = S × Sub(φ).

3. Rules: next slide...

4. Winning conditions: In finite plays a player wins if the other
cannot make a move. In infinite plays the winner depends on
the fixpoints.

A play is NOT alternating. The player to make a move is defined
by Sub(φ).



Trace MSO Model Checking Games: Rules

FIXPOINT OPERATORS

(FP)
H � σZ.φ

H � Z
σ ∈ {µ, ν} (VAR)

H � Z
H � φ

fp(Z) = σZ.φ

BOOLEAN OPERATORS

(∨)
H � φ0 ∨ φ1

H � φi
∃i : i ∈ {0, 1} (∧)

H � φ0 ∧ φ1
H � φi

∀i : i ∈ {0, 1}

MODAL OPERATORS

(〈 〉c )
(s, R, ta) � 〈K〉c φ

(s′, R′
max , tb) � φ

∃b : b ∈ K , s
b−→ s′ = tb ∈ R, ta ≤ tb

(〈 〉nc )
(s, R, ta) � 〈K〉ncφ

(s′, R′
max , tb) � φ

∃b : b ∈ K , s
b−→ s′ = tb ∈ R, ta � tb

([ ]c )
(s, R, ta) � [K ]c φ

(s′, R′
max , tb) � φ

∀b : b ∈ K , s
b−→ s′ = tb ∈ R, ta ≤ tb

([ ]nc )
(s, R, ta) � [K ]nc φ

(s′, R′
max , tb) � φ

∀b : b ∈ K , s
b−→ s′ = tb ∈ R, ta � tb

STRUCTURAL OPERATORS

(∗)
(s, R, t) � φ0 ∗ φ1

(s, Ri , t) � φi
∃f , ∀i : f ∈ P{0,1}, Ri 
 R1−i � R, i ∈ {0, 1}

(�)
(s, R, t) � φ0 � φ1

(s, Ri , t) � φi
∀f ,∃i : f ∈ P{0,1}, Ri 
 R1−i � R, i ∈ {0, 1}



Trace MSO Model Checking Games: Properties

� Closed under dual games.

� Eve preserves falsity and can preserve truth with her choices.

� Adam preserves truth and can preserve falsity with his choices.

� In any infinite play there is a unique syntactically outermost
variable that occurs infinitely often.

� In infinite plays rule (VAR) must be applied infinitely often
(important: infinite state systems with finite-branching).

� Winning conditions ensure a unique winner.



Main Results

Theorem: Trace MSO Model-Checking Games are Sound.

Theorem: Trace MSO Model-Checking Games are Complete.

Corollary: Trace MSO Model Checking Games are Determined.



Other Results

1. The winning strategies in the Trace MSO model-checking
game of Separation Fixpoint Logic (SFL) are history-free.

2. In interleaving models of concurrency, the Trace MSO
Model-checking games for SFL coincide with Stirling’s Local
Model-checking games for the Modal Mu-Calculus.



A Hintikka Game Semantics for SFL

H |=T
V φ iff Eve has a history-free winning strategy

in the Trace MSO model-checking game GM(H, φ)

1. This game model does not make use of the one-step
interleaving semantics of the partial order model being
considered.

2. Since Trace MSO Model-Checking Games are determined, this
Game Theoretic Semantics (à la Hintikka) is, as well as the
denotational one (à la Tarski), compositional.



Beyond Temporal Properties: Multi-Agent Systems

Agents:

� Γ is a finite set of agents, and

� A : T → Γ is a mapping from transitions to agents.

Consistency of global actions:

� if t1 ∼ t2 then A(t1) = A(t2).

A distributed system:

� if A(t1) �= A(t2) then lbl(t1) �= lbl(t2).

Consistency of formulae:

� 〈a〉αφ is well-defined iff a = lbl(t) and α = A(t) for some
t ∈ T and α ∈ Γ.

� 〈K 〉αφ =
∨

a∈K 〈a〉αφ.



Multi-Agent Systems - Example

ψ = [−]β 〈−〉αncµZ .φ ∨ 〈−〉αc Z

Formula ψ expresses that there is an agent α (the system) that
can satisfy φ regardless the behaviour of an adversarial agent β
(the environment). Informally, ψ says “whatever you (the
environment) do, I (the system) can get to φ, though I may first
have to do some things that do not depend on what you did.”



Conclusions and Current/Future Work

1. The approach to defining games presented here, i.e., players
allowed to play sets of elements, can help define:

� Sound and complete, and therefore determined, games in
partial order models of concurrency.

� compositional game semantics for logics of concurrency.

2. The games presented here naturally capture the behaviour of
partial order models, since the one-step interleaving semantics
of those systems need not be considered.

3. Trace MSO Model-checking games deal equally well with both
interleaving and partial order models of concurrency.

4. Temporal verification of regular but infinite partial order
models.

5. Synthesis of asynchronous circuits.


