Description Logic:
A Formal Foundation for
Languages and Tools

lan Horrocks
<ian.horrocks@comlab.ox.ac.uk>
Information Systems Group

Oxford University Computing Laboratory

Contents

* Description Logic Basics
— Syntax and semantics
* Description Logics and Ontology Languages
— OWL ontology language
— Ontology -v- Database
* Description Logic Reasoning
— Reasoning services

— Reasoning techniques

* Recent and Future work

DL Basics

What Are Description Logics?

What Are Description Logics?

* Decidable fragments of First Order Logic

Thank you for listening

Any questions?

What Are Description Logics?

* A family of logic based Knowledge Representation formalisms
— Originally descended from semantic networks and KL-ONE

— Describe domain in terms of concepts (aka classes), roles (aka
properties, relationships) and individuals

has-color> @

> | Mat

Animal

sits-on

[Quillian, 1967]

What Are Description Logics?

* Modern DLs (after Baader et al) distinguished by:

— Fully fledged logics with formal semantics
+ Decidable fragments of FOL (often contained in C,)
» Closely related to Propositional Modal & Dynamic Logics
» Closely related to Guarded Fragment

— Provision of inference services

* Practical decision procedures (algorithms) for key problems
(satisfiability, subsumption, etc)

* Implemented systems (highly optimised)

and now:

A Word from our Sponsors

A \

"’: . 2:‘1
o)7
\ "/ v /o0
A’ Ly

Crash Course in (simplified) FOL

° Syntax

— Non-logical symbols (signature)
» Constants: Felix, MyMat
» Predicates(arity): Animal(1), Cat(1), has-color(2), sits-on(2)

— Logical symbols:
* Variables: x, y
* Operators: A, V, =, -, ...
* Quantifiers: 3, V
« Equality: =

— Formulas:
 Cat(Felix), Mat(MyMat), sits-on(Felix, MyMat)
. Cat(x), Cat(x)V Human(z), Jy.Mat(y) A sits-on(z, y)
« Vz.Cat(z) — Animal(z), Vz.Cat(x) — (Jy.Mat(y) A sits-on(z, y))

Crash Course in (simplified) FOL

* Semantics

Crash Course in (simplified) FOL

* Semantics

Why should | care about semantics? -- In fact | heard that a little goes a long way! ’

Crash Course in (simplified) FOL

* Semantics

Why should | care about semantics? -- In fact | heard that a little goes a long way! ’

Well, from a philosophical POV, we need to specify
the relationship between statements in the logic and
the existential phenomena they describe.

Crash Course in (simplified) FOL

* Semantics

Why should | care about semantics? -- In fact | heard that a little goes a long way! ’

Well, from a philosophical POV, we need to specify
the relationship between statements in the logic and
the existential phenomena they describe.

That's OK, but | don'’t get paid for philosop@

Crash Course in (simplified) FOL

* Semantics

Why should | care about semantics? -- In fact | heard that a little goes a long way! ’

Well, from a philosophical POV, we need to specify
the relationship between statements in the logic and
the existential phenomena they describe.

That's OK, but | don't get paid for philosophy.

/From a practical POV, we need to define

relationships (like entailment) between logical
statements -- without such a definition we
\can’t spec software such as a reasoner.

Crash Course in (simplified) FOL

* Semantics
/In’Fa_ we define the semantics in terms of models (a model theory). A mm
supposed to be an analogue of (part of) the world being modeled. FOL uses a
very simple kind of model, in which “objects” in the world (not necessarily physical
objects) are modeled as elements of a set, and relationships between objects are

~ modeled as sets of tuples.

Crash Course in (simplified) FOL

* Semantics

m we define the semantics in terms of models (a model theory). A mm
supposed to be an analogue of (part of) the world being modeled. FOL uses a
very simple kind of model, in which “objects” in the world (not necessarily physical
objects) are modeled as elements of a set, and relationships between objects are

~ modeled as sets of tuples.

Note that this is exactly the same kind of
model as used in a database: objects in the
world are modeled as values (elements) and

relationships as tables (sets of tuples).

Crash Course in (simplified) FOL

* Semantics

— Model: a pair (D, -1} with D a non-empty set and - an interpretation
« C! is an element of D for C a constant
« v is an element of D for v a variable
- P! is a subset of D™ for P a predicate of arity n
- Eg., D={a,b,c,d e, f}, and
Balind o g T
MyMatI =b
Cat' = {a,¢}
Nl S -

Crash Course in (simplified) FOL

* Semantics
— Evaluation: truth value in a given model M = (D, -!)
« P(t1,... tp) is true iff (¢, ... tl) e P!
- AN B is true iff A is true and B is true
—A is true iff A is not true

— E.g.
, D: a7b7c7d767f
Cat(Felix) true Bl I{ B s
Cat(MyMat) false chx i ¢
: MyMat® = b
—~Mat(Felix) true Cat! — {a, c}

sits-on(Felix, MyMat) true

. . Mat’ = {b, e}
Mat(Felix) V Cat(Felix) true

Animal’ = {a, ¢, d}
sits-on’ = {(a,), (c, e)}

Crash Course in (simplified) FOL

* Semantics

— Evaluation: truth value in a given model M = (D, -I)

. Jz.A is true iff exists -’ s.t. T and I differ only w.r.t. z,
and A is true w.r.t. (D,-1)

- Vz.A is true iff for all -’ s.t. - and I differ only w.r.t. x,
A is true w.r.t. (D, 1)

E.g., D = {CL, ba C, d7 €, f}

Jz.Cat(x) ;“lle Felix! = a

Vz.Cat(x) alse MyMat! — b

dz.Cat(z) A Mat(x) false Cat! — {a, c}

Va Cat(x) — Animal(z) e Mat! = {b,e)

Vz.Cat(x) — (Jy.Mat(y) A sits-on(z, y)) true Animall — {a,c,d}
SitS‘OHI — {(a'a b)a <Ca 6>}

Crash Course in (simplified) FOL

* Semantics

— Given a model M and a formula F, M is a model of F (written M F F) iff
F evaluates to true in M

— A formula F is satisfiable iff there exists a model M s.t. M E F

— A formula F entails another formula G (written F E G) iff every model
of F is also a model of G (i.e., M E F implies M E G)

E.g., D — {a; b; Ca da 67 f}

M = 3z.Cat(z) Felix! = a

M - Vo .Cat(z) MyMat’ = b

M (= Jz.Cat(x) A Mat(z) Cat! = {a,c}

M = Vz.Cat(z) — Animal(x) Mat! = {b’ e}

M = Vz.Cat(z) — (Jy.Mat(y) A sits-on(z, y)) Animall = {a,c,d}
sits-on! = {(a,b),(c,e)}

Crash Course in (simplified) FOL

* Semantics
— Given a model M and a formula F, M is a model of F (written M F F) iff
F evaluates to true in M
— Aformula F is satisfiable iff there exists a model M s.t. M E F

— A formula F entails another formula G (written F E G) iff every model
of F is also a model of G (i.e., M E F implies M E G)

E.g.

Cat(Felix) = Jz.Cat(z) (Cat(Felix) A =3z.Cat(x) is not satisfiable)
(Vz.Cat(x) — Animal(x)) A Cat(Felix) = Animal(Felix)

(Vx.Cat(x) — Animal(xz)) A =Animal(Felix) = —-Cat(Felix)

Cat(Felix) = Vx.Cat(x)

sits-on(Felix, Mat1) A sits-on(Tiddles, Mat2) = —sits-on(Felix, Mat2)
sits-on(Felix, Mat1) A sits-on(Tiddles, Mat1) = 32%x sits-on(z, Mat1)

XX XSS\

Decidable Fragments

* FOL (satisfiability) well known to be undecidable

— A sound, complete and terminating algorithm is impossible

* Interesting decidable fragments include, e.g.,

— C2: FOL with 2 variables and Counting quantifiers (327, 3=")
» Counting quantifiers abbreviate pairwise (in-) equalities, e.g.:
3232.Cat(z) equivalent to
dx,y, z.Cat(z) A Cat(y) ANCat(z) Az A yAx £ 2Ny # 2
32z .Cat(z) equivalent to
Vx,y, z.Cat(x) A Cat(y) A Cat(z) —x=yVao=zVy==z
— Propositional modal and description logics
— Guarded fragment

Back to our Scheduled
Program

5%
"’: - 2:‘1
(o
", e /o
A\’ Ly

DL Syntax

* Signature

— Concept (aka class) names, e.g., Cat, Animal, Doctor
« Equivalent to FOL unary predicates

— Role (aka property) names, e.g., sits-on, hasParent, loves
« Equivalent to FOL binary predicates

— Individual names, e.g., Felix, John, Mary, Boston, Italy

« Equivalent to FOL constants

DL Syntax

* Qperators

— Many kinds available, e.g.,
« Standard FOL Boolean operators (1, U, =)
 Restricted form of quantifiers (3, V)
« Counting (>, <, =)

DL Syntax

* Concept expressions, e.g.,
— Doctor LI Lawyer
— Rich M Happy
— Cat N dsits-on.Mat

* Equivalent to FOL formulae with one free variable
— Doctor(z) V Lawyer(x)
— Rich(z) A Happy(x)
— Jdy.(Cat(x) A sits-on(z, y))

DL Syntax

* Special concepts
— T (aka top, Thing, most general concept)

— 1 (aka bottom, Nothing, inconsistent concept)

used as abbreviations for
— (A U= A) for any concept A
— (A= A) for any concept A

DL Syntax

° Role expressions, e.qg.,

— Joves

— hasParent o hasBrother

* Equivalent to FOL formulae with two free variables

— loves(y, x)

— Jz.(hasParent(z, z) A hasBrother(z, y))

DL Syntax

* “Schema” Axioms, e.g.,
— Rich E —Poor
— Cat M dsits-on.Mat C Happy
— BlackCat = Cat M JhasColour.Black

— sits-on C touches

(concept inclusion)
(concept inclusion)
(concept equivalence)
(role inclusion)

— Trans(part-of) (transitivity)

* Equivalent to (particular form of) FOL sentence, e.g.,
- Vx.(Rich(x) = —Poor(x))
- Vx.(Cat(x) A dy.(sits-on(x,y) A Mat(y)) — Happy(x))
- Vx.(BlackCat(x) <+ (Cat(x) A Jy.(hasColour(x,y) A Black(y)))
- VXx,y.(sits-on(x,y) — touches(x,y))
- VX,y,z.((sits-on(x,y) A sits-on(y,z)) — sits-on(x,z))

- -— 31 . d Lo -) -
= - - Bel-ra. P e - B b4) = -

DL Syntax

* “Data” Axioms (aka Assertions or Facts), e.g.,

— BlackCat(Felix) (concept assertion)
— Mat(Matl) (concept assertion)
— Sits-on(Felix,Mat1) (role assertion)

* Directly equivalent to FOL “ground facts”

— Formulae with no variables

DL Syntax

* A set of axioms is called a TBox, e.g.:

{Doctor C Person,

Parent = Person M JhasChild.Perg
HappyParent = Parent M VhasChil Note
Facts sometimes written

* A set of facts is called an AE

John:HappyParent,
{HappyParent(John), John hasChild Mary,
hasChild(John,Mary)} (J OhIl,M&I'Y) :hasChild

* A Knowledge Base (KB) is just a TBox plus an Abox
— Often written I = (7, A)

The DL Family

* Many different DLs, often with “strange” names
- E.g., &L, ALC, SHIQ
* Particular DL defined by:
— Concept operators (M1, U, -, 3, V, etc.)
— Role operators (-, o, etc.)
— Concept axioms (C, =, etc.)

— Role axioms (C, Trans, etc.)

The DL Family

° E.g., ££ is a well known “sub-Boolean” DL
— Concept operators: M, =, 3
— No role operators (only atomic roles)
— Concept axioms: C, =
— No role axioms

° E.g.

Parent = Person M JhasChild.Person

The DL Family

e ALC is the smallest propositionally closed DL

— Concept operators: M, LI, =, 4, V
— No role operators (only atomic roles)
— Concept axioms: C, =

— No role axioms

° E.g.

ProudParent = Person M VhasChild.(Doctor LI dhasChild.Doctor)

The DL Family

e Sused for ALC extended with (role) transitivity axioms

* Additional letters indicate various extensions, e.g.:
- H for role hierarchy (e.g., hasDaughter C hasChild)
- R forrole box (e.g., hasParent o hasBrother C hasUncle)

- (O for nominals/singleton classes (e.g., {ltaly})
- 7 for inverse roles (e.g., isChildOf = hasChild™)
- N for number restrictions (e.g., >2hasChild, <3hasChild)

- @ for qualified number restrictions (e.g., >2hasChild.Doctor)
- JF for functional number restrictions (e.g., <l1hasMother)

* E.g., SHZO = S + role hierarchy + inverse roles + QNRs

The DL Family

°* Numerous other extensions have been investigated
— Concrete domains (numbers, strings, etc)
— DL-safe rules (Datalog-like rules)
— Fixpoints
— Role value maps
— Additional role constructors (N, U, -, o, id, ...)
— Nary (i.e., predicates with arity >2)
— Temporal
— Fuzzy
— Probabilistic
— Non-monotonic
— Higher-order

DL Semantics
Via translaton to FOL, or directly using FO model theory:

Interpretation function Z Interpretation domain AZ

Individuals iZ € AZ

Lawyer

Doctor ~~._

Vehicle ~< _ ~~. :
Roles 1r? C AT x A? AU D W QR

hasChild -

owns

-~
~
-~
-~
~ -
-

DL Semantics

* Interpretation function extends to concept expressions
in the obvious(ish) way, e.g.:

(cnD)Yt =ctnpD?

(CcuDYX =ctup?

(—|C)I _ AI \ CI

{z}t = {z1}

(AR.CYL = {z | Iy.(z,y) € R Ay € CL}
(VR.C)t = {z | Vy.(z,y) € Rt = y € C*}
(<nRYt ={z | #{y | (z,y) € RI} n}
(>nR)t = {z | #{y | (z,y) € R*} > n}

DL Semantics

* Given a model M =(D, 1)

—CcrCD iff ¢ctcD!

—C=D iff ¢'=D'

— C(a) iff ol €C!

— R(a,b) iff (a',b!) c R!

= (7, A) iff for every axiomax € 7TUA, M E ax

T X KK KR

DL Semantics

e Satisfiability and entailment
— A KB K is satisfiable iff there exists a model M s.t. M E K

— A concept C is satisfiable w.r.t. a KB K iff there exists a model
M=(D,) st. ME K and C' = ()

— A KB K entails an axiom ax (written IC F ax) iff for every model
Mof , M F ax (i.e., M F K implies M F ax)

DL Semantics

E 9., |7= {Doctor C Person, Parent = Person M JhasChild.Person,
HappyParent = Parent M VhasChild.(Doctor LI FhasChild.Doctor)}

A = {John:HappyParent, John hasChild Mary, John hasChild Sally,
Mary:—Doctor, Mary hasChild Peter, Mary:(< 1 hasChild)

- K E John:Person ?

IC E Peter:Doctor ?

- K E Mary:HappyParent ?

— What if we add “Mary hasChild Jane” ?
IC E Peter = Jane

— What if we add “HappyPerson = Person " JdhasChild.Doctor” ?
KC E HappyPerson C Parent

NS S

DL and FOL

* Most DLs are subsets of C2

— But reduction to C2 may be (highly) non-trivial
 Trans(R) naively reduces to Vz,y, z.R(z,y) A R(y, z) — R(z, z)

* Why use DL instead of C27

— Syntax is succinct and convenient for KR applications
— Syntactic conformance guarantees being inside C2
» Even if reduction to C2 is non-obvious
— Different combinations of constructors can be selected
« To guarantee decidability
« To reduce complexity

— DL research has mapped out the decidability/complexity
landscape in great detail

« See Evgeny Zolin’s DL Complexity Analyzer
http://www.cs.man.ac.uk/~ezolin/dl/

-

‘

Complexity of reasoning in Description Logics
Note: the information here is (always) incomplete and updated often

Base description logic: _Ztributive Zanguage with Complements
ALC::= L | A| -C| CaD | CvD | 3R.C | VR.C

Concept constructors: Role constructors: (‘trans)(reg)
_ #- functionality?: (<1 R) ¥ /- role inverses: R~
¥ A~ (unqualified) number restrictions: (=n R), (£n R) 2 N - role intersection®: RNS
' @~ qualified number restrictions: (=n R.C), (£n R.C)) U - role union: RUS
& O- nominals: {a} or {al,...,an} ("one-of" constructor) ' = - role complement: i
- ' o - role chain (composition): RoS
' u - least fixpoint operator: uX.C _— flexive-t it | 4. px
~ RCS - role-value-maps - 'd_ re exw:-.drants.l |\./e.dcgsure :
_ f= g - agreement of functional role chains ("same-as") = -_concep iaen 'tyé' © s
rorbid = complex roles® in number restrictions™
TBoX is internalized in extensions of _2£(/0, see [76, Lemma 4.12], Role axioms (RBox): Sl DL
[54, p.3] # - Role transitivity: Trans(R) =T
© Empty TBox & J/- Role hierarchy: RC S
Acyclic TBox (A=C, A is a concept name; no cycles) O ®- Complex role inclusions: RoS C R, RoS C S
General TBox (CCD for arbitrary concepts C and D) -
_ s- some additional features
You have selected the Description Logic: SHO/NV
Complexity of reasoning prohlemsZ
Reasoning problem Complexityg Comments and references

e Hardness of even _4£(7/0is proved in [76, Corollary 4.13]. In that paper, the result is formulated for
ALCQIO, but only number restrictions of the form (<1R) are used in the proof.

o A different proof of the NExpTime-hardness for _2£(%70is given in [54] (even with 1 nominal, and role
inverses not used in number restrictions).

e Upper bound for S#0/Qis proved in [77, Corollary 6.31] with numbers coded in unary (for binary
coding, the upper bound remains an open problem for all logics in between _2£CA70 and SHOIQ).

e Important: in number restrictions, only simple roles (i.e. which are neither transitive nor have a
transitive subroles) are allowed; otherwise we gain undecidability even in SHA see [46].

e Remark: recently [47] it was observed that, in many cases, one can use transitive roles in number

restrictions - and still have a decidable logic! So the above notion of a simple role could be substantially
extended.

Concept satisfiability |NExpTime-complete

ABox consistency NExpTime-complete |By reduction to concept satisfiability problem in presence of nominals shown in [69, Theorem 3.7].

e

Complexity Measures

* Taxonomic complexity

Measured w.r.t. total size of “schema” axioms

* Data complexity

Measured w.r.t. total size of “data” facts
* Query complexity

Measured w.r.t. size of query

* Combined complexity

Measured w.r.t. total size of KB (plus query if appropriate)

