
Copyright © 2011 J. M. Spivey

GeomLab

At Oxford, we think functional programming is so
important that we make it the basis for the very
!rst programming-related course taken by our
undergraduates. To give students a taste of func-
tional programming before they come to us, we've

put together an online activity called
GeomLab that combines functional
programming with graphics. The
basic functions of the GeomLab
language assemble pictures from
pre-de!ned tiles by allowing them to
be placed side-by-side or one above
another. The !rst picture shows the
result of the expression

man $ (woman & tree)

where a stick-!gure man is placed
beside ($) a picture in which a woman appears
above (&) a tree.

Participants are guided through a sequence of
exercises where they begin to describe more
complex pictures using recursion. They create the
second picture from a varying series of rows, each

made up of several copies of the man
picture, describing it with a pair of
nested recursive functions. Before
long, they are investigating how
more striking pictures, like the Escher
image shown below, can be assem-
bled from a handful of basic tiles.

We have used GeomLab successfully
to run whole-class extension activi-
ties for a wide range of ages from
Year 10 up. An hour is enough to get
an idea of what is possible, but the
website provides sufficient material
for an exploration that lasts one or

two days, and others have used the materials as
the basis of a computer club meeting weekly over
the course of a term.

http://www.cs.ox.ac.uk/geomlab

Programming without variables?
Michael Spivey, University of Oxford
mike@cs.ox.ac.uk

If you wanted to get someone started with programming, what
would you show them !rst? Perhaps a one-line program with a
command that prints a greeting; then a program that uses a couple
of variables and assignment statements to do some simple
calculations; and maybe next a program that contains a
loop, so it can perform a sequence of actions that's not
limited by the length of the program. ose are the basics,
aren't they?

Well, not necessarily, for there's a style of program-
ming, and programming languages to support it, where
none of these things are used. In functional programming,
there are no commands, no variables (not ones that change
their value, anyway), no assignments, and no loops. By
losing these features of conventional languages, a func-
tional language gains other things that sometimes have greater
value: a way to treat data without worrying how storage for it is
allocated, and the ability to build programs from kits of parts that
interact in productive but manageable ways.

Let's consider a very simple problem: summing the squares of
the !rst n natural numbers. A functional program to solve this
problem is written,

sum (map square [1. .n])
where square x = x ∗ x.

e program begins with a list [1. .n] containing the !rst n
numbers; applying the function map square to this list
makes a new list in which each number has been replaced
by its square; then the function sum takes this list of
squares and adds them all up. A conventional program for
the same task would have to introduce two assignable
variables, one to range from 0 up to n, and another to keep
a running total of the squares:

k := 0; sum := 0;
while k < n do
 k := k+1; sum := sum + k∗k
end.

is example is very simple, but it still shows that whilst the loop in
the conventional program is all of a piece and cannot be split into
smaller components, the functional program contains several
reusable parts. Only the function square is speci!c to this program,
and the rest is put together from general-purpose components such
as sum, which adds up any list of numbers, and map, which may be
used to apply any function uniformly to all members of a list.

At !rst sight, it seems wasteful to create a list containing the
n numbers, then make another list containing their squares, and
!nally add them up. But the answer from a functional program is
the same whatever order the calculations are carried out, and a
compiler is free to interleave the processes of generating the
numbers, squaring them, and summing the squares, so that the
program actually carries out the same actions in the same
sequence as its conventional equivalent. It’s this opportunity to
view programs as more than an explicit sequence of actions that
makes functional programming such a valuable tool for teaching
students to think about programming, and also provides the
inspiration behind Google’s MapReduce system for carrying out
immense calculations on clouds of computers working in
parallel.

