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Abstract. In this paper, we present a preliminary study to compute embeddings
for OWL 2 ontologies by projecting the ontology axioms into a graph and per-
forming (random) walks over the ontology graph to create a corpus of sentences.
This corpus is then given to a neural language model to create concept embed-
dings. The conducted preliminary evaluation shows promising results.

1 Introduction
In the literature we can find a number of approaches that perform embeddings over
(RDF) knowledge graphs [17] to conduct knowledge graph completion (e.g., [4, 11,
14]). Most of the approaches, however, only focus on the embedding of the data in-
stances. Although some approaches also learn embeddings for concepts involved in
instance type definitions (e.g., [11, 8]), the embeddings rely on data instances and the
knowledge provided by the ontology (e.g., subsumption axioms) is typically ignored.
Alshahrani et al. [2] performs reasoning to expand the knowledge graph with new facts
(e.g., types of the instances), but the main focus is on the instance embeddings for bio-
logical link prediction.

Regarding concept embeddings, there have been some efforts to leverage word em-
beddings to associate a vector to the lexical information of the ontology concepts. This
approach has typically been applied to ontology alignment tasks (e.g., [13, 9]). The
main limitation of this approach is the dependence on a relevant text corpus or a pre-
trained set of word embeddings, which may have some limitations when applying to
ontologies with domain-specific vocabulary. Some works refine the word embeddings
using semantic lexicons (e.g., [9]) to compensate for the lack of domain-specific train-
ing corpora. Nevertheless, the computed word embeddings neglect the rich semantics
of the ontologies (e.g., concept hierarchy, relationships among concepts).

The approach followed by the systems Onto2Vec [15] and OPA2Vec [16] deserves
special mention. Both Onto2Vec and OPA2Vec consider each axiom in the ontology as
a sentence. The set of axioms (including some inferred axioms) in the ontology form
a document that is then given to Word2Vec [10]. Word2Vec computes vectors for each
of the elements in the document including concept identifiers, relationships and OWL
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Fig. 1: Current pipeline in OWL2Vec

constructs. Although this approach represents an interesting effort, it has the following
limitations: (i) the corpus of sentences may be limited for small-medium ontologies to
create meaningful vectors, (ii) OWL constructs may introduce noise in the embeddings,
and (iii) Word2Vec does not differentiate between sentences like “A SubClassOf: B”
and “A DisjointWith: C” which will lead to similar embeddings for A, B and C.

In order to overcome the limitations of state-of-the-art approaches, we have imple-
mented a framework to compute semantic embeddings from OWL 2 ontologies. Our
approach (i) projects the ontology into a graph, (ii) implements several strategies to
walk the ontology graph, (iii) creates a corpus of sentences according to the walking
strategies, and (iv) generates concept embeddings from that corpus.

2 Methods
Figure 1 summarises the current architecture of the OWL2Vec framework, composed of
three main components: ontology projection, walk strategy, and concept embeddings.
Ontology projection. We follow a simplified version of the (RDF-based) graph pro-
jection of the ontology used by Agibetov et al. [1]. The nodes in the projected RDF
graph represent concepts in the ontology while edges are labelled with possible rela-
tions among those concepts. The key property of this projection is that every edge (i.e.,
triple 〈A,Ro, B〉) in the graph is justified by one or more axioms entailed by the on-
tology which “semantically relates” two concepts (e.g., A and B) via a property (e.g.,
Ro). Table 1 shows the type of axioms currently considered in the ontology projection.
Walk strategy. We have implemented a set of strategies to walk the ontology graph.
We initially relied on a modified version of RDF2Vec [14]. The main difference with
respect to the original RDF2Vec algorithm is the use of the ontology projection as in-
put and the inclusion of weighted edges for the walks (as also proposed in [5]). One
could give more weight to the taxonomic relationships or to the object properties to
walk from one hierarchy branch to another. The modified algorithm also allowed the
creation of sentences with the concept URI and/or the concept labels. We encountered,
however, a scalability limitation for long walks over large ontologies. To overcome
the limitations of the RDF2Vec approach, we implemented a more flexible strategy in-
spired by node2vec [6]. This strategy (i) scales with large ontologies, (ii) allows to bias
the walks, (iii) enables semantic similarity not only for closely connected elements but
also for similar structures, (iv) has flexibility to change the direction of a walk to avoid
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Condition 1 Condition 2 Triple(s)

A SubClassOf : Ro Restriction D
D ≡ B |B1 t ... t Bn |B1 u ... u Bn

〈A,Ro, B〉 orRo Restriction D SubClassOf : A

Ro Domain: A Ro Range: B 〈A,Ro, Bi〉 for i∈1..n
A SubClassOf : Ro value b b type B

Ro InverseOf : R−
o 〈A,R−

o , B〉 in graph
S1 ◦ ... ◦ Sn SubPropertyOf : Ro 〈A,S1, C1〉...〈Cn, Sn, B〉 in graph

B SubClassOf : A
〈B,SubClassOf,A〉
〈A,SubClassOf−, B〉

Table 1: Projection of the OWL 2 ontology axioms into an RDF graph. Restriction is
one of: min, max, exactly, some, only. A, B, Bi and Ci are atomic concepts, Si, Ro and
R−o are object properties, b an individual.

dead ends, and (v) uses the (in-memory) triple store reasoner RDFox [12] to enhance
the access to the projected ontology graph.
Concept embeddings. The walk strategies in OWL2Vec are flexible and allow the cre-
ation of different types of corpora of sentences that will lead to concept embeddings
with different characteristics. For example, the computed embeddings may favour the
semantic similarity among concepts within the same hierarchy (e.g., between Person
and Researcher) or among concepts related with other properties (e.g., between Paper
and Researcher). We currently rely on Word2Vec [10] and FastText [7] to compute the
embedding from the resulting documents.

3 Preliminary Evaluation and Future Work
Figure 2 shows a subset of our preliminary set of experiments.5 We have computed
(agglomerative) clusters of the concepts in the EKAW conference ontology based on
the embeddings provided by RDF2Vec, Onto2Vec and OWL2Vec. We can observe that
the clusters (of related concepts) obtained with the OWL2Vec embeddings are well
differentiated while for RDF2Vec and Onto2Vec the cloud of points is more sparse.6

These clustering results are encouraging, but more evaluation is required to evaluate
the usefulness of the computed embeddings. We plan to conduct an extensive evaluation
to obtain quality measures similar to the ones proposed within the Concept2vec frame-
work [3]. We also aim at evaluating OWL2Vec in real-world applications like biomedi-
cal link prediction or ecotoxicological effect prediction to analyze if the OWL2Vec con-
cept embeddings improve the state-of-the-art solutions. Furthermore, we are adopting
OWL2Vec within our ontology alignment system as the different OWL2Vec walking
strategies has led to a promising set of concept similarities.

OWL2Vec has the potential of becoming an essential component of machine learn-
ing applications that rely on the semantic information of an ontology as input.

Acknowledgements. This work is supported by the AIDA project (The Turing Institute)
and the SIRIUS Centre for Scalable Data Access (RCN 237889).

5 OWL2Vec source codes available from: https://gitlab.com/oholter/owl2vec
6 The rest of conference-based OntoFarm ontologies [18] led to similar findings.
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(a) RDF2Vec (b) Onto2Vec (c) OWL2Vec

Fig. 2: Clustering of the EKAW conference ontology.
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