
Description Logic:
A Formal Foundation for
Languages and Tools

Ian Horrocks
<ian.horrocks@comlab.ox.ac.uk>
Information Systems Group
Oxford University Computing Laboratory

Contents
• Description Logic Basics

– Syntax and semantics

• Description Logics and Ontology Languages
– OWL ontology language

– Ontology -v- Database

• Description Logic Reasoning
– Reasoning services

– Reasoning techniques

• Recent and Future work

DL Basics

What Are Description Logics?

What Are Description Logics?
• Decidable fragments of First Order Logic

Any questions?

Thank you for listening

What Are Description Logics?
• A family of logic based Knowledge Representation formalisms

– Originally descended from semantic networks and KL-ONE

– Describe domain in terms of concepts (aka classes), roles (aka
properties, relationships) and individuals

Cat

Animal
IS-A

has-color Black

Felix

IS-A

Mat

IS-A

sits-on

[Quillian, 1967]

What Are Description Logics?
• Modern DLs (after Baader et al) distinguished by:

– Fully fledged logics with formal semantics
• Decidable fragments of FOL (often contained in C2)

• Closely related to Propositional Modal & Dynamic Logics

• Closely related to Guarded Fragment

– Provision of inference services
• Practical decision procedures (algorithms) for key problems

(satisfiability, subsumption, etc)

• Implemented systems (highly optimised)

and now:

A Word from our Sponsors

Crash Course in (simplified) FOL
• Syntax

– Non-logical symbols (signature)
• Constants: Felix, MyMat

• Predicates(arity): Animal(1), Cat(1), has-color(2), sits-on(2)

– Logical symbols:
• Variables: x, y

• Operators: Æ, Ç, !, ¬, …

• Quantifiers: 9, 8

• Equality: =

– Formulas:
•

•

•

Crash Course in (simplified) FOL
• Semantics

Crash Course in (simplified) FOL
• Semantics

Why should I care about semantics? -- In fact I heard that a little goes a long way!

Crash Course in (simplified) FOL
• Semantics

Why should I care about semantics? -- In fact I heard that a little goes a long way!

Well, from a philosophical POV, we need to specify
the relationship between statements in the logic and

the existential phenomena they describe.

Crash Course in (simplified) FOL
• Semantics

Why should I care about semantics? -- In fact I heard that a little goes a long way!

Well, from a philosophical POV, we need to specify
the relationship between statements in the logic and

the existential phenomena they describe.

That’s OK, but I don’t get paid for philosophy.

Crash Course in (simplified) FOL
• Semantics

Why should I care about semantics? -- In fact I heard that a little goes a long way!

Well, from a philosophical POV, we need to specify
the relationship between statements in the logic and

the existential phenomena they describe.

That’s OK, but I don’t get paid for philosophy.

From a practical POV, we need to define
relationships (like entailment) between logical

statements -- without such a definition we
can’t spec software such as a reasoner.

Crash Course in (simplified) FOL
• Semantics

In FOL we define the semantics in terms of models (a model theory). A model is
supposed to be an analogue of (part of) the world being modeled. FOL uses a

very simple kind of model, in which “objects” in the world (not necessarily physical
objects) are modeled as elements of a set, and relationships between objects are

modeled as sets of tuples.

Crash Course in (simplified) FOL
• Semantics

In FOL we define the semantics in terms of models (a model theory). A model is
supposed to be an analogue of (part of) the world being modeled. FOL uses a

very simple kind of model, in which “objects” in the world (not necessarily physical
objects) are modeled as elements of a set, and relationships between objects are

modeled as sets of tuples.

Note that this is exactly the same kind of
model as used in a database: objects in the
world are modeled as values (elements) and

relationships as tables (sets of tuples).

Crash Course in (simplified) FOL
• Semantics

– Model: a pair with D a non-empty set and ·I an interpretation
•

•

•

– E.g.,

Crash Course in (simplified) FOL
• Semantics

– Evaluation: truth value in a given model M =
•

•

– E.g.,
true
false
true
true
true

Crash Course in (simplified) FOL
• Semantics

– Evaluation: truth value in a given model M =
•

•

E.g.,
true
false
false
true
true

Crash Course in (simplified) FOL
• Semantics

– Given a model M and a formula F, M is a model of F (written M ² F) iff
F evaluates to true in M

– A formula F is satisfiable iff there exists a model M s.t. M ² F

– A formula F entails another formula G (written F ² G) iff every model
of F is also a model of G (i.e., M ² F implies M ² G)

E.g.,

Crash Course in (simplified) FOL
• Semantics

– Given a model M and a formula F, M is a model of F (written M ² F) iff
F evaluates to true in M

– A formula F is satisfiable iff there exists a model M s.t. M ² F

– A formula F entails another formula G (written F ² G) iff every model
of F is also a model of G (i.e., M ² F implies M ² G)

E.g.,

Decidable Fragments
• FOL (satisfiability) well known to be undecidable

– A sound, complete and terminating algorithm is impossible

• Interesting decidable fragments include, e.g.,
– C2: FOL with 2 variables and Counting quantifiers

• Counting quantifiers abbreviate pairwise (in-) equalities, e.g.:
 equivalent to

 equivalent to

– Propositional modal and description logics
– Guarded fragment

Back to our Scheduled
Program

• Signature
– Concept (aka class) names, e.g., Cat, Animal, Doctor

• Equivalent to FOL unary predicates

– Role (aka property) names, e.g., sits-on, hasParent, loves
• Equivalent to FOL binary predicates

– Individual names, e.g., Felix, John, Mary, Boston, Italy
• Equivalent to FOL constants

DL Syntax

• Operators
– Many kinds available, e.g.,

• Standard FOL Boolean operators (u, t, ¬)

• Restricted form of quantifiers (9, 8)

• Counting (¸, ·, =)

• …

DL Syntax

• Concept expressions, e.g.,
– Doctor t Lawyer

– Rich u Happy

– Cat u 9sits-on.Mat

• Equivalent to FOL formulae with one free variable
–

–

–

DL Syntax

• Special concepts
– > (aka top, Thing, most general concept)

– ? (aka bottom, Nothing, inconsistent concept)

used as abbreviations for
– (A t ¬ A) for any concept A

– (A u ¬ A) for any concept A

DL Syntax

• Role expressions, e.g.,
–

– hasParent ± hasBrother

• Equivalent to FOL formulae with two free variables
–

–

DL Syntax

• “Schema” Axioms, e.g.,
– Rich v ¬Poor (concept inclusion)
– Cat u 9sits-on.Mat v Happy (concept inclusion)
– BlackCat ´ Cat u 9hasColour.Black (concept equivalence)
– sits-on v touches (role inclusion)
– Trans(part-of) (transitivity)

• Equivalent to (particular form of) FOL sentence, e.g.,
– 8x.(Rich(x) ! ¬Poor(x))
– 8x.(Cat(x) Æ 9y.(sits-on(x,y) Æ Mat(y)) ! Happy(x))
– 8x.(BlackCat(x) $ (Cat(x) Æ 9y.(hasColour(x,y) Æ Black(y)))
– 8x,y.(sits-on(x,y) ! touches(x,y))
– 8x,y,z.((sits-on(x,y) Æ sits-on(y,z)) ! sits-on(x,z))

DL Syntax

• “Data” Axioms (aka Assertions or Facts), e.g.,
– BlackCat(Felix) (concept assertion)

– Mat(Mat1) (concept assertion)

– Sits-on(Felix,Mat1) (role assertion)

• Directly equivalent to FOL “ground facts”
– Formulae with no variables

DL Syntax

DL Syntax
• A set of axioms is called a TBox, e.g.:

{Doctor v Person,
 Parent ´ Person u 9hasChild.Person,
 HappyParent ´ Parent u 8hasChild.(Doctor t 9hasChild.Doctor)}

• A set of facts is called an ABox, e.g.:

{HappyParent(John),

 hasChild(John,Mary)}

• A Knowledge Base (KB) is just a TBox plus an Abox
– Often written K = hT, Ai

Note
Facts sometimes written
John:HappyParent,
John hasChild Mary,
hJohn,Maryi:hasChild

The DL Family
• Many different DLs, often with “strange” names

– E.g., EL, ALC, SHIQ

• Particular DL defined by:
– Concept operators (u, t, ¬, 9, 8, etc.)

– Role operators (-, ±, etc.)

– Concept axioms (v, ´, etc.)

– Role axioms (v, Trans, etc.)

The DL Family
• E.g., EL is a well known “sub-Boolean” DL

– Concept operators: u, ¬, 9
– No role operators (only atomic roles)
– Concept axioms: v, ´
– No role axioms

• E.g.:

Parent ´ Person u 9hasChild.Person

The DL Family
• ALC is the smallest propositionally closed DL

– Concept operators: u, t, ¬, 9, 8
– No role operators (only atomic roles)
– Concept axioms: v, ´
– No role axioms

• E.g.:

ProudParent ´ Person u 8hasChild.(Doctor t 9hasChild.Doctor)

The DL Family
• S used for ALC extended with (role) transitivity axioms
• Additional letters indicate various extensions, e.g.:

– H for role hierarchy (e.g., hasDaughter v hasChild)
– R for role box (e.g., hasParent ± hasBrother v hasUncle)
– O for nominals/singleton classes (e.g., {Italy})
– I for inverse roles (e.g., isChildOf ´ hasChild–)
– N for number restrictions (e.g., >2hasChild, 63hasChild)
– Q for qualified number restrictions (e.g., >2hasChild.Doctor)
– F for functional number restrictions (e.g., 61hasMother)

• E.g., SHIQ = S + role hierarchy + inverse roles + QNRs

The DL Family
• Numerous other extensions have been investigated

– Concrete domains (numbers, strings, etc)
– DL-safe rules (Datalog-like rules)
– Fixpoints
– Role value maps
– Additional role constructors (Å, [, ¬, ±, id, …)
– Nary (i.e., predicates with arity >2)
– Temporal
– Fuzzy
– Probabilistic
– Non-monotonic
– Higher-order
– …

DL Semantics
Via translaton to FOL, or directly using FO model theory:

Interpretation domain ΔIInterpretation function I

Individuals iI 2 ΔI

John

Mary
Concepts CI µ ΔI

Lawyer

Doctor

Vehicle
Roles rI µ ΔI £ ΔI

hasChild

owns

DL Semantics
• Interpretation function extends to concept expressions

in the obvious(ish) way, e.g.:

DL Semantics
• Given a model M =

–

–

–

–

–

DL Semantics
• Satisfiability and entailment

– A KB K is satisfiable iff there exists a model M s.t. M ² K

– A concept C is satisfiable w.r.t. a KB K iff there exists a model
M = hD, ·Ii s.t. M ² K and CI ≠ ;

– A KB K entails an axiom ax (written K ² ax) iff for every model
M of K, M ² ax (i.e., M ² K implies M ² ax)

DL Semantics
E.g.,

– K ² John:Person ?
– K ² Peter:Doctor ?
– K ² Mary:HappyParent ?

– What if we add “Mary hasChild Jane” ?
K ² Peter = Jane

– What if we add “HappyPerson ´ Person u 9hasChild.Doctor” ?
K ² HappyPerson v Parent

T = {Doctor v Person, Parent ´ Person u 9hasChild.Person,
 HappyParent ´ Parent u 8hasChild.(Doctor t 9hasChild.Doctor)}
A = {John:HappyParent, John hasChild Mary, John hasChild Sally,
 Mary:¬Doctor, Mary hasChild Peter, Mary:(· 1 hasChild)

DL and FOL
• Most DLs are subsets of C2

– But reduction to C2 may be (highly) non-trivial
• Trans(R) naively reduces to

• Why use DL instead of C2?
– Syntax is succinct and convenient for KR applications
– Syntactic conformance guarantees being inside C2

• Even if reduction to C2 is non-obvious
– Different combinations of constructors can be selected

• To guarantee decidability
• To reduce complexity

– DL research has mapped out the decidability/complexity
landscape in great detail

• See Evgeny Zolin’s DL Complexity Analyzer
http://www.cs.man.ac.uk/~ezolin/dl/

Complexity Measures
• Taxonomic complexity

Measured w.r.t. total size of “schema” axioms

• Data complexity
Measured w.r.t. total size of “data” facts

• Query complexity
Measured w.r.t. size of query

• Combined complexity
Measured w.r.t. total size of KB (plus query if appropriate)

